western regional division report of natural disaster ... · fan yanan, guoyun zhou, guangqi chen...

88
ISSN 0916-3891 西部地区部会報 36 研 究 論 文 集 平成 24 2 平成 23 年度西部地区部会 研 究 発 表 会 平成 24 2 24 日 福 岡 市 自然災害研究協議会 西部地区部会

Upload: others

Post on 11-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

ISSN 0916-3891

自 然 災 害 研 究 協 議 会

西部地区部会報

第36号

研 究 論 文 集

平成24年 2月

平成 23 年度西部地区部会

研 究 発 表 会

平成 24 年 2月 24 日 福 岡 市

自然災害研究協議会西部地区部会

自然災害研究協議会西部地区部会報第36号

二〇一二年二月

Western Regional Division Report of Natural Disaster Research Council

No.36

Contents

ARTICLES

1. Developing GIS-based Method to Find Dangerous Slope Forming Dam

Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1

2. Design Strength of Ground Improvement for Liquefaction

Yutaro Inatomi, Kiyonobu Kasama, Kouki Zen and Guangqi Chen 5

3. An Estimation of Runout Distance of Debris with Discontinuous Deformation Analysis

Taisuke Koga, Kouki Zen, Guangqi Chen and Kiyonobu Kasama 9

4. An Approach Which Forecast the Slope Failure that Happens Because of the Rainfall using

Geographical Information System

Taiki Hiraoka, Kouki Zen, Guanqi Chen and Kiyonobu Kasama 13

5. GIS-based Two-dimensional Numerical Simulation of Debris Flow in Mobile-bed Gully

Jian Wu, Guangqi Chen, Kouki Zen, Kiyonobu Kasama, Lu Zheng and Yingbin Zhang 17

6. Seismic Slope Stability Analysis Subjected to Tension Failure

Yingbin Zhang, Guangqi Chen, Kouki Zen, Kiyonobu Kasama, Jian Wu and Lu Zheng 21

7. Comparison of Weight of Evidence and Logistic Regression Model for Medium Scale Landslide

Susceptibility Mapping in Yogyakarta Region Indonesia

Guruh Samodra, Guangqi Chen, Junun Sartohadi, Kouki Zen and Kiyonobu Kasama 25

8. Estimate of Debris Flow Hydrograph and Modeling of the Depositional Process :the Debris Flow�

Event in Hachimandani River, Hofu City in Japan on July 21, 2009

Tomohiro Miyoshi, Haruyuki Hashimoto, Shinya Ikematsu, Farouk Maricar, Kyosuke

Hashimura and Kensuke Sakada 29

9. Experiments on Open Check Dam as a Countermeasure against Debris Flows with Driftwood

Kyosuke Hashimura, Tomohiro Miyoshi, Haruyuki Hashimoto, Shinya Ikematsu, Tadahiko

Hasuo, Farouk Maricar and Kensuke Sakada 33

10. Analysis on the Landslide Traveling Distance from Forest Slopes

Souhei Otani and Tetsuya Kubota 37

11. The Characteristics of the Landslide Disaster and Sediment Runoff in Sierra Madre Oriental

Mountain range, Mexico

Tetsuya Kubota, Israel Cantu Silva and Laura Sanchez Castillo 41

12. Geo-Simulator-3 (Utilization of Various Geo-Information)

Ryosuke Kitamura, Fumio Nakata, Yoshito Tanaka, Hisashi Kawakami, Ryoji Tanaka

and Kazuyoshi Jomoto 45

13. Characteristics and Changes of Tephra Layer Deposited by 2011 Shinmoe-dake Eruption in

Kirishima Volcanoes

Takahito Kuroki, Nozomi Iso, Kensuke Goto, Tatsuroh Soh and Keisuke Kuroda 49

14. Some Disasters in Historical Novels Dealt with Edo Period

Keinosuke Gotoh 53

Page 2: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

15. Relationship between Natural Disasters and Place Names in Case of 1982 Nagasaki Disasters and

2011 Higashi-Nippon Earthquake Disasters

Kensuke Goto and Keinosuke Gotoh 57

16. Changes in Land Use and Flood Disasters in Asa Area of Sanyo-Onoda City, Yamaguchi Prefecture

Haruhiko Yamamoto, Minori Yamamoto, Toshiaki Yamasaki, Kiyoshi Iwaya and Hisashi

Yoshikoshi 61

17. Development of Visualization Tool for Safe Evacuation Route During Flood Using Integration of

3D Images and GIS

Haruhiko Yamamoto, Kiyoshi Iwaya, Hisashi Yoshikoshi, Minori Yamamoto, Toshiaki

Yamasaki, Shigetoshi Itou and Junichi Hironaka 65

18. WEB Rainfall and Water-Level Information in Western Part of Japan and Problem of Disaster

Prevention Information during Disaster

Nozomi Kanamoto, Haruhiko Yamamoto, Kiyoshi Iwaya, Hisashi Yoshikoshi, Minori

Yamamoto, Toshiaki Yamasaki and Taiju Miwa 69

19. Disaster Damages and Missing Values at Rainfall and Gauging Stations during Heavy Rainfall

Disasters

Haruhiko Yamamoto, Kiyoshi Iwaya, Hisashi Yoshikoshi, Minori Yamamoto and Toshiaki

Yamasaki 73

20. The Latest Progress of the Erosion Control Area Utilization in Unzen

Kazuo Takahashi and Shinichi Sugimoto 77

Page 3: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

�� � �

���23������ �������������

1. ��������� ����� ���� ����������������1

�������� !"�#$%&

2. '()*+,-./0123456-789:*+;<= >?���������5

@ABCD�#$%&� !"����

3. 'EFG���HIJKLM NOPQRS�������������������9

TUVW� !"�����#$%&

4. *XYZ[3\��I]K^_` ����ab,cde����������13

fghi� !"�����#$%&

5. GIS-based Two-dimensional Numerical Simulation of Debris Flow in Mobile-bed Gully�����17

Jian Wu�Guangqi Chen�Kouki Zen�Kiyonobu Kasama�Lu Zheng�Yingbin Zhang

6. Seismic Slope Stability Analysis Subjected to Tension Failure��������������21

Yingbin Zhang�Guangqi Chen�Kouki Zen�Kiyonobu Kasama�Jian Wu�Lu Zheng

7. Comparison of Weight of Evidence and Logistic Regression Model for Medium Scale Landslide

Susceptibility Mapping in Yogyakarta Region Indonesia����������������j25

Guruh Samodra�Guangqi Chen�Junun Sartohadi�Kouki Zen�Kiyonobu Kasama

8. kl�mnKMok k�pqrstuv wxyz{|} ~��1�2009�7�

����������JKMok���yJ������������������29

������������&��Farouk Maricar�������� ¡

9. ¢|£¤�¥¦§,7Mok ¨©ª«,c¬­®¯������������33

�����������������&��°±�²�Farouk Maricar��� ¡

10. ³´�� Lµ,-.M¤NOPQ,c¶6���������������37

h�·f�¸¹�º�

11. »¼[½¾[¿uÀrÁÂ*,-.M¤ÃÄ aÅ���������j�����41

¸¹�º��Israel Cantu Silva�Laura Sanchez Castillo

12. *Æ[ÇÈÁÉÊËÌÍÎ ÏÐ�*+YZ,Ñ]���������j���j��45

Ò�<��Ó�ÔÕ��ÓÖ×��ظÙ��ÓÚÛ�Ü�ÝÖ

13. 2011�Þßàáâ,7^ã\vuä aÅyz{å G1�����������49

ælçÝ�èé�åêë��ìíD�æ�î�

14. `ïðñ,òÃÄóôõ%ö��¸÷OD�ø�ùúõ������������53

åêûüW

15. M¤ÃÄ�/01 ��y*ýþ�õ��h¬Ä�8¾��h�Ãõ�������57

åêë��åêûüW

16. Â�ð���*�,-.M*HIy�¬ÃÄ G ������������61

Â��²�Â�®��Â�����������

17. 3D��yGIS���JK�¬`,-.�����­ ò¥1�É� de�� �

0y ���������������������������������65

Â��²���������Â�®��Â����!ê"#�$Ó%Ý

18. &��,-.'()_*¬+YZ ,-yÃÄ`,-.�ÃYZ ô����69

./é0�Â��²���������Â�®��Â����01h2

Page 4: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

19. 3_ÃÄ`,-._*�¬+4S5 6Ãy7S,Ñ]������������73

Â��²���������Â�®��Â���

20. 89,-.¤�:b*H;I 9< =>������������������77

?�1Õ�@�&Ý

Page 5: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

��������� �����

���� ��

���� ���� �� � ��

������������� ������������

1� ����

���������� ������������������ �!"#$%&

�'�()*+,-�./01�2��� 345(67�89�8:;,<=.&

>?@=AB,C.34D<�E��FG(��,HI� JKLM$NOP�QR=�

STUV6WXYOP����Q �R=� Z[\X]^O��_Q�R=(`aLMO �b,P

�8cdefNB�Fg(?h� ijkDl$m$m�mn,opq.&� l$Dr

sijkO$>STVO9cd� ijkO�tk(STVO�ucd� ijkOn>

STVO��cd�v.FLM=w(�2��Xxyz({4O�� |�y34

O<�ENB�F`aLM(}~(�B�� LM�w(7�:;(��O����

��N�EB�G&<v��FG(H?y��ZE� ����,H.STV(e

f(��y��Do��� STUVDefq.ij�](����D��q.G&

O��(���{��,���( ¡Ov.F

¢����� �b£�¤¥¦1�§D¨©ª�2&�«� ¬-�2,�

�­[(®�ySTUV(¯°±²D³\mo��� ´µ¶($>·¸©�¹º»¼½

D¾¿ÀÁÂ"ÃÄÅo�&$k,ÆÇN�� �]È~ÉHÊSTUV(ef(¯

°Do��� ij�]DËÌq.��(ÍÎDÏÐ�Ñ���ÒF

���� ����� ����������������

��� !"�#$��%&���'(�)*��

─ 1 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 6: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

2� ���� ����

ÓÔP��£�¤(ÕÖ×ØOÙNB� ��¨©ª�2��� g(�(ÚP�ÛPu

_Q(ÜÝ�v.�ÞßÜÝ�FG(�2(Pà�u���(á$ß�ÓD!�À,�«�e

(âãä©�¹Dåf��FæÞß�G(�2,wB��� çè�­cd(STU

V(éêDÙqF

���� ����� ������������

ë2(�qìIm�]È~�(ijkíîDï?���ðñòóôõöéðv.>�

÷ (�øN(�e§×öéð1�ùw2öéð�]öé�ïúB«ø�û¢��

�ð�üýÈ~,HIefNB�`aLMD���þ&q.�Uð�]öé���

Dï?G&O�A�> ��û�2(7��eD�,𴵶�����¥¦1�`aLM

�Ý�2(�y+o&�]D§�ð�2�(�öé�]ðqyúhð���

O����q.��]�¶õ��ô ��ò��DËÌ��û�[(�]��¢�,��ß&

�ß�ÝAB�ÜÝ�v. ��ûA�ð ��� �� �� !��õD"�«\X2DËÌ�ðg

()*ßD��ß&q.û#,ð7��e,$(%&D['ð()*+��ßDË

Ì��û,-,ð��ß&�ß�ÝAB��2D./01©�¹,23�ð4EB

�öé�](o5Ó�ÓÔ�,ÙNB.û

�+,�-./�012345�6789��

�:*;<=�>?���

�+@�<=�ABCDEFG�HI

JKLM�NOLM;CDEFG�H

�PQRSLM��

����������������

���SøTUVDefq.ij�]�� �,67,vI� ��� ��,

>«>.G&O���v.F¢����� ´µ¶(·¸��ZE8�ZE�9:;R<

(�]D=<q.F>Ä�?�(�]È~(üý@È~ABDCD�� ���ZE�

_QR<(ÜÝ(�]D=<��FNE,��](E��� D*+�«� ���F

G ø��](È~H��,wBy7 � I�� F�(�]DJ,=<��FG(

H?yKILÐËÌM+D´µ¶�NO�«P��<(�ijyQR�]&��FÓÔS

,�g(PI(�]DÙ�� Ç* �9Töé�]OvI� g(�,u[(�øyST

UV(ef,UV��ij�]�P�TOv.F´µ¶(·¸��,HI�öé�]./

─ 2 ─

Page 7: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

01(�WXDY9�� g(XZE�@Z[F(:;D*+q.G&O�ø.F

���� ����!"#$�%&'(�

STUV(ef,��e� �\ � Z[&�F(:;á(��y��O]^NB�

>Ä�ÜÝO�ø7y>�U� �\(]^D_`�� � ��](��ak� bc �

de � �e(fg � �](fg � ��� � 8�F(:; � Z[F(:;D�

�mo��� ´µ¶(©�¹Dåf��F

hbc öé�]ÜÝi�ej$(,�&,ù(c�*+q.F´µ¶( k��lõ ¶�

l�òm�ò�m��DNO�ð��]G&,n*��,ù� ,�� �o � p1¿� ,q��

O4EB.FG(©�¹(?hðp1¿�rsY&t-q.��v.�Uðk��lõ ¶

�l�òm�ò�mu¼,H.rsY(©�¹vw<xy,4EB.F

zde {�þ�](�odeO���Q�� 9S�Q|P9�uQ(ÜÝ,o5q.F�]

(d}éê($N�de��� ~�(Y� ��á(�þ��,¯°�«>.(��

öé�](�oj$Dde(�&q.F

�8�F(:; 8�F(:;O6>�zÈ~�]ZESTUVefF(UV

����ø>�&��«>.Föé�](�WZE,6(8�A�(:;D �ôl� ��

lõ�mòm����� g(�D�](��&q.F

�Z[F(:; >Ä(������� ���,H.È~�](�&�z�

Z[A�(:;O�o 8_QRi,o5�«>.Föé�](�WZEZ[ßA�(:

;D �ôl� ��lõ�mòm����� g(�D�](��&q.F

���� �������£�� �wB«>.� ´µ¶(�e��ZE��

](��� D*+�� g(�](��©�¹&q.F

���ak öé�](i(��ª(��akO4EB.O� >Ä�´µ¶(n

*���öé�]ÜÝi(��ak(�7�� �l���ò���D"�q.F��ak�

�](È~,øúU«�øy]^D��.F

��](fg �](·¸fg���](·¸�y� A¡D��.¢7�v

I� ´µ¶(����� ��ak(£À¹�©�¹,��«¤k��ak*+(¥¦

DqB§�](fgO4EB.�,¨� (fg�F �

3�������������� ���

¢����� ��¾¿ÀÁÂ"ÃÄÅo��SøTUVDefq.ij�]D

Y9q.G&DÏÐ�F

���)*+,-./0123'(�

��¾¿ÀÁÂ"ÃÄÅo�� �©õ�ò�õô ª�«òm�ò� ¬ô«�ômmò�� ��lõ�mòm���

!�©ô�� E ��OW­®(/ÀÃ��ZE¯��n*»°,H.±²o5(Cg¨©

ª�v.F¢����� ���2(�7(�],SøTUV(ef,UVq.�]

(È~CgDP� UV�y>�]D�&³9�� ±²o5Dåfq.FP&�(¯°&

G(¯°D´µq.SøTUV(ef,¯°q.¶���\ � ��ak� �·k�

8�� Z[F:;á�D¾¿ÀÁÂ"Ãfß�¸ÆN�� ¾¿ÀÁÂ"ÃfßD�

ÄŹ��7G&,HI� ��¾¿ÀÁÂ"ÃÄÅo�Dï?F

���� 45678�9:;<����=>�

=%(SøTUV(ef,¯°q.¶�(�,º»¯¸�(<(OvI� t¼

,½¾��¶�DËÌq.¿�Ov.F>Ä�{+(�9Töé�]ZE99TDÀÁ

�� ?hSøTUV(,UVq.�]�ij�]�OÂ[rAB� ��¾¿À

─ 3 ─

Page 8: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

ÁÂ"ÃÄÅo�Dï>� SøTUV((ij�](Ã9Æ�DÏïÄÅ�*

+�� Æ[ij�]&<���ø.�Cg ��ÇR=�G&�� ,È�,��a

k� �](fg � 8�F(:; � Z[F(:; � bc � de&(Æ[(]^¶�D

}9��F,È,4EB�Ã9¹��%(¹�ÙNB.F

fwDDP 00427.001066.043.20exp(1/[1 ++−+= )]06314.004741.08102.00295.0 EHSS

ss

+−−+�

GG�� Dw�Z8�F(:; , D

f�Z[F(:; , S���ak , S

s��](fg , H�b

c � E�de�v.F

4EB�Ã9¹DCDq.�U,� PI

�� T(öé�],É��� ��(Æ�&�

« � ijyÂ[(�](?h � Ê[OËÌ

NB�O� Ì[OÍËÌ,y���ÓÔ8�F

G(o�Æ�ZEC.&� � ÎÏÐÑ�

Ò1Óª&�«Ô[ij�]OrAB��

�¾¿ÀÁÂ"ÃÄÅo���ij�]O

{+ËÌNB � ÎÏ�Í"�(©�¹,H

.���� � ij�](Â[(?hÊ[O

Y9q.G&O�ø� 99Õ(��ÖkOvI�

×Øij�]DÃ9�ø.O � >-NE,

o�(©�¹DÙ@�« � ��(Ökyz

D=Ú.G&O¿��v.F

4 �� �

¢��ZE�%(Æ°O4EB�F

Û�¢��� �b(����¥¦1�STV�Ü(�2D¨©ª�2&�«� ¬

-�2,v.Ý[(®�ySTV(�Ü�2(È~�]D�þ,� ij�](KI

LÐËÌ��DÍÎ�� �]È~ÉHÊSTV(ef,¯°q.��y¶�D ´µ¶

�o���FNE,� ¾¿ÀÁÂ"ÃÄÅo�Dï>� STVDefq.�U(i

j�](Ã9¹DÍÎ��F��Æ�ZEÐ.&� ÍÎ�����Þ��v.&ú

Z��F

�Ò ¢���"�NB.¾¿ÀÁÂ"ÃÄÅo�Dï?�U(©�¹(YOß9

NB«ÉI� >-<�&�7(©�¹D³\måf�� ij�](Ã9¹,"�N

B.�а7DNE,àá�� ��ÖkD$U.G&O���v.F

>Ä( ����(©�¹ZEâã��STVef(ij�](Ã9DÏÐ�O�

G(¯¸(��&àá���(ä¢(����,å�,yB§&��EB.F

�����

��� ������ ����� � �� ������������ ��������� ��� ��� ������������������ ����������

������������������ ��!�"��#�����$����������%�����&�'������'�(����'��) �**��+�

, �-��� ����

��� ./01234516�71895:�(;� <=>?@ABCDEFGHI?JIKLCDM���*��

N���OIPQRSTU1V���)��W��-**��X�� � -��

+�� Y�����Z�[ Z�$������������\�������:]�"����%������������������������������������

����������������^�"��'��"��Z��$����������� �**�)��, )�-��X_��

�����

����

�+T�UVWXYZ�[\]^_L

M`a;[b]cde�\�fcd�

─ 4 ─

Page 9: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

1 1)

2)

3)

4)

5)

6)

─ 5 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 10: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

FLIP 7) -

20m 20m1.0m×1.0m 400 441

Fig. 1 Table 1uq

uqCOV uq

8) Fig. 2

R() P

C (1)

CPR �� (1)

Fig. 3

Pr[FL<1.0 �]Number[element]

Number[FL<1.0] Pr[FL< �]

(%)100][]0.1[

]|0.1[ ��

��elementNumberFNumber

FP LLr � (6)

Co K C (8)

0]]|0.1[[ CFPKC Lr ��� � (8)

Pr[FL<1.0 �] NB

9)

(9)

BLr NFPFK ��� ])|0.1[( � (9) 0.1])|0.1[( �� �Lr FPF (10)

20m

20m(=1.0 20)

zx

Target zone Buffer zoneBuffer zone

Fig. 1 Finite element mesh Table.1 Input parameters

Input parameter Symbol Unit ValueUnconfined

compressive strength�qu kPa 200

COVqu 0.2-1.0Correlation length � m random

Poison ratio 0.33Density � t/m3 1.89

Damping coefficient h 0.15Internal friction angle degree 30

Unit weight kN/m3 18.5Effective unit weight ’ kN/m3 8.5Monte Carlo iteration 1000

FL1.61.51.41.31.21.110.90.8

FL

�max=2m/sec2

COVqu=0.8

�qu=100kPa

0

-5

-15

-10

-205 1510 200

Horizontal direction X (m)

Dep

thZ

(m)

a) qu

─ 6 ─

Page 11: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

F(Pr) K NB

F(Pr[FL<1.0 �]) = 2m/sec2

K(Pr[FL<1.0|�])=100% (11)R

� � �]]|0.1[[|1 0 �� ����� LrLr FPCKFPR (11)

Pr[FL<1.0|�]

Fig. 4

1.0

1.0

100kPa 4

Fig. 5Pr[FL<1.0 �]

Pr[FL<1.0 �]

Fig. 6 K K� K

� K��

Fig. 9 R

R 30 Fig.10

Probability Analysis

Earthquake hazardcurve, Pa

Liquefaction potential

Damage Analysis

Liquefaction Risk, RCPR ��

Monte Carlo simulation

Mean,�qu,Coefficient of Variation,COVqu,and correlation length,�

2D seismic response analysis using FLIP

Liquefaction safety factor ,FL

Liquefaction probability,PL

Damage ratio,KAssumed earthquake damage,C

0CKC ��

Probability numerical limit analysis

0.1

1

10

100

0.5 1 1.5 2 2.5 3

Stre

ngth

ratio

qu

site

/quo

Overdesign factor

Percent defective = 2.3%19.0%

32.8% 4.4%

Fig. 4 Strength ratio and overdesign factor

Fig. 3 Liquefaction risk analysis flow

─ 7 ─

Page 12: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

5

(2)

(3) 0.1/ 10 R

0.5C0 55%

2.0 5

(4)

1.0

2.0 2.0

1) Zen, K., Yamazaki, H. & Mori, K.: Development of Premixing Method against Liquefaction, Proceedings of the 9th Asian Regional Conference on Soil Mechanics and Foundation Engineering, Vol.1, pp.461-464, 1992.

