大学院理工学研究科  2004 年度 物性物理学特論第 6 回...

39
大大大大大大大大大 2004 大大 大大大大大大大大 6 大 大大大大大大大大大大 (2): 大大大大大大大大 大大大大 大大大大大大大大大大大大大大大 ()

Upload: dannon

Post on 28-Jan-2016

48 views

Category:

Documents


0 download

DESCRIPTION

大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-. 非常勤講師:佐藤勝昭 (東京農工大学工学系大学院教授). 復習コーナー 古典電子論. 復習コーナー 電気分極 P を求める. P = n qu により分極 P を求める. サイクロトロン角振動数. 復習コーナー 電気感受率を求める. P=   0 E により電気感受率  を求める。. より、非対角成分は磁界に比例. 復習コーナー 誘電率に変換する.  ij = ij + ij を用いて、誘電率テンソルに変換. より、非対角成分は磁界に比例. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

大学院理工学研究科  2004 年度物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

非常勤講師:佐藤勝昭(東京農工大学工学系大学院教授)

Page 2: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

復習コーナー古典電子論

B

dt

duEqum

d

dum

dt

udm 2

02

2

t

),0,0( BB

tiexp 0EE )exp(0 tiuu

BuEuuu iqmimm 20

2

z

y

qEzim

qEyimqBxi

qEqByixim

20

2

20

2

x20

2

Page 3: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

復習コーナー電気分極 Pを求める

P=nqu により分極 P を求める

zz

y

c

x

c

cy

y

c

cx

c

x

Eim

nqP

Ei

i

m

nqE

i

i

m

nqP

Ei

i

m

nqE

i

i

m

nqP

20

2

2

22220

2

20

22

22220

2

2

22220

2

2

22220

2

20

22

1

mqBc

サイクロトロン角振動数

Page 4: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

復習コーナー電気感受率を求める

P=0E により電気感受率を求める。

20

20

2

22220

20

2

22220

2

20

2

0

2

1

im

nq

i

i

m

nq

i

i

m

nq

zz

c

cxy

c

xx

zzzz

yxxxxyy

yxyxxxx

EP

EEP

EEP

0

0

0

mqBc

より、非対角成分は磁界に比例

Page 5: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

復習コーナー誘電率に変換する

ij=ij+ij を用いて、誘電率テンソルに変換

20

20

2

22220

20

2

22220

2

20

2

0

2

11

1

im

nq

i

i

m

nq

i

i

m

nq

zz

c

cxy

c

xxmqBc

より、非対角成分は磁界に比例

Page 6: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

復習コーナーローレンツの式

B=0 なので c=0 を代入: Lorentz の分散式

0

11

20

20

2

xy

zzxxim

nq

22220

20

2

22220

2

20

2

0

2

)()(

)(1)(

m

nq

m

nq

xx

xx

Page 7: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

質問コーナー電子が束縛されていて ω0≠0 の場合にγ が生じる具体的イメージがつかめない (H 君)

バネにつながった荷電粒子が振動するとき、熱振動による散乱を受けたり、不純物と衝突したりによって、さまざまなダンピング項が働きますがそれをまとめて γ で表したと考えてください。

Page 8: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

復習コーナードルーデの式

c=0, 0=0 とおく: Drude formula

0

)(

11

0

2

xy

zzxx im

nq

)()(

11)(

220

2

220

2

m

nq

m

nq

xx

xx負の誘電率

Page 9: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

復習コーナープラズマ振動数

Drude の式で、ダンピング項を 0 としたとき、 εの実数部が 0 となる振動数を自由電子プラズマ振動数 pとよび下の式で求められる。

01

1)(2

0

2

p

xx m

nq

m

nqp

2

ダンピングのある場合の Drudeの式を p を使って書き直すと

)()(

1)(

22

2

22

2

pxx

pxx

においてゼロを横切る

22 pp

Page 10: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

質問コーナー金属中の電子が自由電子と見なせることがぴんと来ない( N 君)

