unsymmetrical bending

5
1 General Solutions for Unsymmetrical Bending of Beams with Arbitrary Cross Sections Figure 1 A Beam with An Arbitrary Cross Section Consider a cantilever beam subjected to an end force P acting in the plane inclined at an angle θ to the y axis as shown. The bending moment M, produced by the force P, is oriented in the direction making an angle θ to the zaxis as shown. The components of M in the y and zdirections, denoted by y M and z M , respectively, are given by θ θ cos sin M M M M z y = = (a) Consider the special case where 90 = θ . From (a) we have M M y = and 0 = z M , then the beam would deflect in the xz plane, and the neutral axis would coincide with the yaixs. With the “cross sections remain plane” assumption, we have z z x z z ρ κ ε = = (b) where z κ and z ρ are the curvature and radius of curvature, respectively, of the beam in the xz plane. On the other hand, if 0 = θ , then M M z = and 0 = y M , the beam would deflect in the xy plane and the neutral axis would coincide with the zaixs. Again, with the “cross sections remain plane” assumption, we have y y x y y ρ κ ε = = (c) where y κ and y ρ are the curvature and radius of curvature, respectively, of the beam in the yz plane. It is noted that the negative sign in (c) indicates that a line element located above the zaxis would be under compression when a positive z M is applied. Now consider the general cases in which the value of angle θ is arbitrary. Since the “cross sections remain plane” assumption is still valid, we can express the strain in the x direction in the following linear equation in y and z: z c y b a x + + = ε (d) where a , b , and c are constants. The stress is then given by cz by a E x x + + = = ε σ (e) where E is the Young’s modulus and a E a = , b E b = , and c E c = . For a beam subjected to pure bending, the stress resultant over the cross section must vanish, i.e., 0 = + + = zdA c ydA b dA a dA x σ (f) If the origin of the coordinate system coincides with the centroid of the cross section, then 0 , 0 = = = = dA zdA z dA ydA y x y z P θ θ α y z M y M z M P y z dA

Upload: flyersfan376

Post on 20-Jun-2015

9.398 views

Category:

Self Improvement


4 download

TRANSCRIPT

Page 1: Unsymmetrical bending

1

General  Solutions  for  Unsymmetrical  Bending  of  Beams  with  Arbitrary  Cross  Sections  

Figure 1 A Beam with An Arbitrary Cross Section

Consider  a  cantilever  beam  subjected  to  an  end  force  P  acting  in  the  plane  inclined  at  an  angle  θ  to  the  y-­‐‑axis  as  shown.    The  bending  moment  M,  produced  by  the  force  P,  is  oriented  in  the  direction  making  an  angle  θ  to  the  z-­‐‑axis  as  shown.    The  components  of  M  in  the  y  and  z-­‐‑directions,  denoted  by   yM  and   zM ,  

respectively,  are  given  by     θθ cossin MMMM zy ==   (a)  

Consider  the  special  case  where   90=θ .    From  (a)  we  have MMy =  and   0=zM ,  then  the  beam  would  

deflect  in  the  xz  plane,  and  the  neutral  axis  would  coincide  with  the  y-­‐‑aixs.    With  the  “cross  sections  remain  plane”  assumption,  we  have  

 z

zxzzρ

κε ==   (b)  

where   zκ  and   zρ  are  the  curvature  and  radius  of  curvature,  respectively,  of  the  beam  in  the  xz  plane.    On  the  other  hand,  if   0=θ ,  then   MMz =  and   0=yM ,  the  beam  would  deflect  in  the  xy  plane  and  the  

neutral  axis  would  coincide  with  the  z-­‐‑aixs.    Again,  with  the  “cross  sections  remain  plane”  assumption,  we  have  

 y

yxyyρ

κε −=−=   (c)  

where   yκ  and   yρ  are  the  curvature  and  radius  of  curvature,  respectively,  of  the  beam  in  the  yz  plane.    It  

is  noted  that  the  negative  sign  in  (c)  indicates  that  a  line  element  located  above  the  z-­‐‑axis  would  be  under  compression  when  a  positive   zM  is  applied.  Now  consider  the  general  cases  in  which  the  value  of  angle  θ is  arbitrary.    Since  the  “cross  sections  remain  plane”  assumption  is  still  valid,  we  can  express  the  strain  in  the  x  direction  in  the  following  linear  equation  in  y  and  z:     zcybax ʹ′+ʹ′+ʹ′=ε   (d)  where   aʹ′ ,   bʹ′ ,  and   cʹ′  are  constants.    The  stress  is  then  given  by     czbyaE xx ++== εσ   (e)  where   E  is  the  Young’s  modulus  and   aEa ʹ′= ,   bEb ʹ′= ,  and   cEc ʹ′= .    For  a  beam  subjected  to  pure  bending,  the  stress  resultant  over  the  cross  section  must  vanish,  i.e.,     0=++= ∫∫∫∫ zdAcydAbdAadAxσ   (f)  

