title special functions and river phenomenon (mathematical … · 2016-06-16 · special functions...

10
Title Special Functions and River Phenomenon (Mathematical Models in Functional Equations) Author(s) Diener, Francine; Michel, Franck Citation 数理解析研究所講究録 (2000), 1128: 37-45 Issue Date 2000-01 URL http://hdl.handle.net/2433/63642 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University

Upload: others

Post on 25-Dec-2019

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Title Special Functions and River Phenomenon (Mathematical … · 2016-06-16 · Special Functions and River Phenomenon Rancine Diener, RanckMichel Abstract Phase portrait of Ordinary

Title Special Functions and River Phenomenon (MathematicalModels in Functional Equations)

Author(s) Diener, Francine; Michel, Franck

Citation 数理解析研究所講究録 (2000), 1128: 37-45

Issue Date 2000-01

URL http://hdl.handle.net/2433/63642

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

Page 2: Title Special Functions and River Phenomenon (Mathematical … · 2016-06-16 · Special Functions and River Phenomenon Rancine Diener, RanckMichel Abstract Phase portrait of Ordinary

Special Functions and River PhenomenonRancine Diener, Ranck Michel

Abstract

Phase portrait of Ordinary Differential Equations can have special structures thatstrongly attract or repeal the solutions. Those structures, the “rivers”, are revealedby change of coordinates and singularly perturbed models. We first recall resultsfor approaching this phenomenon in real and complex analysis. Then we study theconnexion between rivers and special solutions of classical equations (Airy, Bessel,Kummer, Whittaker, orthogonal polynomials...)

1. River Phenomenon: a Real Analysis Approach

We consider a scalar differential equation

$\frac{d\mathrm{Y}}{dX}=Q(X, \mathrm{Y}\rangle (_{\backslash }\mathrm{E})$

where $Q$ is a polynomial with real coefficients: $Q(X, \mathrm{Y})=\sum_{i=1}^{p}a_{i}X^{m_{i}}Y^{n_{i}},$ $a_{i}\in \mathbb{R}$ ,$(m_{i}, n_{i})\in \mathbb{Q}^{2}$ .

Definition 1. For equation $(E)$ , and for $r\in \mathbb{Q}$, we define the $r$ -degree $ofQ(X, Y)$ to bethe number $\partial_{r}Q=\max(m_{i}+rn_{i})$ . We set

$\Gamma Q(X, \mathrm{Y})=$$\sum_{i=1,m_{i}+rn_{i}=\partial_{r}Q}^{p}a_{i}X^{m_{i}}Y^{n_{i}}$

The phase portrait of an equation $(E)$ can reveal interesting structures: asymptotic di-rections of polynomial growth that exponentially attract or repeal some solutions of $(E)$

when $X$ tends to infinity (see for example figure 3.1). Solutions asymptoticffiy equivalentto these structures are $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ “rivers”: the gathering of trajectories is such that they seemto merge like rivers on a map. The earliest characterizations of rivers are due to F. andM. Diener, and lead to the following theorem (see for instance [7], [3] or [6]).

Theorem 1. ($\mathrm{r}i\iota^{\gamma}er$ solutions) Let $(k, r)\in \mathbb{R}\cross \mathbb{Q}such$ that

(i) The $\iota\prime \mathrm{a}l\mathrm{u}ec(r)=1-r+\partial_{r}Q$ is greater than $0$

(ii) The value $k$ is a single root of the polynomial $\lambdaarrow rQ(1, \lambda)$

数理解析研究所講究録1128巻 2000年 37-45 37

Page 3: Title Special Functions and River Phenomenon (Mathematical … · 2016-06-16 · Special Functions and River Phenomenon Rancine Diener, RanckMichel Abstract Phase portrait of Ordinary

Then:

$\bullet$ If $(^{r}Q_{Y}’)(1, k)>0$ , there exists a unique river solu$t\mathrm{i}$on $Y(X)$ of $(E)$ defin$\mathrm{e}d$ on theneighborhood $of+\infty$ nhich is asymptotic to $kX^{r}$