金属では、構成している原子が外殻電子を放出して結晶全体に広がる電子の海を作っています。

この電子の海による遮蔽効果で、原子核の正電荷からのクーロンポテンシャルは非常に弱められています。

このため、電子はあたかも自由電子のように振る舞うのです。実際、有効質量もほとんど自由電子質量と一致すると言われています。

Page 11: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

復習コーナー金属結合

金属においては、原子同士が接近していて、外殻の s 電子は互いに重なり合い、各軌道は2個の電子しか収容できないので膨大な数の分子軌道を形成する。

電子は、それらの分子軌道を自由に行き来し、もとの電子軌道から離れて結晶全体に広がる。これを非局在化するという。

正の原子核と負の非局在電子の間には強い引力が働き、金属の凝集が起きる。

この状態を指して、電子の海に正の原子核が浮かんでいると表現される。

http://www.chemguide.co.uk/atoms/bonding/metallic.html

Page 12: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

質問コーナー自由電子とプラズマとの関係が分からない (A 君 )

金属は電子がたくさんありますが、全体としては中性です。これは、電子による負電荷の分布の中心と原子核の正電荷の中心が一致しているからです。

光の電界を受けて電子が+側に移動すると、-側には正電荷が残されます。この結果電気分極が生じるのですが、このように正電荷と負電荷が空間的に分離した状態をプラズマというのです。

+ + -

+-

電子の移動

Page 13: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

質問コーナー貴金属の選択反射の原因 光は電磁波の一種である。つまりテレビやラジオの電波

と同じように電界と磁界が振動しながら伝わっていく。金属中に光がはいると金属中に振動電界ができる。この

電界を受けて自由電子が加速され集団的に動く。電子はマイナスの電荷を持っているので、電位の高い方

に引き寄せられる。その結果電位の高い方にマイナスの電荷がたまり、電位の低い側にプラスの電荷がたまって、電気分極が起きる。

外から金属に光の電界が進入しようとすると、逆向きの電気分極が生じて電界を遮蔽してしまって光は金属中に入れないことを示す。光が入れないということは、いいかえれば、光が全部反射されてしまうということを意味する。

Page 14: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

質問コーナーPtMnSb 以外にもプラズマ振動による効果は見られるか(A君 )

Drude の式の適用出来る例としては、金、銀、銅の反射スペクトルが挙げられます。

金によるプラズマエンハンス効果については、 Fe/Au, Fe/Cu の人工格子の例があります。これについては、第12回の授業で触れます。

Page 15: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

種々の層厚をもった Fe/Cu 組成変調多層膜の磁気光学スペクトルおよび反射スペクトル(実験値)

Ker

r ro

tatio

n (

min

)

Wavelength (nm)

Fe single layer

Fe surface

Cu surface

Fe/Cu=0.62Experiment

Fe/Cu=150/245

106/171

70/11370/113

150/245106/171

(a)

Ref

lect

ivity

(%

)

Wavelength (nm)

Fe single layer

Cu single layer Fe surface

Cu surface

Fe/Cu=0.62Experiment

Fe/Cu=31/4957/92106/171170/275

(b)

実験結果

Page 16: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

質問コーナー金銀銅の反射スペクトル

波長表示 エネルギー表示

nm

1240

10602.110nm

10998.210626.6

Cm

smsJeV

m

smsJssJJ

199

8341-

-11-

e

chE

chhE

佐藤勝昭:金色の石に魅せられて

Page 17: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

質問コーナー貴金属の誘電率スペクトル

Page 18: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

復習コーナーマグネトプラズマ共鳴

0=0 , =0 を代入 ij=-i0(ij-ij) によりに変換

02

0

022

2

0

220

2

0

1

1

pzzzz

c

cpxyxy

c

pzzxx

ii

i

ii

2

2

20

2

22

2

220

2

22

2

220

2

11

1

11

1

pzz

c

cp

c

cxy

c

p

cxx

m

nq

ii

m

nq

m

nq

= c で発散

2=p2+c

2 でゼロを横切る

マグネトプラズマ共鳴

Page 19: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

復習コーナーマグネトプラズマ共鳴

2

2

22

2

22

2

1

1

pzz

c

cpxy

c

pxx

i

c

pc

c

pxyxx iN

2

22

22 11

Page 20: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

復習コーナーホール効果 ( による記述 )

0

2

202222

2

20

22

2

22

2

22

2

10

1)/(

/0

1)/(0

nqm

qnq

m

nq

m

qnq

m

nq

nqm

qnq

m

nq

zz

c

c

c

c

c

cxy

ccccxx

DC においては、→ 0 とすることにより、次式を得る。xy は x 方向に電流が流れたとき y 方向に電圧が生じることを表しており、まさにホール効果を記述するものである。