If  the  origin  of  the  coordinate  system  coincides  with  the  centroid  of  the  cross  section,  then

  0,0 ====∫∫

∫∫

dAzdA

zdAydA

y  

x

y

z

P

θθ

α

y

z

MyM

zM

P

yz

dA

Page 2: Unsymmetrical bending

2

Consequently,   0=a  and  (e)  becomes     czbyx +=σ   (g)  The  resultant  moments  on  the  cross  section  are  given  by     yyzxy cIbIdAzcyzdAbzdAM +=+== ∫∫∫ 2σ   (h)  

  yzzxz cIbIyzdAcdAybydAM −−=−−=−= ∫∫∫ 2σ   (i)  

where     ∫∫∫ === yzdAIdAyIdAzI yzzy ,, 22  

are  the  moments  of  inertia  of  the  cross  section.    Solving  (h)  and  (i)  simultaneously  yields  

  22 ,yzzy

yzzzy

yzzy

yzyyz

IIIIMIM

cIIIIMIM

b−

+=

+−=   (j)  

Substituting  (j)  into  (g)  gives  

  zIIIIMIM

yIIIIMIM

yzzy

yzzzy

yzzy

yzyyzx 22 −

++

+−=σ   (k)  

The  neutral  axis,  by  definition,  is  the  line  along  which  stress  vanishes.    Thus,  by  setting   0=xσ  in  (k),  we  have  

 θ

θ

θ

θα

cotcot

tantan

tanyyz

yzz

yzy

zyz

yzyyz

yzzzy

IIII

IIII

IMIMIMIM

zy

+

+=

+

+=

+

+==   (l)  

in  which  α (see  Fig.  1)  is  the  angle  measured  clockwise  from  the  z-­‐‑axis  to  the  neutral  axis,  and    

 y

z

z

y

MM

MM

== θθ cot    or    ,tan   (m)  

Combining  (k)  and  (m)  and  eliminating   yM ,  we  obtain  the  following  simplified  equation  in  terms  of   zM  

and  angle  α  for  calculating  the  stresses:  

  ( )αα

σtantan

yzz

zx II

zyM−

−−=   (n)  

If  the  y-­‐‑  and  z-­‐‑axes  coincide  with  the  principal  axes,  then   0=yzI  and  (l)  reduces  to    

  θα tantany

z

II

=  

which  is  the  same  as  (6-­‐‑19)  in  the  textbook.    Furthermore,  if   0=θ  (i.e.,   MMz =  and   0=yM ),  then   0=α  

and  (n)  becomes  

 z

zx I

yM−=σ  

 Example:  A  5.0  m  long  simply-­‐‑supported  beam  is  subjected  to  a  force   kN  4=P  at  a  point  that  is  2.0  m  away  from  the  far  end,  as  shown  in  the  figure.    The  dimensions  of  the  L-­‐‑shaped  cross  section  are  shown  in  the  figure.    If  the  force  P  is  applied  in  an  inclined  plane  making  a  10°  angle  with  the  y-­‐‑axis,  determine  the  locations  and  magnitudes  of  the  maximum  tensile  and  compressive  stresses  in  the  beam.    Solution:  (a) Locate  the  centroid  of  the  cross  section  (in  terms  of  distances   0y  and   0z  measured  from  point  A):  

 

( )( ) ( )( )( ) ( )

( )( ) ( )( )( ) ( )

mm  74.19107010120

451070510120

mm  74.39107010120

510706010120

0

0

=×+×

×+×=

=×+×

×+×=

z

y  

Page 3: Unsymmetrical bending

3

Figure 2 Umsymmetric Bending of A Simply-Supported Beam

(b) Determine  the  moments  of  inertia:  

  ( )( ) ( )( )( ) ( )( ) ( )( )( ) 4623

23

mm  10003.174.19457010127010574.1910120

1210120

×=−++−+=yI  

  ( )( ) ( )( )( ) ( )( ) ( )( )( ) 4623

23

mm  10783.2574.39107012107074.396012010

1212010

×=−++−+=zI  

  ( )( )( )( ) ( )( )( )( ) 46 mm  10973.04574.1974.3951070574.1974.3960112010 ×=−−+−−=yzI  

(c) Determine  the  neutral  axis:  Since   10−=θ  (i.e.,  positive  θ  measured  clockwise  from  the  z  axis),  we  have,  from  (l),    

( )( ) 580.010tan10973.010003.110tan10783.210973.0

tantan

tan 66

66

=−××+×

−××+×=

+

+=

θ

θα

yzy

zyz

IIII

 

The  neutral  axis  thus  is  oriented  at  the  angle     ( ) 12.30rad  526.0580.0tan 1 === −α  

(d) Determine  the  maximum  stresses  in  the  beam:  The  maximum  bending  moment  along  the  beam  occurs  at  the  point  where  the  load  P  is  applied,  i.e.,  