$\bullet$ If $(^{r}Q_{Y}’)(1, k)<0$ , there exists an infinite $n$umber of river solutions $Y(X)$ of $(E)$

defined on the neighborhood $of+\infty$ rhich are asymptotic to $kX^{r}$

The values $r$ of this theorem can be obtained through an algorithmic way, using a Newton’spolygon technique (see [5]).The river phenomenon is revealed by a singularly perturbed model. The change of coor-dinates $x=\epsilon X,$ $y=\epsilon^{r}\mathrm{Y}$ transforms equation $(E)$ into

$\epsilon^{c(r)_{\frac{dy}{dx}=}}rQ(x, y)+R(x,y,\epsilon)$ (e)

with $R(x, y, 0)=0$. Condition (i) implies that $(E)$ is a singularly perturbed equation.Condition (ii) implies that $rQ(x, kx^{r})=0,$ $i.e.,$ $y=kx^{r}$ is a “slow curve” of the slow-fastequation $(E)$ . This slow curve is attracting when $(^{r}Q_{Y}’)(1, k)<0$ , because the field ispositive below the curve and negative above. It is repelling when $(^{r}Q_{Y}’)(1, k)>0$ , becausethe field is positive above the curve and negative below.The river solutions of $(E)$ are mapped, with the change of coordinates, onto trajectoriesthat “follow” the slow curve $y=kx^{r}$ . A rigorous sense of “following” the slow curve isgiven with the notion of $\mathrm{i}\mathrm{n}\mathrm{f}\mathrm{i}\iota\dot{\mathrm{u}}\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{l}$ proximity, in nonstandard analysis.

2. River Phenomenon: a Complex Analysis Approach

We now consider equation $(E)$ and its model $(e)$ in complex variables. According to Jean-Louis $\mathrm{C}\mathrm{a}\mathrm{U}\mathrm{o}\mathrm{t}$ (see [2]), we can build a ‘hill-and-dale” function for the slow curve $y=kx^{r}$

of $(E)$ defined by:

$R(x)={\rm Re}( \int^{x}(^{r}Q)_{Y}’(s, ks^{r})ds)={\rm Re}(\int^{x}(^{r}Q)_{Y}’(1, k)s^{\mathrm{c}(r)-1}ds=\frac{1}{\mathrm{c}(r)}{\rm Re}((^{r}Q)_{Y}’(1, k)x^{\mathrm{c}(r)})$

This function is used to determine the attractiveness of the slow curve $y=kx^{r}$ . Let usassume that variable $x$ moves along a complex path $\gamma(t)$ . When $\gamma(t)$ is going down the hill-and-dale function, $i.e.$ , when the harmonic function $R(\gamma(t))$ is decreasing, the slow curve$y=kx^{r}$ is attracting neighboring solutions. And when $\gamma(t)$ is going up the hill-and-dalefunction, $i.e.$ , when $R(\gamma(t))$ is increasing, the slow curve $y=kx^{r}$ is repelling neighboringsolutions.We have

$R(re^{i\theta})= \frac{1}{\mathrm{c}(r)}{\rm Re}((^{r}Q)_{Y}’(1, k)\cos(\mathrm{c}(r)\theta))r^{c(r)}$

For a fixed $\theta$ , the $\mathrm{h}\mathrm{i}\mathrm{U}$-and-dale function increases with $r$ when ${\rm Re}((^{r}Q)_{Y}’(1, k)\cos(c(r)\theta))>$

$0$ , and decreases with $r$ when ${\rm Re}((^{r}Q)_{Y}’(1, k)\cos(c(r)\theta))<0$ . Therefore, we have sectorsof opening $\pi/c(r)$ where the function $R$ increases with the modulus of $x$ : they are the

38

Page 4: Title Special Functions and River Phenomenon (Mathematical … · 2016-06-16 · Special Functions and River Phenomenon Rancine Diener, RanckMichel Abstract Phase portrait of Ordinary

