theory of elasticity 弹性力学

34
Theory of Elasticity 弹弹弹弹 Chapter 8 Two-Dimensional Solution 弹弹弹弹弹弹弹弹弹弹弹

Upload: keith-norris

Post on 03-Jan-2016

124 views

Category:

Documents


0 download

DESCRIPTION

Theory of Elasticity 弹性力学. Chapter 8 Two-Dimensional Solution 平面问题的直角坐标求解. Theory of Elasticity. Chapter. Page. Content (内容). Introduction (概述) Mathematical Preliminaries (数学基础) Stress and Equilibrium (应力与平衡) Displacements and Strains (位移与应变) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Theory of Elasticity 弹性力学

Theory of Elasticity弹性力学Chapter 8

Two-Dimensional Solution

平面问题的直角坐标求解

Page 2: Theory of Elasticity 弹性力学

Chapter Page

Content (内容)

1 1

1. Introduction (概述)2. Mathematical Preliminaries (数学基础)3. Stress and Equilibrium (应力与平衡)4. Displacements and Strains (位移与应变)5. Material Behavior- Linear Elastic Solids (弹性应力应变关

系 )6. Formulation and Solution Strategies (弹性力学问题求

解)7. Two-Dimensional Formulation (平面问题基本理论)8. Two-Dimensional Solution (平面问题的直角坐标求解)9. Two-Dimensional Solution (平面问题的极坐标求解)10. Three-Dimensional Problems (三维空间问题)11. Bending of Thin Plates (薄板弯曲)12. Plastic deformation – Introduction (塑性力学基础)13. Introduction to Finite Element Mechod (有限元方法介

绍)

Page 3: Theory of Elasticity 弹性力学

Chapter Page

Two-Dimensional Solution in Cartesian Coordinate

• 8.1 Cartesian Coordinate Solutions Using Polynomials( 直角坐标下的多项式解答 )

• 8.2 Uniaxial Tension of a Beam( 梁的单轴拉伸问题 )

• 8.3 Bending of a Beam by Uniform Transverse Loading( 受均匀横向载荷的梁弯曲问题 )

8 2

Page 4: Theory of Elasticity 弹性力学

Chapter Page

8.1 Cartesian Coordinate Solutions Using Polynomials (直角坐标下的多项式解答)

8 3

15 unknowns including 3 displacements, 6 strains, and 6 stresses.

3 D

2 D02

4

4

22

4

4

4

yyxx

1 unknowns

, , ; , , 0i ij ij iu F

0

0

xyxx

xy yy

Fx y

Fx y

2 2

2 2( )( ) 0x yx y

Page 5: Theory of Elasticity 弹性力学

Chapter Page

8.1 Cartesian Coordinate Solutions Using Polynomials (直角坐标下的多项式解答)

8 4

General Solution Strategies( 求解方法 )1 、 Direct Method( 直接法 )

Direct integration of the field equations( 直接积分场方程 )

Or stress and/or displacement formulations ( 得到应力 / 位移方程 .)

, , ; , , 0i ij ij iu F

Page 6: Theory of Elasticity 弹性力学

Chapter Page

8.1 Cartesian Coordinate Solutions Using Polynomials (直角坐标下的多项式解答)

8 4

Example:Stretching of Prismatic Bar Under Its Own Weight ( 受自重的等截面杆 )

The equilibrium equations reduce to( 平衡方程简化为 )

0

0

x y z

x y xy yz zx

F F F g

,

zzF g

z

Page 7: Theory of Elasticity 弹性力学

Chapter Page

8.1 Cartesian Coordinate Solutions Using Polynomials (直角坐标下的多项式解答)

8 5

boundary conditionσz |z=0=0

using Hooke’s law

Example: zzF g

z

( )z z gz

0

z x y

xy xz yz

gz v gz

E E

,

Page 8: Theory of Elasticity 弹性力学

Chapter Page

8.1 Cartesian Coordinate Solutions Using Polynomials (直角坐标下的多项式解答)

8 5

integrating the strain-displacement relations: with boundary conditions of zero displacement and rotation at point A( 积分应变 - 位移方程 , 加上 A 点位移和转动都为 0)

