transformation de fourier · la fonction fbest la transformee de fourier de´ f. theor´ eme` l1(r)...

33
Transformation de Fourier Olivier Gu ´ edon 5` eme s ´ eance Big Blue Botton. mercredi 22 avril 2020 Olivier Gu ´ edon (5` eme s ´ eance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 1 / 14

Upload: others

Post on 24-Sep-2020

7 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

Transformation de Fourier

Olivier Guedon

5eme seance Big Blue Botton.

mercredi 22 avril 2020

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 1 / 14

Page 2: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

Questionnaire rapide.Pour ce cours en ligne, utilisez vous

A) Mon smartphone

B) Mon ordinateur

C) Ma tablette

D) Autre chose

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 2 / 14

Page 3: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

Si vous souhaitez me poser une question en prive, d’ordre materiel,vous pouvez me joindre par le tchat en cliquant sur mon nom et endemandant une conversation privee. Sinon par mel.

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 3 / 14

Page 4: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

Chapitre 3 - Transformation de Fourier1ere partieTransformation de Fourier d’une fonction de L1(R).

DefinitionSoit f ∈ L1(R) a valeurs reelles ou complexes. On pose

∀y ∈ R, f (y) =∫R

f (x)e−ixydx

La fonction f est la transformee de Fourier de f .

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 4 / 14

Page 5: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

Chapitre 3 - Transformation de Fourier1ere partieTransformation de Fourier d’une fonction de L1(R).

DefinitionSoit f ∈ L1(R) a valeurs reelles ou complexes. On pose

∀y ∈ R, f (y) =∫R

f (x)e−ixydx

La fonction f est la transformee de Fourier de f .

f (0) =∫R

f (x)dx

1l[−1,1](y) =2 sin(y)

y/∈ L1(R).

‖f‖∞ ≤ ‖f‖1

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 4 / 14

Page 6: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

Chapitre 3 - Transformation de Fourier1ere partieTransformation de Fourier d’une fonction de L1(R).

DefinitionSoit f ∈ L1(R) a valeurs reelles ou complexes. On pose

∀y ∈ R, f (y) =∫R

f (x)e−ixydx

La fonction f est la transformee de Fourier de f .

Theoreme

L1(R) → C00(R)

f 7→ f

est une application lineaire continue de norme ≤ 1, ou C00(R) est

l’ensemble des fonctions continues de limite nulle en l’infini.

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 4 / 14

Page 7: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

Lorsqu’on a parle des series de Fourier, on a deja etabli le fait suivant

Rappel

Si g est continue sur [a,b] et si g est C1 par morceaux sur [a,b] alors

g(b)− g(a) =∫ b

ag′(x)dx .

On peut facilement en deduire la proposition suivante

PropositionSi f est continue sur R, nulle en dehors d’un intervalle ferme borne[a,b], C1 par morceaux sur [a,b] alors

∀y ∈ R, iy f (y) = f ′ (y).

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 5 / 14

Page 8: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

Lorsqu’on a parle des series de Fourier, on a deja etabli le fait suivant

Rappel

Si g est continue sur [a,b] et si g est C1 par morceaux sur [a,b] alors

g(b)− g(a) =∫ b

ag′(x)dx .

On peut facilement en deduire la proposition suivante

PropositionSi f est continue sur R, nulle en dehors d’un intervalle ferme borne[a,b], C1 par morceaux sur [a,b] alors

∀y ∈ R, iy f (y) = f ′ (y).

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 5 / 14

Page 9: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

PreuvePour y fixe, on applique le rappel a gy (x) = f (x)e−ixy .

f (b)e−iby − f (a)e−iay =

∫ b

a

(f ′(x)e−ixy − iyf (x)e−ixy

)dx

Donc

0 =

∫ b

af ′(x)e−ixydx − i y

∫ b

af (x)e−ixydx

Rappel

Si g est continue sur [a,b] et si g est C1 par morceaux sur [a,b] alors

g(b)− g(a) =∫ b

ag′(x)dx .

PropositionSi f est continue sur R, nulle en dehors d’un intervalle ferme borne[a,b], C1 par morceaux sur [a,b] alors

∀y ∈ R, iy f (y) = f ′ (y).

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 6 / 14

Page 10: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

PreuvePour y fixe, on applique le rappel a gy (x) = f (x)e−ixy .

f (b)e−iby − f (a)e−iay =

∫ b

a

(f ′(x)e−ixy − iyf (x)e−ixy

)dx

Donc

0 =

∫ b

af ′(x)e−ixydx − i y

∫ b

af (x)e−ixydx

Rappel

Si g est continue sur [a,b] et si g est C1 par morceaux sur [a,b] alors

g(b)− g(a) =∫ b

ag′(x)dx .

