topics in ic design t-coil - seoul national university

27
Topics in IC Design T-Coil Deog-Kyoon Jeong [email protected] School of Electrical and Computer Engineering Seoul National University 2020 Fall (Compliment to Hyungrok Do)

Upload: others

Post on 26-Apr-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Topics in IC Design T-Coil - Seoul National University

Topics in IC Design

T-Coil

Deog-Kyoon Jeong

[email protected]

School of Electrical and Computer Engineering

Seoul National University

2020 Fall

(Compliment to Hyungrok Do)

Page 2: Topics in IC Design T-Coil - Seoul National University

Introduction

โ€ข Inductors produce peaking, thereby giving

bandwidth extension.

โ€ข T-coil (Tee-Coil) produces even more bandwidth

extension by giving negative inductance.

ยฉ 2020 DK Jeong Topics in IC Design 2

Dot conventionSame direction : k > 0

Opposite direction : k < 0

๐Œ = ๐ค ๐‹๐Ÿ๐‹๐Ÿ|k| โ‰ค 1

|k| = 1 when inductors share all of

their magnetic flux.

Page 3: Topics in IC Design T-Coil - Seoul National University

Introduction

โ€ข Introduced by Ginzton in 1948 as part of distributed

amplifier.

ยฉ 2020 DK Jeong Topics in IC Design 3

[0] Ginzton, Proc IRE, 1948

Page 4: Topics in IC Design T-Coil - Seoul National University

T-Coil

โ€ข Common Source Amplifier

ยฉ 2020 DK Jeong Topics in IC Design 4

๐’‡๐Ÿ‘๐’…๐‘ฉ = ฮค๐Ÿ ๐Ÿ๐…๐‘น๐‘ซ๐‘ช๐‘ณ

Without T-Coil, 1

1 + ๐‘ ๐‘…๐ท๐ถ๐ฟ

With T-Coil,

[1] B. Razavi, ISSC Magazine, 2015

Page 5: Topics in IC Design T-Coil - Seoul National University

โ€ข When two zeros in the numerator are cancelled by two of the four

poles in the denominator, the second-order transfer function is

obtained.

โ€ข Given RD and CL, what are CB, L, and M, assuming L1 = L2 = L

(symmetric T-Coil)?

โ€ข Four equations must be satisfied with five variables (CB, L, M,

, ๐œ”๐‘›). Out of numerous solutions, what is the best transfer

function that maximizes the bandwidth?

ยฉ 2020 DK Jeong Topics in IC Design 5

Symmetric T-Coil

๐‘4๐œ”๐‘›2 = ๐‘Ž2

๐‘3๐œ”๐‘›2 = ๐‘Ž22๐œ”๐‘› + ๐‘Ž1

๐‘2๐œ”๐‘›2 = ๐‘Ž2๐œ”๐‘›

2 + ๐‘Ž12๐œ”๐‘› + 1

๐‘1๐œ”๐‘›2 = ๐‘Ž1๐œ”๐‘›

2 + 2๐œ”๐‘›

Page 6: Topics in IC Design T-Coil - Seoul National University

Symmetric T-Coil

โ€ข Let k=M/L and simplify 4 equations.

ยฉ 2020 DK Jeong Topics in IC Design 6

2

2

1 1

4 1

12

1

2

1

1

2 1

B

L

L B

D

n

L

D L D

L

C k

C k

k LkC C

k R

k LC

R C k L R

k LC

2

2

2

2

2

22

2 2

1 44

4 1

4 1

16

16

D L

LB

n

D L

R CL

k

CC

R C

โ€ข Then, determine that maximizes the bw.

[1] B. Razavi, ISSC Magazine, 2015

Page 7: Topics in IC Design T-Coil - Seoul National University

Symmetric T-Coil

โ€ข With the following 2nd order transfer function,

โ€ข 3-dB BW with T-Coil is

which is maximized when .