Example:

0

z x y

xy xz yz

gz v gz

E E

,

2 2 2 2

2

v gxz v gzyu v

E Eg

w z v x y lE

,

( )

Page 9: Theory of Elasticity 弹性力学

Chapter Page 8 6

2 、 Inverse Method( 逆解法 )particular displacements or stresses are selected that satisfy the basic field equations. A search is then conducted to identify a specific problem that would be solved by this solution field.( 选择满足相容方程的应力函数 , 再根据应力边条和几何边条找出能用所选取的应力函数解决的问题 .)

024

4

22

4

4

4

yyxx

φ2

2

2

2

2

x X

y Y

xy

F xy

F yx

x y

Boundary Conditionsgeometry

8.1 Cartesian Coordinate Solutions Using Polynomials (直角坐标下的多项式解答)

Page 10: Theory of Elasticity 弹性力学

Chapter Page

8.1 Cartesian Coordinate Solutions Using Polynomials (直角坐标下的多项式解答)

8 7

part of the displacement and/or stress field is specified, and the other remaining portion is determined by the fundamental field equations (normally using direct integration) and the boundary conditions.( 假定部分或全部应力分量为某种形式的双调和函数 , 从而导出应力函数 , 再考察由这个应力函数得到的应力分量是否满足全部边界条件 )

3 、 Semi-Inverse Method( 半逆解法 )

σ ( part) φ σ

024

4

22

4

4

4

yyxx

B. C.?2

2

2

2

2

x X

y Y

xy

F xy

F yx

x y

Page 11: Theory of Elasticity 弹性力学

8.1 Cartesian Coordinate Solutions Using Polynomials (直角坐标下的多项式解答)

0 1 2f C C x C y 2

2

2

2

2

fx X

fy Y

fxy

F xy

F yx

x y

Chapter Page 8 8

Inverse Method in terms of Polynomials:( 多项式解法 )

1:one-order Polynomials ( 一次多项式 )

Assume Fx=Fy=0

0x y xy

One-order Polynomials is fit for zero body force, zero stress state.( 适用于零体力 , 零面力情况 )

Page 12: Theory of Elasticity 弹性力学

8.1 Cartesian Coordinate Solutions Using Polynomials (直角坐标下的多项式解答)

2 21 2 3f C x C xy C y

2

2

2

2

2

fx X

fy Y

fxy

F xy

F yx

x y

Chapter Page 8 8

2:two-order Polynomials ( 二次多项式 )

Assume Fx=Fy=0 3

1

2

2

2x

y

xy

C

C

C

two-order Polynomials is fit for a uniformity distribution of stress( 适用于均匀应力分布 )

Page 13: Theory of Elasticity 弹性力学

8.1 Cartesian Coordinate Solutions Using Polynomials (直角坐标下的多项式解答)

Chapter Page 8 9

m + n 1 x=0, y=0,,xy=0

second-order a constant stress field

third-order a linear distribution of stress

higher-order ……

0 0

m nf mn

m n

x y A x y

( , )

2

2

2

2

2

fx

fy

fxy

y

x

x y

3:general states( 推广到无穷阶 )

Page 14: Theory of Elasticity 弹性力学

8.1 Cartesian Coordinate Solutions Using Polynomials (直角坐标下的多项式解答)

Chapter Page 8 9

specifies one constant in terms of the other two leaving two constants to be determined by the boundary conditions.( 由上式 8.1 再加上边界条件就可求出所有系数 )

4 2 2 440 22 40f A x A x y A y

4 2 2 440 22 40 0A x A x y A y

024

4

22

4

4

4

yyxx

满足双调各方程 :