PropositionSi f est continue sur R, nulle en dehors d’un intervalle ferme borne[a,b], C1 par morceaux sur [a,b] alors

∀y ∈ R, iy f (y) = f ′ (y).

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 6 / 14

Page 11: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

PreuvePour y fixe, on applique le rappel a gy (x) = f (x)e−ixy .

f (b)e−iby − f (a)e−iay =

∫ b

a

(f ′(x)e−ixy − iyf (x)e−ixy

)dx

Donc

0 =

∫ b

af ′(x)e−ixydx − i y

∫ b

af (x)e−ixydx

Rappel

Si g est continue sur [a,b] et si g est C1 par morceaux sur [a,b] alors

g(b)− g(a) =∫ b

ag′(x)dx .

PropositionSi f est continue sur R, nulle en dehors d’un intervalle ferme borne[a,b], C1 par morceaux sur [a,b] alors

∀y ∈ R, iy f (y) = f ′ (y).

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 6 / 14

Page 12: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

PreuvePour y fixe, on applique le rappel a gy (x) = f (x)e−ixy .

f (b)e−iby − f (a)e−iay =

∫ b

a

(f ′(x)e−ixy − iyf (x)e−ixy

)dx

Donc

0 =

∫ b

af ′(x)e−ixydx − i y

∫ b

af (x)e−ixydx

PropositionSi f est continue sur R, nulle en dehors d’un intervalle ferme borne[a,b], C1 par morceaux sur [a,b] alors

∀y ∈ R, iy f (y) = f ′ (y).

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 6 / 14

Page 13: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

On peut alors prouver la proposition generale suivante

Proposition

Si f est continue sur R, C1 par morceaux sur R telle que f ∈ L1(R) etf ′ ∈ L1(R) alors

∀y ∈ R, f ′ (y) = i y f (y).

PreuveEn 2 etapes.

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 7 / 14

Page 14: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

On peut alors prouver la proposition generale suivante

Proposition

Si f est continue sur R, C1 par morceaux sur R telle que f ∈ L1(R) etf ′ ∈ L1(R) alors

∀y ∈ R, f ′ (y) = i y f (y).

PreuveEn 2 etapes.

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 7 / 14

Page 15: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

Preuve - etape 1Tout d’abord, montrons que lim|y |→+∞ |f (y)| = 0.

Soit y ∈ R alors f estcontinue et C1 par morceaux sur [0, y ] donc

f (y)− f (0) =∫ y

0f ′(x)dx

Les integrales de Riemann et de Lebesgue coıncident puisque f ′ estcontinue par morceaux. Comme f ′ ∈ L1(R) alors

y 7→∫ y

0f ′(x)dx

admet une limite en + et en − l’infini.Donc f admet une limite en + et en − l’infini. Et comme f ∈ L1(R) alorsnecessairement cette limite est nulle.

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 8 / 14

Page 16: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

Preuve - etape 1Tout d’abord, montrons que lim|y |→+∞ |f (y)| = 0.

Soit y ∈ R alors f estcontinue et C1 par morceaux sur [0, y ] donc

f (y)− f (0) =∫ y

0f ′(x)dx

Les integrales de Riemann et de Lebesgue coıncident puisque f ′ estcontinue par morceaux. Comme f ′ ∈ L1(R) alors

y 7→∫ y

0f ′(x)dx

admet une limite en + et en − l’infini.Donc f admet une limite en + et en − l’infini. Et comme f ∈ L1(R) alorsnecessairement cette limite est nulle.

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 8 / 14

Page 17: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

Preuve - etape 1Tout d’abord, montrons que lim|y |→+∞ |f (y)| = 0. Soit y ∈ R alors f estcontinue et C1 par morceaux sur [0, y ] donc

f (y)− f (0) =∫ y

0f ′(x)dx

Les integrales de Riemann et de Lebesgue coıncident puisque f ′ estcontinue par morceaux.

Comme f ′ ∈ L1(R) alors

y 7→∫ y

0f ′(x)dx

admet une limite en + et en − l’infini.Donc f admet une limite en + et en − l’infini. Et comme f ∈ L1(R) alorsnecessairement cette limite est nulle.

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 8 / 14

Page 18: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

Preuve - etape 1Tout d’abord, montrons que lim|y |→+∞ |f (y)| = 0. Soit y ∈ R alors f estcontinue et C1 par morceaux sur [0, y ] donc

f (y)− f (0) =∫ y

0f ′(x)dx

Les integrales de Riemann et de Lebesgue coıncident puisque f ′ estcontinue par morceaux. Comme f ′ ∈ L1(R) alors

y 7→∫ y

0f ′(x)dx

admet une limite en + et en − l’infini.