“hills” of $R$ . And we have sectors of opening $\pi/c(r)$ where the function $R$ decreases withthe modulus of $x$ : they are the “dales” of $R$ . We have alternance of hills and dales: each$\mathrm{h}\mathrm{i}\mathrm{U}$ is $\mathrm{b}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{d}\cdot \mathrm{b}\mathrm{y}$ two dales, and each dale is bordered by two hills.We consider sets

$S(A, \theta_{-}, \theta_{+})=\{X\in \mathbb{C}, |X|>A, \theta_{-}<\arg(X)<\theta_{+}\}$

with $A\in \mathbb{R}_{+},$ $(\theta_{-}, \theta_{+})\in \mathbb{R}^{2}$ .Using the hill-and-dale function, it can be shown (see [9]) that attracting rivers of theorem1 are asymptotically equivalent to $kX^{r}$ for $X \in S(A, -\frac{\pi}{2\mathrm{c}}, \frac{\pi}{2c})$ , with $A$ large enough: theycorrespond to a dale of the function $R$ . Repelling rivers are asymptoticaUy equivalent to$kX^{r}$ for $X \in S(A, -\frac{3\pi}{2c}, \frac{3\pi}{2c})$ , with $A$ large enough: they correspond to a hill and twoadjacent dales of the function $R$ . We say that $Y(X)$ is equivalent to $kX^{r}$ on $S(A, \theta_{-}, \theta_{+})$

if for all $(a, b)\in \mathbb{R}^{2},$ $\theta_{-}<a<b<\theta_{+}$ , we have $Y(X)/(kX^{r})arrow 1$ when $|X|arrow+\infty$ and$\theta\in[a, b]$ .We remark that repelling rivers are “distinguished” among solutions of $(E)$ : they areunique (no other solution share the same asymptotic equivalent), and they belong to largesectors of $\mathbb{C}$ , because their initial condition correspond to the top of a hill.We can extend this study to complex solutions of complex equations $(E)$ , and determineall distinguished solutions that are defined on large sectors. Assllme now that coefficients$a_{i}$ of $Q(X, Y)$ belong to C. We have the following result (see [4]).

Theorem 1. (disting$\mathrm{u}i\epsilon hed$ solutions) Let $(k, r)\in \mathbb{C}\mathrm{x}\mathbb{Q}$ such that

(i) The value $c(r)=1-r+\partial_{r}Q$ is greater than $0$

(ii) The value $k$ is a simple root of the polynomial $\lambda-^{r}Q(1, \lambda)$

Let $q$ be the lowest positive integer such that $\overline{c}=c(r)q$ belongs to N. Then for alldirections $\theta_{n}=(-\arg((^{r}Q)_{Y}’(1, k))+2n\pi)/\overline{c},$ $n=1..\overline{c}_{f}$ there exists $A\in \mathbb{R}_{+}$ laxge $e\mathrm{n}o\mathrm{u}gh$

such that equation $(E)$ has a solution defined on $S(A, \theta_{n}-\frac{3\pi}{2c}, \theta_{n}+\frac{3\pi}{2c})$ and asymptotically$eq$uivalent to $kX^{r}$ on this set.

3. The Example of Airy Equation

Using the example of the Airy equation, we will show in this section how rivers and specialfunctions are related. The special functions considered here are particular solutions ofsecond order linear differential equations. They have been chosen among all the solutionsbecause they have special asymptotic behavior, and sometimes, because of other reasons,as symmetry properties.If one transforms the second order linear equation onto a non linear Riccati equation, weremark a correspondence between rivers (in particular repelling) of the Riccati’s equivalent,and special solutions of the initial equation.The well-known Airy equation is

$W”(X)-XW(X)=0$ (3.1)

39

Page 5: Title Special Functions and River Phenomenon (Mathematical … · 2016-06-16 · Special Functions and River Phenomenon Rancine Diener, RanckMichel Abstract Phase portrait of Ordinary

Figure 3.1: Phase portrait of Liouville’s equation

The change of variable $Y(X)=-W’(X)/W(X)$ transforms (3.1) in the Liouville’s equa-tion