โ€ข Then

ยฉ 2020 DK Jeong Topics in IC Design 7

22 2 2 2

,

22

2 2

2 2

1 2 1 2 1

161 2 1 2 1

BW T Coil n

D LR C

,

3

12 2

2.828

BW T Coil n

D L

dB

R C

[1] B. Razavi, ISSC Magazine, 2015

Page 8: Topics in IC Design T-Coil - Seoul National University

โ€ข The maximum bandwidth solution is

๐ฟ =3

8๐‘…๐ท2๐ถ๐ฟ , ๐‘€ =

1

3๐ฟ, ๐ถ๐ต =

1

8๐ถ๐ฟ, ๐œ”๐‘›=2 2/๐‘…๐ท๐ถ๐ฟ

which extends the bandwidth by 2.828.

Topics in IC Design 8

Symmetric T-Coil

ยฉ 2020 DK Jeong

BWER=2.828

Page 9: Topics in IC Design T-Coil - Seoul National University

โ€ข What are its input impedances Zin1 and Zin2?

ยฉ 2020 DK Jeong Topics in IC Design 9

Features of Symmetric T-Coil

Zin1

Under the maximum bandwidth

condition,

Zin1 = RD

Zin2 =

T-Coil is transparent.

CL is not seen.

Can be used for return loss (RL)

minimization.

Zin2

Page 10: Topics in IC Design T-Coil - Seoul National University

โ€ข What is the transfer function to the resistor node?

Topics in IC Design 10

Features of Symmetric T-Coil

VR

โ€ข Under the maximum bandwidth

condition,

โ€ข All-pass function with infinite

bandwidth!

โ€ข Extra phase delay could be a

problem.

๐‘‰๐‘…๐‘‰๐‘–๐‘›

๐‘  = โˆ’๐‘”๐‘š๐‘…๐ท๐‘ 2 โˆ’ 2๐œ”๐‘›๐‘  + ๐œ”๐‘›

2

๐‘ 2 + 2๐œ”๐‘›๐‘  + ๐œ”๐‘›2

ยฉ 2020 DK Jeong

โˆ†โˆ… ๐œ” = โˆ’2 arctan[2๐œ”๐‘›๐œ”

๐œ”๐‘›2 โˆ’ ๐œ”2

]

Page 11: Topics in IC Design T-Coil - Seoul National University

โ€ข With one less constraint (L1L2), more freedom for

design is utilized to extend the bandwidth at the cost

of higher design complexity.

โ€ข Given RD and CL, what are CB, L1, L2 , and M?

โ€ข Four equations must be satisfied with five variables

(CB, L1, L2 , M, ๐œ”๐‘›, and = ฮค๐Ÿ ๐Ÿ). Out of numerous

solutions, what is the best transfer function that

maximizes the bandwidth, ๐Ž๐Ÿ‘๐’…๐‘ฉ,๐‘ปโˆ’๐‘ช๐’๐’Š๐’?

Topics in IC Design 11

Asymmetric T-Coil

๐‘4๐œ”๐‘›2 = ๐‘Ž2

๐‘3๐œ”๐‘›2 = ๐‘Ž22๐œ”๐‘› + ๐‘Ž1

๐‘2๐œ”๐‘›2 = ๐‘Ž2๐œ”๐‘›

2 + ๐‘Ž12๐œ”๐‘› + 1

๐‘1๐œ”๐‘›2 = ๐‘Ž1๐œ”๐‘›

2 + 2๐œ”๐‘›

ยฉ 2020 DK Jeong

Page 12: Topics in IC Design T-Coil - Seoul National University

Asymmetric T-Coil

โ€ข No closed-form analytical solution was found.

โ€ข So, first assume L1=L, L2=bL, M= mL, with constraint

of the coupling coefficient

Topics in IC Design 12

๐‘˜ =๐‘€

๐ฟ1๐ฟ2=

๐‘š

๐‘< 1

ยฉ 2020 DK Jeong

[3] S.C.D.Roy, IETE Journal of Research, 2016

Page 13: Topics in IC Design T-Coil - Seoul National University

Asymmetric T-Coil

โ€ข b=1 (Symmetric T-Coil)

โ€ข b=1, m=0.333 (k=0.333), ๐‘ณ = ๐ŸŽ. ๐Ÿ‘๐Ÿ•๐Ÿ“๐‘น๐‘ซ๐Ÿ๐‘ช๐‘ณ, ๐‘ช๐‘ฉ = ๐ŸŽ. ๐Ÿ๐Ÿ๐Ÿ“๐‘ช๐‘ณ, ๐Ž๐’= 2. ๐Ÿ–๐Ÿ๐Ÿ–/๐‘น๐‘ซ๐‘ช๐‘ณ