8.1

Page 15: Theory of Elasticity 弹性力学

8.1 Cartesian Coordinate Solutions Using Polynomials (直角坐标下的多项式解答)

0 0

m nf mn

m n

x y A x y

( , )

Chapter Page 8 10

the general relation that must be satisfied to ensure that the polynomial grouping is biharmonic( 对于任意阶多项式要满足双调和方程 )

024

4

22

4

4

4

yyxx

满足双调各方程 :

2 2

2 2

2 1 1 2 1 1

2 1 1 0m n mm

m n

m m m m A m m n n A

n n n n A

,

,

( )( ) ( ) ( ) ( )

( )( ) ( )

Page 16: Theory of Elasticity 弹性力学

8.2 Uniaxial Tension of a Beam( 单轴拉伸梁 )

Chapter Page

plane stress case

Saint Venant approximation to the more general case withnonuniformly distributed tensile forces at the ends x =±l. ( 由圣维南原理可知对于在 x =±l 处拉力分布不均但静力等效的情况也适用 )

Solution( inverse method) ( 逆解法 ):

The boundary conditions( 边界条件 ):

0)(,)(

0)(,0)(

lxxylxx

cyxycyy

T

8 11

Problem:

Page 17: Theory of Elasticity 弹性力学

Chapter Page

constant stresses on each of the beam’s boundaries:

求应力函数 Φ

0)(,)( lxxylxx T

Therefore, this problem is given by:

8 12

202A y

2 2 2

2 2x y xyy x x y

, ,

022 , 0x y xyA

02 2A T0x y xyT ,

Boundary condition

polynomial is biharmonic

8.2 Uniaxial Tension of a Beam( 单轴拉伸梁 )

Page 18: Theory of Elasticity 弹性力学

Chapter Page

求 u ,ε

/

/x

y

T E

T E

y

E

Tv

xE

Tu

1

1

x x y

y y x

u Tv

x E Ev T

v vy E E

( )

( )

Tu x f y

ET

v v y g xE

( )

( )

2 0 ( ) ( ) 0xyxy

u vf y g x

y x

( ) ( ) cons tan tg x f y

( )

( )o o

o o

f y y u

g x x v

0f g

0x y xyT ,

Integral( 积分 )

8.2 Uniaxial Tension of a Beam( 单轴拉伸梁 )

Page 19: Theory of Elasticity 弹性力学

022 , 0x y xyA

Chapter Page

inverse method( 逆解法 )

0)(,)( lxxylxx T

Physical Equations

e

u

Geometrical Equations

024

4

22

4

4

4

yyxx

8 14

202A y

8.2 Uniaxial Tension of a Beam( 单轴拉伸梁 )

Page 20: Theory of Elasticity 弹性力学

Chapter Page

8.3 Bending of a Beam by Uniform Transverse Loading( 受均匀横向载荷的梁弯曲问题 )

Airy stress function( 艾里应力函数 )

x

yl l

ql ql1

y

zh/2h/2

q

stress field( 应力场 )

Boundary Conditions( 边界条件 )

compare with elementary strength of materials( 和材力结果相比 )

8 15

Page 21: Theory of Elasticity 弹性力学

Chapter Page 8 16

plane stress conditions(semi-inverse method 半逆解法 )

x

yl l

ql ql1

y

zh/2h/2

q

1, Airy stress function

y

xxy

Stress Component Force

M ( 主要由弯矩引起; )

Q ( 主要由剪力引起; )

q ( 由 q 引起 )

∵ q =const.