$Y’(X)=Y^{2}-X$ (3.2)

On the phase portrait (see figure 3.1), we can see two river structures for $Xarrow+\infty$ (arepelling and an attracting one).A Newton’s polygon technique gives the value $r=1/2$ such that the change of coordinates$x=\epsilon X,$ $y=\epsilon^{1/2}Y$ transforms (3.2) onto the singularly perturbed model

$\epsilon^{3/2}y’(x)=y^{2}-x$ (3.3)

A real analysis approach reveals two slow curves $\pm\sqrt{x}$ . The slow curve $\sqrt{x}$ strongly re-peals solutions of (3.2) and corresponds to a unique repeUing river (see theorem 1) whichis asymptoticaUy equivalent to $\sqrt{X}$ when $Xarrow+\infty$ . The slow curve $-\sqrt{x}$ strongly at-tracts solutions of (3.2) and corresponds to an infinity of attracting rivers asymptoticallyequivalent $\mathrm{t}\mathrm{o}-\sqrt{X}$ .

In complex analysis, the slow curve is $x^{1/2}=r^{1/2}e^{i\theta/2}$ , the determination of the squareroot depends on the value of $\theta$ . We compute the $\mathrm{h}\mathrm{i}\mathrm{U}$-and-dale function

$R(x)={\rm Re}( \int^{x}2s^{1/2}ds)={\rm Re}(\frac{4}{3}x^{3/2})$

$R(re^{i\theta})= \frac{4}{3}r^{3/2}\cos(\frac{3}{2}\theta)$

The repelling river corresponds to the top of a hill centered on $\mathbb{R}_{+}$ , bordered by two dales.It is possible to reach each point of $\mathbb{C}$ along a path that always “goes down” the hill-and-dale function. As drawn in figure 3.2, left part, the repelling river solution $Y(re^{i\theta})$ is

40

Page 6: Title Special Functions and River Phenomenon (Mathematical … · 2016-06-16 · Special Functions and River Phenomenon Rancine Diener, RanckMichel Abstract Phase portrait of Ordinary

asymptotically equivalent to $r^{1/2}e^{i\theta/2}$ for $\theta\in$ ] $-\pi,$ $\pi$ [. The asymptotical equivalence holdson a large sector of opening $2\pi$ .An attracting river corresponds to the bottom of a dale centered on $\mathbb{R}_{+}$ , and borderedby two hills. It is only possible to go down the $\mathrm{h}\mathrm{i}\mathrm{U}$. As drawn in figure 3.2, right part,a river solution $Y(re^{i\theta})$ is asymptotically equivalent to $r^{1/2}e^{i\theta/2}$ for $\theta\in$ ] $2\pi/3,4\pi/3$ [. Theasymptotical equivalence holds only on a sector of opening $2\pi/3$ .

$+$

$\pi$ $3\pi$

$+$$-\pi$

$+$

Figure 3.2: Level curves of the $\mathrm{h}\mathrm{i}\mathrm{U}$-and dale function $\frac{4}{3}r^{3/2}\cos(\frac{3}{2}\theta)$ . The sign $”+$” is forincreasing level curves $(” \mathrm{h}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{s}" )$ , the sign “-,, is for decreasing level curves $(” \mathrm{d}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{s}" )$ . Leftpart: $\theta\in$ ] $-\pi,$ $\pi$ [, the repelling river correspond to the $\mathrm{h}\mathrm{i}\mathrm{U}$ and its two neighboring dales.Right part: $\theta\in$ ] $2\pi,$ $3\pi$ [, an attracting river corresponds $\mathrm{o}\mathrm{r}\lrcorner \mathrm{y}$ to the $\mathrm{d}\mathrm{a}_{1}^{1}\mathrm{e}$ .