โ€ข b<1, what are m(k), ๐‘ณ, ๐‘ช๐‘ฉ, ๐Ž๐’? (using Mathematica)

Topics in IC Design 13

b=1.0, m= 0.333 (k=0.333), ๐‘ณ = 0.375๐‘น๐‘ซ๐Ÿ๐‘ช๐‘ณ, ๐‘ช๐‘ฉ = 0.1250๐‘ช๐‘ณ, ๐Ž๐’= 2.828/๐‘น๐‘ซ๐‘ช๐‘ณ

b=0.9, m= 0.378 (k=0.398), ๐‘ณ = 0.406๐‘น๐‘ซ๐Ÿ๐‘ช๐‘ณ, ๐‘ช๐‘ฉ = 0.1074๐‘ช๐‘ณ, ๐Ž๐’= 2.939/๐‘น๐‘ซ๐‘ช๐‘ณ

b=0.8, m= 0.412 (k=0.460), ๐‘ณ = 0.44๐Ÿ’๐‘น๐‘ซ๐Ÿ๐‘ช๐‘ณ, ๐‘ช๐‘ฉ = 0.091๐Ÿ”๐‘ช๐‘ณ, ๐Ž๐’= 3.062/๐‘น๐‘ซ๐‘ช๐‘ณ

b=0.7, m= 0.436 (k=0.521), ๐‘ณ = 0.49๐Ÿ๐‘น๐‘ซ๐Ÿ๐‘ช๐‘ณ, ๐‘ช๐‘ฉ = 0.077๐Ÿ๐‘ช๐‘ณ, ๐Ž๐’= 3.202/๐‘น๐‘ซ๐‘ช๐‘ณ

b=0.6, m= 0.449 (k=0.580), ๐‘ณ = 0.55๐Ÿ‘๐‘น๐‘ซ๐Ÿ๐‘ช๐‘ณ, ๐‘ช๐‘ฉ = 0.063๐Ÿ—๐‘ช๐‘ณ, ๐Ž๐’= 3.367/๐‘น๐‘ซ๐‘ช๐‘ณ

b=0.5, m= 0.451 (k=0.638), ๐‘ณ = 0.635๐‘น๐‘ซ๐Ÿ๐‘ช๐‘ณ, ๐‘ช๐‘ฉ = 0.051๐Ÿ’๐‘ช๐‘ณ, ๐Ž๐’= 3.572/๐‘น๐‘ซ๐‘ช๐‘ณ

b=0.4, m= 0.440 (k=0.696), ๐‘ณ = 0.751๐‘น๐‘ซ๐Ÿ๐‘ช๐‘ณ, ๐‘ช๐‘ฉ = 0.0396๐‘ช๐‘ณ, ๐Ž๐’= 3.838/๐‘น๐‘ซ๐‘ช๐‘ณ

b=0.3, m= 0.414 (k=0.756), ๐‘ณ = 0.93๐Ÿ๐‘น๐‘ซ๐Ÿ๐‘ช๐‘ณ, ๐‘ช๐‘ฉ = 0.0284๐‘ช๐‘ณ, ๐Ž๐’= 4.215/๐‘น๐‘ซ๐‘ช๐‘ณ

b=0.2, m= 0.366 (k=0.818), ๐‘ณ = 1.25๐ŸŽ๐‘น๐‘ซ๐Ÿ๐‘ช๐‘ณ, ๐‘ช๐‘ฉ = 0.017๐Ÿ–๐‘ช๐‘ณ, ๐Ž๐’= 4.828/๐‘น๐‘ซ๐‘ช๐‘ณ

b=0.1, m= 0.280 (k=0.886), ๐‘ณ = 2.02๐Ÿ–๐‘น๐‘ซ๐Ÿ๐‘ช๐‘ณ, ๐‘ช๐‘ฉ = 0.007๐Ÿ–๐‘ช๐‘ณ, ๐Ž๐’= 6.176/๐‘น๐‘ซ๐‘ช๐‘ณ

ยฉ 2020 DK Jeong

Page 14: Topics in IC Design T-Coil - Seoul National University

Practical Implementation

โ€ข Coupling coefficient of greater than 0.7 is not

practical with on-chip spiral inductor.