Donc f admet une limite en + et en − l’infini. Et comme f ∈ L1(R) alorsnecessairement cette limite est nulle.

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 8 / 14

Page 19: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

Preuve - etape 1Tout d’abord, montrons que lim|y |→+∞ |f (y)| = 0. Soit y ∈ R alors f estcontinue et C1 par morceaux sur [0, y ] donc

f (y)− f (0) =∫ y

0f ′(x)dx

Les integrales de Riemann et de Lebesgue coıncident puisque f ′ estcontinue par morceaux. Comme f ′ ∈ L1(R) alors

y 7→∫ y

0f ′(x)dx

admet une limite en + et en − l’infini.Donc f admet une limite en + et en − l’infini. Et comme f ∈ L1(R) alorsnecessairement cette limite est nulle.

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 8 / 14

Page 20: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

Preuve - etape 2Soit A un reel positif quelconque. Alors par notre rappel, applique agy : x 7→ f (x)e−ixy : gy est continue sur [−A,A] et si gy est C1 parmorceaux sur [−A,A] alors

gy (A)− gy (−A) =∫ A

−Ag′y (x)dx .

on sait que∫ A

−Af ′(x)e−ixydx =

[f (x)e−ixy

]A

−A+ i y

∫ A

−Af (x)e−ixydx

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 9 / 14

Page 21: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

Preuve - etape 2Soit A un reel positif quelconque. Alors par notre rappel, on sait que∫ A

−Af ′(x)e−ixydx =

[f (x)e−ixy

]A

−A+ i y

∫ A

−Af (x)e−ixydx

On fait tendre A vers +∞ (puisqu’on sait deja que les integralesconvergent) et on obtient∫ +∞

−∞f ′(x)e−ixydx = 0 + i y

∫ ∞−∞

f (x)e−ixydx

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 9 / 14

Page 22: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

Preuve - etape 2Soit A un reel positif quelconque. Alors par notre rappel, on sait que∫ A

−Af ′(x)e−ixydx =

[f (x)e−ixy

]A

−A+ i y

∫ A

−Af (x)e−ixydx

On fait tendre A vers +∞ (puisqu’on sait deja que les integralesconvergent) et on obtient∫ +∞

−∞f ′(x)e−ixydx = 0 + i y

∫ ∞−∞

f (x)e−ixydx

Ce qui etablit que

∀y ∈ R, f ′ (y) = i y f (y).

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 9 / 14

Page 23: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

On considere maintenant l’ensemble des fonctions continues sur R,affines par morceaux et nulle en dehors d’un intervalle compact de R.Cet ensemble est un espace vectoriel que l’on notera Affc(R). Alors onpeut prouver la proposition generale

Proposition

Si f ∈ Affc(R) alors f ∈ L1(R)

PreuveLa lire. Et c’est juste un petit exercice qui demande de biencomprendre la definition de Affc(R).

ExerciceCalculer la transformee de Fourier de la fonction f (t) = e−|t |. Et lesexercices 1, 2, 4 et 5 de la feuille 6.

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 10 / 14

Page 24: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

On considere maintenant l’ensemble des fonctions continues sur R,affines par morceaux et nulle en dehors d’un intervalle compact de R.Cet ensemble est un espace vectoriel que l’on notera Affc(R). Alors onpeut prouver la proposition generale

Proposition

Si f ∈ Affc(R) alors f ∈ L1(R)

PreuveLa lire. Et c’est juste un petit exercice qui demande de biencomprendre la definition de Affc(R).

ExerciceCalculer la transformee de Fourier de la fonction f (t) = e−|t |. Et lesexercices 1, 2, 4 et 5 de la feuille 6.

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 10 / 14

Page 25: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

On considere maintenant l’ensemble des fonctions continues sur R,affines par morceaux et nulle en dehors d’un intervalle compact de R.Cet ensemble est un espace vectoriel que l’on notera Affc(R). Alors onpeut prouver la proposition generale

Proposition

Si f ∈ Affc(R) alors f ∈ L1(R)

PreuveLa lire. Et c’est juste un petit exercice qui demande de biencomprendre la definition de Affc(R).

ExerciceCalculer la transformee de Fourier de la fonction f (t) = e−|t |. Et lesexercices 1, 2, 4 et 5 de la feuille 6.