There are three solutions of $(E)$ asymptotically equivalents to $r^{1/2}e^{i\theta/2}$ on large sectors.These three distinguished solutions corresponds to the tops of the three hills of the hill-and-dale function. As shown in figure 3.3, the first one is the repelling river solution; thesecond one is a complex solution, asymptotically equivalent to $r^{1/2}e^{i\theta/2}$ for $\theta\in$] $\pi/3,7\pi/3$ [;and the third one is another complex solution, asymptotically equivalent to $r^{1/2}e^{i\theta/2}$ for$\theta\in]-7\pi/3,$ $-\pi/3[$ .

A special solution has an historical importance for equation (3.1): the Airy function$A_{i}(x)$ . This function is real, oscillating for $x<0$ and asymptotically decreasing for $x>0$ .Ransformation $u_{A_{i}}(x)=-A_{i}’(x)/A_{i}(x)$ maps the Airy function onto the repelling river of(3.2).Another real solution is defined for equation (3.1): the function $B_{i}(x)$ . Figure 3.4 showsthe mapping of the function A and $B_{i}$ on LiouviUe’s plane. The image of $B_{i}(x)$ is anattracting river, good graphical representative of solutions following the slow $\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{v}\mathrm{e}-\sqrt{x}$.Two complex solutions are classically pointed out as special solutions of (3.1): the $\mathrm{f}\iota \mathrm{l}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$

A $(ze^{i\frac{2\pi}{3}})$ and the fimction $A_{i}(ze^{-i\frac{2\pi}{\mathrm{a}}})$ . We remark these two complex solutions, joined withthe Airy function itself, correspond to the three $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{n}\Re \mathrm{i}\mathrm{s}\mathrm{h}\mathrm{e}\mathrm{d}$ solutions of the equation.

41

Page 7: Title Special Functions and River Phenomenon (Mathematical … · 2016-06-16 · Special Functions and River Phenomenon Rancine Diener, RanckMichel Abstract Phase portrait of Ordinary

Figure 3.3: Level curves of the $\mathrm{h}\mathrm{i}\mathrm{l}\mathrm{l}-\mathrm{a}\mathrm{n}\mathrm{d}$-dale function. First draw: $\theta\in$ ] $\pi,$ $\pi$ [. Second draw:$\theta\in]\pi/3,7\pi/3$ [. Third draw: $\theta\in$ ] $-7\pi/3,$ $-\pi/3$ [. These three domain corresponds to threedistinguished solutions, asymptotically equivalent to $r^{1/2}e^{i\theta/2}$

Figure 3.4: Left part: $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}-A_{i}’(x)/A_{i}(x)$ . Right part: $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}-B_{i}’(x)/B_{i}(x)$

4. Other Special Functions

The study of relations between rivers and special solutions can be extend to other classicalequations. The results are sununarized in the following table, and $\mathrm{i}\mathrm{U}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$ in a collectionof figures.

We consider equations with real coefficients, that have real river structures $\mathrm{i}\mathrm{n}+\infty$ . Thedefinition and properties of special solutions considered here, as well as details about theseequations, can be found in classical books on special functions (see in particular [1]). Allfunctions plotted here are real along the real axis, except $K_{3}’(x),$ $M’(1,2, x)$ and $W_{1,1}’(x)$

for $x<0$ . In these three cases, we plotted the real part of these functions.

In all those examples, we notice that repelling rivers are usually distinguished as specialfunctions. Other special functions, that are solutions of these equations, have particularproperties of synunetry. All the special functions considered in this table correspond torivers of some Riccati equations. As rivers exist as $\mathrm{w}\mathrm{e}\mathrm{U}$ for any differential equation $(E)$

(even it is not a Ricccati’s equation), we can consider they are a form of generalization ofspecial ffinctions.

42

Page 8: Title Special Functions and River Phenomenon (Mathematical … · 2016-06-16 · Special Functions and River Phenomenon Rancine Diener, RanckMichel Abstract Phase portrait of Ordinary

$\mathrm{J}\lambda$ IUIII$\mathrm{U}\mathrm{C}\mathrm{l}\mathrm{b}$ equallUll 1U1 $a=1$ allU $U=A.$ $\mathrm{r}$ uIlCIilU\Pi $lVl(\perp,$ $\angle,$ $X[]/\mathit{1}V\mathit{1}(\perp_{)}\angle, X].$ PUnCtlOn

$U’(12x)))/U(1,2x))$

Whittaker’s equation for $\kappa=1$ and $\mu=2$ . Fhnction $M_{1,1}’(x)/M_{1,1}(x)$ . Function$W_{1,1}’(x)/W_{1,1}(x)$

Cylinder Parabolic Equation for $a=1$ . Function $y_{1}’(1, x)/y_{1}(1, x)$ . Function$y_{2}’(1, x)/y_{2}(1, x)$ .