)(yfy

1) Stress components

2) Format of Stress function

)(2

2

yfxy

Integrate above:

)()( 1 yfyxfx

)()()(2 21

2

yfyxfyfx

)(),(),( 21 yfyfyf to be determined

8.3 Bending of a Beam by Uniform Transverse Loading( 受均匀横向载荷的梁弯曲问题 )

Page 22: Theory of Elasticity 弹性力学

Chapter Page 8 17

)()( 1 yfyxfx

)()()(2 21

2

yfyxfyfx

3 ) satisfy the biharmonic equation

04

4 4

4

22

4

4

4

2yyxx

04

4

x

)()()(2

)4(2

)4(1

)4(2

4

4

yfyxfyfx

y

)(22 )2(22

4

yfyx

4

0)(2

)()()(2

)2(

)4(2

)4(1

)4(2

yf

yfyxfyfx

8.3 Bending of a Beam by Uniform Transverse Loading( 受均匀横向载荷的梁弯曲问题 )

Page 23: Theory of Elasticity 弹性力学

Chapter Page 8 18

0)(2)()()(2

)2()4(2

)4(1

)4(2

yfyfyxfyfx

x

yl l

ql

ql

1

y

zh/2h/2

q

关于 x 的二次方程,且要求 - l≤ x ≤ l 内方程均成立。

0)()4( yf 0)(2)( )2()4(2 yfyf0)()4(1 yf

GyFyEyyf 231 )(

DCyByAyyf 23)(

此处略去了 f1(y) 中的常数项

23452 610)( KyHyy

By

Ayf

)()()(2 21

2

yfyxfyfx

)610

(

)()(2

2345

23232

KyHyyB

yA

GyFyEyxDCyByAyx

8.3 Bending of a Beam by Uniform Transverse Loading( 受均匀横向载荷的梁弯曲问题 )

Page 24: Theory of Elasticity 弹性力学

Chapter Page 8 19

)610

(

)()(2

2345

23232

KyHyyB

yA

GyFyEyxDCyByAyx

9 unknown coefficients

2, stress field

2

2

yx

KHyByAyFEyxBAy

x2622)26()26(

223

2

2

2

xy

DCyByAy 23

yxxy

2

)23()23( 22 GFyEyCByAyx

8.3 Bending of a Beam by Uniform Transverse Loading( 受均匀横向载荷的梁弯曲问题 )

Page 25: Theory of Elasticity 弹性力学

Chapter Page 8 20

3, Boundary Conditions

1) Symmetry Condition

yx , —— x 的偶函数

xy —— x 的奇函数

x

yl l

ql

ql

q

2

2

yx

KHyByAyFEyxBAy

x2622)26()26(

223

2

2

2

xy

DCyByAy 23

yxxy

2

)23()23( 22 GFyEyCByAyx

026 FEy

023 2 GFyEy

0 GFE

KHyByAyBAyx

x 2622)26(2

232

DCyByAyy 23

)23( 2 CByAyxxy

8.3 Bending of a Beam by Uniform Transverse Loading( 受均匀横向载荷的梁弯曲问题 )

Page 26: Theory of Elasticity 弹性力学

Chapter Page

2) Boundary Conditions

a) Top and bottom( 上下面,主要 ) x

yl l

ql qlq

;0,2

xy

hy

;,2

qh

y y

;0,2

y

hy

KHyByAyBAyx

x 2622)26(2

232

DCyByAyy 23

)23( 2 CByAyxxy

,23h

qA

,0B

2

qD

h

qC

2

3

8 21

04

32

CBhh

A

04

32

CBhh

A

0248

23

DCh

Bh

Ah

qDCh

Bh

Ah

248

23

8.3 Bending of a Beam by Uniform Transverse Loading( 受均匀横向载荷的梁弯曲问题 )

Page 27: Theory of Elasticity 弹性力学

Chapter Page

KHyyh

qyx

h

qx 26

46 33

23

22

32 33

qy

h

qy

h

qy

xh

qxy

h

qxy 2

36 23

x

yl l

ql qlq

b) End conditions( 左右边界,次要 )

,lx 未知

22

hy

hlx

xy022

h

yhlx

x

Using Saint-Venant’s Principle

statically equivalent force

轴力 N = 0 ;弯矩 M = 0 ;剪力 Q = - ql ;