โ€ข So, b=0.4, m= 0.440 (k=0.696), ๐‘ณ = 0.751๐‘น๐‘ซ๐Ÿ๐‘ช๐‘ณ, ๐‘ช๐‘ฉ =

0.0396๐‘ช๐‘ณ, ๐Ž๐’= 3.838/๐‘น๐‘ซ๐‘ช๐‘ณ is the practical limit.

Topics in IC Design 14ยฉ 2020 DK Jeong

[3] S.C.D.Roy, IETE Journal of Research, 2016

Page 15: Topics in IC Design T-Coil - Seoul National University

Output at Resistor Load

With asymmetric T-coil and =ฮค๐Ÿ ๐Ÿ,

1) transfer function to RD?

2) impedance seen from either

side of the T-Coil?

Zin1 = ?

Zin2 = ?

ยฉ 2020 DK Jeong Topics in IC Design 15

VR

Zin1

Zin2

๐‘ฝ๐‘น๐‘ฝ๐’Š๐’

๐’” = ?

Page 16: Topics in IC Design T-Coil - Seoul National University

T-Coil Design Flow

โ€ข Design flow

โ€“ For given CL and RD, determine L1, L2, k, and CB.

โ€“ Design T-coil in a 3-D EM tool and extract S-parameter or circuit model.

โ€“ Perform circuit simulation including parasitic resistance and capacitance.

โ€ข Parasitic RC

โ€“ If using top metal, a 100 pH of inductor has series resistance of 5 ~ 10 .

โ€“ Natural bridge capacitance is known to be 10 ~ 30 fF.

โ€ข Realistic limitation

โ€“ k canโ€™t be over +0.7 in the chip.

โ€“ Self-resonance limits large k and L.

ยฉ 2020 DK Jeong Topics in IC Design 16

Page 17: Topics in IC Design T-Coil - Seoul National University

Eye Diagram Optimization

โ€ข Maximally Flat Gain ( = 1/โˆš2) vs Maximally Flat Phase Delay ( = 1)

โ€ข Minimum Jitter Condition: Minimum phase delay variation

ยฉ 2020 DK Jeong Topics in IC Design 17

[4] W Bae, TVLSI, 2017

Page 18: Topics in IC Design T-Coil - Seoul National University

Asymmetric T-Coil Simulation

ยฉ 2020 DK Jeong Topics in IC Design 18

ฮท = 3.04 as expected

Gain:

No T-coil

T-coil 1

T-coil 2

Phase delay:

No T-coil

T-coil 1

T-coil 2

CL = 200 fF, RT = 50

(BW = 15.92 GHz)

ฮถ = 1/โˆš2, k = 0.45

L = 219 pH, b = 0.815

CB = 18.74 fF

Two T-coils :

1. Maximally flat gain @ k = 0.45

2. Maximally flat phase delay

around 1. (L = 200 pH)

Page 19: Topics in IC Design T-Coil - Seoul National University

Asymmetric T-Coil Simulation

ยฉ 2020 DK Jeong Topics in IC Design 19

CL = 200 fF, RT = 50

(BW = 15.92 GHz)

ฮถ = 1/โˆš2, k = 0.45

L = 219 pH, b = 0.815

CB = 18.74 fF

Two T-coils :

1. Maximally flat gain @ k = 0.45

2. Maximally flat phase delay

around 1. (L = 200 pH)

No T-coil T-coil 1 T-coil 2

Page 20: Topics in IC Design T-Coil - Seoul National University

Return Loss Reduction

โ€ข Minimize Return Loss at TX driver and RX receiver.

ยฉ 2020 DK Jeong Topics in IC Design 20

โ€ข Effect of Large ESD Capacitance is removed.