43

Page 9: Title Special Functions and River Phenomenon (Mathematical … · 2016-06-16 · Special Functions and River Phenomenon Rancine Diener, RanckMichel Abstract Phase portrait of Ordinary

$\wedge\aleph$

$.0^{arrow}$

$\frac{6^{\wedge}}{\mathrm{b}}$

$\tau_{\overline{C6}}$

$\overline{\mathrm{H}}$

$.0^{\wedge}$

$\frac{\mathrm{e}^{-}}{@}$

$0\infty-$

$.\mathrm{r}$

$\overline{\mathrm{g}^{o}\wedge\frac{\infty}{\mathrm{Q})\ovalbox{\tt\small REJECT}}}$

$\mathrm{S}$

$\backslash \mathrm{e}_{\mathrm{I}}\aleph$

?$.\overline{\underline{\underline{\mathrm{q})\triangleright}}}$

$.\Xi\triangleleft)\mathrm{b}\mathrm{s}^{0}$

$\ae^{\omega}\alpha$

$r[]$

?$.\underline{\underline{\frac{\infty}{\omega}\succ}}$

$.\underline{-\mathrm{b}}D$

$4‘ 0_{6}^{\partial}$

$\overline{.}$

$\triangleleft\dashv\Rightarrow$

$\overline{\omega\triangleright}$

$.\mathrm{B}$

$.\mathrm{S}^{\mathfrak{v}}\mathrm{b}$

$\overline{\underline{\mathrm{q})\mathrm{q})O}}.$

$A_{s}^{\Phi}4$

$. \frac{A}{.\Xi}$

$\mathrm{b}$

$\mathrm{t}.\underline{\vee 0\underline{\mathrm{o}}\ovalbox{\tt\small REJECT} \mathrm{d}}$

$. \cdot\overline{-\underline{\mathrm{Q})\succ}}\wedge$

$\frac{\dot 4\frac{\mathrm{d}}{\mathrm{o}\mathrm{c}6\underline\partial}\mathrm{b}}{\neq 3,6}$