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 10 / 14

Page 26: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

Definition - PropositionSi f et g sont deux fonctions de L1(R) alors la fonctions 7→ f (x − s)g(s) est integrable pour presque tout x ∈ Ret on peut donc definir pour presque tout x ∈ R

f ? g(x) =∫R

f (x − s)g(s)ds.

On obtient ainsi une classe de fonction f ? g (appele le produit deconvolution de f avec g) qui verifie :

• f ? g ∈ L1(R)

• ‖f ? g‖1 ≤ ‖f‖1‖g‖1 et∫R(f ? g)(x)dx =

(∫R

f (x)dx)(∫

Rg(x)dx

).

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 11 / 14

Page 27: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

PreuveOn commence par supposer f et g mesurables positives. Quitte aadmettre la valeur +∞, on peut toujours ecrire

∀x ∈ R, f ? g(x) =∫R

f (x − s)g(s)ds =

∫R

f (u)g(x − u)du = g ? f (x)

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 12 / 14

Page 28: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

PreuveOn commence par supposer f et g mesurables positives. Quitte aadmettre la valeur +∞, on peut toujours ecrire

∀x ∈ R, f ? g(x) =∫R

f (x − s)g(s)ds =

∫R

f (u)g(x − u)du = g ? f (x)

Par Fubini positif,∫R(f ? g)(x)dx =

∫R

(∫R

f (x − s)g(s)ds)

dx =

∫R2

f (x − s)g(s)dsdx

=

∫R

(∫R

f (x − s)dx)

g(s)ds =

(∫R

f (x)dx)(∫

Rg(s)ds

).

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 12 / 14

Page 29: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

PreuveOn commence par supposer f et g mesurables positives. Quitte aadmettre la valeur +∞, on peut toujours ecrire

∀x ∈ R, f ? g(x) =∫R

f (x − s)g(s)ds =

∫R

f (u)g(x − u)du = g ? f (x)

Par Fubini positif,∫R(f ? g)(x)dx =

∫R

(∫R

f (x − s)g(s)ds)

dx =

∫R2

f (x − s)g(s)dsdx

=

∫R

(∫R

f (x − s)dx)

g(s)ds =

(∫R

f (x)dx)(∫

Rg(s)ds

).

Ainsi si f ,g ∈ L1(R) sont positives alors∫R(f ? g)(x)dx =

(∫R

f (x)dx)(∫

Rg(x)dx

)< +∞

et (f ? g)(x) est fini pour presque tout x .Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 12 / 14

Page 30: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

PreuveEnsuite, si f et g sont dans L1(R) alors |f | et |g| sont integrablespositives. On applique ce qu’on vient de faire pour definir |f | ? |g|. Donc∫

R(|f | ? |g|)(x)dx =

∫R2|f |(x − s)|g|(s)ds = ‖f‖1‖g‖1 < +∞.

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 13 / 14

Page 31: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

PreuveEnsuite, si f et g sont dans L1(R) alors |f | et |g| sont integrablespositives. On applique ce qu’on vient de faire pour definir |f | ? |g|. Donc∫

R(|f | ? |g|)(x)dx =

∫R2|f |(x − s)|g|(s)ds = ‖f‖1‖g‖1 < +∞.

D’apres Fubini, la fonction

s 7→ f (x − s)g(s)

est integrable pour presque tout x ∈ R et la fonction f ? g definiepresque partout sur R par

f ? g(x) =∫R

f (x − s)g(s)ds

est une fonction mesurable, integrable sur R.

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 13 / 14

Page 32: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

PreuveElle verifie∫R

f ? g(x) =∫R

(∫R

f (x − s)dx)

g(s)ds =

(∫R

f (x)dx)(∫

Rg(s)ds

).

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 14 / 14

Page 33: Transformation de Fourier · La fonction fbest la transformee de Fourier de´ f. Theor´ eme` L1(R) ! C0 0 (R) f 7!bf est une application lineaire continue de norme´ 1, ou` C0 0

PreuveElle verifie∫R

f ? g(x) =∫R

(∫R

f (x − s)dx)

g(s)ds =

(∫R

f (x)dx)(∫

Rg(s)ds

).

On a ensuite

|(f ? g)(x)| =∣∣∣∣∫

Rf (x − s)g(s)ds

∣∣∣∣ ≤ ∫R|f |(x − s)|g|(s)ds = (|f | ? |g|)(x)

Donc

‖f ? g‖1 =

∫R|(f ? g)(x)|dx ≤

∫R(|f | ? |g|)(x)dx = ‖f‖1‖g‖1.

Olivier Guedon (5eme seance Big Blue Botton. ) Transformation de Fourier mercredi 22 avril 2020 14 / 14