2) Larsson, S., Stille, H. & Ollson, L.: On horizontal variability in limecement columns in deep mixing, Geotechnique, 55(1), pp.33-44, 2005

4)

5)

6) 9

7)

9)

8

Fig. 5 Liquefaction potential

Fig. 6 Damage ratio induced

Fig. 7 Liquefaction risk curve (Fukuoka)

Fig.8 Total cost for liquefaction

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5

11.522.53

Liqu

efac

tion

pote

ntia

l PL[F

L<1|��

Overdesign factor

Maximum horizontal accelaration � (m/sec2)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

Dam

age

ratio

KC 0

Overdesign factor

Maximum horizontal accelaration � (m/sec2)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

0.512

Ann

ual e

xcee

danc

e pr

obab

ility

(10

2 time/

year

)

Liquefaction loss R ( C0)

Overdesign factor

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5

0.10.20.30.40.5

0.60.70.80.91

Tota

l cos

t(C 0)

Overdesign factor

Ratio of initial cost

─ 8 ─

Page 13: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

1 2 2 2

1 2

13 4

2 (50m 50m)

DDA

6

1)

1

1)

2) 3)

4) 3)DDA

k 10% 5) DDA

2

1

1 32 32

20m

─ 9 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 14: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

[MN/m2] 30

0.3 [kN/m3] 18.6

[kN/m3] 19.6

( )[kN/m2] 20 ( )[kN/m2] 0( )

H

1

L

2

2)

( )

c=20kN/m2 =34°

DDA

c=0kN/m2

=k

=

1

13.8m 1.96

90%2 DDA

─ 10 ─

Page 15: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

0

10

20

30

40

50

0 10 20 30 40 50

10%20%30%40%50%

DD

AL

(m)

(m)

0

10

20

30

40

50

0 10 20 30 40 50

70%

90%

60%

80%

DD

AL

(m)

(m)

L25.5m H

8.0m

( ) DDALDDA

k=10%~60%

k=60%

( 27)2.8m k=70%

k=70% 22.0m k=80%

2 4.9m 27 0.9mk=90% 1 6.0m 2 9.5m

27 7.7m DDA

k=70% 34.4m( 6) k=80%32.3m( 15) k=90% 32.6m( 16)

k=70%

k=70%3)

DDAk=70%

k=70%

6

─ 11 ─

Page 16: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

DDA( 70%)

H=21.48mL=8.53m(k=70% )

27H=5.73m L=10.62m

4)

H’ L’(H’/L’) k=70%

6 H’/L’=0.54�=44 11° 27 H’/L’=0.32�= 4 ° H’/L’( 0.5) 31H’/L’=0.50 �= ° 0.81

31

1) 2)

3) DDA

(B)( : :22310113)

S-8( : )

1)

2010 2) :

19 3 18 20125-301 2006 3) : (DDA)

, 2011 4) : 24 2 p.10-16 1987

31

─ 12 ─

Page 17: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

2 1 1 1

1 2

(GIS)1)

15 7

Montrasio 2)

c�

Montrasio 2)

N’ W’ T’ F’ c’’ � H �s

w m n Sr 0 A�

c’ ’� 5000

'W

'F

T

'N

HmH

s�

'sin'''tan'FWccN

sF��

����

� �

� � � � � �� �mSnnGnmsHW rsw ����������� 111cos' 0�

�cos'' WN �

� ���� mSSAc rr ������ 1)1( 00

sHmF w ������� �� cossin'

─ 13 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 18: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

m

�tm

Shq

� �

max

1S

hSm q��

47 11

3)

( H � (

a

a IT

SSE �

��

����106.1

max��

���

����

12

1

514.1

5k

TI

� � tdERSS att ����� ��

!"

�SS

S max � �� �max

max

SSSS

�#

49.01079.11071.71075.6

2

2537

���

�����

��

IIIa

Skd d�

100m

100mR Ea

d

S

Smax

100m

100m

100m

100mR Ea

d

S

Smax

( )

7618.1010987.0000032426.0 2 ��� ��H 7618.1010987.0000032426.0 2 ��� ��H

─ 14 ─

Page 19: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

2000032426.0010987.07618.1 �� ���H

c’’ n Sr 0

1989 2005 175) 237

1

1

0.7% 95%1.4% 90%

0.7 1.4%

1.4%

0.7%

23.0 0.57 35.6 0.1118.0 0.77 33.5 0.1420.0 0.76 34.9 0.1617.4 0.87 36.0 0.13

φ' (°)c' (kN/m2)

n S r0 G s A λ α0.3492 0.385 400.3198 0.4367 1000.4800 0.2233 800.3577 0.3521 80

2.6 0.4 3.4

23.0 0.57 35.6 0.1118.0 0.77 33.5 0.1420.0 0.76 34.9 0.1617.4 0.87 36.0 0.13

φ' (°)c' (kN/m2)

23.0 0.57 35.6 0.1118.0 0.77 33.5 0.1420.0 0.76 34.9 0.1617.4 0.87 36.0 0.13

φ' (°)c' (kN/m2)

n S r0 G s A λ α0.3492 0.385 400.3198 0.4367 1000.4800 0.2233 800.3577 0.3521 80

2.6 0.4 3.4

n S r0 G s A λ α0.3492 0.385 400.3198 0.4367 1000.4800 0.2233 800.3577 0.3521 80

2.6 0.4 3.4

─ 15 ─

Page 20: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

(

19 2

GIS

19 2

2009

L. Montrasio R. Valentino A model for triggering mechanisms of shallow landslides, Natural Hazards and Earth System Sciences, Vol.8, pp.1149 -1159, 2008.

530 pp.72 2009

20032004

5) 2005

� �%7.0%0 $$ FP� �%4.1%7.0 $$ FP� �%4.1%FP

%7.0�FP

%4.1�FP

─ 16 ─

Page 21: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

GIS-based two-dimensional numerical simulation of

debris flow in mobile-bed gully

Jian Wu, Guangqi Chen, Kouki Zen, Kiyonobu Kasama, Lu Zheng, Yingbin Zhang

Division of Civil and Structure Engineering, Kyushu University, Fukuoka, 819-0395, Japan

1 INTRODUCTION

Broadly speaking, a debris flow represents the gravity-driven flow of a mixture of various sizes

of sediment(from clay to boulders), water and air, down a steep slope, often initiated by heavy rainfall

and/or landslides[1]

. In fact, There is often significant erosion and deposition that can dramatically

change the gully bed. Where in the end of an alluvial fan, debris flows slow significantly, depositing

large amounts of sediments[2]

. Debris flows could lead to severe flooding with catastrophic

consequences, such as damage to properties and loss of human life. Therefore, debris flows have been

the subject of scientific and technical research for many civil engineers. At present, how to modelling

and forecasting of debris flows is a key issue for the safety of mountain regions.

In the last few decades, debris flows has been studied by several authors from different points of

view[3] [4] [5]

. According the different type (debris torrents, debris floods, mudflows, mudslides,

hyperconcentrated flows. classified by Iverson in 1997[3]

.) the forces that support the movement of

debris flows due to two actions: dispersive pressure resulting from collisions among the particles[6]

and

plastic strength of the interstitial fluid when this is composed of a clay or mud slurry[7]

. Therefore,

different rheological schemes using for each specific type of flow. For examples, Granular flow in

which fluid effects are negligible, mud flow in which fluid effects are dominant and particle collisions

are negligible, and stony debris flow in which particle interactions are important as well as the fluid

effects[8]

. In this work we will refer to a stony debris flow that is a flow made of mixtures of water and

non-cohesive and relatively large particles. Therefore, the rheology of debris flows used Takahashi 's

dilatant model in this study.

The aim of this paper is to study the propagation of debris flows with erosion and sedimentation

processes in mobile-bed gully by use of finite difference method combine with GIS. Therefore the

propagation in real time and the morphological variations can be obtained. According these results we

can give some reasonable references of prevention for debris flows.

2 THE GOVERN EQUATIONS AND NUMERICAL SOLUTION

In this paper, debris flows is treated as the solid-fluid flow of a continuum and incompressible.

Because debris flows depth is small compared to the length or width of the channel. So that debris

flows can be considered as shallow water flows and the 2D model is shown in Fig.1 . Consequently,

following the De Saint-Venant approach, local variables can be integrated along the vertical direction

obtaining a two-dimensional model which may be described as following:

The continuity equation of the solid-fluid mixture:

i

y

vh

x

uh

t

h

=

+

+

∂ � ����

The continuity equation of the solid particle fraction:

biC

y

Cvh

x

Cuh

t

Ch

=

+

+

� ����

The depth averaged momentum conservation

equation in −x and −y

direction:����������������������Fig.1.The model for 2D debris flows�

x

H

gh

y

uvh

x

hu

t

uh

m

bx

−−=

+

+

ρ

τ

ββ

)()(2

���

─ 17 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 22: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

y

H

gh

y

hv

x

uvh

t

vh

m

by

−−=

+

+

ρ

τ

ββ

)()(2

���

The river bed changing equation:

0=+

i

t

Z

� ���

Where u and v are the −x and−y

components of the depth-average velocity;H is the elevation of

the free surface; Z is the elevation of the bottom surface;h is the flow depth; β is the momentum

correction factors which is associated with the shape of vertical velocity distribution of flow. β

equals 1.25 for uniform flow of dilatant fluid in which the shear stress is proportional to the square of

the shear rate.; m

ρ is the apparent density of the debris mixture, and ffsmC ρρρρ +−= )( ,

s

ρ and fρ are

the densities of solid grains and water; C and b

C are the volume concentrations of solids fraction in

the flow and on the bed; bx

τ and byτ are the −x and

−y components of flow resistance on the bed;

g is the gravitational acceleration.

The erosion and deposition velocity respectively written as :

when erosion ( ):

d

NM

CC

CC

i

eb

e

e

22

+

= δ

(6)

when deposition ( ):

h

NM

C

CC

i

b

e

d

22

+−

= δ

(7)

where e

δ and d

δ is the erosion and deposition coefficient respectively; d is the represent diameter.

The x and y components of flow resistant stresses on the bed, bx

τ and byτ , could be expressed as

following:

2

3/1

3

222

1)1(8

−⎟

−+

+

=

C

C

CCh

dNMM

b

s

m

m

bx

ρ

ρ

ρ

τ

(8)

2

3/1

3

222

1)1(8

−⎟

−+

+

=

C

C

CCh

dNMN

b

s

m

m

by

ρ

ρ

ρ

τ �

(9)

The equilibrium concentration:

( )( )θφρρ

θρ

tantan

tan

−−

=

fs

f

eC (10)

where θ is the inclined angle of the channel bed; φ is the internal friction of debris flows.

Finite-difference method on rectangular grids is widely used in numerical models of

environmental flows. Therefore, we used grid networks from GIS as the rectangular grids of

finite-difference methods.

3 APPLICATION TO A DEBRIS FLOW IN AMAMI CITY

The above approach is used to simulate the real debris flow that occurred in Amami city, in this

simulation, the depth of the landslide mass is assumed as the initial thickness of flow and the

CCe

CCe

<

─ 18 ─

Page 23: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

rheological parameters are set co

the propagation and flow depth

Fig.3 which shows the morpholo

Table 1. materia

( )3

/mkgs

ρ ( )3

/mkgf

ρb

C

2550 1180 0.60

Fig 2. The simulation of

Fig 3. The mo

onstant throughout the duration of the flow event(

in each real time. Finally, we can get the erosi

gical variations in this debris flow.

al properties and rheological parameters for simulat

( )md ( )2

/ smge

δ d

δ φtan tΔ

0.10 9.8 0.0007 0.05 0.60 0.0

f debris flow propagation in Amami city (2s, 68s, 1

orphological variations of debris flow in Amami city

(table 1). Fig.2 shows

ion and deposition in

tion

( )st

( )mxΔ

( )myΔ

001 2.5 2.5

52s, 200s)��

y

─ 19 ─

Page 24: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

4 CONCLUSIONS

In this paper assumed debris flows as the solid-fluid flow of a continuum and incompressible in

flow routing. The govern equations was build to describe debris flow including erosion and

sedimentation processes. The govern equations were then solved numerically with finite difference

method use GIS grid networks. Finally, The numerical model was applied to simulate the landslide

type debris flow in Amami city on 20 October 2010. The simulated results was good reproduced the

propagation, erosion and deposition processes in the actual debris flows.

5.REFERENCES

[1] K. Huttcr, B. Svendsen , D. Rickenmann., Debris flow modeling: A review, Continuum mech.

Thermodyn. 8 (1995) 1-35.

[2] A. Armanini, L. Fraccarollo, G. Rosatti., Two-dimensional simulation of debris flows in erodible

channels. Computers & Geosciences 35 (2009) 993-1006.

[3]Iverson,R.M.,1997.The physics of debris flows. Reviews of Geophysics 35,245–296.

[4]Takahashi,T.,1978.Mechanical characteristics of debris flow. Journal of Hydraulic Division—ASCE

104(8),1153–1169.

[5]Johnson,A.M.,1984.Debris flow. In: Brundsen, D., Prior, D.B. (Eds.),Slope Instability. Wiley, New

York,pp.257–311.

[6]Bagnold,R.A.,1954.Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid

under shear.� Proceedings of the Royal Society of London A 225,49–63.

[7]Coussot,P.,Ancey,C.,1999.Rheophysical classification of concentrated suspension and granular pastes.

Physical Review E 59(4),4445–4457.

[8]Cheng-Lun Shieh, Chyan-Deng Jan and Yuan-Fan Tsai. A Numerical Simulation of Debris Flow and Its

Application. Natural Hazards 13:39-54,1996.

─ 20 ─

Page 25: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

Seismic Slope Stability Analysis Subjected to Tension

Failure

Yingbin Zhang, Guangqi Chen, Kouki Zen, Kiyonobu Kasama, Jian Wu� Lu Zheng

Division of Civil and Structure Engineering, Kyushu University, Fukuoka, 819-0395, Japan

1. INTRODUCTION

Landslide is one of the worst natural disasters. As one of the main trigger, the earthquake can easily

induce collapse of slopes and produce landslides that can result in serious damage to life and property.

The evaluation of stability of seismic slope is the most important aspect of geotechnical earthquake

engineering, especially when the slopes are situated close to residential areas.

Several methods can be used in evaluating the stability of slopes subject to earthquake loading. These

methods can fall into three general categories: (1) pseudo-static method, (2) permanent displacement

method, and (3) stress-strain method. Each of these types of analysis has strengths and weaknesses, and

each can be appropriately applied in different situations.

However, almost all of the above methods consider the failure mechanism of seismic slope as a

completely shear failure. The frequently occurring earthquake events in recent years in New Zealand,

Japan and China have led to a renewed knowledge in mechanism of instability of slopes. A large number

of investigations of earthquake induced landslide show that tension failures appear in top of almost all

landslides or potential sliding slopes. The existing methods what usually only based on shear failure

mechanism while ignoring the tension failure may lead to inaccuracy especially when the slope shook by a

strong earthquake load. There are a large number of described, analytical and numerical studies which

have provided supporting evidence of the existence of tension failure in slope stability analysis. Huang et

al.[1]

and Yin et al.[2]

have gave much detailed description for tension segment of slope failure surface

based on post-earthquake investigations. Yan et al.[3]

have certificated the existing of tension failure zone

by analyzing the mechanism of seismic slope using numerical simulation. Zhang et al.[4]

showed that

significant effect of tension failure on slope stability analysis by upper bound limit analysis. These studies,

however, most focus on the description or explanation of phenomenon, but few on deep research of

stability analysis subjected to the tension failure.

Hence, to investigate how the tension failure effect on seismic stability analysis, a full dynamic

analysis is carried out in this paper with an emphasis on seismic slope stability using finite difference

method through a homogeneity slope.

2. FAILURE CRITERION AND STRENGTH REDUCTION TECHNICAL

2.1 Failure mechanism of seismic slope subjected to tension failure

At present, the failure mechanism of seismic slope follows the static slope failure mechanism, i.e. the

main reason that caused seismic slope instable is shear failure while ignoring the influence of tension

failure. In fact, with the reason of small tensile strength and the action of earthquake loading, the slope in

reciprocating motion is more easily to be tensioned.

Many failure criterions have been presented for modeling the strength of soil, the Mohr-Coulomb

criterion remains the one most widely used in geotechnical practice. A modified Mohr-Coulomb failure

criterion is used in this study. The representation of the failure criterion in the (σ, τ) plane is sketched in

figure 3. The failure envelope is defined from point A to B by the Mohr-Coulomb yield function

tanshear

f cτ σ ϕ= − − (5)

and from B to C by the tension yield function

3 t

'tension

f σ σ= − (6)

Where c is cohesion, φ is friction angle of soil material, τ is shear stress, σ represents normal stress on the

─ 21 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 26: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

plane of failure, and σt is tension strength.

Fig. 1. Failure criterion combined tension-shear failure mechanism.

2.2 Factor of safety F and strength reduction factor SRF

Factor of safety F is a value that is used to examine the stability state of slopes and of great interest

for engineering practice. A generally accepted definition is the ratio of the available strength of soil

material to that required to maintain equilibrium. For c-φ-σt material studied in this paper, factor of safety

F against slope is simply calculated as

t

t

tan

' tan ' '

c

F

c

ϕ σ

ϕ σ

= = =

(8)

Where c, φ and σt are the actual strength of soil material, and c', φ' and σt' are the parameters required to

maintain the limit equilibrium. To achieve the correct factor of safety F, it is essential to trace the strength

parameters by a coefficient called strength reduction factor SRF until the limit state of slope is achieved,

i.e. factor of safety F equal 1. Strength reduction factor SRF defined as

t

t

tan

tanm m m

c

SRF

c

ϕ σ

ϕ σ

= = = (9)

Where cm, φ

m and σtm are the calculated values of strength.

3. DYNAMIC FORMULATION

3.1 Modeling with FLAC3D [5]

A schematic illustration of the 2D analyzed mesh, properties parameters and the boundary conditions

is provided in figure 2. In order to study the development process of slope failure surface, one square

meters of grid size is meshed. Both x and y displacements are fixed at the base of the model. And x

displacements are fixed on either side of the model along the y-axis. The slope is allowed free to move in

both the directions. Free field boundary is used in the present model to minimize the wave reflection.

Local damping of 0.157 is used in the model as suggested by other studies for these kinds of problems.

Fig. 2. Mesh generation and boundary conditions of finite difference model for dynamic slope stability analysis

3.2 Earthquake loading

The dynamic load applied in here is the transverse component of the acceleration time history

─ 22 ─

Page 27: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

modified from the Kobe earthquake, occurred in Japan, 1997 as shown in figure 3. The total duration of

the earthquake loading is 15s with a time step of 0.02s. The amax

value of the recorded earthquake is

0.2046g at time of 3.52s. The earthquake loading is applied at the base of slope. From the acceleration

time history record, velocity and displacement time histories can be computed by once and twice

integration respectively.

Fig. 3. Acceleration time history of earthquake loading applied in study.

4. RESULTS

4.1 Factor of safety F

If only consider the shear failure mechanism, failure surface of slope is just induced by the shear

failure. After a series of trying calculation, it can be obtained that cut-through of shear plastic zone

occurred in the smallest SRF of 1.12. The figure 4(a) and figure 4(b) show the contours of shear strain

increment at SRF=1.11 and SRF=1.12, respectively. The maximum values of shear strain increment

(SSImax

) are 7.264cm and 7.963cm at SRF=1.11 and SRF=1.12, respectively. These results show that the

slope is in the limit state at the situation of SRF=1.11. As the previous definition of factor of safety and the

cut-through definition of slope failure, we can come to the conclusion that factor of safety F is 1.11 based

on shear failure mechanism.

The figure 5 shows the contours of tension plastic zone and shear strain increment at SRF=0.98 and

SRF=0.99. The maximum values of shear strain increment (SSImax

) are 3.219cm and 3.593cm, respectively.

As the previous definition of factor of safety, the factor of safety is 0.98 based on the tension-shear failure

mechanism.

Fig. 4. Contours of shear strain increment at (a) SRF=1.11 and (b) SRF=1.12.

4.2 Shape of slip surface

The figure 5 shows the failure surfaces of slope in different cases: static case, dynamic cases based

on shear mechanism and tension-shear mechanism.

─ 23 ─

Page 28: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

Fig. 5. Block tension state and contour of shear strain increment at SRF=0.98 and SRF=0.99.

Fig. 5.Failure surfaces under different failure mechanisms.

5. CONCLUSIONS

Tension failure has a significant influence on seismic slope stability analysis. The finite difference

program can take the influence of tension failure into consideration, so as to make the analysis technique

more reasonable for practical application.

The shapes of failure surface of seismic slope under traditional single shear failure mechanism and

tension-shear failure mechanism have an obvious difference. Failure surface of seismic slope considering

tension-shear failure mechanism contains two segments and shallower than that just considering the shear

failure.

6. ACKNOWLEDGMENTS

This study has received financial support from the Global Environment Research Found of Japan(S-

8), and from Grants-in-Aid for Scientific Research(Scientific Research(B), 22310113, G. Chen) from

Japan Society for the Promotion of Science. These financial supports are gratefully acknowledged.

7. REFERENCES

[1] Huang, R.Q., Xu, Q., Huo, J., Mechanism and geo-mechanics models of landslides triggered by 5.12

Wenchuan earthquake, J Mountain Sci, 8 (2011) 200-210.

[2] Yin, Y.P., Wang, F.W., Sun, P., Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan,

China, Landslides, 6 (2009) 139-152.

[3] Yan, Z.X., Zhang, S., Zhang, X.D., Duan, J., Failure mechanism and stability analysis of slope under

earthquake, J Eng Geol, 18 (2010) 844-849. (in Chinese)

[4] Zhang, Y.B., Chen, G.Q., Zen, K., et al., Limit analysis of seismic slope stability based on tension-shear

failure mechanism, Proceedings of International Symposium on Rock Slope Stability in Open Pit Mining

and Civil Engineering, Vancouver, Canada, 2011.

[5] Itasca, FLAC3D fast Lagrangian analysis of continua in 3 dimensions V.2.0, Itasca Consulting Group, Inc.,

Minneapolis.

─ 24 ─

Page 29: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

Comparison of Weight of Evidence and Logistic Regression Model for Medium Scale Landslide Susceptibility Mapping in Yogyakarta Region Indonesia

Guruh Samodra1,2, Guangqi Chen2, Junun Sartohadi1, Zen Kouki2, Kiyonobu Kasama2

1Environmental Geography Department, Universitas Gadjah Mada, Indonesia.2Geo-Disaster Prevention Laboratory, Kyushu University, Japan.

1. IntroductionRecently, landslides have created several damages in Kayangan Catchment, Kulon Progo Regency Yogyakarta Indonesia. It usually occurs in the month of November to April during rainy season. During November 2008 toApril 2009, 46 landslides occurred in Kebonharjo village with various extents. Even though there was no loss of life caused by landslide at this period, several damages on the building were found and various extent of material were deposited in the road body. It was estimated that material loss up to 1 billion IDR per year in Kulon Progo Regency affected by landslides. In addition, an inexistence of regulation for building code and landuse planning based on the landslide disaster risk reduction caused the development of settlement area in the hilly area increased year by year without any regulation control. It may cause the increasing landslides victims in the near future. Thus, landuse planning is needed in order to maintain the area which is susceptible to landsliding related to the new development of settlement area.

Landslide map can be one of tool to figure out the potential location of landslide and can be applied for effective measures for landslide hazard mitigation as an input of landuse planning. It can be produced by several methods and techniques depend on the purpose of mapping, the area, the availability of data and the financial budget available. Geographic Information Systems (GIS) offers a technological framework for supporting effective and efficient data capture, storage, management, retrieval, analysis, integration and display, and have shown great advantages for landslide distributions and susceptibility mapping [2]. A method that widely used due to the development of GIS technology is statistically based landslide susceptibility mapping.