[5] M.Kossel, JSSC, 2008

[6] M.S.Keel, EOS/ESD, 2015

Page 21: Topics in IC Design T-Coil - Seoul National University

TX Optimization

ยฉ 2020 DK Jeong Topics in IC Design 21

Cp 200 fF

Ct 50 fF

Ce 100 fF

RT, Z0 50 ฮฉ

No T-coil k = 0.5, L = 200 pH, b = 0.3

Z0CpbLL

Ce

Cc

CtRT

Channel

Vin

Vout

Zout

k = -0.25, L = 250 pH, b = 0.4

56Gb/s eye diagram

Page 22: Topics in IC Design T-Coil - Seoul National University

Example: ESD Diode Isolation

ยฉ 2020 DK Jeong Topics in IC Design 22

[7] J.Kim, ISSCC, 2015

Page 23: Topics in IC Design T-Coil - Seoul National University

Example: ESD Separation

ยฉ 2020 DK Jeong Topics in IC Design 23

[8] C.Y.Lin, IEEE Transactions on Electron Devices. 2013

Page 24: Topics in IC Design T-Coil - Seoul National University

Example: Double T-Coil

ยฉ 2020 DK Jeong Topics in IC Design 24

[9] G.Steffan, ISSCC, 2017

Page 25: Topics in IC Design T-Coil - Seoul National University

Example: Coil with 4 ports

ยฉ 2020 DK Jeong Topics in IC Design 25

[10] J Kim, JSSC, 2019

Page 26: Topics in IC Design T-Coil - Seoul National University

References

26Topics in IC Designยฉ 2020 DK Jeong

[0] E. Ginzton et. al, โ€œDistributed Amplification,โ€ Proc. IRE, vol. 36, pp. 956โ€“969, Aug.

1948.

[1] Razavi, Behzad, "The bridged T-coil [a circuit for all seasons]." IEEE Solid-State

Circuits Magazine 7.4 (2015): 9-13.

[2] Paramesh, Jeyanandh, and David J. Allstot. "Analysis of the bridged T-coil circuit

using the extra-element theorem." IEEE Transactions on Circuits and Systems II:

Express Briefs 53.12 (2006): 1408-1412.

[3] Dutta Roy, Suhash C. "A Theoretical Investigation into the Limits of Bandwidth

Enhancement with the Asymmetrical Bridged T-Coil Network." IETE Journal of

Research 62.3 (2016): 379-386.

[4] Bae, Woorham, Borivoje Nikoliฤ‡, and Deog-Kyoon Jeong. "Use of phase delay

analysis for evaluating wideband circuits: An alternative to group delay analysis."

IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25.12 (2017):

3543-3547.

[5] Kossel, Marcel, et al. "A T-Coil-Enhanced 8.5 Gb/s High-Swing SST Transmitter in

65 nm Bulk CMOS With โ‰ช-16 dB Return Loss Over 10 GHz Bandwidth." IEEE

Journal of Solid-State Circuits 43.12 (2008): 2905-2920.

[6] Keel, Min-Sun, and Elyse Rosenbaum. "CDM-reliable T-coil techniques for high-

speed wireline receivers." 2015 37th Electrical Overstress/Electrostatic Discharge

Symposium (EOS/ESD). IEEE, 2015.

Page 27: Topics in IC Design T-Coil - Seoul National University

References

27Topics in IC Designยฉ 2020 DK Jeong

[7] Kim, Jihwan, et al. "3.5 A 16-to-40Gb/s quarter-rate NRZ/PAM4 dual-mode

transmitter in 14nm CMOS." 2015 IEEE International Solid-State Circuits

Conference-(ISSCC) Digest of Technical Papers. IEEE, 2015.

[8] Lin, Chun-Yu, Li-Wei Chu, and Ming-Dou Ker. "Robust ESD protection design for

40-Gb/s transceiver in 65-nm CMOS process." IEEE transactions on electron

devices 60.11 (2013): 3625-3631.

[9] Steffan, Giovanni, et al. "6.4 A 64Gb/s PAM-4 transmitter with 4-Tap FFE and 2.26

pJ/b energy efficiency in 28nm CMOS FDSOI." 2017 IEEE International Solid-

State Circuits Conference (ISSCC). IEEE, 2017.

[10] Kim, Jihwan, et al. "A 112 Gb/s PAM-4 56 Gb/s NRZ reconfigurable transmitter

with three-tap FFE in 10-nm FinFET." IEEE Journal of Solid-State Circuits 54.1

(2019): 29-42.