  ( )( )( ) mmN  104.8mkN  8.40.5

0.30.20.4 6max ⋅×=⋅===

LPabM  

where   m  0.5=L ,   m  0.2=a ,  and   m  0.3=b .    The  y  and  z  components  of  this  moment  are     mmN  10834.0sin 6

max ⋅×−== θMMy  

  mmN  104.727cos 6max ⋅×== θMMz  

From  Fig.2  it  is  easy  to  see  that  the  two  locations  denoted  by  A  and  B  are  the  farthest  from  the  neutral  axis,  hence  would  experience  the  highest  tensile  or  compressive  stresses.    The  y  and  z  coordinates  of  those  two  points  are   ( )74.19  ,74.39−A  and   ( )74.9  ,26.80B ,  respectively.    The  maximum  tensile  stress,  occurs  at  point  A,  is  given  by  

m  2

m  3

P mm  120

mm  80

mm  01

mm  01

P

α

10

10

M

0y

0z

y

z

A

B

Page 4: Unsymmetrical bending

4

 

( )

( ) ( ) ( )[ ]( ) ( )

MPa  0.109mmN  100.109

12.30tan10973.010783.212.30tan74.1974.3910727.4

tantan

26

66

6

=×=

×−×

−−×−=

−−=

αα

σyzz

zx II

zyM

 

The  maximum  compressive  stress,  occurs  at  point  B,  is  given  by  

 

( )

( ) ( ) ( )[ ]( ) ( )

MPa  0.159mmN  100.159

12.30tan10973.010783.212.30tan74.926.8010727.4

tantan

26

66

6

−=×−=

×−×

−×−=

−−=

αα

σyzz

zx II

zyM

 

(e) Solve  the  same  problem  by  using  the  method  outlined  in  Section  6-­‐‑5  of  the  textbook:  The  principal  axes  are  denoted  as  Y  and  Z,  respectively,  in  Fig.3.    The  directions  of  the  principal  axes  and  the  principal  moments  of  inertia  of  the  cross  section  can  be  obtained  by  using  (A-­‐‑11)  and  (A-­‐‑12)  in  the  textbook.    Let   β  be  the  angle  between  the  principal  axis  and  y-­‐‑axis  (see  Fig.2),  then  from  (A-­‐‑11)  

  ( ) 093.110783.210003.1

10973.0222tan2tan 66

6

=×−×

×−=

−−==

zy

yzp II

Iβθ  

and  

  ( ) 8.23093.1tan21 1 == −β  

The  principal  moments  of  inertia  can  be  obtained  by  substituting  the  value  of   β  in  (A-­‐‑10),  or  using  (A-­‐‑12):  

Figure 3 Neutral Axis and Principal Axes

P

α

10

M

y

z

A

B

Y

Z

ββ

π−

2

10β

ψ

Page 5: Unsymmetrical bending

5

  ,mm  10.5740          ,mm  10212.322

464622

minmax, ××=+⎟⎟⎠

⎞⎜⎜⎝

⎛ −±

+= yz

zyzy IIIII

I  

Thus,     4646 mm  10212.3mm  10.5740 ×=×= ZY II  

The  components  of  M  in  the  Y  and  Z  directions,  respectively,  are  now  given  by  

 ( )( ) mmN  10662.410cos

mmN  10143.110sin6

6

⋅×=−=

⋅×=−=

β

β

MMMM

Z

Y  

The  angle  ψ ,  which  determines  the  orientation  of  neutral  axis  and  is  measured  clockwise  from  the  Z-­‐‑axis  as  shown  in  Fig.3,  is  given  by  

  ( ) 374.110tantan =−=== βψY

Z

Y

Z

Z

Y

II

II

MM

ZY  

from  which     ( ) 9.53374.1tan 1 == −ψ  It  can  be  seen  from  Fig.3  that     1.30=−= βψα  which  matches  the  value  obtained  previously.    With  respect  to  the  principal  axes,  the  stresses  are  given  by  

 Z

Z

Y

Yx I

YMIZM−=σ  

At  point  A,  the  coordinates  are  

 mm  1.34cossinmm  4.28sincos

=+−=

−=+=

ββ

ββ

AAA

AAA

zyZzyY

 

and  the  stress  is  given  by  

  ( )( ) ( )( ) MPa  0.10910212.3

4.2810662.410574.0

1.3410143.16

3

6

3

−×−

×

×=−=

Z

Z

Y

Yx I

YMIZM

σ  

At  point  B,  the  coordinates  are  

 mm  5.23cossin

mm  4.77sincos−=+−=

=+=

ββ

ββ

BBB

BBB

zyZzyY

 

and  the  stress  is  given  by  

  ( )( ) ( )( ) MPa  0.15910212.3

4.7710662.410574.0

5.2310143.16

3

6

3

−=×

×−

×

−×=−=

Z

Z

Y

Yx I

YMIZM

σ