Statistically based landslide susceptibility mapping is usually applied either in multivariate or bivariate model. Multivariate analysis assumes that the presumed controlling factors of landslide are interrelated each other. In the other hand, bivariate analysis assumes that the presumed controlling factors of landslide are not interrelated each other [5]. Logistic Regression Model (LRM) which was formerly invented as a description of population growth and autocatalytic chemical reaction [3] can be classified as a multivariate statistical model. It was applied successfully in landslide susceptibility mapping in many regions. In the other hand, the weight of evidence method (WoE) which is based on bivariate statistic is also widely used to analyze landslide susceptibility. It was formerly applied to map mineral potential [1]. WoE calculates the weight of predictive factor based on the absence or presence of landslide in the study area. Both models are simple and less time-consuming. However, each method capability of future spatial prediction remains a trending topic on statistically based landslide susceptibility mapping. Thus, WoE and LRM were compared in this research in order to show the spatial predictive capability of both methodologies to produce landslide susceptibility map.Thus, both methodologies are going to be employed in order to map landslide susceptibility in tropical region Yogyakarta Indonesia.

2. LocationKayangan Catchment is located in the middle part of Java Island. It is dominated by hilly area with large open valley striking mostly NW-SE (Figure 1). Elevations of the hills range from 49 m (Nanggulan) to 825 m (Jonggrangan). The average annual rainfall in Kayangan Catchment is 2478 mm. The highest rainfall intensity usually occurs from February to March with average monthly rainfall 426 mm. Landslide usually occurs in the month of November to April during wet season. Kayangan Catchment is determined as a part of south zone of geomorphology of middle Java embodied by bedded limestone and coralline limestone. Kayangan Catchment consists of Young Volcanic Deposit of Merapi; Colluviums; Sentolo Formation (limestone and marly sandstone); Jonggrangan Formation (conglomerate, tuffaceous marl and calcareous sandstone, limestone

Kouki Zen

─ 25 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 30: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

and coralline limestone); van Bemmelen Formation (old andesit breccia); and Nanggulan Formation (sandstone with intercalated of lignite, sandy marl, claystone with limonite concretion, intercalations of marl and limestone, sandstone, and tuff) [4].

= Research Area (Kayangan Catchment)

Figure 1. Location of Kayangan Catchment

3. MethodologyThematic maps representing various factors of landslide were generated by GIS technique to obtain the probability to landsliding by weights of evidence and logistic regression model. Those are distance to road, landform, elevation, slope, distance to river and landuse. Each controlling factor of landslide were mapped and converted to raster map. Cross map analysis was applied to evaluate each controlling factor of landslide toward landslide occurrence. All of controlling factors of landslide were overlaid with landslide inventory map based on the equation (1) and (2).In WoE, the existing landslide distribution was compared to various factors of landslide separately. It was applied to evaluate the relationship of each predictable variable controlling factor of landslide towards landslideevents. In ILWIS 3.7 open source software package, the analysis can be written on a formula based on the equation (1):

ln � �� � �

���)(

)(/

)()(lnln

NiNpix

SiNpix

NiNpixSiNpix

DensmapDensclasWi (1)

Where Wi = the weight given to a certain factor of landslide, Densclas = the landslide density within the factor of landslide, Densmap = the landslide density within the entire map, Npix(Si) = number of pixels which contain landslides in a certain factor of landslide, and Npix(Ni) = total number of pixels in a certain factor of landslide [5].

In the other hand, multivariate logistic regression model compared the existing landslide distribution with various factors of landslide simultaneously. Therefore the relationship of environmental factors of landslide with the existing landslides was evaluated by logistic regression equation which is written as follow:

(2)

z = (3)

Where P(S=1|X1,X2,…Xn) is a pixel affected by slope failure which is given the presence of independent variable from X1 to Xn,�0 ���� ��� �������� � � ��� ��������� �����1�� �2����n are the coefficient of variables X1,X2,…Xn���0����n are the unknown coefficients which has to be estimated based on the data of independent variables of landslides by using maximum likelihood [3].

─ 26 ─

Page 31: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

Technically, 177 landslide events dataset were used to build landslide susceptibility map in Kayangan Catchment. It was divided into 2 year dataset. The first year dataset is 131 landslides events occurred before 2008. It was employed for landslide susceptibility mapping (spatial prediction). The second one was 46 landslide events occurred after 2008 (November 2008 – April 2009). It was used as a validation of the prediction. Therefore, the cross validation between the landslide map as a spatial prediction and the landslide events in the second year survey was employed in order to show the spatial prediction capability of each method.

4. Result and DiscussionIn this study, bivariate WoE and multivariate LRM were employed to generate landslide susceptibility map in tropical region Yogyakarta Indonesia. Several factors relatively significance to landsliding such as distance to road, landform, relief, slope, distance to river and landuse were converted into raster GIS data and employed as landslide factors map. WoE computes an existence and inexistence of landslide events towards each input factor separately. It was based on the pixel numbers of each factor map as a relative significance causing landslide. The result was the weight values of each class of landslide factors map (Table 1). Positive and negative weights would indicate the contribution of each controlling factor toward landslide. Positive meant high contribution and negative meant low contribution. Final susceptibility was simple combination of the weight of each class of factors map processed in GIS platform. The final value of WoE ranged from 0.2 to 2.74. Therefore, the final value map was normalized into 0-1 in order to interpret the spatial probability of landslide. The higher probability to landslide was indicated by the number closer to 1.

Table 1. Summarize of Si, Ni and Wi in WoE

DRoad Landform Relief Slope DRiver Landuse

Si min 29 23 64 64 296 350max 2576 2143 1816 2084 2268 3359

Ni min 215867 26535 102769 64 76830 89969max 378395 357998 236524 2084 773768 708945

max min max min max min max min max min max minWi 1.2 -3.8 0.51 -5.89 0.76 -5.89 0.58 -1.19 0.25 -0.22 0.29 -5.88

In the other hand, multivariate LRM computes the factors of landslide simultaneously. All factors of landslides as independent variables and landslide events as dependent variable were treated together. Landslide factors were coded as categorical data and landslide events was coded as binary data. Binary landslide event was coded 0 for absence of landslide and 1 for presence of landslide in nature. LRM was performed to analyze the contribution of each factor to landsliding. It �������������������������� ���������� �������������f each independent variable which is shown in the regression model:

z = 11.120 – 0.07 distance to road + 3.489 landform – 3.538 elevation – 0.709 slope + 0.005 distance to river – 0.129 landuse

Thus, the sequent of predominant factors of landslide based on the LRM were landform, distance to river, distance to road, landuse, slope, and elevation. In addition, LRM provides information of the quality of datasets and how the model fits the dataset. The statistical parameters resulted on the LRM was written as follows: Total number of pixels: 5700; -2ln L (L=likelihood): 2231.43; Model chi-square: 5670.441; Cox & Snell R Square: 0.63; Nagelkerke R Square: 0.84; RoC: 0.96. RoC 0.96 indicated that the model was useless for discrimination that meant resulted higher probability to predict the landslide events successfully. Nagelkerke R Square indicated that 84% of the variation of the result was explained by the logistic model. Cox & Snell R Square was also indicated the better fit of the landslide factors with the model.

Thus, LRM computed the final susceptibility map (each pixel) based on the equation 2 in GIS platform. The result ranged from 0.07 to 0.73 for the minimum to maximum probability. Therefore, both models result wereclassified into 0-0.18 (very low), 0.19-0.36 (low), 0.37-0.49 (medium), 0.50-0.70 (high), 0.71-1 (very high) to layout final susceptibility map (Figure 2).

─ 27 ─

Page 32: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

Figure 2. Landslide Susceptibility Map with WoE (left) LRM (right)

Table 2. Cross Validation Map of WoE (Left) and LRM (Right) based on Number of Pixels

Cross validation based on the number of pixel was employed in order to analyze the capability of both models to predict landslides events spatially. For this purpose, the classification of landslide susceptibility was divided into two category i.e. high probability (high and very high) and low probability (very low, low and medium). The susceptibility map of Kayangan Catchment was overlaid with the second year landslide events dataset in order to show the percentage accuracy of landslide prediction (table 2). WoE model attained a bit more accurate than LRM with the accuracy of 69.54% and 69.38% respectively. WoE successfully predicted 1205 pixels to be landsliding whereas LRM was only 845 pixels. In addition, WoE also successfully predicted 968959 pixels to be no landsliding, whereas LRM was only 967065.

5. ConclusionIt was generally accepted that landslide susceptibility is an essential tool for landslide mitigation. GIS based WoE and LRM was successfully applied and offered great advantages for landslide susceptibility mapping in tropical region Yogyakarta Indonesia. In this case, WoE seemed a bit to be more accurate than LRM with the mapping accuracy 69.54% and 69.38% respectively.

6. References1) Bonham-Carter, G.F., Agterberg, F.P. and Wright, D.F., 1990 , Weights of Evidence Modelling: A New

Approach to Mapping Mineral Potential, in Agterberg, F .P. and Bonham-Carter, G.F., (eds.), Statistical Applications in the Earth Sciences: Geol. Survey of Canada, Paper 89-9 , p. 171 -183.

2) Carrara, A., Cardinali, M., Guzzetti, F., and Reichenbach, P. 1995. GIS Technology in Mapping Landslide Hazard. In: Carrara, A. and Guzzetti, F. (eds.), Geographical Information Systems in Assessing Natural Hazards page: 135–175. Kluwer Academic Publisher, Dordrecht, the Netherlands.

3) Cramer, 2002. The Origin of Logistic Regression. Tinbergen Institute Discussion Paper. Accessed in 29 December 2011 from http://dare.uva.nl/document/204.

4) Rahardjo, W., Sukandarrumidi, dan Rosidi, H. M. D. 1995. Peta Geologi Lembar Yogyakarta, Jawa.Pusat Penelitian dan Pengembangan Geologi, Bandung.

5) Westen van, C. J., Rengers. N., Soeters. R. 2003. Use of Geomorphology Information in Indirect Landslide Susceptibility Assessment. Natural Hazard 30: 399-419. Kluwer Academic Publishers. Netherlands.

Pred. vs Events Landslide Events (NrPix)WoE Yes No Total

Map Pred. High 1205 424505 425710Low 357 968959 969316

Total 1562 1393464 1395026

Pred. vs Events Landslide Events (NrPix)LRM Yes No Total

Map Pred. High 845 426399 427244Low 717 967065 967782

Total 1562 1393464 1395026

─ 28 ─

Page 33: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

2009 7 21

2010 11

2009 77300m3 2200m3

1) 2011 10 2 /m2

05

1015202530 -250025050075010001250150017502000

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Riv

er w

idth

(m)

Distance from the upstream end of calculation (m)

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500x

d (m)

No.7No.8

No.5No.4

No.2No.1

z (m

)

No.3

6.4

19.8

8.3

route24

24.7

check dam

check dam

5.1

confluenceconfluence

confluence

No.9

No.11

No.10

─ 29 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 34: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

3)

case

case1 102m3/s5.2m/s 0.24 24m3/s 2.9m3/s case2

224m3/s 6.0m/s 0.4 90m3/s5.5m3/s

─ 30 ─

Page 35: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

case1

0.9

0.75

0

50

100

150

200

250

300

0 200 400 600 800 1000

Q(m

3 )

t(sec)

x=1100

x=0

0

50

100

150

200

250

300

0 200 400 600 800 1000

Q(m

3 )

t(sec)

x=1100

x=0

0

20

40

60

80

100

0

20

40

60

80

100

0 200 400 600 800 1000

Qs(m

3 )

Qd (m

3)

t(sec)

x=0

x=1100

0

20

40

60

80

100

0

20

40

60

80

100

0 200 400 600 800 1000

Qs(m

3 )

Qd (m

3)

t(sec)

x=0

x=1100

0

5

10

15

20

25

30 -250025050075010001250150017502000

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

(m)

(m)

xd(m)

0

5

10

15

20

25

30-250025050075010001250150017502000

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

(m)

(m)

xd(m)

─ 31 ─

Page 36: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

1.0 4 5

1.0

3002m3(case1)7827m3(case2) 446m3(case1) 567m3(case2)7300m3 255m3 502m3

F.MARICAR H.HASHIMOTO S.IKEMATSU T.MIYOSHI EFFECT OF TWO SUCCESIVE CHECK DAMS ON DEBRIS FLOW DEPOSITION 5th International Conference on Debris-Flow Hazard p1073~108220112) ( ) http://www.koseisabo.gr.jp/cgi/db/sabo.cgi

3) 2006

─ 32 ─

Page 37: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

1 2 3 2 2 2

1 1 2 3

1)

2)

─ 33 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 38: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

─ 34 ─

Page 39: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

─ 35 ─

Page 40: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

��� � ���� �

─ 36 ─

Page 41: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

* **

y = a�x� + a�x� + a�x� + �+ a�x� + e

─ 37 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 42: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

y = a�x� + a�x� + a�x� + �+ a�x� + e

─ 38 ─

Page 43: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

─ 39 ─

Page 44: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

6

���������� �����

��������

��� �����

�� ����������

���� �������

─ 40 ─

Page 45: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

��� ������ ����� � � � � � � ������������

���������� �����

��������The characteristics of landslides and sediment runoff

in Sierra Madre Oriental Mountain range, Mexico

���������� ���� ������� ���� ����������

��� !"�#$!%�&" '%("$)�*"+!��,-)." /"�("�,"+01$2�*"%!-)) �

� �

������� !"#��$�%�&���'()�*#���������"+,-./0)�1�

��� �����

� 3456789:5;<�=>?@AB7CDEFG HG6IGJKLMNOPQRSTU

VLWMXPYZ[G;<\]^Z_`abcd�a6efE�ghij�klmB7JPn

[opqOrCsWtu�>v�wxvyXz{\|6}[O~�X������7KL��O

�LWMM;<��XPYZwGmB7A�Y��;�L���������d��� ���

��dwGJ�TL�a���Z�JPL[o��X��A ¡KLW�

�� ����������

���� �������

���d���¢�<¢£¤¥¦�J§OL����¨©ª«X¬�A­®C¯k°�±²³² �

�����dwµ¯/"�,-$(("�¶"·($�¸(-$+!")´<����X¹º@SU»Q¤ª~G

¼X¦½¾A­®KLW�k¿��d�l ¶ +!$(($& 6ÀÁX��Â�Ãl ,"+�Ä$·( �Å"(2"�

Å"(0-"´ ÆÇÈ ÉÉÊË�ÌÍ´<������dwµXwÎJ§OLÏ;�n�eÐÑÒ��

a���ÓXÔÕJPn¤Ö{N[o��X×ØX�LGÙ;��LWMXPYZÚCDÛÜN

<ÝÞZsßàáâXã�ÇäåIJæKLç}ZèéJêëTìV�wµXklÀÁwÎ6í

î?@J�sDïðX¤ñòIGB7NóôB7OõöVDsLW÷øD�klùJ�Y?@X

B7úûO¤üýQ�[o��N=>þ���OýQ��ìVDsLGÙ;�L �����ÊÊÉ W�

�����dwµ¯ÌÍ´<�ìÈ �ÊÊ�Ë È Ê�Ë ;��Ç� ³± �Ë ;�n�wµXG

─ 41 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 46: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

�2� 34�45 67�89:;�<=>?@ABCDEF+GHIJKL�MNOPQRSTUVW�

�­�<�������X�önSU3�����<��JSTDX���ü�

¯�$. )�0-�+�/"("Ë ·-0"!/"("Ë-·$ �w"�´Xú# $% &'JPn(®ìVuWMX�

w"�<Ã���wµ(®J�)*KLNìVL¤ñòZ�X;�w+<¤ñòZ$%­�N,

� �-A�Y§Ùü®A.T�/0J1s�XNZøDsLW$%X2?3Ow4A��?3

O5�A(®C�67XwGA(8øDsLW9�<�:J��;¯�<�N���´X=>

9�?@A9�BC9�D�9Z�;­®ìVDsLO�wÎX¬�;<��X:JEF9Z�

XGH­��RUVL¯I($Ë$(��ÊÊ �J"(K"%�±²É W�

��wµw4LM<�:NCD��;=>9X9N¯2?3´;­®ìV�OPÈ �ÊQR³S QX

TUNZøDsLW�XãºX?@<VWOP S QSU ÉS QXUN��VJ»sD �S QRÉS

QXT?@XY�±� QR�Ê QZQX[\]^?@SU­®ìVDsLWtu�¤¥XG_­�

:SUG`Xabc�d�DesNìVDsL¯k°�±²³²������ÊÊÉ W�

wµX¢�?@<����¨SUXføugOhun�G(ciÕO��Lu��jkXPY

J²lA�mJiÕnO�Q����o�p $+0-+ % 6qpSUZL=>O(®ìVDsLW

�a���OrsJ¬Q��atu ����¨º@PnvwKLW±²s ²lX�a���

x���� Å-)�$(! <�¿��d�GÙAyzC������dwGJ¤ÕA�uUCuW

�VJPn�MXwGA{pNCl|lÏGApVL}��~ �~a��� ,"+!"�*"!"(-+" �

O�pq[oJPn�� ��Cu����ÊÊ�J:L��AqCDsLWtu��ÊÊSs ³l�Ê

�R�±�X�a��� ��a�¯�Ë-)&´J�sD<�ÕnÈÉ�ÊËË��Õn ±ËË���Õn

²ËË�1� Ê �Õn �±ËË Aó�CuWMV<��G;<SZnXÔÕNÝÞL¯�����ÊÊÉ W

ìUJ �ʱÊs ³l��R �X�a���_d��¯�)$�´;<���A�n�ÞLÔÕ¯�

¤��Õn ³±ËË�1(��ÕnÊÊËË�:´O���[o��X~�NZøuW�

���� � ��������

�J��VuPYJ�¤ñòZIGB7NåI óô�XvyB7OTU?@A� wÎXs

uLNM¡;õöVDsL ¢£ÍR¢£¤ WIGB7<�:NCDOP ±�QR�ÊQZQX?

@t;X¥;sLO�¬�;< SQSUÉSQXT?@Jt;X¥;sLW�Xu��vy¦§

JPL=> ¨pX©ª�IG vyX^[ }[?@X���vy åIG«X[oXpq�

9N��N¬=Z�O­®øDsL¯Ì¯�̤�¢£¤ WìUJ�MXwG;<=>«X_

`abcd�aJPLefE�­®°�=>?@X7±�|QZs²³O�sW�

���� ��������

���� ��������

─ 42 ─

Page 47: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

���� � ��������

���������� ���

�������������������

�����������

��

���

���

���

���

� ����� ����� ����� ����� ������

����

��

��

���

��

� �

�]� ^_`a�b@cdeDfghDfij�klDfmm�mT`a^_fgn�m�

opqAr 20105 7789:;�Alexs�CD@ABtuvIwx�^_`ayz

���� ��������

��2� 34�45 6789:;�<=>?@ABCDEF+GHXYZ[\�

���� ��������

� ýÕXu��̯�Ì �¢£¯XPYZGK´n �� [opqO��DsLW����

X7�<=>?@:Xµ�wxvy6>vXh@�z{\|¶³�IGh@J�Q7�C�¬�

<¨pJ·npãCu�X��LWGK´nJ)CD<¸sGã{6K´n@�cX¹ºO»é

;�LO��G;<�VUX¼½<ZìVD�U¾�:�XPYZ�Õn ÉÊÊËËA:ÒLiÕ;

<�¿ÀX�s=>9X^?@6ã�O^nÁnh@JZøuT?@A�mJ�ÂÃ�̯Jp

KLGK´nO7�KLabcO�LW[opq<:NCDÄÅX��N©ª¨p�PYefE

GSU��D�n¯Ì¤ �ó�JPLN��X[opqnÆ<���Õn�-N�Õn�XHJ

[�¯�����Êʳ´CDyÇ]JÈÉKL¯Ì¤ W�

ó�JPVÊ�MXGÙ;<iÕ�ËÃX[Ì{�XÍÎO��ÏX[\æÐGÙ¯���

Ñ��XBC9NA9pSU®L?@´J[´D�}ÒÓÍÎÔQ�;±ÊÕ�:ÖQ�}×ÍÓ�

� ±Ê ÕZQZ�Nó�ìVD�n�SZnÖsMNOØÙCDsL¯�����Êʳ WÚtn�

iÕX[�ýQeã6Gã{Û:Ü«XÝKÞßO[\]���»QMNOàÞUVLW�

─ 43 ─

Page 48: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

�{� |9}~@q�B89:;�F+����

���g���@��@��m

����������

� vwKLabcO�L�atu;X�a���7�r<sðÈÉCD�n¯Ìá �MXóâ

SU�ãäåææç<èéNZøDsLW����6[opqJÚsD<�é�¢�NêëXì

hJPn§íabNìVDsLî�����Êʳ��ÊÊïWKZö°���Õn�-N�Õn�A�s

D�ðñXPYZ7�òóÕn¯ôõÕn´%ÇOöUVLW�

÷���ø�¶ùÄ-î!ï�úîÄù0 %ûï·!���î±ï��

÷ü�[opqn��üpÙ@H�¶ü�¨pGHýX[�J)KLþr�!ü���ûü¨�OP��Äü�p

q��|iÕnWiÕ�»��|XH�<���

úîÄù0 %ûï·!�ø�Ä"ù0 %û��

¯Ä"ü��Õn�Ä-ü���Õn �MVSU��

÷���¶��0 %û�ø�Ä-�úÄ·!�ø�Ä-�ù�Ä"��î�ï�

÷øD���Ä-�ù�Ä"�ø�* +%!�����î ï�

÷��÷0X��[opqO��LNKLN��

÷0���¶��0 %ûø�Ä-0�ù�Ä"0��îÉï�

����Ä-0ù�Ä"0�ø�* +%!�����îSï�

�MA�SU��JPn�L

N�È ÊÊÊNZLW�

!� "�

����¢��<�×�]J�S;�

d��<ÇQ��J�k¿��d�kl�X��Â�ÃÅ�Å�l<�£X��a����N�ÊV�

�QX���O�åKL��Zß�+NZøDsLW�Xu��|�Z�ó6ßàþ�A�D�

wÎ?@AÇäåI�IGNCDB7KL��O­®ÚWMXPYZ��Xã�wGX��]©

ªO�õC�[opq !6�� ":�f#;�Zs7$O��DsLWCSCZOU���

��J%&Z'(áâ�)*++�)*,��h+;�×�7$X�N;��ÏXPYZ �æ

çOõöVL��J<ZsW�

��ÃJ�ÂÒX¼½;¤ü�-.JZøu���d��ß�¤/���Â�à Å�Å�l0

���PYklB7�X1ì¥�ZUYJ��XµX)þ�J�CD23suCtKW�

#� $�

���������������� �������������������������������������������������������� ����!��"#������

��$����%�����������������������������&��������'�����������������������(�)�������!���

�������*�+,�-�.+������,�����������*������������-�!������������������*/��0�1��

���23456����7��89:;<=>?@ABCDE<:?FGHAIJKLMNIOPQRSTU-(�V�

W�USTXYZ[\]^C_`U7�a��

���23456UbcF?defCghe:diUjklm.���1/n89:;<=KLMNXYZ[eo

SpqrstuvwxyEz{|}UXYZ[~��U7����U����a��

���,���*���)����*������V������+���������-����� ����������W���,�������������������*����

�#�������������##����)����#������������������������������������������������(��07���������

��������.0a1a/n��EX�U����U0�W�0�0��

�������������������������0aW7���%�����������������������*���������������������%�����

!�������*�#������������������������%��)���������������-������$����������������������+������

���+����������������������������7��

─ 44 ─

Page 49: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

����������

!� "�

#� $�

���

���

���

��

���

���

─ 45 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 50: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

─ 46 ─

Page 51: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

─ 47 ─

Page 52: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

─ 48 ─

Page 53: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

���������� �����������������

�������� ����� ������������� ���������������������� ���

�������

����������������� !"#!$%&�#'!!( !) #*+,-./012324567

89�: #; +�&<=>?6@AB��CDE<=6FGH9I45JKLMN#O +P<&QRS

R4T6FGH9I456UVW9�5XY��&Z[\4]9MN^_-45�`V�Z[�ab

��4?\<=9cdef1g�hi\]M ��N^�j&kl�45mnJ�o1V�pq�#'!! (

!# )%�rLsI�Nt�u��vw�x9s�yz{d|}~��������������J�

��_s�V�5�vwd<=CDE1g�x9s&�+.~��������#'!! (������

�����#'!! (45������\ "; �J�

��_MN�)���~�� ¡¢~£¤¥Pb�

���¦�§¨�xA&©_MªJK�J�I«

¬5�­�®¯&°S9s�V�±²�³´9M

<=CDE&µ¶¦�·¸d¹º¦��»¼]\

½¾�_�N�

^t�.¿À�&�#'!!(���45�`Ls

<=CDEJ³´9MÁÂÃ~6Äz�ÅÆ6Ç

È9�<=CDEÉ�ÊË6Ì�9�^�}ÍÎ

�`ÏÐw�~ÑÒÎ%�³´j�ÒÎ6«BÓMN�

��� ��������

���`V��Ô�CDE�<=³´Õ�Ö

�'×$ Ø�%�6¿ÀÄz~ÕB9M�ÙÚÛÜ!%NÝÞ

���&��������&ÁÂÃ~�K�N

Ã~@ß�¢´à~6�áºJ�¼9s�V�â

ã&ukäåk�Eæ�`�5ç¼³´²Jèo

éê�� ��N�

t�ëã� #O ~ì�<=CDE�í� ! )

#*î#; +%�³´��dÉï6ðñ��BB\��

ÉòBóô�õ�B ö%6÷ø9�}ù÷

úûüýîþ'��������%�`V<=CDE�}ù

�2����6ÓMNÊ�§01��� 1

I~ì�&����#) *+��) *î;+�*) "îþ

+�O) þî* +%�ðñ6�LMN«M !" ~ì�

<=CDE��6��9�����s���

�`Vóô��6ÓMN�

���������

������ ���� ����

������� �����������������������

─ 49 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 54: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

���� ����� ������

<=CDE&���ù6���¤���I>?6í­B���û !"!�!%N>?³´�é&ö#¬J

$Ós��%�&'(�)9INÉï�&*Î+�³´,-&.Ó-_1IJ�õ/�& û !"!�

!�0!1Ü!'%�`G�ò�!1$23�©I�ù4ó5��É�h5�_M~ì\.Ó-_�Nt��ù4

ó5��É&6��7y68o9:NM¬³´;j&�<�`V4ó5��J=R/JV�ef�5

���>9�?\@A�IMMÓ�åk0�BC9M4ó5��J>?#³´D�E²65LMFG

(\K�N�

ÙÚÛÜ#&�Éò�éê6H�NIJ�KIL��0!1Ü#d M%�&<=CDE&!'1$P/K�J�0!1Ü�

M,-Ö þ×$ ���Ö þ1$ �Ä9��NÏ�& !1$23B1�NO«V<=CDE&IJ`V

��Ô¦ÉòJPQ9��B�Ô¦RQ9sI�MÓ�<�íS&IJ,-��Ô�KLs

TÖ !'×$ �UIëã�<

=9MtB�1V�V����BWX�YZ6[MN

ÙÚÛÜ� &�õ�ó\�éê

6H�Nó\& 0!1Ü!*�$

]��RI��!'1$%6H�

J�ÉòBWX���Ô

¦PQ9��B�Ô¦

RQ��N öó\�&�

IJ,-��Ô�Ö

!'×$ � þ$$�0!1Ü!;%�Ö

!þ×$ � #$$�0!1Ü#�%�Ö

������ ����������������������������������������� ���������� ���!���"��

����#� $����������!������� ���!���"��

─ 50 ─

Page 55: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

#'×$� !$$�0!1Ü#þ%�KV�ÙÚÛÜ�BW^PQ_Ô6H�N�

ÙÚÛÜ"&óô��6H�N�1$P/�Éò�K�<=CDE�óô��&�!`P/�ab#�ó

cJd»e�� M'fP/�g��Nu��4ó�é�'h��B�<��íSâi�&"`23���

jP=�óc�d»e�&!fkj��l1IJ�<�íS�Ô`Vm�&�!`23�4ó�5�

�P=�óc�d»e�Jno��_ÔJ.Ó-_��pV�<�·¸6qrMtBJé,LMN�

���� � ����

stuvw�! &ÉòBùÅ�÷øYZ

6ÅÆ)x�H�N# )B � )�É

ò6yz��B�!î� e{ô|}�

�_ÔJ.Ó-_MN9,9Éò

#1$23�0!1Ü#'�&É~J���

���1�BB\�ÉòJno��

YZ6[MN��~ì�&¥D01

����d�%d¼��<�%�·¸J

KLMN^�j�ÅÆYZ&�)B

y��òI~ì�Éò&ÒÎJ 1o�©I~ì�&��no��_ÔJ.Ó-_MN�-�òI~

ì�&���¬J�©I~ì�&ùÅJ�ùÎ��_ÔJ.Ó-_�}ÍÎ��{J�o,-8«�

tBJé,LMNt�`G�©I<=CDE&�¥D���·¸6³´j��)��ì�\�oqr

�tBJ�-,B1LMN�

���� ��������

� û !"!�#& 0!1Ü!'� #)

B�)�W^L�6H�N#

)��-_M4ó5��&

� )�&�EæjB��_

��������o�Y9

Mh5É ���ÒÎ9MN�

Eæj&���É�MÓ�

����J��-_E²¼

6¥^d�o9�� �&

!MM' (¡�45;j�}?¼J¢¤9M�£B�_� ����N�

)�&�Eæj��¤J©o¥¦�_±²&§o¨V©«_s

I1INt_&�<��FGE¼��EÉ&¥¦�_MJ�=

��>?³´����(J IMÓª01¥¦�@««¬­J

Ñ��_�o,LMMÓB®¯_�N9,9°(j�O)�&

4ó5��±J��Eæj�&²³K�I&>?³´�@�Ð

w9�E²&>?³´�J´]��L�J8o1LMN�

û !"!��& 0!1Ü!O�KIµ�*)����K�N<=CDE

�åk³´D�³´D¶�jJ·�B1Ls�¸¹Ggµ�]

X�K�º�»�¼g9sI�Nµ½�&f¾�´]J8oK

V8 �¬­\Ñ��_sI�MÓ�<=CDE69:~E¼

�`�}Í¥¦J@A�I�tBJé,LMNû !"!�" &�

0!1Ü!'� *)BO)�W^L�6H�N*)&¹¿J<=CD

���������!�%�����������&�������������

��'&���� (��!������������!��(�&������������������

���������!�%������������)�

─ 51 ─

Page 56: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

E�5¯_åk³´D&Ào�-_1,LMNBt>JO)&�^�m�<��FI¹¿&��så

k³´D�Öþ'1$\Á´�_MNåk³´D�&�1$Â���É,-J�-_�t�³´�FGÃ

Ä�ÒÎ&Ào�-_1I

MÓ�tt�&}?¼�&

1oż�`�}aÐwJ

@A¬LMtBJé,LMN

«Mµ½�&4ó5��&

�-_«�>?`V1�Æ

Ç6§�Ö �'1$ \È:¬

­JÑ��_sIMNt_

`V�É�&�µ�¼Ê9

M<=CDE±J�åk³

´D&}?¼Î9sI1I

tB�~E¼BB\�CD

EJµ�Ðw���{�±

²6¥¦9¬­6Ñ�98ÓsI�tBJé,LMN�

������

���#'!!(45�FG<=CDE�x9ÅÆ6@ÓMYZ�P=�tBJ�-,B1LMN�

!%<=CDE&���ù6���¤���Iö#1>?Jí­��$Ós��%�&'(�)9IN

Éï�*Î+�³´,-&.Ó-_«�õ/��©I�ù4ó5��É6FGtBJK�N«M<�

íS&IJ,-��Ô�KLsTÖ!'×$�UIëã�³´9MN�

#%<�íS�Ô`Vm�&4ó�5��P=�óc�d»e�Jno��MÓ�<�@��pV�

<�·¸6qrMN�

�%³´�°(j�&EÉ�4ó5��&²³K�I&>?³´�@�Ðw9�~E�&>?³´�J

´]��L�JnËMN�

"%±²�&~E¼�CDEJÐw9OO¬­JÑ��_8Ós�V�µ�¼g9MCDE&żB9

s=¼¦Ðw9OOK�N�

��� .¿À&� � #�(ô��¿ÀÌÍÎÏ�ÐÑ¿À�Ò%�ÓÔÕÖ× #�þ'!#"�ØÁÙÕ��r

��7m~�Ú�6ÛIMÜÝ��Ê(Þß�¿Àà�¿ÀáEâ� �Äãu%NÏÔÕÖ× #�þ'!#þ�

Ø}aäi¤¥�x��å(0ÒÎ�æçà�¿ÀáEâ� èé%�u�6êÛ9MNtt�ë9sì

í6E9«�N�

��� � !%}îÙïð�ïðÔ�#'!!%ñè�t�d9ò)×ó#þôó#%õö�÷�!M;!%ñÁÂÃ~

�~Ѥg�ø�Bo�ùú>?¼³´jó��~��#�î#û�!'#î!'Mó�%�µ@êüäýÚu!þ!��t��!���Úä

����Útþt��� t$�ü���Úä���ä� �ä¶�Eä� �ä����ä�æ���ä� � �#'!!%ñ

��5�����#'!!(45�CDEóôéêB4T����ó+.~�������#'!!(���

#'!!(���¶3E��ú��';'îû!Oó"%�ö�uä�@õ�ä�� ��!MM*%ñ� 5��J��G

à=6QR±t��£óa��� �"Mî!�#þî�'óþ%!µ"�!MM�%ñ� ä�#º�}?¼¤¥$,

�OIsó�a��";î#�!þî#!ó*%}%&'ä�� �ä}�(u)ä*��¶+�j�!MM"%ñ� 

5���r�<=³´D���Ê(ó�a��";î!�";îþ'ó�

�����#���!�%�����������*�+���,������������

─ 52 ─

Page 57: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

���������

�������������

��� ���

����������� �����

������

��������� ����������������� 23��� 31�� !�"

#$�%&�'(�)*+,-%./�01��2 $3�45�6)*�01��78 29

:1185;7< 9=�%)*>?@AB�C�.D�EFG>�HI<�J$�K*>3L���

MNO�PQO�R#STUU3��VUWX��+G�01�2Y �1�6

�������Z[G��\]��.D>R1$�5�1^_U $3�`a+�+16

bc4�dZef�gh>i��jV��]k�.D�lmT�ef>?@ABno�pqT

�3�45�6

���� �����

���� ��� ��� ��������������

rstu9:vuwx;u< ty=�z{vw|:}~�z{;��@}~�>��w�������

`�� ���v�x��K�>STU1�%F�U+�$6 �=�����������1�

%&`�� �1�6�����` �:¡¢t£¤�;���¢¢V�¥¦�wwvV�§¨k©¢�tuu

ª�«¬­6 ����%&U}~�®���������¯U>°±0²�^_U $³�+

´µ¶·¸ef��¹Aº\�'»�¼�`5�:½[¾¿;6À

À

���� ����� !"#$��%&'(�)*���

ÁÂÃÄ�rs t�9:vuxw;�< y=Å�ÆÇÈAÉ4ÊËÌÍ`ÎÏ $6��¡vx£V

>STÐ�ÆÇÑÒz3ÓÔG�$6ÕÖ×_¨J��zØ$ÙÊÚÛ��Ü�ÝÞUß�

�1�$6 ���+àá�3UÁÂ��vI<â����9u< vã=�äåz{`æç $6

ÆÇè½4�Aé)êë>���Aì� t��vt V�í`�îï��Ù�ðJ�� ��$6

ÆÇ4� ��Fà�ñòóô\�Éõ�öÑ÷��?@AB���Vø�ùú �1�6À

��� � � � � � � � ����� � � � � � � � � � �� � ���� � ���� � � ���

��� �� � � � ����� � � � � � � � � � � � ����� � � � � � ����� � � ��� !"�

#$%&� � � � '()*+,� � � � � � � � � � ����� � � � � � ��-�� � � �./!"�

0123� � � � 4567012389:;<� � � =������������� ���>��� � �?@���

ABCDE)FG)HI� � � �

0123� � � � �J7AKLMNOG)HI� �� � �P��� � � � � � ����� � � �QRS�TU�

VWXY� � � Z[\]E^� � � � � � � � � � _`ab1�� � � � cd��� � � �eRZfg�

���

hijk� � � � lmn� � � � � � � � � � � � � op���� � � � � cddq� � � �rstut�

─ 53 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 58: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

������������� 3� !

+��� �,�-./01234�

ûVüýëþ����45�6þ�U1���­²4�����Vâ��G�$���

C � `��BSTU1���45�6]�1�6

�����æ�$� ���Ç��Ç>�1� ��)î�������½��5�

������ !�"@AB�# 1Vk>$ % $6�G&'(�)Z*�4+,4

5�$6��-å./ö�01�2+,>Ô �b2­²`3�$6454��6@�7�

�`þ8�S$�45�6

9:ÈÐ;Ä<�þ��>����=>�¹?Vâ�@�A$�B) 79:1778;C��4

5�6 �DE`9:�FB�GHU�IJ�KLM�NâU�O0>P�$3�45�$6

U !`QJ�¹?Vâ�RSM�TU`5�$$��VW 29:1790;�Ç�X�3U��

%YZA)��Ù 3,600[�\1>]²�þ��>^��_`O�KLGA$6 >Vâ��

Ua �îb�cÃ`#�de��13�Kf�gQ>h��ijT��`kl45�$��6

+��� 56789

emÇn\�=b.op��� qr�VWs9:1791;t<u=��vU �Ý�`5@�

�� ��wx �45�6

yz<eòÊ�9:Ä�� �Vk{����|

:}�9[;:~=b�Zî�;:=b��;:�WÃ�;

t<u=�l�%{�ÃëeòÊ%w5���J��¹������Ñ���F����

V|��µ

9:%��%������������)�%w5�Vk|Ó�µ

�=½��5������:}�9[;:~=b�Zî�;:=b��;:�WÃ�;

wx4�V�Nx�3���1��Ù���#�¬­Ó�Vk+,�Þ� �Ã�¡¢G

��£¤¥¦¤§â®>¦¨T� U`|16 ���+Ð�ûVü¤��`©��$�>�ª

« �R�6

¬N`�1;U1�­,®13��¯0��$�4���þ°±�§4²1$6x`³

>3´�U $`�³��;�� U4$ �G�� U��µ�$6¶��$ k�

��$ӷ45�$6

"�#$%&'�()*+,-��.�(/0

:��� �;<=>.�-.?0�@A�

b¸�¹^�BW%)*Vº»+ �45�6¼zD�:BW t 9:v�ww;;�9:4�

½k��6@¾¤����%)*4��`¿��+�+�$ÀÁ;ÂÁ�C �ÃÄÅ�6�

�1$ÆÀ�ÇÈ>ÉT6ÊË�+�V�º²�Ì���+`�������k�ÍÎ>ÏÐ

ÑÙA`�$6*.UÒÓ½�9:�Ô@+T�V$Ù�VÃzÕ>R1$dZef45�6À

]Ð��1�0�Ö×T�6À

¤BWO9'<O=�ï:Ø�Ù:ÚÛ'd;;�9:�%)*`5�$6*Ü)�ݳ�Ý:

�4�½��bÞ���`ß3àD`%#��014á*;â㤽ä`å,��$6À

¤,¸¬�Uæ#AB�#$6���çè�é#0²��$6�$�ç$6êëì�è��¯

0²��$6~1��3�Uí 1æ#AB`ç$6����,¬�,¬�,¬Us��è��

 �î��i$�$6ïð�ñÙ�1U�òâ>ÆB�ó¬«�$6���ô�õ$�4íö

1 $6ô÷1���%�+��$6ö�ç`ñÙ$­²4�øÃ`4#�1$�6À

¤ù©�`)ú$��¯G��1�6C�©���¬Ð�`�%#�û²���1�6k�½Ä

─ 54 ─

Page 59: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

#�+�$�>�C ��©²­ $�­!�6,�k3�ü`û1�1�6À

¤ÊË�"��ýþ;VG�1`��T�6�ýþ$Ù%��6��5Ù Ù�S�²��k

�É �Ñ��>����i+¾> l �1�� 1��6À

¤�)*��6C�U$¬�%>� ��k`%�$6�%)*4�±�U3 +��$�

����@� 4� ¬+�5�²+�%��+¬��6:\� �K*45�;À

¤)*���<3$0U�ÊË3a �0F���#$6�Ñ�e©`1�03Sç�ô���

�¦ª��V�Ë�­²��¦ª�U1������� ;T1���¿²��$6À

¤)*4�²$¬4T�69:�ÒÓ���k>Î�� U�����6_��©�1`�

�@�A¬;6�,#{�;���Q>0� ����_��©� !"��1+3¬4G56À

À

:��� 56789�

�BW%)*>�#=$%&\�=bàD)*���4'ú�U����9:)*�U5@�(

)*+,¸-./y0u1�0v�2È3½4)*45�6À

í*)59:�½�4�+�43bÞ¤��¤â㤽ä¤e��¤6��`_��J�§

78O���$6âã9�-���ê�6@�äÐö�9��ê�ñÙ$69::43�;

���WõÓ��%|��(<ä4=�A¹�>`���S¹ $6?k�%3|�@£x�¢xy

AU1�6)*Û ¢�KBÞ��S& ǨCDE�:�0ttF¤;GEH vu�:v�F¤;�«¬­6À

�%9:I�@��JÐ�Ý�`5@� ÏG��6%)*����45�6À

Kö`1;�LM²$l> �1�6NO4+�P����1�6� ��»�@�Q�

�6R��Sb�`� �U�����ÑÙP�$��T>U��V+A�6ü�W�T>�

�X1����Y­6­�� �§�1�Þ�ZÑ�1��+¬­6C�+��T�Ð

`X>H��1�+¬���[�\J����]1 U`" �+1U11²,���6À

�U !�\���`^��1��_`a`b��)*>" TU#Xoc:dUAe;>

#$T U���_`a�Xoc>)fÕÖgh��@i�� U��@)*���jk`4#

��U1� UUl\T�6A�[P>�]�S�mn �¸1$�­!��6�1\JA�

V$13�45�6À

So��b¸�Jpq5U`#��ßÛ>Ý�rO4s�����1�6À

t�V�öY)o�Ûuvw+x`0#3��Up��1$��45�6�yUzi

4#�PÒ>ö1�ç�ú#Ý��Y�{��1$�4+1�6a+�U3�|�{�>

�+`T$���V�N}~45� U�1+16
À

1�2345�678��9:;<;=>?@

B��� CDE�-.FGHIH

���£�ûVü�=½��gK���Þb@�|45�6b@���@U3�»

��b��$��>@��>Z�+1����;���{��É�`ÏO45�$6

ñ*�¯�5�$Å���g����>� U� $6)Z*$T+$T+�V�x4�

��g`�">�#¿²���U�C�ÊV�1�1������,�p��3�c4+16

)Z*ò<*U�1� �U#b���*4+��������OJ�0�>?�

�*45�$6j���VÃ`��1$�,�+��¿��+16â74Ñ��]1`��$6

����*����45�$6

�½`��6½`�����gþ ¡Ð4�">$ ¢C�U $6­`Û��$G��1

�VÞ¬£#`U�+1���î¤3½`!�U +16��g1#+@Ö¥ $6�*

`Ô��¦§*`ñÙ�¬­§�C�¨±+`���"�©���¥>ª@ì $6

01�â7`%#���$�Uv�U�%#+U«�*`ñ½ ��$6C�ÝÞU"

�$6�"�¬`î­�+��� C�ñ½ �®#�Û�+¬�33�+1�45�6

─ 55 ─

Page 60: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

B��� 56789

)Z*�ñ�¯�J¯ x 9:v��ã;� � < vu =�"#$Q°��¯45�6 �=���

±²t³´� 12 9¯@�µ¶��·�¸²$�"`îd�*>>!�U �C��V4*`�

�ñÙ�|8��¦�>STU1�%F��+�$6��¤��Û��Q� 1,400V>¹��

�Aß]�ñ*�¯U1J��1��6

����|�>�e=gº`�¥>ª����">`�GA$U1�»x33��1�6��

g�¼½¾45!�6

��¿��99[�>��1!1!+3��3G��1�6À>ÁTU�

¤<��<'ê=U1�=±I²t³´�µ@+@U�� #3��Ã#3��Ä��U5

��4ÅÆ100��1$�>ÇÑ��È#>Y� ��É��� �É1Æ1SÑÙ²���

1�+�]=�;5@²¬�)Z*U1��*�ÐÊ�@��@�@UÓ���½@�Ë>Ì`

T´U�V�V�+@ñÙ�������xW�ÍÎU+@²@6:�eÏîM^�;�

¤���V 3���*ñÙ$@U¨¯>3#�4�A¬�$+�@ ��îÐ���5@�¥

>Ö#�G AB00�Ùª@ �»�VV+�C��;�;�Û¢@ U¦6:6ÑÒÓ�Ô

Õef�;��

¤)ZU �²$�* ñÙ�²@ �=µ¶ 5TÖ¶:�ò×JV�¡�Ø*�;

B�+� J!KL�-.MNO!P�

���£��~���gÙ·¸Ú����> ��Ý�`5���6À

ÉÑ`a d¬4#$Uv�$��Û=ÜîÝ���+_1{`Þ#:ß;6�@��

|�U��� U�/à+áâ45�6À

�[P���PZV45�]�¤$�ÜÇ�_1{>�ÜîÝ�U �ã�����i

äUT�`���g�dZ�3åJ��1$¬­U �1�6À

� ��ÜîÝ��BW y9:v�wu9;�æ8t< v¢=�-ÇçÇè�Sé $êëì�

��éí w¢ V`_1æ{�5��îï ����ì���éí$Ù�Ã4�Ü�ð��_1K

{>�ÜîÝ�U�¯���+�$�`��@45� �6À

�ÜîÝ���g_ñ�dZ�òó +��$�4+1�6T+JÙ�)Z*�ñ�¯

v��ã9��� ��ÜîÝ��.D��v�wu94�)Z*�ñ�¯��wt9Û� U45

�6 $`���)Z*�¯�S�J $��g`�C� wt 9Û�"#$�ÜîÝ��.D>

k��3+16��g�_ñid��ÜîÝ��rOîr)��5�$�3 �+1`�9

:�ô�ùú �1+��$U1���16À

À

A�BC-�D

bc4��bª«�So�õö��±$�÷�U1�\�]k�dZef>vø�0?@A

B��C��S�ùßúàU�ëÒU $.D�no¤pq>��$6À

4ûü�lm��¸²+��$`�)*d�©����U �ýÏ��B��x>þ@

�¬41�3�35�$6\��%� vv 9:vutt;�ÇÊ)*�î��ýÏ��B�¬­�

9�@�x>�3�bV���1$ U`5@�C�¸43QxU �úàG��1�$��l

|�16��4úà $So���5U`#�J��V5�rOU ��²����#$16À

À

EFGHD

���������� ����� �������������� !"#$%&'"��()�"(�*+� ,�-./01��2

345��67"89:;"<=>� "?=�("���@��@*"(��A� B�CDEFGHIH�JKHL� M�NOPQ��RSTUV"