Page 21: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

復習コーナーホール効果 ( による記述 )

0

20

0

10

/

//0

10

zz

Hc

xy

xx

BRnq

B

mnq

mqB

導電率テンソルを抵抗率テンソルに変換

0

0

0

/100

0/1

0/1

ˆ

BR

BR

H

H

ホール係数

Page 22: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

復習コーナー Fe の磁気光学効果と古典電子論

比誘電率の非対角成分の大きさ:最大 5 の程度           ,        ,キャリア密度               と仮定     B=3000T という非現実的な磁界が必要

スピン軌道相互作用によって初めて説明可能

22220

20

2

c

cxy

i

i

m

nq

eV20 eV1.0-33 mcmn 2822 1010

磁気光学効果の量子論

Page 23: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

磁気光学効果の量子論

電気分極と摂動論時間を含む摂動論誘電率の対角成分の導出誘電率の非対角成分の導出磁気光学効果の物理的説明磁気光学スペクトルの形状

Page 24: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

電気分極と摂動論

電気分極とは,「電界によって正負の電荷がずれることにより誘起された電気双極子の単位体積における総和」

「電界の効果」を,電界を与える前の系 (無摂動系 ) のハミルトニアンに対する「摂動」として扱う。

「摂動を受けた場合の波動関数」を「無摂動系の固有関数」の 1次結合として展開。この波動関数を用いて「電気双極子の期待値」を計算。

Page 25: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

時間を含む摂動論 (1)

無摂動系の基底状態の波動関数を 0(r) で表し,j 番目の励起状態の波動関数を j(r) で表す.無摂動系のシュレーディンガー方程式

H 00(r) =00(r) H 0j(r) = j Ej(r)

光の電界 E(t)=E0exp(-it)+c.c. (c.c.= 共役複素数 )

摂動のハミルトニアンH’=er ・ E(t)

(4.22)

Page 26: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

時間を含む摂動論 (2)

摂動を受けた系のシュレーディンガー方程式

tHHtHtt

i r, r, r,

0

この固有関数を,無摂動系の (時間を含まない )固有関数のセットで展開

j

jjj tirtctirtr )exp()()()exp()(, 00

この式を式 (4.23) に代入し,無摂動系の波動関数について成立する式 (4.22) を代入すると

(4.23)

(4.24)

'

'''00'

''' )()exp()()exp()(exp)r(

)(

jjjj

jjj

j rHtitctirHtidt

tdci

Page 27: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

時間を含む摂動論 (3)

左から *j(r) をかけて, r について積分すると

''''

00'

'''

)()exp()(

)exp()(exp)r()(

jjjj

jjj

j

rHtitc

tirHtidt

tdci

(4.25) titjetiHjdt

tdci jj

j00 exp)(0exp0

)( Er

)()(*0 0 rrrdrerie j ここで また 00 jj

また、励起状態間の遷移行列 jrie は無視した

Page 28: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

時間を含む摂動論 (4)

式 (4.25) を積分することにより式 (4.24) の展開係数 cj

(t) が求められる.

titjetiHjdt

tdci jj

j00 exp)(0exp0

)( Er

0

00

0

00

00 01

)(exp1)(exp10

exp.)exp(0)(

j

j

j

jx

jt

xxj

titixjeE

dtticctiExjeitc

(4.26)

この係数は,摂動を受けて,励起状態の波動関数が基底状態の波動関数に混じり込んでくる度合いを表している.

jjjj tirtctirtr )exp()()()exp()(, 00

Page 29: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

誘電率の対角成分の導出 (1)  電気分極 Pの期待値を計算

( 入射光の角周波数と同じ成分 )

)(110

exp)(*0exp)(000

*)(

00

2

2

00

tExj

Nq

titcjxtitcxjxNq

dxxNqtNqxP

xj jj

jjxjjxj

x

xxxx EP 0)()(

00

2

0

2 110

jjjxx xj

Nq

(4.27)

(4.28)

0

00

0

00

)(exp1)(exp10)(

j

j

j

jxxj

titixjeEtc

Page 30: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

誘電率の対角成分の導出 (1)