$D$

$\epsilon-6$

$.A\sim\overline{\triangleright}$

@$.\ovalbox{\tt\small REJECT}^{o}\vee\underline{\mathrm{o}\mathrm{d}}$

$o$

$11$

$\overline{\frac{\aleph}{\mathrm{S}}}$

$6$

$1$

$\underline{\wedge\aleph}$

$\backslash \mathrm{S}$

$\overline{8}$

$1$

$\underline{.0}$

$+$

$\overline{\underline{\aleph}}$

$\backslash \backslash rightarrow \mathrm{S}$

$6|\aleph$

$+$

$\overline{\frac{\aleph}{\mathrm{s}}}$

$.\mathrm{Q}\mathrm{e}^{\mathfrak{l}1\mathrm{I}\mathrm{i}}$

$+$

$\overline{\frac{\aleph}{\mathrm{O}1\mathrm{s}_{\mathrm{I}}}}$

$11$

$\overline{\frac{\mathrm{H}}{\sim \mathrm{s}}}$

$.\underline{0\Leftrightarrow}$

$\star\ni\epsilon 6$

$\mathrm{m}^{\overline{\sigma}}$

$\wedge\frac{\omega}{\ovalbox{\tt\small REJECT}\omega}$

$\mathrm{S}$

$\star_{\mathrm{q}^{\partial},\omega}$

$\overline{\epsilon 6\triangleright}$

$.@\mathrm{S}_{1}$

$. \wedge‘\frac{\infty}{\neq\ni,\mathrm{e}6}$

$.\ae \mathrm{o}o$

$. \mathrm{b}D\frac{\mathrm{d}}{\alpha}$

$\Xi^{6}‘\alpha$

$..‘. \ovalbox{\tt\small REJECT}^{\mathrm{g}}\frac{\sim \mathrm{O}\infty\approx \mathrm{g}}{\infty^{\mathrm{a}}.\mathrm{r}_{\dot{\mathrm{O}}}\mathrm{o}\infty \mathrm{Q})}.\frac{\wedge\aleph}{\frac{\mathrm{g}}{\mathrm{m}^{\mathfrak{B}}\infty \mathrm{q})}\sim^{\mathrm{a}}\mathrm{g}\mathrm{o}\mathrm{o}}\dot{.‘}.$

$\omega_{D}.."$

)

$.. \ovalbox{\tt\small REJECT}_{\frac{\vee \mathrm{Q})\mathrm{d}}{\wedge ae\mathrm{o}\frac{\infty}{.\circ c6}\frac{\underline{\not\in}}{8}}}^{\aleph^{-A}}\aleph\frac{\frac{\wedge\aleph}{\mathrm{S}}}{\triangleleft 7_{1\triangleleft}^{\mathrm{H}}\sim’rightarrow \mathrm{I}\triangleleft \mathrm{E}|\mathrm{H}++|\aleph}.‘...".\frac{}{\wedge \mathrm{S}}‘$

$\ovalbox{\tt\small REJECT}^{\aleph^{\circ\iota_{D}}}\backslash \frac{\wedge\aleph}{\frac{}{\prime \mathrm{g}_{3}\wedge \mathrm{g}\prec+\mathrm{a}^{s}\frac{\mathrm{s}_{\mathrm{o}\supset}^{\mathrm{e}}\mathrm{o}\mathrm{a}3}{\mathrm{H}^{o}.}\frac{\infty}{\mathrm{Q})}}\frac{\mathrm{g}_{\mathrm{F}}^{\mathrm{c}}\mathrm{o}\mathrm{a}_{\wedge}}{\aleph}}.‘.$

$\ovalbox{\tt\small REJECT}_{\frac{}{\backslash 3}}^{\frac{\mathrm{b}\frac{\backslash \epsilon?}{\omega}-\underline{\succ}}{\mathrm{q})02\mathrm{R}}}\backslash ..\cdot\frac{\vee+}{\vee\aleph}.\xi,\frac{\frac{\infty\vee \mathrm{a}_{\mathrm{I}}||}{\aleph}}{\backslash \mathrm{a}}$

“’$. \ovalbox{\tt\small REJECT}^{\frac{\underline{\underline{\mathrm{H}\mathrm{b}-\underline{\succ}}\frac{\backslash \mathrm{g}?}{\omega}}}{\alpha^{\omega}\omega \mathrm{a}}}\wedge^{-}\frac{\infty}{\mathrm{g}^{\mathrm{Q})}}\mathrm{a}s_{\mathrm{b}\wedge^{-}}\mathrm{a}\overline{\overline{\frac{\mathrm{Q})}{\mathrm{b}\Phi}}}\mathrm{t}\frac{}{\mathrm{a}}\mathrm{a}\frac{.\ovalbox{\tt\small REJECT}}{\mathrm{E}\omega}.\cdot\frac{\mathrm{b}}{\overline{\mathrm{a}}}\mathrm{E}^{\theta}\ovalbox{\tt\small REJECT} \mathrm{o}\approx\frac{\mathrm{o}}{.,a}\mathrm{S}||\overline{\frac{\triangleleft.rightarrow|\triangleleft 4|\aleph\S \mathrm{e}|\mathrm{I}9+|}{\frac{}{\vee\aleph}\frac{+}{\frac{\aleph}{\propto_{3}|||}}\backslash \approx}}\mathrm{g}_{6}\backslash ae^{\underline{\omega}_{D}}$

)