���)@ W))(� X�Y% �� Z��[5\]��(+�� ^�-./01�_`abcd"_`efg"���@��@)"@��A�

─ 56 ─

Page 61: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

��������� ����

���������������

��� ������� ���

���������� ����������

������

� ���������� �������������������� !�"#$

%&���'�()*+���",-�.,�/0�12�"#�3�

456/78�9:;<=>�?@���'�ABC�D$E��FGH�38IJ

KL�MN�OP'�3�

45Q/7RS�9: STUVSBC�W(4XYMN�Z[�"\]!�CRS@4X

Y@M^_�H,H�3�

45`/7ab�9:cd4ef4ghBC�ijkl4mnopMNoq4rs�Z[�

"to�Cabkl�@M^_�H,H�3�

45u/7op�9:vw4xy4�z4{|4}~�MNop�Z[�"to�CH�3�

� E�!����$�8��;<����Z���#3�

���� ������� ��������

�������� �� �7����9� � �� ��to���� ����4��������C3�

���� ���7 ¡'¢� £r9���3¤¥¦§¨©ª«�¤¥¦§¬­®��

��¯°±²³�����´µM ���to�����¶�·¸��¹�*+�3E��

��OP�¸'3�

�� � � � ��¶7�9� � � � � � � � � � � � �� O� P�

º£� � � � � � � »� � � � º£7M¼�9�º£½�½¾�M¼!AM£�+��*E�

���M¿C�ÀÁ¸Ã�¸�"#�3�A�ÀM¼�Ã�

ÀM¼'Ã�nÄ�*M¼!A�#�^_�+�Àº½Ã7M¼

�AÅ9�nÆ���ÀÇ!M�EÈÃ�#�^_É�Ê�7Ë

ÌÀ��Í��ÎÏ­ÐÑÒÓÃÔÔÕ�Ö�×�ÖÖ93�

Ø�Ç� � � � � ��»� � � �� À�¿ÙÚÛÜ!Ã�ÝG3ÀØÃ�Þß4�àMN7ÀáâØÃ

�ãä9�+¿"åàÀÇÃ�æç�#�E�*åà����

��è�´����æç�#�^_*�M#A7éê93�

`½ë� � � � � � Ö� � � � H����ìíîï`ð½ñÁ3ë��ò���MG3îï½�

ór`½½���ôB�Cõ�r��7ö½�÷��ãø93�

H��½ñÁÉA!½�ùúû*+�ü!���ôB�"#

��EÈ7éê93�

ýë� � � � � � � �� � � � þ$�À���Ã�H##ý��Hê]�3�������

��������'�3��'�� ��ª'�3��

���������^�H##BC�����^_'��Ï

─ 57 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 62: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

�7��9�OP'�MN���+�3�

����ýë� ����ë�Ú�#]´ � !7�"9��#$�

%�&�Ú'!#*��(�is�E�)ë*A!�+��,

­-­�./01-2A�34*+¿C356�©7ë8��9

:'��AMA¿C7ö½�÷��ãø93�

�ý4;ý7��N9�<=U>#�?�@AB>C��$

,D!�C�*��EF�GMH��$+�3E�!�

$I��8ïJ��HM�E��K#7À�÷��ÃËÌ

À��Í�ÃÔÕÖ93�

�8LMN�E��M´B¿C�r����'�I3��7Ú

�9Ný37�ãä93�

Oý�ý�MN�#����$I����P'7éê93�

QR� � � � � � � �»� � � �H��ÇS�.´�C3OP�TU� ��V�WXYZ[�

�\]�QR��M^*_��C�{]!��7ö½�÷��

ãø93�

���¥`³a�þbc����½�£�def¼Cghij

E��klÀÇSÃ�#¿C�*�M#Agh�+B�M#R

����bc+�m��r��MM!-7nï�9o�+�

÷k�ÀQ�RÃ*+¿CA!\]�ÀQRÃH+¿"E

�_��C�*�M#A7éê93�

p$ë4qr� � � ��� � � �p$7E´9�stu4vu�^_�qr7�C9�wr7G

C9MN�nÆ$x�^_�y�4zª{����r|ü�

"#�7ËÌÀ��Í�ÃÔÕ��93�

}�� � � � � � � �»� � �� ~g�$������.Ü���}����7ËÌÀ��Í�

 ¡8��¹D�Þò��,#"ÃÔÕ»93�

��� � � � � � � ��� � �� �� » ��ª����P��z�����3�P������*

�����6�*À��0H� BÆ�M�¢�� ��Ã���

�����A!\(������*+�7ö½�÷��ãø93�

��èNE��À���Ã�6ç�o]"#C�#�E�ÉÈ

�7éê93�

ss4�ë� � � � ��� � � � ÀssÃ��4�MN�s��#"s�C=À�Ã�üA#¼

>��+�E�A!7�ãä9EE�<����7���8��

"#C�EÈ�s��#"ë��C�EÈ*+È�7éê93�

�$��a�$*ï�è��À��Ã�+�3�

��ë� � � � � � ��� � � � n����#��É¿C�A��

 ¡� � � � � � � �»� � � � ¢£�¤¥¦�*�7��ÎãøÔÕ�Ö93�

§ý4ÇÌ� � � � ���� � � ��Ð� U£UpMN*�ä�h�� �AEÚ(É"��

�����#�7��ÎãøÔÕ���93�

Ç�k"ò*Ǩ�^_*�M$©ª'MÅ�J«æ�

^_'�þ�3¬­®7ÇÌ9��À«æ�CÌÃ�#�^_

�+�7��ÎãøÔÕ�¯Ö93�

N� � � � � � � � �Ö� � � � °±²�

³£� � � � � � � �»� � � � °±²�

´ñ� � � � � � � ����� � � °±²�

─ 58 ─

Page 63: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

r½ñ� � � � � �� Ö� � � �r�r�7Çýì9�ÀrÃ*># �E�7��Í��

ÎÏ­ÐÑÒÓÔÕ��¯93½ñ�µ �ÞÇ�E�7nÔÕÖ�93�

�C�¿"r½ñ��µ �>#Ç�^_'�3�

������������ !"���������

Ç� �� �7�¯��9�� �� ��to�C��÷�¶�*�¶4"·���¸�ÉD*M$

¹º|¸�HKt�C3¹º|¸���$�î»ì¼½¾ì7#Û�H¿ÀÍ9MN*Á�$

%��ñ5��H�DÂô�ÃÜ��¸�çÄ�Å�;<���ï*Æ��#Å��3�

î»ì*�¹º|���ÇÈ�Mü�"#C�\ÉÊËÌ�­­Ð�+�ÍÎÏ�Ð#"

'¢"zª(Ñ��Å�CÏ*¹º|�to�"#�3î»ì�ÒÓÔÕ����Ö#"¹º

|to�ò�7�XÏ×�Ï�9��H�zª(ÑØi�¹�Ü�OP�·��Ù'3�

ò�� � � zª(ÑØi�� � � � � � � � � � � �� O� P�

�87+DÚ9� � ����Õ�Ú�Ö� � � ü^ü^�ÛÜ�Ý$��#8�F^*_�ü�C3�

Þ½7#B�Å9� ��Ö�ÕÖÚ�»� � � A,"eßC��À]B¿AÃ+�#�À#B�ÅÃ�.

^*#C�67e$A!>½à��sÆ��6*�B�á

�Àâ ½ãÃ9�ä�"#��EÈA!3�

��7#�åæ9� ����Õ�Ú�� � � E�Ï�A,"e$A!��e���6����+C�

�EÈA!�çD!�C3�������è��é�Àê

ë�ƼÃ�nÄ�*ì�í$�À�^_'���Å�

"#�3�

8î7A#!$9� ����Õ�Ú�� � � ï�EE�ðñc�*�-Å�À8îòÃ�.´���ó

��î�+¿CE�A!3�

ôõ7CA'9� � ���¯Õ�Ú�»� � � ,-�À¿öÃn÷zª��e$��á�oA�"_�

ü�C3�

¿ö7�N�9� � ����Õ�Ú��� � � A,"E��Àöø7��ë�9Ã�.´�Ce$*+

¿CE�A!�çD!�C3�

åùs�� � � � � ��Ö�ÕÖÚ�»� � � E����\�åùúûüÑ���¿"ý�ü�C�

7"¿E�N¹�9� � � � � � � � ÀåùþÃ�+�E�A!3�

��7�Ú¹A9� ��Ö�ÕÖÚ�»� � � �Y��Å�êÈ��âÏ�ñr�Ç��#���E�

�õ���Ö�Ç�Ã/� ��� U�­���

��¼���E�����#����#�D"��

Ñ�k��"#C�*���E��À���Ã�.

^ÉE��OP'�3�

�Ì7����9� ��Ö�ÕÖÚ�»� � � Î �7>½��A!ê�½B*���«9������

õ�M¿"¹���U£��o#��ûÌ*+¿CC¼

À���+�ûÌÃ�^_A!�çD!�C3�

���7��*9� ����Õ�Ú�Ö� � � E�Ï�î»ì�����ìñ*ÆH $8A!�

�!���"¼�E�A!3�

#�7¢^"^9� ��Ö�ÕÖÚ�»� � � E�$��e$��A!eß� *À#�Ã�.´�"#

C�*_�ü�C3�

─ 59 ─

Page 64: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

*7ÚM�9� � � ����Õ�Ú��� � � E�Ï���»��7����9�È2�CÀ%?�t&×Ã

*'Påùrs��õ�@M��M¿"¹�*�

�"�(¦�±]!��E�A!3�

)Î7Ú�B9� � ����Õ�Ú�� � � A,"E���$*%����+Úñðl�M��)

�#�Î�6,�[M�-òs�)�#Î*+¿CE��

F^*�çD!�C3�

#�����$%�� ���&'(�

���� ����� ����

� �./�01A!�����*� ���to2I�,#"� ����to��O

P��Z���#��A�Å��3º£Ø�Ç`½QRMN���Z��"¹�BCq

rHx*��Z��ý7ë9ss�7ë9r½ñ�J�Z�'�3�4J� ��

��o3'�456�+�E��7�BCM#3�

���� ����� ����

� �.8Ú*���÷�¶��3F�"3eCî»ì*�¹º|��OP�9äMZ��

+�E���!A�M¿C3¹º|ÇÈ�Mü�"#CÍÎ����"'¢"�zª*¹º

|�to�"#�3E�!zª����8�Z�'����H�A!H¹º|to��A

���3�

M¹¹º|�zª(ÑØi��Z��,#"Ú"Ú��î»ì*�¹º|to:�zª

;�A! »¯���*¹º|�3E�"#�E��7A�3E�E��<¡���Å�© �¯�

:*�¯°01A!#�zª� »¯ �°=�>�¹º|�Ç�"?^�@�¢e�AM�

A?'�E��PB�"¹$3�

)��*+��

÷7*��OPA!�$CD�E����(F�G¢C�����,#"�L��

H+�3L���Uü�#L����H�C��8�$MUI4���'3�

C�]´J7£�9�Ke* �KD�E��L7��9� �*z¼!��E��

M7,Ó­9�>4�7,4Ó­9*>#��#�3E�!L����ç#C��2I*�

����to456�NOü��3�

� À��oeC���|£*+�Ã�H#�3��456�PQA!H���(�R¿"

#eC#H�*+�3�

,-�

÷AS�T¼��+C���U���VMõWXMÔÕ4Y±�ÒÓ#CÉ#Cî»ìZ

I��[�\^��'��5*+�3�

./01�

]9��^6_:��±]�`abÑÒÓ�ÔÕ»�ÔÔÕ��×�Ö�����

��¤¥¦§¨©ª«�¤¥¦§¬­®�:���� � � �cd7��Õ�cd9�����Ï��

¯°±²µe��¯°5��f���»Õ�

89î»ì:���OPgî»ì7¹º|to2I�ç¸9î»ìhñ`7]�7�]9�

.9<¡ijâ:zª�¹º|��� ��klmnÕ��`mÕ�ÔÔÕ��×�»�����

─ 60 ─

Page 65: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

��������������������������������� ��� ��� ��� ��������������������������������������������������

����������������� �� ������ ������������������������������

���������� ��� ��� ��� �����

�� � ! " # � $%& ' $(%)*��+%&,-.�/0(12345678� ' $(934(

:%;*<%=>;?@A5BCDE�FG%&HI(%)*34JKL5KMNO;?PQJ?R�

S$�%&T$�(%)*�2NOU�VWXYZ[\]^_`\5Ma8�bc+d'ef�gh+di

ef�cj+�klc+mV �en�op+�qc+dV enXr ' eJst5Ma8?duvw��� �fP�

��+(xy*9�+S�z{|( ���}}~� ��J�W��{�2(���C��������O�

X�_�u_��5Ma8�+��X� '�� �J��X^_`\5Ma8?PN=(�����BJ

���p����W�d����fX9��W (¡¢£¤�W�5¥¦�§X^_£¤`\NO;?

d�&��� �fPQQX9�" # ' $(��+S�XMa8?�{�2N¨�_¡J©ª����p

����W�J^_[\J«¬�­&(��W�(x)¤YW®¯N°_[\J±²(³y*´µ£¤P�

!!!!����"#$#"#$#"#$#"#$# %%%% &&&& '''' $($($($( ))))�����*+,-�*+,-�*+,-�*+,-..../0/0/0/0121212123456345634563456����78787878�����9�9�9�9� ��� ��� ��� ���:�:�:�:����;<;<;<;<����

� ¶·(9�� # �� $J

�¸�� �¹XJ �� ��

Jº»¼_½z¾8?5�

��¿À%&ÁÂ�ù

XJ{Ä�WJÅÆÇÈ

(É?¤Å.� 'Ê} TS

� ��Ê} JËÌÍJ�W

�OÎÏX����}} 3Ð

JÑ���2zÒÓ8?

QN5Ô%¤P¶Õ�(

9��������B§

zÖ�8?5�×BX9

�{�2(���C*y

¤ØÇ����Ãd��

W�fX9 ��}} �X

ÉU��BX9�2(9�

ÚÛ8*yOyQN5�%¤P�

¶Ü(�&C¤ÝÞ(���W�%&.( ���� J

T�ßàáâãJ �� Ô�¼_½%&9¼_äJåæ

(ݤ ³J�2Jçèé5ɤP���(x)¤�

��ÃJ_¡9ê{J�(��5���Ô(9�� ��� Nê�%&HIJ� ���X � ��ëì_8*y¤P��

����

���������������������������������������

�� �� �� ������������������������

�����������������������������������

��������������������������� ���

���������������������������������������

!!"!#

$%!"!#$&&"%

$!!"!#$'&"%

((%!"!#(&&"%

((((!"%#('&"%

)**+

��,��,��,��,

�-,�-,�-,�-,

����

��������������������

¶·� � # �� $J �¸�� �¹XJ �� ��Jº»¼_½�

!

$

.

'

%

/

0

!

%

$!

$%

!

! ' / 1 $! $ 2

$!�����)

�+

��)

+

23456)7+!"! $."! !"! .'"! ."! $/"! $ "% %1%1%1%1"!"!"!"! %"! '"! !"! !"!

�8�� ����9:;<=>?@

�8�� ����9:;AB>?@9CDE>FG

�8��HIJK5L��MNO

�8��:;PQ5LMNO

�8888�� RRRRSSSSTTTT

�8�����M

¶Ü� � # �� $J �¸�� �¹XJT�ßàáâã

�� Ô�¼_½N������Ã(x)¤_¡�

íîï¾JÍð�

(㎜)

─ 61 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 66: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

====����������������������������������������>���>���>���>�������?@?@?@?@����

��+ñw�XYòB(ݤ ieJst����X� óô�� �J^_`\5Ma8? ���õ ! "# �

$J�2m��&��� �nX9����p��Xö×^_ ii��ö�^_ �� �J^_`\5Ma8?Q

N%&�[\�(9÷øùúX���×{BJT�ß]ÁÂ�Ã����ÃJ¼_Íð�¨�_¡zû

üýþ8*xU�� � �� Ô(9íî�µzM�8���(��Jíîz��)?PQJ?R� �

`\9Ma8O%;?5����J��(ÝUö×^_ i�ô ��ö�^_ �'' �J��`\5a�?P�

¶�(9��WXJ� �� ��J

^_����%&��8?^_�

d�}f���z¾8?P���9

ô��}d���yJ��W�f( 8�

��!�W�YW�"#$%&X

ë�W�X i�¸ ���} J^_�5'

(­C?P� � )4�y]!3*+

,Xë i�¸ ���} J^_�5ÒÓ­

C*xU�.�z-=���WJ¥

¦�§X^_`\(���C*y?P����

AAAA����������������������������������������BC78BC78BC78BC78����

¶.(ÄYW$�5��8?��W�J/01234W¶�¶5(��W�JW6Ô7¶z¾8?P

��W�9�¿Ïz34 ���¸���8J9:(ϹC?TS� ���Å.� ����� J�WÍJ;WzO

£P�WJ349 �8¸ô8X�.<Å(=]%O>?5ÉU�.��W%&B@8?�¨�9AÍWz

6�8��W X9��BpzCU����xÝ�����D�JEBFX9GH-z6�8*y¤P

I�(JKLñ5M 8�My�N93454yQJW�(ÉU^_`\zOí8*y¤%PëɤP����

����

����

����

����

����

����

����

����

����

����

����

����

����

DDDD������������������������������������� ��� ��� ��� ������������������������������

����J��W�J{Q�zRB£¤���9�ÁÂ�SqJT�U(VzM8��o ' W�Ê} J

XY¨�XɤP��W�9�Z[NO=\]³(���C*^?QN%&�����Bz_`/0

¶.� ��W�J/01234W¶dÄYW$�f�¶5� ��W�JW6Ô7¶�

dÄYW$�f�

¶�� �� � ! " # ' $J°_(ݤ�

��W�J^_�d��f�

���������� ��

�������������� ��

�������������� ��

��

��

��

���� ��

���

���

���

��� �� ��

���������� ��

���������� ��

���������� ��

�������������� ��

�������������� ��

��!��!��!��!�������� ����)4)4)4)4����

─ 62 ─

Page 67: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

Xa^bR�cdad�efg9hi �ô !jgfzk^�l��md��W�J�WIäf(%n5

y¯_dopǺ �ô�qrf5st­C*y¤PQJcda9uvwxayN]C�l��m(z=¯

_{z|(vwx¯_N}­C*y¤P~�Ù3Jvwxa9�ò��BaX� ��� !3(kC­

C?N­C*y¤PQJvwxaJkCxÝ�s_(ÝU�l��mz�^�Á�NO8?N��C

¤ �5uvwxyN]C? �X�u��Jvwxy9��X9��×J �N­C*y¤P�

¶�(9�u������/0�¶d�

Ä�÷��fd��������� õôify

z¾8?5����Õ�J��W�9��

�J,�d��f5ɤëJJ����J

��E96�­C*yOyP�

����d õôifJ� ��u���N�

�yX9��� �5¡¢8?£�u¤¥

�yJ¦B§%&¨R?©ªz�8?u«

�¬÷yX9�u���­9®Ã�o­ ��

¯�°%&±J�9°_(²³*´µ(¶

�¤P���yN�·­C*y¤P¹?�u®

ÃyJ¸X9�¹ßº!Ju©Y»¼½y

X9�¾ �¿�o­ �� �X�� #(ÀU�

8 ô #(�)?QN����JS(ɤÁ

�9��&J?R(ÂÃJ��]ÄÅ

5ÆÇ8?N�·­C*y¤PQJÝÞ(�

È�%&����Õ�J�W 9_\JÉ

ÊWXÉU�_�N8*JEYW®¯­C

*y?QN5�%¤P�

��W�zTS(ˤ���49 õ��

!(Ìå8*xU� õi" !(ÍÎ5ÏÐ8

?@{ÑÒX9���!.È(9*+,�

�Ó5F�8*y¤PÑÒ·(9 õ"� !

(ÏЭC?@{ÑÒdÄYW$�fz¾

£PQJ�FX9�ÅSÈ5ÔKN8*_

�WäXÉU�JKLñXɤTÈJI�

Ù�J{Q�9ÌM5÷�C*yOyP¹

?���,WJ.S�(b5¤_�W§J

I�X9ÓWÌMJ¼E³³É¤P�

��ÕÖ45 õ"' !(Ìå8*!×uzåæ8� õõõ !(9ÕÖ4J��!5Ø¢Ì&­C?PQJ

Ì&zÙù(�ÚÛ9�Û4�d.Èf8%O%;?!Üz�ÅÈ(ÕÖ4�zØ¢8�ÅSÈIäJ

_�Wä9YW�"#$%&d��!Å�W�YW�"#$%&f5ÌÝ­C?P�W§9�ÚÛ%&

_�X345;=�°_�(9Þ_8*y?QN%&�YW#$�"X9� 8JßYz÷y� _ÉÊ

W�XJ°_àá(²³?ëJNâã­C¤P�

¶�� ������/0�¶�

d�Ä�÷�����+äåæf�

ÑÒ·� @{ÑÒd õ"� !ÏÐ�ÄYW$�f�

─ 63 ─

Page 68: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

EEEE������������������������������������� ��� ��� ��� ����������������������������������

��W�X9��� � ! "# ' $J�_\z9�R�æç(ëZ[NO=_\(���C*^?P�

���d õôif(9�� ��uèñNéãyJu[\yJ¸X�u�uzÅ.(BC¤���9��2

J?�(8]8]��8�©(êë%&Æì(í¤�B§(Â�O`\zî³?PyN�·­C*y¤P

GïÙ¼J�uXJ%¸5!üð(¾­C*xU�ñ·(_\J%¸zò@8��·8?P�

FFFF����GHIGHIGHIGHI JKLMNJKLMNJKLMNJKLMNOOOOPPPP QKRQKRQKRQKR STUVWX/STUVWX/STUVWX/STUVWX/YYYY� ��� ��� ��� ����������Z�Z�Z�Z�VW[XVW[XVW[XVW[X����

B� ��![(ót&5ôõ�ö÷­C?øùu�úûüNýþ�z�E8?°_�(x)¤��O

íî{J�³¤��è2J��ÌMyX9���W�zà�(�J°_�è����(x)¤u�

ü �Xþ��($�8(=y�°_�(9^_8*xUíî{5Ô&Oyy�JW§��J�³¤

�ùFz��£¤QNz��(�2½�^_��1����ã��J�à21���¯(��= � û

üN4![ "#$ ^_����z�E8?°_�(x)¤��Oíî{J�³¤��è2J��ÌMz

�%�3N8*y¤PB� �� ! � #º��X9���1����ã��JØ¢��¯5ÌÝ­C�

4![ "#$^_����륦j�8*y¤PB� �i![º(9���Oíî{J�³¤��è2J

��ÌM5%&8���W�JJï����zà�(�®K¯J?RJ���JÌ'zr"8*y¤P�

()()()()****�����X9�+,-u./�0´å1��ÌMâ¼2[d$3456fyJuW§ #37 89:�

�ÌMyJB� ��![ö÷øùu�úûüNýþ�z�E8?°_�(x)¤��Oíî{J�³¤

��è2J��ÌMyJI�N8*�;8?P¹?�A�<���+�ÄYW$��Jñ[0´�W

¶�@{ÑÒ�=>z?¯­@*y?Ay?PQQ(�=B(JCzñ£¤P�

\]^_\]^_\]^_\]^_����

·fED�E��Y���*oF�´G����HWd õ'"f�

Üf��������*���d� ôO��Ä��E@If�d õ��f�

�f��������*�?8?JJ����d õ""f�

.f��������*���������K�����"��HWd õôif�

5fuvw*B� �� !1234(ݤ�2J`\Íð�(³y*� "LWd�� �f�

�f���������M¥ÒN�m��O�4�� ����� �� �� �*���õ ! "# � $(�

�+(xy*Ma8?�2J©ªNYZ[\J«¬PJK[\����õmin�Li"iQiô'd�� f�

Rf���������SòTU�m��O�4�� ����� �� �� �*�� � ! "# ' $(�

�+(xy*Ma8?�2J©ªN_[\J«¬PJK[\����õm�n�Li �Qi�'d�� �f�

�� �� �� �

��� ��� ������������������ !"#$%&'()*+,�-./0&12�34�56#789:89:;�<=>�?@ABC#12A0D"-.