有限の寿命を考える: i の置き換えをする。

j jxj

j jjxx

if

m

Ne

iixjm

m

Nq

2200

2

00

2

0

2

1

110)(

誘電率に変換

(4.33)

(4.31)

2

0 02 xjmf jxj 振動子強度

jj

joxjxx

if

m

Ne

2222220

222

0

2

4

21)(

Page 31: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

誘電率の非対角成分の導出 (1)

非対角成分 :y 方向の電界が Ey(t) が印加されたときの,分極 P の x 成分の期待値

j j

y

j

y

jjyj

jjyjjyj

x

tiEtiEjyxjNq

cctitcxjNq

titcjxtitcxjxNq

dxxNqtNqxP

0

0

0

02

0

00

)exp()exp(*100

.exp)(0

exp)(*0exp)(000

*)(

j j

xy

xjjyNq

0

2 00)(

および

j j

xy

yjjxNq

0

2 00)(*

j jj

xyxyxy

yjjxxjjyNq

00

2 0000

22

)(*)()(

Page 32: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

誘電率の非対角成分の導出 (2)

という置き換えをすると若干の近似のもとで 2/iyxx

j jjxy

jxjx

i

Nq22

0

22

0

2 00

2)(

20 jx 右および左円偏光により基底状態 |0> から,励起状態 |j> に遷移する確率

円偏光についての振動子強度

2

0 0 jxmf

jjo

j j

jjxyxy

i

ff

m

Nqi

220

00

0

2

2)(

Page 33: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

磁気光学効果の 量子論

磁化の存在→スピン状態の分裂左右円偏光の選択則には影響しない

スピン軌道相互作用→軌道状態の分裂右 (左 ) 回り光吸収→右 (左 ) 回り電子運動

誘起大きな磁気光学効果の条件

遷移強度の強い許容遷移が存在することスピン軌道相互作用の大きな元素を含む磁化には必ずしも比例しない

Page 34: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

電子分極のミクロな扱い

= +++ + ・・

+ + -

-

無摂動系の波動関数

電界の摂動を受けた

波動関数E

s-s- 電子的電子的 p-電子的

無摂動系の固有関数で展開

= + +・・・・

摂動を受けた波動関数

2220

2

20

2210

2

10

0

2

220

2

00

2

02012

10

2

xxNq

xjNq

jjjxx

|1>

|0>

|2>

<0|x|1> <1|x|0>

Page 35: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

円偏光の吸収と電子構造

Lz=0

Lz=+1

Lz=-1

s-like

p-=px-ipy

p+=px+ipy

px-orbitalpy-orbital

光の電界 1

0

20

1 0-

20-

10 は 20 より光エネルギーに近いので左回りの状態の方が右回り状態より多く基底状態に取り込まれる

2220

2

202210

2

10

2 2010

2)(

xx

i

Nqxy

|0>

|1>

|2>

Page 36: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

スピン軌道相互作用の重要性

L=1

L=0

LZ=+1,0,-1

LZ=0

Jz=-3/2Jz=-1/2

Jz=+1/2Jz=+3/2

Jz=-1/2

Jz=+1/2

交換分裂 交換相互作用

+スピン軌道相互作用磁化なし

Page 37: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

反磁性型スペクトル

励起状態

基底状態

0 1 2

磁化の無いとき 磁化のあるとき

Lz=0

Lz=+1

Lz=-1

1+2

光子エネルギー 光子エネルギー

’xy ”xy

Page 38: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

誘電率の非対角成分のピーク値

20

2

4

m

fNe SO

peakxy

大きな磁気光学効果を持つ条件:・光学遷移の振動子強度 f が大きい・スピン軌道相互作用が大きい・遷移のピーク幅が狭い

鉄の場合: N=1028m-3, f0=1, so=0.05eV, 0=2eV, /=0.1eV を代入 xy”|peak=3.5 を得る

Page 39: 大学院理工学研究科  2004 年度 物性物理学特論第 6 回 -磁気光学効果の電子論 (2): 量子論-

常磁性型スペクトル

励起状態

基底状態

f+ f-

f=f+ - f-

0

磁化なし 磁化あり

’xy

”xy

光子エネルギー

誘電率の非対角要