8 22

8.3 Bending of a Beam by Uniform Transverse Loading( 受均匀横向载荷的梁弯曲问题 )

Page 28: Theory of Elasticity 弹性力学

Chapter Page

轴力 N = 0 ;弯矩 M = 0 ;剪力 Q = - ql ;

qldyQh

h lxxy 2

2

02

2

dyN

h

h lxx

02

2

dyyM

h

h lxx

0K

h

q

h

qlH

103

2

自动满足

KHyyh

qyx

h

qx 26

46 33

23

22

32 33

qy

h

qy

h

qy

xh

qxy

h

qxy 2

36 23

)5

34()(

62

222

3

h

y

h

yqyxl

h

qx

22

112

h

y

h

yqy

2

2

3 4

6y

hx

h

qxy

8 23

8.3 Bending of a Beam by Uniform Transverse Loading( 受均匀横向载荷的梁弯曲问题 )

Page 29: Theory of Elasticity 弹性力学

Chapter Page 8 24

4, compare with elementary strength of materials

)5

34()(

62

222

3

h

y

h

yqyxl

h

qx

22

112

h

y

h

yqy

2

2

3 4

6y

hx

h

qxy

x

yl l

ql qlq

3

12

1hI28

22 yhS

)(2

22 xlq

M

qxQ

5

34

2

2

h

y

h

yqy

I

Mx

22

112

h

y

h

yqy

bI

QSxy

8.3 Bending of a Beam by Uniform Transverse Loading( 受均匀横向载荷的梁弯曲问题 )

Page 30: Theory of Elasticity 弹性力学

Chapter Page

5

34

2

2

h

y

h

yqy

I

Mx

22

112

h

y

h

yqy

bI

QSxy

4, compare with elementary strength of materials

第一项与材力结果相同,为主要项。

第二项为修正项。当 h / l<<1,该项误差很小,可略;当 h / l 较大时,须修正。

为梁各层纤维间的挤压应力,材力中不考虑。

与材力中相同。

8 25

8.3 Bending of a Beam by Uniform Transverse Loading( 受均匀横向载荷的梁弯曲问题 )

Page 31: Theory of Elasticity 弹性力学

xyτx y

)(

)(

Chapter Page 8 26

x

yl l

ql qlq

5

34

2

2

h

y

h

yqy

I

Mx

22

112

h

y

h

yqy

bI

QSxy

8.3 Bending of a Beam by Uniform Transverse Loading( 受均匀横向载荷的梁弯曲问题 )

Page 32: Theory of Elasticity 弹性力学

Chapter Page 8 27

Vocabulary( 词汇 )

Polynomials 多项式Uniaxial 单轴的Beam 梁Uniform 均匀的Inverse Method 逆解法Semi-Inverse Method 半逆解法Biharmonic 双调和的Airy stress function 艾里应力函数

Page 33: Theory of Elasticity 弹性力学

Homework

Chapter Page 8 27

1: 设有矩形截面的长竖柱 , 密度为 ρ, 在一边侧面上受均布剪力 q, 如图 1, 试求应力分量 .

提示 : 可假设 σx=0, 或假设 τxy=f(x), 或假设 σy 如材料力学中偏心受压公式所示 . 上端边界条件如不能精确满足 , 可应用圣维南原理 .

x

y

o

q

b

ρg

图 1

y

xoα

ρg

图 2

2: 设图 2 中的三角形悬臂梁只受重力作用 , 而梁的密度为 ρ, 试用纯三次式的应力函数求解 .

Page 34: Theory of Elasticity 弹性力学

Homework

Chapter Page 8 27

x

图 3

y o

ρ1g

b/2 b/2

ρ2g

3: 挡水墙的密度为 ρ1, 厚度为 b, 图 3, 水的密度为 ρ2, 试求应力分量 .

( 提示 : 可假设 σy=xf(y) 上端的边界条件如不能精确满足 , 可应用圣维南原理 , 求出近似的解答 )