�E ��FG H�F�I��

JK��EELLM6���A&-N"#OP�QR"-.��:STUVW9X�9$�Y9Z[\9]^,_����`abcdeS/0#fg�hi"#jkVlmNn�op�qcr#stu�"vwSxybc56z{S5�-.

�EG ��FH ������c��7�OPT|�S#��:ST'(}~��#�}�#��}~�E������#

�� ��G� H����mN

����6������"#]^9���t�����mNR��y�c��T��"�y���+,�-.

�G �[F �����I���

������y�"#�]JKS���#����cOP�56#��:ST }�OPTCN4¡#��}~�¢#�£�i2¤¥��Er#]^mN¦W�y¡c§%A¨(bc�+_{�-�#©f:�����cOPT|�S5�-.

��G �[F ���� ª���6]^K«�f�OPA¬­c®¯�°±��� ²³FG H� R���6���OP�Sc.��G ²³F� ���H� ����6OPA¬­c®¯�°±

ñ·� ����(x)¤°_[\J±²�

─ 64 ─

Page 69: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

`a`a`a`a bcbcbcbc���� dQJdQJdQJdQJ eeeefgfgfgfg12121212��h��h��h��h� ��� ��� ��� ��ijijijijkkkklmnlmnlmnlmn��������oooop�p�p�p�qqqqrstrstrstrst����VWX/VWX/VWX/VWX/����u;u;u;u;����vwvwvwvw����

������ �� ������ ��������������VWXY����Z{[I�������������������������������\]����0^�ã_`�G�

����

���������� ��� ��� ��� �����

�� � ! "# ' $FG%&HI(%)*��+S�X91234(:%;*<>B5Bt8����}}~�

��J�W��{�2(���C��������O�X�_�u_��5Ma8���+��X� '��

�J��X^_`\5Ma8?PN=(�����BJ���p����W�d����fX9��W

 (¡¢£¤�W�5¥¦�§X^_£¤`\NO;?d��+��� a�&��� �fP�

ót&9�°_JÉÊWXɤ��W�zà�(��J°_�è����(x)¤u� ü �X

þ��($�8(=y�°_�(9^_8*xUíî{5Ô&Oyy�JW§��J�³¤�ùFz�

�£¤QNz��(�2½�^_��1����ã��J�à21���¯(��= � ûüN4![

"#$ ^_����z�E8?°_�(x)¤��Oíî{J�³¤��è2J��ÌMz�%�3N8

*��� � ! õ#%&��ÌMzÌÝ8?PQQX9� !�J�bNcÐJøù(³y*´µ£¤P�

!!!!����xyzxyzxyzxyz dQJdQJdQJdQJ >�{>�{>�{>�{|}~|}~|}~|}~����������������

�� �dB� ��f! " # ' $J��+S��2(dy���x�eJfBd����D�fJ��

(ÝU�¿Ïz34 ��¸ '�8J9:(ϹC?��W�dTS �Ê}�Å. �W'Ê}fJ�WÍJ;WX

9��ghO°_[\5Ma8?P°_[\JiÐ%&^_`\J��z�;8�jkO^_���

�J��zÌÝ8*y¤P�� ! õ #%&9�^_����z4![��­&(9 "#$���J��

J?RJ/lmno��p2 "5$d "5$fz¯y?�W��z�;8?P��9��W�J�W z�

��8�qX��,�zá��rÍ(�sU�$4tt#u Gvd"w$$o1ù�$xyzx{"|} �/è1~oé1

è�$�3�'�fJ "5$o1ùz¯y*�ÑÒ·(¾8?ÝÞ(�{ÇJ34��[��[z "5$XÓW

8?P¹?���(^_��5�¤d¹?9�3![(^_��5'(­C?f��(³y*9�^

_�zá0pè(ÝU�Ó£¤Nd(�0��{ÇJ34��[��[z "5$X��(ÓW8?Puy�"#$

�m���àz¯y*^_�/è1%&�¶·(¾8?��W�J "#$ ^_����z��8?P�

��34/è1z¯y?ÓdF¿À�J�jz÷y�4![ "#$^_����J��z¼R*y¤P�

����

����

����

����

����

����

����

����ÑÒ·� ����o1ùz¯y?ÓW��JÍð� ¶·� ��W�J4![ ��� ^_�����

���������� ��

�������������� ��

�������������� ��

��!��!��!��!�������� ����)4)4)4)4����

─ 65 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 70: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

����PPPP�����������������´¡�´¡�´¡�´¡�á��á��á��á��·���·���·���·��(ݤ(ݤ(ݤ(ݤûüûüûüûüJJJJÏÐÏÐÏÐÏÐNNNN ����ü �3ü �3ü �3ü �3JJJJò@ò@ò@ò@����

ÜX��z�;�d8*y¤TS �Ê} Å.

�W'Ê} JW§zà�(������´¡�á�z�

·8?ÑÒÜ(¾8?��d#5Q$���z�xfzË

÷­@��o ''Ê} JûüJÏÐz�;8?P

�����´¡�á��·��(ݤÏÐ��à

9�¶Ü(¾8?ÝÞ(����p��J°_

����d��W�fXJ^_����

àd_�JÎÏfxÝ�¿ÀJïdíî�z�

���àd��JÎÏfzÏÐà���àN8�

Ød��àuJ�¬�{z�ð8*ÏÐà��

{N8*Ød8?P�

�´¡�á��·��(ݤÏÐ9�w�4[5;y�JÐ�zí)¤?R(w�JÅ{3ÐJ �

�¸ i �J��äN8*��´¡"ü(Ð�z�¦£ �$zí)*ÏÐz�;8?PÏÐ9��� �

! � # �' $¸ # �� $(%)*�;8�eJÐ�"5$ Ó½z�;8?WFJ0�XÏÐ�dO%;

?WF�ûü¡¢(�ù5É;?WFJ£ÏÐz�;8� � # õ $(%&8?P�

ÑÒ�(9��´¡ûüJÏÐ%Pd��!.�¿Àfz¾8?PûüJÏÐNB÷8*ÏÐ8?û

üJ�¤�K�z÷;?P� ûüÏÐ�(À¥£¤�ü �3J©¦N8*�§L�d��f(ݤû

üÏÐ�J "5$rÓ9�N=(34(ú£¤/è1J¨[(ú8*9�Dz©¬N£¤ìE5ª³&C

¤PQJ?R� "5$XrÓ­C?34/è1NJ¨[«¬(³y*�ûü/è1J34­m®��N8

*/è1¯èã�8��°roè�±�(ݤ^_�d"5$ Ó½J34%&»@fzûüuXJ^_�

J²»(¯y¤P�

×�(³³*�´µ¶�O34¬5Ma8*y¤ìE9� g·¸J¹ºÍð�(ÝUI��(»¬

5Ma8?N¼d8�3ÐJ/è1ÝU½r�¾¿(ÝU0Àr»(ݤ�DÁ$z�;£¤P�D(

È?;*9ÃÂ7J�D¾¿zÃÄ8*ÅsO´`z�÷£¤©¬5ɤP�DÐë/è1¨[5�3

ÆJ 'Çzȳ¤»¬za�¤��(ú8*�£ÏÐd£rÓfJ�;z�d8*y¤P�

ÑÒÜ� ����´¡�á��·��d����������f�

�´¡�á��

����

��XJ�´¡�á

�ÏÐÍðJ'(�

¶Ü� ����´¡�á��·��

(ݤ��W�uJÏÐ��à�

¶�� ����´¡�á��·��(�ÝUÏÐ8?�{dF9ýÉ�Ó½�;WF�Ê92½�^_��1����ã��J§ØWFf�

─ 66 ─

Page 71: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

����

����

����

����

����

����

����

����

����

����

����

����

....PPPP2½2½2½2½����^_^_^_^_��1����ã����1����ã����1����ã����1����ã��JJJJ§Ø§Ø§Ø§ØNNNN�à21����1����à21����1����à21����1����à21����1����¯�¯�¯�¯����

ót&5Ë$£¤�J2½�^_��1����ã��9����'dB� "f!J��+T�XM

a8?Ì�_\(xy*�Í�O^_`\5Ma8?Á��ÅÎW�zà�(�����dB� �f! ô

#(Á���Ï����(Ø¢8*�¯z8*y?P��ã��J×�ùÐXɤÑÒ¹£:2½r�

ÈÓº^_®�Ô�w�ÕÖ×2��ã��2�Ø�Ù���è(³y*��� ! õ #%&�ÚÛr

ÓÐÔèÜãÝ(ÝUá��Þ�ã�~�z�;8?P�

~�5%�;?�ã��9�Èß9���p����

W�J{Q�(¡¢£¤ïdíî�ußà®�1èy(

Ø¢�dXÉ;?5����p���ùñ[Ë$øNJ

áâ(ÝU�ÚÛ%&^_`\5Ây��B§J^_É

ÊW�(Ø¢8*ã8yNJ¬äzo)�ÑÒ.J2

½�^_��1����ã��J§Øz��� dB� ��f

! � #º(÷;?P�J2½�^_��1����

ã��9�w77 J 45uO4åX�à21����1��

��ã��z�¯8*y?5� 45uO4åz w775%&

8�æ4çu O4å(sUè³??R���ã��ë æ4çu

~�z÷;*y¤P�� � ! #%& �#¹X�2½�

^_�Jµ¶ÒÓz�;8�0�JT�ßàáâãd�

�Ê} .f���+Y�ñ[0´�ã��d2½�fNJ

éê8�¹?�d8* æ4çu (ÝU/è1JÑë5÷�

C*y¤%���Ô¤z÷Þ�dXɤP�

5555PPPP"#$"#$"#$"#$������������(x)¤(x)¤(x)¤(x)¤^_�^_�^_�^_�JJJJ � � � � ûü�ûü�ûü�ûü�����

ÜJ���b(��y*�¶.(¾8?ÝÞ(�ûüu(_Çz�áè08?BÇì�í�z?¢

£¤�î�1��z��{XÉU�þ��Oïðz�;8*y¤P©(�ûüu(ñÀ�O_ÇN8

*òóOBÇì�í�m­H6nz?¢£¤A)X9�ûüuJ×C�¿À]ôª§XJ¢B5õ8=�

^_ÇN8*�¤öiB5ɤQN�¢BJ:×J?R(9×C�¿ÀXJ÷ÇÁ$5©øXɤP�

�������

�����

���� �����

ÑÒ�� �´¡ûüJÏÐ%P

d��!.�¿Àf�

2½r�

w�ÕÖ×2�

2��

^_r�

ÑÒ.� §Ø5j&8?2½�^_���1����ã���

─ 67 ─

Page 72: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

QJ?R�÷ÇÁ$(ú8*9ûüuJ×C�J�ú

0­á��0´5©øXɤ?R�¶5(¾8?¾ù

X^_ÇJ×kzÃÄ8*y¤P�

����

����

����

����

����

����

����

����

����

����PPPPxxxx����UUUU((((����

���ÌMX9�uACë5��QXë�y³Xë�jò(y(®¯5

úûOã�è�mü�z?¯8*��·­C? "5$ùûz¯y*®¯tJ

¡¢0´z'd8�"#$ ���×XJ^_�J � ûüñ¾z (��ë

0ý£¤ïdíî�J^_�(?þ8?��Oíî{z�s£¤ � �

è2JÌMz�3N8*y¤PÌM­C?�è29���W�JJ�ñ[

������(à8*?¯´¿�J���JÌ'z�d8*y¤PQC(

ÝU��%�3Xɤ_\ÉÊW§Xɤ���p����W�(x)¤

°_(ݤ ����`\JOí��[J��5�X^¤P����

()()()()****�����9�+,-u./�0´å1��ÌMâ¼2[d$3456fy

JuW§ #37 89:��ÌMyJB� ��![ö÷øùu�úûüNýþ

�z�E8?°_�(x)¤��Oíî{J�³¤��è2J��ÌMy

N8*�;8?PQQ(�=B(JCzñ£¤P�

\]^_\]^_\]^_\]^_����

·f��+*[\�� ¸B� ��! "# ' $�2[\¸� "L���Ld=>Kfd�� f�

Üf���������SòTU�m��O�4�� ����� �� �� �*�� � ! " # ' $(

��+(xy*Ma8?�2J©ªN_[\J«¬PJK[\����õm�n�Li �Qi�'d�� �f�

¶.� BÇì�í�zûüu(?¢8?�î

�1��ûüd�� ��!Å�/0f�

ûüuJ×C�J�Fzç

�éà��8*��ü 0´

zò@£¤�

ò@8?�ü 0´%&�úì�í

�z6�£¤�

�úì�í�×X^_4zØd

8*^_Çì�í�z��£¤�¶5� ü �3Jò@´¿N^_�J �ûü��

^_Çì�í�z

ûüu(?¢£¤�

ÑÒ5� ã�è�mü�(

ݤ��Oíî{J�s

d������!����"�!� f

─ 68 ─

Page 73: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

,)�,)�,)�,)�� ��� ��� ��� ��������������6��:��6��:��6��:��6��:������?@?@?@?@��������

��h��h��h��h� ��� ��� ��� ����������������������vwvwvwvw����

äÁ�������� �� ������ ��������������Ái���������������������������������M��G��������ã�è�

$�$�$�$�� �� ��� ��� ��� �����

�5Ä(x)¤W×A�ÒÓ9�A�<Jàáâãd��� �!*����"���������������� ���������������!���"*W§A�ÒÓ�ã��fÒÓå5#²­C�­¬�ÒÓdA«�©:�©��

¼_½�$���f5� Ê}­´( ��J�EX�ô'����¼_½ÒÓ5 "Ê}­´( ��

J�EX� ó������;­C*y¤ fP8%8�2½9^�R*W6�OÐ�(ÝU�W¦z

M£¤?R�àáâãJÒÓ![X9ÒÓ5´�ÔX�V��w+X9�J(2½rzØ¢8*

ÒÓ�ã��z×k8*y¤P���V��w+9�QJ/è1zëN(ñ[0´�ã��z×

k8* �6�Ô��×X?18*y¤PdP³]���+Ju��+Y�ñ[0´�ã��y�ff�

0!�ñ[0´�ã��9�53]�ä¹��ã�è�mü�J��(ݤ��1è×��®¯

tJì³�����2O�J[\JMa(Ý;* �Jú|5�¹U�àé®ãÃ5ì³8*y

¤P8%8��2][\Ma�(àé®ãÃ5�죤QNXÔèÙè(� 5%%U�!\dÔ

èÙèâ��]ÔèÙè5"5U(=yÍðf5Ma8*y¤PQJ%PN8*��� �! "#

�$%& '$(%)*��+S�(xy*Ma8?�2N��+Y�ñ[0´�ã��Jàé

®ãÍðJúµ¦z�¤8?P�

"�"�"�"�� �N��N��N��N� 6��:��6��:��6��:��6��:������?@?@?@?@����

ñ (¾8?ÝÞ(�XY¨�zË$£¤V+J¨��Zñú#J�$(xy*��à21�

�X2½�_¡O�J0´z%&£¤�ã��z�J(×k8*��¯8*y¤P�

��$� ,)�����+� ����t��������u;�

�´µ

®¶·¸¹±º?»y¼ K�½�¾ �¿À Á º?»y¼ K�½�¾ �¿À Á ÂÃL�Ä

ÅÆ� �E �F �� � ��H GÇG GF � � �F �ÇE �ÈHH�Ç�� ?ÉÊPËÌÍÎϹÐÑ

ÒÓ� � FH E� � �� �ÇE � �E F E �ÇF GÈEHÇF� ?§0ÊËÌϹÐÑÔ

ÕÖ× � �F �H � G� �Ç� �H HE � EF �ÇH GÈ��Ç�� v�0ÊËÌ

�Ø× E G� � H �Ç� F EG E H GÇE È��FÇH� v�0ÊËÌ

ÙÚ� �� H� �� � ��E �ÇH F� G F H� �Ç� �ÈF�FÇ� ��0ÊËÌÔ

ÛÜ� F� HH G G �Ç � F� � �� �ÇE FÈ��ÇE� ��0ÊËÌÔ

³Ýn� � H� E �E� GÇ� � �� E �E HÇH GÈH��Ç�� v���ËÌ

Þß� � � �E E �� �ÇF FE �G E �G �Ç� FÈ�EHÇ� 0ÊËÌ

àá� �H F� HH E �GF �ÇF F� �� E F� HÇE �ÈHEHÇGH �â��ã¶äåæÑçèå

én� �� �� E �� �Ç� �� �E E E� �Ç HÈ�ÇHE ê�0ÊËÌϹÐÑ

¦à� FF H� ��G E GE� GÇ� �� F� E �G �Ç� �ÈGHHÇHF 0Êëìí

nî� �E � �� E �� �Ç� G E� E �F HÇE �ÈÇ ?§0ÊËÌϹÐÑ

ïà� E G� F� �� GÇ� �� �� F �G �Ç� GÈG�ÇG� �£0ÊËÌðñϹÐÑ

ò�� H � E� E H GÇE � �� E �E GÇ� È�H�Ç�

óô� �� �F �� � G� �Ç� �G FG G �� �Ç� �È�H�Ç�� v�É0ËÌϹÐÑÔ

�õ� �� �� E� � �EH �Ç� �� �� F �G �Ç� HÈEGÇ�� �0ËÌÔ

Zé� � �� � � �� �ÇG FG �G G �� �ÇG GÈ�HGÇH� v�0ÊËÌ

öÓ� � FF E E G� GÇ FE G� E H� �ÇH �ÈGF�ÇF �0ËÌ

÷ø� �� � HH E �EG GÇ� G �� E �� �ÇG GÈE�GÇF� v�É0ËÌϹÐÑ

ùú� �� �F �FE E F� GÇ� GG �F E �H HÇ� HÈGEGÇG� û�ü0ÊËÌϹÐÑ

�ý�� �E �� E

�� �ÇGGE � E

� HÇ� �ÈFF�Ç���âþ�ËÌ#?ÉÊPËÌæ�åè���ÍÎϹÐÑ

�ø� �� FH �E E �� �ÇE �� E� E F� HÇ� HÈHFGÇHH ��9v��âþ�ËÌÔ

�à� GE GG ��G E FF� �Ç� F� G� E H� EÇ� �È�HÇ�E v�ËÌϹÐÑÔ

�� F� H �H E H� �ÇG � �� E FG �Ç� �È�HFÇ�F 0Ê�´ËÌ

�Á G�� ��� FÈ�F �� GÈ��� �ÇF ��� È��� G� �È��H HÇ ��È�H�Ç��

Ô±º?»y¼��¥ðbc�� #�â A��

��tB

���

�� v��â

0ÊËÌϹÐÑ���������¥

������¥

þ�¥<þ�¥<

─ 69 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 74: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

A�<5�Ë£¤àáâã(x)¤¼_½JÒÓ�9�� "Ê}­´( ��J�EXØ¢­

C*y¤J(à8* f���w+J¨�ø�Zñø5Ë$��¯8*y¤�ã��9àáâãN

¥¦�'OØ¢ÃdÁ(+f%&� ')d*�+f¹X��^O¬+5(R&C*y¤PØ¢

![9���JÁ(+dôW Ê}­´( ��f%&���J,c+d��WiÊ}­´( ��fX�

�W')J¬5ÉU�Á(+(x)¤àáâãÒÓ�ÃJ­9�c-JW$�¬.XɤP�

A�<Jàáâã]ÄY/å-¨�����w+5Ë$£¤2½ÒÓ�J��JØ¢![9�

V��w+Ǻ(à8*��J*�+diW�Ê}­´( ��f%&���JÛ�+d�W��Ê}­´

( ��fX� W�)J¬5ɤP�

¨�J_¡9�ÄY/å-JË$£¤IY¨����w+JË$£¤XY¨�5ÉU�S$�

��X9�ó'õ"��(_¡r5Ø¢­C�¨�_¡JÒÓ5�à21��X÷�C*y¤P2½

N�'(�Ø¢![9���J�0wdiW�Ê}­´( ��f%&���Jklc+d �WõÊ}­

´( ��fN�W")J¬5ÉU��JJÒÓåz×k8*y¤P�

�� ��+Y�ñ[0´�ã��J 53Ô��d¶ fX9����1è0(ñ¾£¤0´doèâ

è�2©0´�é´�»C´�¹A�´�34ïÃ�5ïÃ�6�4ïÃ��B«[ïÃf(ú

8*ñ¾ù�7ñ¾z8 ØdX^¤P¹?���+ñ[0´áè2J®¯z���1è0X9

:8*y¤P;<���d¶�fX9���+u(Ø¢­C*y¤2½�_¡�â�JVÒÓ�

J«ð5¶¾­C*y¤P­&(�W¶×¹?9=>(ñ¾­C*y¤ÒÓ�e%&�;<O�

�m]ñJ1è0��é­C*y¤P�

� ?@+Y�0´�ã���fX9����1è0(xy*���M�­C*y¤A�»C´�é

´JMñÍð]VÒÓ�J�AÆÈæÍð�oèâè2½J�ð¶O�5ñ¾­C*y¤Pç6wB

5Õ>(ñ¾­C¤QN(Ý;*�CDt5 �6�Ô��×J0´zEy]£=OU�é��éÃ

5FO=O¤?R�ÔèÙèJ� ëG�­C¤Nª³&C¤P�

`�`�`�`�� ��/0h��/0h��/0h��/0h�����*+�*+�*+�*+������������������������������������������������������������������������

� ��+Y�ñ[0´�ã��Jàé®ãî�z�¤8�2½�_¡0´��2�°_»C´�

é´JM�ÍðO�ND@*®¯tJCDL:zªã8?P��+Y�ñ[0´�ã��J �6�

Ô��X9�ÔèÙèJ�HzÔI­@¤��N8*�îè�Ù��Ôd�HÔIJ¢fz¯

y*��³JÔèÙèàé®ãzÔI­@*y¤P�

�� �� �*+������������ |}~¡�

�� �� �*+������������ � � �¢}~£s¤¡�

─ 70 ─

Page 75: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

��+%&%&­C?�� �!i# $

%&�� ! �# � $¹XJ !�Jà

é®ãî�%&�¤Kbz¶ �(¾8?P

¶ �ÝU�!�JL�tÃJâ§%&�

�� �!"# �$%& '$(%)*��

+XMa8?�2(d;*�L�tÃ5

�M(ì³8?QN5¾­C?P�

"# �$%& '$(%)*J�2�

Jàé®ãÍð(³y*�¤z8?d¶

ifPQJ��{JL�tÃ9 $JÞJ

"�2N���2(ì³£¤N:5E&C

?PQC9�IJåO�å���äNê

JPv3J��äNIQ8*

y¤Nª³&C¤P¹?�R

´(%)*JL�tÃ9�F

£¤N:(ɤQNz¾8?P�

"# �$"�(xy*�L

�tÃ5�XÉ;?P¹?�

�$��%&ô�¹XJ��

I���%&Jàé®ã5X

^OyÍð5¶y*y?QN

%&�QJ�ÔèÙè5â�

�8*y?NE&C¤PQC

9��$'� ��Ô(�úA�

2%&Â=J��(à8*�

2é´d^_\�YZ[\f�

°_é´5M�­C*y?Q

NN�å��åO3ÐJ��

äXÉ;?QN(Ý;*�à

é®ã5æ[(�{8ÔèÙ

èJ�H5ì�8??RX

ɤNª³&C¤P¹?�I

È?UJ1è0ÜrèÃ

mÙ� 5SÃ�CD8?1è0

ÃJQNn9��2°_é´J

Mñ3(ì³z�@?PQC

9�¹A�´O�XcÐJ2

½ì³zTE8??R�®¯t5U�W§Ù�JÂ=J1è0zCD8?QN(Ý;*�I È

?UJ 5SÃ5ì³8?ëJNª³&C¤P '$ '�(���p��X^_\5Ma8?��ä

X9�¼2½�_¡Në(ì³8*y¤J(à8*��êJ��ä(�����É;?L�tÃ5i

�V%&�F£¤N:z¾8?PQC9�ñ[CWJ4y��5�ñ[0´�ã��zCD8é

X8*y?QNX�íî�µ3JJ�íîJA²5÷�C??RNª³&C¤P�

��

��

��

��

UV

WX

UV

WX

UV

WX

UV

WX

YY YY ZZ ZZ��

� [[ [[

�\��R]^��R_

]`abc?d

��� %¥�¦§¨©���������% ' �)ª« ����% ' �)¡�

�� � ����% �' ��)ª« �' ��)� �)¥�¬2�­®¯°� ��6��±9�:²�*+��������

��� ��¦§¨©²�#�£s¤³´s¡©µ¦§¨©����

���

���

���

���

���

��

��

��

��

��

��

� �� � �� � ��� ���

ef

c6

ef

c6

ef

c6

ef

c6�

23

c6

23

c6

23

c6

23

c6YM

M[

YMM[

YMM[

YMM[

��������������������������

23c6

efc6

ghi23c6Y�� [

jki23c6Y�� [

0\$!R 0\$$R 0\$ R 0\$.R 0\$'R 0\$%R 0\$/R 0\$0R

5L

5L

5L

5L

YM[

YM[

YM[

YM[

5L

lmIJK5LY���� [

:;PQ5LY��� [

lmIjk5LY���� [

5nopq5LY���� [

��

���

���

��

��

����

����

����

����

����

0\$!R 0\$$R 0\$ R 0\$.R 0\$'R 0\$%R 0\$/R 0\$0R

��XX XX

� UV

WX

UV

WX

UV

WX

UV

WX

UV

WX

UV

WX

UV

WX

UV

WX

UVWX

��X�UVWX

rsts�uv

�c

gwY�xyz[ gwY{5z|�xyz[

}5

�xyzgh~w

���� �

����

jk

jk

j

j

j

jk

j j j

?�

g g gw gw

gw gw

gw gw g

─ 71 ─

Page 76: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

� ¶'(53Ô��N�Ù�2Ô��Jà

é®ãéYz¾8?P�Ù�2Ô��X

9�×�×��m]W¶O�5ñ¾­C

Oy?R�;<���9 53��JEX

ñ¾­C¤1è0XɤP¹?�53Ô�

�J2½ú#N_¡ú#JZ��ÃNL

�tÃJéYJöy9�V1è0J×C

Jöy(ݤëJXɤP_¡��mz

CD£¤ìE9�2½J��mN_¡J

��m5��(ñ¾­C¤?R�1è0

z×�£¤��Jmn�2Ãzñ£Z�

�Ã9_¡J´5Â=O¤?RXɤP�

� L�tJÔ��L�J��z2½�_¡�â�ú#J¸�XɤN[d8�eC\CJ�E(

³y*ªã8?P53Ô��X92½ú#J1è0JL�tÃ5iõWiÇNxÝe]Ãz^R�_

¡ú#5�ôW�_�â�ú#5��W�_NyÞ�EXCD­C*y¤P¹?��Ù�2Ô��X92

½ú#J1è0JL�tÃ5i"W�ÇX�53Ô��N�'(xÝe]Ãz^R¤PI´�_¡ú

#5 �õW�_�â�ú#5 �W _NyÞ�EXCD­C*y¤PQJÝÞ(_¡ú#JL�tÃ5

ì³�â�ú#5�F8?QN(³y*�â�ú#J1è05 53Ô��X9'¸�ɤJ(à

8*��Ù�2Ô��J6`×���m5ñ¾­C`¸�Ã�0´½NNë(FOy?RXɤ

Nª³&C¤P¹?�L�tJ �6�Ô��zCD8*y¤Íð]ì����äO�5QC&JL

�tÃJ�E(³y*Ð�zë;*y¤Nª³&C¤P�

¶�¶�¶�¶�� ·� ·� ·� ·� ����

[\Ma�(9BÉ�Jàé®ãÃ%&9�ÓX^OyÃJL�tÃJì�5�&C�eJ�

(9ÔèÙè5� (a³&COyÍð(OUÞ¤QN5¾­C?PÚ;*��25�Ó­C¤

��O�(ÔèÙèzìØ£¤O�8*�b&%Jàázª³¤c^XɤPÃd��0�Jã

Ö�âèdîe���éîè�èfJÝÞO �6�1è0J0´zOf£¤�î���Jàé®ã

Íðzd��(gh8�æ[Oàé®ãz2�£¤QNXÔèÙèJ� G�(à8*IdJi

bz¥&C¤P¹?�%3(®¯tjz÷ÞQNX�©ØÔ��J��]ðÔèÙèz¯y¤

O�8*�©dJ®¯tJàé®ãzkl­@�àé®ãzÔI­@¤´¿O�5ª³&C¤P�

¸¹¸¹¸¹¸¹*�����X9�mmn¹Aå1��mnJB���![����uA�[\�(x)¤�

à21��ñ[0´Jàé®ã�{(ú£¤�o��y�+,-u./�0´å1��ÌMâ

¼2[d$3456fyJuW§ #3789:��ÌMyJB���![ö÷øùu�úûüNýþ�z

�E8?°_�(x)¤��Oíî{J�³¤��è2J��ÌMy(xy*�����JI�

z�;8?PQQ(�=B(JCzñ£¤P�

pªäqpªäqpªäqpªäq����

·n������T�Ò$O�r_st� �� ��4�� �*�&ñ[àáJ?RJ�2[\�

(x)¤ñ[0´å1�ã��J®¯��&�¥g�Ôp(x)¤0´��dGf�&�¥

#²0´+E®�1èdTuf�LLW�"Q"�d���ôf�

Ün���+Y�ñ[0´�ã��� � q��Lv~~wQxyz{rzWLyx{Wwr}r|z�qzW}L~�

�n�?@+Y�ñ[0´�ã��� � q��Lv~~{qz|rQxyz{rzW}L~�

�� �� ����ny~w����S �$ ��(

�t���S������(

Y��8���X|��8UVWX[(

��

��

��

���

���

���

���XX XX

YY YYZZ ZZ��

� [[ [[

�t��r��

��

���XY�������[ Y������\��R#�R[

��

��

UV

WX

UV

WX

UV

WX

UV

WX

YY YYZZ ZZ

��� [[ [[

�t��r��

��

UVWXY��������[ Y������\��R#�R[

─ 72 ─

Page 77: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

56565656��������hhhh� ��� ��� ��� ��6�6�6�6�ºººº�:�:�:�:»¼½»¼½»¼½»¼½����¾�¾�¾�¾�����¿¼¿¼¿¼¿¼�ÀÁÂ�ÀÁÂ�ÀÁÂ�ÀÁÂ����

������ �� ������ ��������������

������������������������

����

���������� ��� ��� ��� �����

0!�W~ghXJ«<�������(ݤZè�à�������+ÉA��(ÝU��W¦z

M8Ñy��X�25¼¤�{�2J�[5ì³£¤N:5(R&C*y¤Pót9� õõ !(�ÄX

�©5�^�C��©[\5Ma8?2© õ )%&©_\J�W��zÅ��;8���¹Xí;*

y¤d��� õõ�fPA�<z9�RN8*�VÂA�¬�]¨�_¡��¡�JÒÓz÷Þùú9�

�QU¥¤A�����J��z¼d8*ÒÓJ?RJÓÐzØ¢8�µ¶ÒÓz�;8*�¥&C?

/è1z�à21��Xë1£¤�ã��z×k8*y¤P�

8%8�ót&5��8?�2[\]4�[\X9�ÒÓ/è1(�Ó5a�?U�ÒÓ9­C*y

¤5/è1å1åJs�(ÝU�ÓNO;*y¤%P��Ó9OyëJÒÓ�5[\zo)¤�3XÉ

;?%P5(R&C*y¤d��&����ia��&�����fPQQX9�QC&J%Pz9:8�cÐ

JÒÓ��ÒÓåJ~����("5¤ëJNª³&C¤P�

!!!!����"#$$"#$$"#$$"#$$ %%%% ÃÃÃà ''''����ÄÅÄÅÄÅÄÅ $"$"$"$" ÆÆÆÆ� ��� ��� ��� ��ÇÈ�+ÇÈ�+ÇÈ�+ÇÈ�+����ÉÊÉÊÉÊÉÊ����

�� ! ô# �' $(��àÞ�c0�XMa8?2© ��)9�$�JÅ�×z�;=UN.×8��

y��zß;?¹¹ õ # �$ � �3(4�+T�(×�8�×�Ðë�;=U.×z¶) �$ ô �V

(Û�+Å�(£×��{ÄW´z.×8* i $FG(�÷Á(�)?P2©zÀU�=2�]>;?

@A5Bt8??R�¬V]c]­ÄW´JT��{ÄW´JT�z{|(VWX�2NOU�VWX

��O�2NO;?d��&��� fP�

�����9�GX+Õ��Ný£¤.�9�B§Çº �iW'Ê}��Ö�B{�o� ôW'Ê} JXY¨�J

���5.S%&ÅT(B�8�p�(»�PS(9B§Çº �ôW�Ê}��Ö�B{�o� �'WõÊ} Jw�

�_�5¡¢8*y¤Pw��_�J��dA�<àáâãfJ���º»¼_½z¶·(¾8?5��

$�3{¹X9��Xë ��}} 3ÐXÉ;?��¼_½5��Ð%&9 �(ì³8* �$ê%& i$F

G(9 i�¸'�}} J�2(���C*y¤5��Óë(R&C`DÉ(ÒÓ5÷�C*y¤P�

� ¶Ü� �p�2½ÒÓ�J��2½Jâ§�

d���� ! # $¸ $f�

��

��

i�

'�

��

'��

���

'��

����

�i � �i � �i � �i � �i�

��¼_½

d}}f

º»¼_½

d}}f

õ# $ õ#�$ õ#�$ õ#i$

��dàáâã¡

��}} �'�W'}} 'iôW'}} �ô�W'}}

iôW'}}

¶·� ��àáâãJ��¼_½Jâ§�

d���� ! # � $¸ $f�

─ 73 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 78: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

ñ·(9i¡�+uJT¢£89�Õ

�¤Ø�ËuXÒÓ­C?2½z¾8?P

�����u(i¡�+5Ø¢8*y¤

���_�J2½rd�p�d¶Üf�4

¥A���fX9�y`Cë i $ � �¸i

�Ji��(�(��XÒÓ­C?��¼

_½JÜ)zȳ¤�{�2(���C

*y¤PQJQN%&����_�(x)

¤�2J¼U´9���àáâã5¡¢£

¤w��_�N9�^=+O;*y?P8

%8�ñ·(¾8?ÝÞ(��25f¦8

?��Ù¼9àáâãÒÓ�Ù�9�Ó

NO;*xU�§M[\(©¬O2½0´

zCD�®K¯£¤QN5@ÛOyKbN

O;?PQC9�¶Ü(¾8?�p�(x

)¤���¨º2½¶%&ëG&%Xɤ

d��&��� fP�

ü(�����BJ�úÃJÕ�(Ø¢­

C*y¤_¡ÒÓ�J_¡Jâ§z¶�(

¾£P�$ ��� �W�}�i $ � � �W�}� �

�Wi}�� � �W"} N_¡JשzÒÓ8*y

¤5�� �(9 �} Ù�(�N8*y¤P�

W��%&�ÑÒ·(¾8?ÝÞ(��ÒÓ

�9� '��} J^_��5'(­C?QN

%&����J¼d�Jì_(ÝUÒÓ´û

(O;?ëJNâã­C¤P�

���_�¨�#²r"dB� ��! #

ád�i¡�+fX9������XMa8

?æçJ©_\zª·8*xU��O©_\

zñÜ(«R?P.ÐA)Xë�Z[NO=

_\(���C*y¤_\ÉÊWXÉU�

õ'i !J1234�2X9std� ef5M

a8*y¤5��¬(Oy��5��ÔXÉ

;?P�r"X9 �� Ô2½ õ�}} z¼d8*

y¤QN%&��_\JÝÞO�{�29¼

d�XÉ;?Nª³&C¤P�

8%8O5&��¨�B§9� '� !3J õ'i !(ëcON�'(Í�O°_[\(���C?�

­zM£¤QN%&�_¡ÒÓ�JØ¢®¯�ë�R*�¼d�N9°�@`(�QUÞ¤¼dN8

*Jà±5©¬Nª³&C¤P����

E

F

G

�G �G �G �G �G �G �G�

���âþ�¥���âþ�¥���âþ�¥���âþ�¥

�â®L±

��FE� F� ��� �� F� G�

�0��¿�â ��ÇE�

T�����â ��Ç��

�������âFÇH�� ®G��� ±

¶�� �úJ_¡ÒÓ�(x)¤����J_¡Jâ§�

ñ·� T¢£89�Õ�¤Ø�J2½Íðñ�d²²²²9 �����³9 ����� Ù×f�F� B !�F� E� � �� F� G� �� �� "��

#l$ �� �� G� F FE �E � %� �GF&ú � � �E FG F� �� � %� ���'() G � �� �� �F E G %� F�G�^� � � �H �H �G �� �H %� GE�*+ � E HF �H H� E � %� F��,- G� GH �F �� �F � � %� ���.(� � F GH FF EF GF F %� �H�/�01234�GÇE GGÇE �EÇE �FÇE G�ÇE ��Ç� �ÇE �ÇE �FFÇ��f F� �E H� H� F� EF G %� G��5� �F E � �H �H F F� %� FHH5�01234�ÇE �Ç� ��ÇE ��Ç� HGÇ� FÇ� ��ÇE FÇ� FHFÇ�Å6ø � � �F � �E �� �� %� F�

þ�¥G�

ÑÒ·� �ú_¡ÒÓ�(x)¤�^_`\JÍðd^_� '��}f�

��,��,��,��,

─ 74 ─

Page 79: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

����

����

����

����

����

����

����

����

����

����

����

����

2© �)(dÞ�2[\(ÝU�i¡�+X9$4��ÙÅJEOc��S¢£d�À��´f�T

¢£dM����������Õ���´fW§X9�ÂÃJ2½��_¡�(�Ó5'(­C*y¤P

QC9��ú_¡ÒÓ�(x)¤^_`\X9O=�o�6¹XJÙ���èJµ½´¶(ݤùû

·¸�/è1å1åJs�(ÝU/è1ë1´ûO�5Ð�8*y¤ëJNâã­C¤P¹�+X9�

Ù�éà��ùû(ÝUVÒÓ�%&/è1ziýºJ»U��Ó/è1z�D8*y¤%PëɤP����

====����"##¶"##¶"##¶"##¶ %ËÌ56%ËÌ56%ËÌ56%ËÌ56� ��� ��� ��� ��6�6�6�6�»¼½»¼½»¼½»¼½����;<;<;<;<����

KM�8?1234(ÝU����i ! "# ô $G)´%&¼3(%)*�q½+¾.W´.�z{|(

��O�{�2(���C?PY��JuYZ[\2½0´�ã��y(xy*�+u ����(Ø¢

8?2½rX��ÆzÒÓ8?¿Àu2½ÒÓ�dq½�fX9�¶.(¾8?ÝÞ( ��¼_½ " }}�

� Ô�¼_½ � }} z�� ��ô}} Jº»¼_½5ÒÓ­C?d��&����ifPN=(�¼_Jçèé9

i � �� ÔÁÂ%& � �3¹X���¸i� ÔJ�25 'OëÒÓ­C*xU�QJ�2z���� � ��

¼_½9 � '}} (ë�nAPQJÑ���{�2(ÝU�Ø¢­C?2½ÒÓ�(ÃzBC¤I®��

J_¡5ì_8�ÑÒÜ(¾8?ÝÞ(¨�5�^=3Ä­C�2½�5B¸£¤�3JÍðNO;?P�

�� �� 78 OP9

® ± ® ± þ�¥ ®LL± ® ± :2 ;2sdi2<=��<]�� ®=>?±

²³�� ��G ����@�F A�*B C C � F H C ��G ��F DE��� C

²³FG ��� ���FF��GHIJ� C C H E� C �GE ��� C G�E

²³G� ��H E��H J�FG� C C � F C ��� È�G C ���

²³�F ��� ��� ��� #K¸Ñ �EG C C C C �� �� DE��� FEF

LM� ��E ��� J��� C � �� �È��� C C C �ÈEH

LM� ��E ��FE J��E� C C F F�� � � C ���

LME ��� ���G N�*B �( F�F C C C C � � C �E

LMF �EE ��� J�� /��( H�� C C C C G� OfK« H�E

LMF �EE ��FE N�*B '() ��� C C C C F� �� DE�'P ��

LM�F �E �LM�F �E ��G J��� '() �F�Q= �� H� ��E � �EG ��� DE�'P RS.

�T4N���OPAU¿�#]'dA.V�W/Xv<YZ��[\

�� �´

�DE��]^��â®L_��Ç�L �±#]'12#�$%'R#`aW%e%#bcW�J¥S12#÷$�d12#e�9off�OP#ghi-�j12"k�K«<=��

`lv��DE��mv�[\Án�op®LM�F ��³Ýn�±

�DE��qr���so�tu

"��OPKP

v°w��

��9x�

y}OPÂzÄ

ñÜ� õi' !Ù¼(�����XMa8?©_\J«¬�

'

'

��

�'

'�

��

'�

���

�'�

���

�'�

�� � ' " õ ��

¿Àu

�Ô�¼_½

d}}f

º»¼_½

d}}f

"$ ô$

�i � i � ô � �

��·��¼_½" }}

�º»¼_½���ô}}� '}}

iv��

�v��

�����¼_½iv��

'v�� �v��

�� �Ô�¼_½� }}���'v��

��

i�

��

ô�

��

�'� �� '�����'�����'�

��¼_½

d}}f

º»¼_½m}}n

" ���'

�i

'�

�' "

��

¶.� ¿Àu2½ÒÓ�(x)¤� ��� �Ô�¼_½Jâ§�

ÑÒÜ� ¿Àu2½ÒÓ�(x)¤�I®��J¨�3ÄJÍð�

6�Í6�Í6�Í6�Í����

I®��I®��I®��I®������

─ 75 ─

Page 80: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

AAAA��������������������������������������������ÎÏÎÏÎÏÎÏ121212126�6�6�6�ºººº>�>�>�>�ÐÑ��ÒÓ����ÐÑ��ÒÓ����ÐÑ��ÒÓ����ÐÑ��ÒÓ�����ÀÁÂ�ÀÁÂ�ÀÁÂ�ÀÁÂ����

��ã��9����' ! õ#(��+T�XMa8?Ì

�_\(xy*�Í�O^_`\5Ma8?Á��ÅÎ

W�zà�(����� ! ô#(Á���Ï����(ót

&5Ø¢8*�¯8*y?PuW§ #37 89:��ÌMy

(xy*�QCzá��Þ�ã�~�8�Èß9���

p����W�J{Q�(¡¢£¤ïdíî�ußà®

�1èy(Ø¢�dXÉ;?5����p���ùñ[

Ë$øNJáâ(ÝU�ÚÛ%&^_`\5ÅÆO��

B§J^_ÉÊW�(Ø¢8*ã8yNJ¬äzo)�

ÑÒ�J�ã��z �� ! � #(§Ø8?P��ã�

�9�ÒÓ8?2½d}}f�^_�d�}f/è1z æ4çu

O4åzå�* ��d[\�9 � Ô�f�qXǯ

ÔèÙ(ë1­C*y¤d��&��� �fP�

Ø¢8?ì�934 i8XÉU�^_®�ÔJÒÓ�

9�� �8XɤQN%&�� �8J�­¹X8%rÓ

X^OyPQJ?R�^_`\Jß�ÈÉXJÃ�9ú

ûXɤ5��8zȳ¤ÝÞOÍ�O`\J�(9Ó

d5´úûNO¤QNzªþ£¤©¬5ɤP�

DDDD���� ¬Ô� ¬Ô� ¬Ô� ¬Ô�����

�����X9�2½r�_¡rzà�N8?5�2©(dÞ�©�(©:©�r5Ê!�ËÌ£

¤`\5�ëÂyP¹?� õõõ !J2© ô)(ݤ4�[\JMa�X9��ÍJ���¡zȳ?