$\mathrm{O}1\mathrm{r}_{\Phi}\circ\eta^{\tau\frac{\mathrm{a}}{\mathrm{a}}}\underline{\underline{-\mathrm{b}}}D\frac{\backslash ?1}{\underline{\mathrm{Q})\underline\succ}}\frac{\mathrm{b}\frac{\infty}{\omega \mathrm{E}\succ}}{[]}\frac{\mathrm{e}6\circ}{\prec^{+\partial}\neq 3}\mathrm{c}_{4^{\underline{-}}}\neq \mathrm{a}?\overline{\mathrm{g}_{\mathrm{g}}}\Xi^{-}A^{\wedge}\frac{r\overline{=\mathrm{Q})\succ \mathrm{d}\mathrm{b}\mathrm{B}}}{\circ,\frac{\omega}{A^{\mathrm{q}}}\alpha}\mathrm{s}_{\mathrm{b}D}\mathrm{b}^{\mathrm{e}}4^{-}\vee\star\ni 4\overline{\omega}_{1}\frac{\mathrm{o}}{.}\mathrm{b}0\mathrm{c}$

)

$\frac{\mathrm{o}}{\mathrm{o}^{\partial}}\xi\frac{\mathrm{c}6\circ}{\dot{\epsilon^{\mathrm{a}}\mathrm{g}^{6}}}\underline{\mathrm{d}\succ}\mathrm{a}D$

.

)

44

Page 10: Title Special Functions and River Phenomenon (Mathematical … · 2016-06-16 · Special Functions and River Phenomenon Rancine Diener, RanckMichel Abstract Phase portrait of Ordinary

References

[1] M. Abramowitz and I. A. Stegum. Handbook of Mathematical Functions. Wiley Inter-science, 1972.

[2] J.-L. CaUot. Champs lents-rapides complexes \‘a une dimension lente. Ann. Scient. Ec.No7m. Sup., $\mathrm{t}.26(\mathrm{S}\acute{\mathrm{e}}\mathrm{r}\mathrm{i}\mathrm{e}4):149-173$ , 1993.

[3] F. Diener. Fleuves et varie’te’s centrales. In Singularit\’es des \’equations diffe’rentielles,Dijon 1985, pages 59-66. Ast\’erisque 150-151, Soci\’et\’e Math\’ematique de France, 1987.

[4] F. Diener. Fleuves complexes. Prep$7\dot{\nu}nt$, 1999.

[5] F. Diener and M. Diener. Fleuves 1-2-3: mode d’emploi. In M. Diener and G. Wallet,editors, Math\’ematiques Finitaioes et Analyse Non Standard, pages 209-216. Publica-tions Math\’ematiques de l’Universit\’e de Paris VII, 31 :2, 1989.

[6] F. Diener and M. Diener. Nonstandard Analysis in Practice. Springer Verlag Univer-sitext, 1995.

[7] M. Diener and G. Reeb. Champs polynomiaux: nouvelles trajectoires remrquables.Bull. Soc. Math. Belgique, 38:131-150, 1987.

[8] F. Michel. Fleuves osciUants. Bull. Belg. Math. Soc., 2:127-141, 1995.$\mathrm{r}9]\mathrm{L}$ F. Michel. ibajectoires remarquables d’\’equalions diff\’erentielles. Th\‘ese, Universit\’e de

Nice-Sophia Antipolis, Parc Valrose F06108 Nice Cedex 2, 1995.

Rancine DienerUniversit\’e de Nice-Sophia AntipolisLaboratoire de math\’ematiques J-A Dieudonn\’eU.M.R. CNRS 6621$\mathrm{p}_{\mathfrak{N}\mathrm{C}}$ Valrose06108 Nice Cedex [email protected]

Ranck MichelUniversit\’e $\mathrm{A}\mathrm{i}\mathrm{x}$-MarseiUe IIILaboratoire de math\’ematiques appliqu\’ees15-19 $\mathrm{a}\mathbb{I}\acute{\mathrm{e}}\mathrm{e}$ Claude Forbin13627 Aix-en-Provence Cedex [email protected]

45