ÒÓ�ëÉU��4�¡zÒÓ@ÛO%;?Îèã5(R&C?d��&�����fP0!�QJÝÞO

Îèã5ÃÂ='(­C¤QN%&�ÒÓ£¤¬�J��¼dz�i£QN멬XɤP�

¸¹¸¹¸¹¸¹****�����9�+,-u./�0´å1��ÌMâ¼2[d$3456fyJuW§ #37 89:��

ÌMyJB� ��![ö÷øùu�úûüNýþ�z�E8?°_�(x)¤��Oíî{J�³¤�

�è2J��ÌMyN8*�;8?PQQ(�=B(JCzñ£¤P�

\]^_\]^_\]^_\]^_����

·P����* õõ !2© ")� õ)(ݤ,-J�&[\P�&A��iô�""Qô�d õõ�f�

ÜP����� �� ��Ï�ÐÑ�H�ÒÓ�Ï�Ô* õõõ !2© ô)(dÞA�J©ªN��

+(x)¤�©�4�[\PJK[\��� õ�� 'Q��ôd����f�

�P����� �� �*B� � ! " #q½�2(x)¤¼_©¦N�2[\(³y*P� �� O$

�JK[\���Õ�Ö���Ö«¬�� �"Q �ôd���if�

.P����� �� ��×¥ØX*���i !­Ä�2J©ªN­Ä.+(x)¤ñ[0´�ã��J

�ÍPJK[\��S�W���´�Ùä����� �Q �d����f�

5P������������ �� �� �*���� !2© �� )(ݤi¡�+�����J°_

[\P� ��O$�JK[\���Õ�Ö���Ö«¬��ô�Qôid�� f�

�P����� �� ����� ����������VWXY�Z{[I*�ûüN ��� z�

E8?°_�(x)¤��Oíî{J�³¤��è2J��ÌMJ�ÍNøùPJK[\��S�

W���´�Ùä�����ÚÛ{d�� �f�

2½r�

w�ÕÖ×2�

2��

^_r�

ÑÒ�� §Ø5j&8?2½�^_���1����ã���

��������� ���������

�������

���������� ��� �!�"#$%&�

─ 76 ─

Page 81: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

��������� ���������

������ � � �����

�� ������ � ��� �������������� !"#�

�������

$%&'()*+,-./0123�4 122 56789:; 570ha 7<=>�)?@ABCD*+,-.E/0F*)GHAI�J:�-)KLMNOPQR/STUVWX:DQYQ0Z)�[

M0$%\]^�_`a7bcVWde0fghijklAmQWX:Dc90no)pq)r7P

stQWX:uvYw0FxG)ypMz{Q9|}~7dXW/.�no�i��Yw0u)��

A.�q��7�_W:��h���M��wV9DZu�0*+��)��A�h��0���)

��A��9��0.�)���7 �:vvP70ij¡¢�.�£¤v¥¦�)�V9*+,-

.§q¨©ª«0§q¨v¬­®A¯:9�701995-2004°7Y±W²$%&'(*+,-.§q¨³´µ1)M¶-UV9DuV7·¸XW0¹º»G��¼½»G��/0¾¿�h§q¨MhUV

9M0Às7hÁW*+�Â)Ã!M 90%ª�ÄÅQW0§q¨MÆ�7�Ç:ÈÉvhÁWÇ9DÊË.��/§q¨7Ì9h���MpcV0Ì9h²*+,-.§q¨ÍÎ�µM�ÏUV0.�

Ð�vKÑÒÓ)ÔÕÖ×�PØÙUVWX:DZu�0Ú�/§q¨)Û.ÜÝ�ÞßàáâÜ

ÝAã�Q0Às)§q¨)¿ävåæAçwY7J:D ���������� ��� �!�"#$%&�

� *+,-.)èé/Ã!¼/�FÖêë0Ã!ÄÅì/�í7� î�ï:M0§q¨789ÁW

/0��î/§q¨)r)ðñv¥.hò)óôh·õ¥Âö÷QY�ÇhXD§q¨��)�Ï�

øBèé/§q¨)ù�vh:úE�0NPO hò�ï:DQ9MÁW0§q¨789ÁW/0�0î0ûú0.�v)üýMþ�7h:Du)��7*+,-.)��)�Y70§q¨)S;0.�

¡¢0.�)q�

�)��)ïe�

A��J:9�70

²$%&'(*+

,-.§q¨�¶

���µM

1995 °7�ÏUV0§q¨)ïe

�����7CX

W��AKÁ9D

u)� 0¹º»

d��¼½»G�

7CXWij¡¢

�.���A��

U�WXRCY)

§q¨)��áM

�-UV:vvP

70��q���

� � ������� �������

1997������������

�������������� �!��

�"#$%�&'(��)*

�+,-.��/01

1998�����%2'3456���789:;/

<=>7?@ABCDEFGH=IJK

� L�(�M��

�NJO/-.01

�PQRSTUVW�X

1999�

�Y�Z[�/\];^_`���ab

����cdeIJ/fgh01

�ijkIflN0m6nop�q 1 r

s>tu/<IJK

ijkI���/vwxyhz {|/���/0\xyhz

2000� �nop�6q2>3rsK

�����������+}��

�~��������s�/��x��Z[�R

� L����

�PQRS

2001� �7�������=PQRS/��01

2002��nop�q2>3rs/���/��

����GH/+}x��9���/� 

� L����vw0m

2003������������+}34��

�nop�/�¡¢£m

�7�������=GH/���

� L�]��/���

�¤/-.������

2004�����34¥�/¦§;{|/¨©01

�+,ª-§«;{|/01

����;¤/-.(��/�

����*+,-.§q¨¥Â£¤)��ÈÉ�

─ 77 ─

自然災害研究協議会西部地区部会報・論文集 -36 号、2012 年 2月

Page 82: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

�Q9.�)��)�¿0�

�v)�p)9�)�� !

)"#A$%J:����.

�q��)&'¥ÂM(e)

cV9DCX�0²*+,-.

§q¨¥Â£¤µM��UV

9©'(�®Du)�*0¾K

�h���vQW01991° 9+ 15 ,)�-G7�e./Q90�12r3�45 4

6)Û.�70¹º»)«G

[)²�V8»µv²9:U

v):µ)¥ÂM;<wV:D*+

,-.E)��7CXW/0=>ã

�£¤�è飤7Ó?ÒÓv)Ü

¥0=>)@A�BC)D��0E

^\�Fhò)øBèéhò)åæ

)¥éMD��ïÁ9D��7/=

G)ì)HG)þ��MICUV0

§q¨ù�)JK�hèéALð7

ã�UV:uv7hÁ9D§q¨³

´M¶-UV9M~/0*+��)

N�MØOUV9Pì�ï:uvv0

FxGP«Gc�Q:dZVMïÁ

9)�0§q¨/¹º»«G�7T

wV9Du)�0 !R³)�70§q¨S�7d±:����7ÓJ:��MhUV9D )� ���*+,�� �

��¥ÂM¿�0§q¨MTU7h:v-(�v'(�7VJ��7WX§q¨M¿�wV9D ¹º»d��¼½»)ij¡¢�pq¡¢A��Q9§q¨MhUVWX:D§q¨789ÁW/0

ù�vh:�Y\Ð�MD�7 ZW�[UV0,\�hq¨vE^�]^hò)øBèéAKÁW

X:D§q¨789ÁW/0§q¨)ù�M�FÖêë0� îd��ÊËûv_-A�8�X:D

�FÖêë/0§q¨)rAðñQ0D�7 ZW¥.�ß�`�êahò)·õ¥ÂAKX0�

îvÊËûMÜ¥v��Aã�QWX:D=G7CXW/09:Uv)bc�9:Uvd)ef0+

gH)h'Yw0�4ijp7�:=G09:Uv)G2)klAmÁW0nAHWWYw.o)

lñ7�:=GMhUVWÇ9D !R³)�77CXW/0�-G�p+ÐM5 Q9q�2r

rjstuv.M�7UV0wx)rvQWq¨UVWX:D >�h*+,-.Ayz�7èéJ:9�70§q¨³´7{ϸ±wV9ru7dXW0ÊËr

j�4vüýQ9�|�|7�:E^)}K0r~)�^¨)^)��eAØOQWX:D .���� ��/01�23 *+��)¥ÂM¿8�0§q¨�Ç:ruM/ÁÇeQWÇ9uv�ÊË�Ê�����)��

�����d)I-hò�Ì9h§q¨MTU7hÁWÇ9D�FÖêë$%bc!"u/0'()

7VJ³[Ð�Ywh:²*+,-.§q¨Í��µA�ÏQ9Du)Í���¹º»v¼½»G�

��� ãÛQ9*+,-.§q¨

��á � � E� � � � � � �� Y\Ð� � ¹º»�G q�2rrjstu �2r !R³�7� ¹º»«G

9:Uv):)¥Â �V8»)bo �¼���p

�¼.Sc*¸Re�¿_ �\

�����ÊË&'�

ijp7�:=Ghò $%�°):¸Re)�

��q� 9:Uv)27�::¸Re

������ÊË

¼½»�G

��`a ��`aACR:�

¼½»«G ���>r ¼½»§q¨�¿�

¯���*+,-.)§q¨)ÈÉ�

4�567���� ��

5.1 ���8�9:

─ 78 ─

Page 83: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

)� ���*+,�� �

.���� ��/01�23

A�G\«G) 4C)���áâ76±W0.o)Ô�A��Q0Û.

ÜÝ�ã��¶A��QWX:©'

(.®D�����vQW)§q¨)

�Y70¹º»G��/0�¼.S

�)pqATU7Q9]¹»)�p

A��.�)ÔÕM�XD��7�

:F*���¹�//�V9M0¹

a/�UVWX:)�0¹�)��

Måæ�ï:DÊËûP�û£¤�

� �¡¢áhò�*+,-.)£

XÁ¤Xq�A£¤7¥<0��A

ØOQ9D §q¨789ÁW0rAðñJ:

�FÖêëd)·õ¥Âhò)��

�Acv�:v0'(4)� vh

:D¦70���>r�=Ghò)

§q¨MhUVWX:vu§�/0

§q¨�¨��d)H¹M)F*G

©+O�ª¹0«©ahò)ß¡¬

�­)®�hòM��wVWX:D

uVYw§q¨MOc:¹º»�G

��/E^\¯�=)°±00�2

r.S)pq)v.)�7�²³)

bo0´Eµ�¶·µ)�Ï0�¸

¹0º�)¿©QYhX9�)º

³\»ºr)¥ÂMD�UVWX:D

c90¹º»v¼½»)«G��/

`a�£¼hò)=>)r)¥ÂM

;<wV:D� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 4�567���� �� � ½VWX9¼½»G�)§q¨M 2008° 12+YwÆ�7ØOUVWX:D2011° 12+18 ,7�¾`o¿7dXW0²¼½»§q¨�¿�µ)��A/Z� 8�)ÀáÁ�7ÞßàáâÜÝAã�Q9D 5.1 ���8�9:� ²¼½»§q¨�¿�µ/«G[)�¾`o¿sR)»Ã)�

��>r)§q¨AJ:�Y�0!"uA�¾`o¿7ÏXWX:D�¿�/�¾.SEno�

�YJ:úE�üÄ_ �0Å��¢Æü¦�d��Ç{°È�H[_ �)É�ÊYw³[UV:D

u)Ë0«G[)�³ 251Ì)ÍÎ��Ïs�/0rjìJÊ��YJ:²��Ð��µM��Ð�)=>��)=GvèéAKÁWX:DE^��FÑÒhòAyz�7K�9�70rÒÓ)ß�`

��Ô ·õ¥Â)���

6� Õ E� � � �

øBèé F*G©+O(Ö×)0E^0ª¹ ¯�=)°±

·õ¥Â ²³0º³0»ºr0ß¡¬�­ `a\=>)r

��¥Â �¸¹ Ø� Ù ´Eµ0¶·µ ��\bo 0pq)v.)�700²³)bo

��Ú *+,-.§q¨)³[�Y

6� � � Õ �� Y� Û .�noÐ�

�¼.Sc* Re�¿_ �0ÊË&'

�0¼½»§q �¿�0�12rÐ

.i��0q�2r !R�7�

Ý¢áÞßßÐ� NPO��ÊËÝ¢áÞßß_ � $%100°): Re�

�����Ó?�Y

�5������������� !"#ÊË�Ê������¿üÄ� $%( !àá¿

hâÐ� ÊËãähâ_�0ÊËãäå¿�¦ .���É�

æç��ÊË.è��hésê á � (ë)ì�ÆíÞ¹î�ïáÊË ÊËrj�4

KÑ ÊËû0ðÊËû0� îÊËñc# �FÖêë$%bc!"u

��ò *+,-.§q¨)ÌQX���

���áâ §� q� � )� �� �� �

¹º»�G ]¹»)�p0��ó¸�vQW)q¨0 �)bo0�^.

¹º»«G ô²³)¥Â0£¼7�:`a¥Â

¼½»�G ��ó¸�vQW)q 0�)bo0õö\

�÷ø)=>)q¨0�^.

¼½»«G ���>rvQW)ùh:q¨0 úGÃ)£¼7�:`a¥Â

─ 79 ─

Page 84: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

�MTUhêahò)¥ÂMhUVWX:D�G[)û�üýþ)«Ö�/no)iù�hâí�¡

�ï:²�¾A�:�µM=GAKX0�|A§¨Q9E^AKÁWX:Düýþ)E[�/ÊËû

ãäå¿�¦A¼�vJ:²��`aACR�µM0��)=>AKÁWX:D 5.2 ;<=>?� ���@A�B�� §q¨7ï9ÁW/0�FÖêë0� îd��ÊËûM¥Â7ÓJ:èé_-Aü�QWX:D�FÖêë/§q¨)rAðñQ0ÊËûM§q¨)ù�vh

e0§q¨7D�h�¸¹0¹³hò)�������©+��0��+O�®)¥Â0�0té

AKÁWX:DÊËû/0�¿�v_-A�8�0§q¨7ÓJ:^�0 ]^0¥.hò),\�høBèéAQWX:D¼½»*+,-.E)���>r/� 1S¤©�Ö®12,300�v��S¤©1Ö®6,610 �)� u�0â¢á3�í�0¨ á�0���Ý�í0ó���hò)_ MTU�ï:D���>r)�¨�T/�¨���7·¸XW0ÊËûv�¿�)üÛ�KÁW

X:D 5.3 ���CD"EF� §q¨)��/0�¾Å��¢Æü¦�7�:,\�h§¨vûE)����)_�\Ð�7�:��M)§¨)�kÕ7Ywh:D>X� 1S¤©�Ö®�/�k)§¨MhUVWX:M0�X�)��S¤©1Ö®�/���Ý�í@¨vhÁWX:D2010°÷)ã�7�V�0� 1S¤©�Ö®�/ 163� 4,374� 0��S¤©1Ö®�/ 346� 7,000�vhÁWX:D�¾.SA¼�7�� ,q¨UVWX:Du)Ë0!�"Ç�È#$%��¢à�)��h.

S)¸&á�7Pq¨UVWX:Dã�7§q¨QW�:vXRCY)åæPHWÇWX:D���

>rv¼½»)»'v)�7Ö×MhX9�70()M7ß�`�)êahòYw)¹M>r7GV

)8�0F*)*@Mïe0øBèé)+,7hÁWX:D¼½»)-¹a7.�xhòMhX9�

70�A/ÁW0'c�KYhXv>r7s¸±hX1æ0rÒÓM¿©�Ç:êaMhXruM{

hXhò)·õ¥Â�)1æMï:Dc90>r72�MhX9�7034�ÂM�¨�ÇhXÈÉ

7ï:DH¹7�:§q¨��)5thòAEX9,\�hE^0>r)¥.0�¸¹hò)øBè

é/0�¿�MKÁWX:D�¿�)67/0+,805I80Z)Ë)9©vhÁWX:

M0�FÖêë\� î\ÊËûYw)��/°� 15,000 :)��ï:DøBèé)j"/��º;�KÁWde0j"7<�=8Éhò)67/hXDu),\�høBèé7)>?M§q¨)�

ÇhåævhÁWX:D�¿�/5@7�ÒÓ7��AHQWX:M0,8Ê)ÖÉPïeÓ�

�h¿ä/hX���ï:D��Ð�hò��¢��¢á3AA:7/0�FA 30 Bö÷©VC�:D�Mïe0c9E^�D¹)E�A��:vúE��)���/ºév),FMïÁ9D 5.4 GHIJ�567KL� ��� ���>r)§q¨ù�)_rYwGVW0¼½»G�)§q¨)Hì)ä�AIX9vu§0.�)J¹)q¨0��ó¸�vQW)q¨0qK2.S) !

R³)�7hòM;<wV9Dc90�¾.Sv�¼.SA�=L�³aMX7�)=>AQ9Xv

X�ÔÕPïÁ9D 4�M"� � *+,-.§q¨A¿�:9�70�FÖêë/Í��A�ÏQW0���ANeOuJvvP7

D�h·õ¥ÂAK�vQWX:uv/PQUV:DHì)À�)åæ/øBèé7)���ï:D §q¨7Ó?J:KÑÒÓv§q¨)R�vh:Ð�v)-~�h_ �)ØÙhò7�:åæ)S

Hv¶T¶)_ )rMD��ï:Dc90øBèé7)UH)9©0¶vQW0�\dV\/Wh

ò)=G0X^)>Y0�^vQW)�¨0�¨Z)[90*+,-.)E^j")úE�d)y\

hò)ãÛM�cV:DÜAcv�:789ÁW0¼½»§q¨�¿�0�FÖêë$%bc

!"u0æç.�£¤_�7]Zðñ�ÜÝ7)��A^9uvAÏàJ:D NOPQ�

1) $%&'(*+,-.§q¨�¶���_$%&'(*+,-.§q¨³´Ù`�a� 39ba1997.5

─ 80 ─

Page 85: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

5.2 ;<=>?� ���@A�B�

5.3 ���CD"EF

5.4 GHIJ�567KL� ��

4�M"�

NOPQ�

自然災害研究協議会西部地区部会報第 36 号

平成 24 年 2 月発行

自然災害科学研究協議会西部地区部会部会長 久保田 哲 也

(九州大学大学院農学研究院)九州大学西部地区自然災害資料センター

センター長 善 功 企(九州大学大学院工学研究院)

印刷所 社会福祉法人 福岡コロニー  福岡県糟屋郡新宮町緑ケ浜 1-11-1

電話 092 ‒ 962 ‒ 0764

Page 86: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro
Page 87: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

15. Relationship between Natural Disasters and Place Names in Case of 1982 Nagasaki Disasters and

2011 Higashi-Nippon Earthquake Disasters

Kensuke Goto and Keinosuke Gotoh 57

16. Changes in Land Use and Flood Disasters in Asa Area of Sanyo-Onoda City, Yamaguchi Prefecture

Haruhiko Yamamoto, Minori Yamamoto, Toshiaki Yamasaki, Kiyoshi Iwaya and Hisashi

Yoshikoshi 61

17. Development of Visualization Tool for Safe Evacuation Route During Flood Using Integration of

3D Images and GIS

Haruhiko Yamamoto, Kiyoshi Iwaya, Hisashi Yoshikoshi, Minori Yamamoto, Toshiaki

Yamasaki, Shigetoshi Itou and Junichi Hironaka 65

18. WEB Rainfall and Water-Level Information in Western Part of Japan and Problem of Disaster

Prevention Information during Disaster

Nozomi Kanamoto, Haruhiko Yamamoto, Kiyoshi Iwaya, Hisashi Yoshikoshi, Minori

Yamamoto, Toshiaki Yamasaki and Taiju Miwa 69

19. Disaster Damages and Missing Values at Rainfall and Gauging Stations during Heavy Rainfall

Disasters

Haruhiko Yamamoto, Kiyoshi Iwaya, Hisashi Yoshikoshi, Minori Yamamoto and Toshiaki

Yamasaki 73

20. The Latest Progress of the Erosion Control Area Utilization in Unzen

Kazuo Takahashi and Shinichi Sugimoto 77

Page 88: Western Regional Division Report of Natural Disaster ... · Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1 2. Design Strength of Ground Improvement for Liquefaction Yutaro

ISSN 0916-3891

自 然 災 害 研 究 協 議 会

西部地区部会報

第36号

研 究 論 文 集

平成24年 2月

平成 23 年度西部地区部会

研 究 発 表 会

平成 24 年 2月 24 日 福 岡 市

自然災害研究協議会西部地区部会

自然災害研究協議会西部地区部会報第36号

二〇一二年二月

Western Regional Division Report of Natural Disaster Research Council

No.36

Contents

ARTICLES

1. Developing GIS-based Method to Find Dangerous Slope Forming Dam

Fan Yanan, Guoyun Zhou, Guangqi Chen and Kiyonobu Kasama 1

2. Design Strength of Ground Improvement for Liquefaction

Yutaro Inatomi, Kiyonobu Kasama, Kouki Zen and Guangqi Chen 5

3. An Estimation of Runout Distance of Debris with Discontinuous Deformation Analysis

Taisuke Koga, Kouki Zen, Guangqi Chen and Kiyonobu Kasama 9

4. An Approach Which Forecast the Slope Failure that Happens Because of the Rainfall using

Geographical Information System

Taiki Hiraoka, Kouki Zen, Guanqi Chen and Kiyonobu Kasama 13

5. GIS-based Two-dimensional Numerical Simulation of Debris Flow in Mobile-bed Gully

Jian Wu, Guangqi Chen, Kouki Zen, Kiyonobu Kasama, Lu Zheng and Yingbin Zhang 17

6. Seismic Slope Stability Analysis Subjected to Tension Failure

Yingbin Zhang, Guangqi Chen, Kouki Zen, Kiyonobu Kasama, Jian Wu and Lu Zheng 21

7. Comparison of Weight of Evidence and Logistic Regression Model for Medium Scale Landslide

Susceptibility Mapping in Yogyakarta Region Indonesia

Guruh Samodra, Guangqi Chen, Junun Sartohadi, Kouki Zen and Kiyonobu Kasama 25

8. Estimate of Debris Flow Hydrograph and Modeling of the Depositional Process :the Debris Flow�

Event in Hachimandani River, Hofu City in Japan on July 21, 2009

Tomohiro Miyoshi, Haruyuki Hashimoto, Shinya Ikematsu, Farouk Maricar, Kyosuke

Hashimura and Kensuke Sakada 29

9. Experiments on Open Check Dam as a Countermeasure against Debris Flows with Driftwood

Kyosuke Hashimura, Tomohiro Miyoshi, Haruyuki Hashimoto, Shinya Ikematsu, Tadahiko

Hasuo, Farouk Maricar and Kensuke Sakada 33

10. Analysis on the Landslide Traveling Distance from Forest Slopes

Souhei Otani and Tetsuya Kubota 37

11. The Characteristics of the Landslide Disaster and Sediment Runoff in Sierra Madre Oriental

Mountain range, Mexico

Tetsuya Kubota, Israel Cantu Silva and Laura Sanchez Castillo 41

12. Geo-Simulator-3 (Utilization of Various Geo-Information)

Ryosuke Kitamura, Fumio Nakata, Yoshito Tanaka, Hisashi Kawakami, Ryoji Tanaka

and Kazuyoshi Jomoto 45

13. Characteristics and Changes of Tephra Layer Deposited by 2011 Shinmoe-dake Eruption in

Kirishima Volcanoes

Takahito Kuroki, Nozomi Iso, Kensuke Goto, Tatsuroh Soh and Keisuke Kuroda 49

14. Some Disasters in Historical Novels Dealt with Edo Period

Keinosuke Gotoh 53