トランジスタの物理原理に基づく回路モデル hisim … 2 0.はじめに...

90
HiSIM2 1 シルバコ・ジャパン ワークショップ 17April, 2007 トランジスタの物理原理に基づく回路モデル HiSIMとその応用 広島大学先端物質科学研究科 三浦道子

Upload: trinhminh

Post on 19-Mar-2018

276 views

Category:

Documents


9 download

TRANSCRIPT

HiSIM2 1

シルバコ・ジャパン ワークショップ17.April, 2007

トランジスタの物理原理に基づく回路モデルHiSIMとその応用

広島大学先端物質科学研究科三浦道子

HiSIM2 2

0.はじめに

1.HiSIMの物理原理

2.CMOSのモデリング

3.SOI-MOSFETのモデリング

4.LDMOSのモデリング

5.イメージセンサのモデリング

6.MOS-Varactorのモデリング

7.研究開発とサポート環境について

目次

HiSIM2 3

HiSIM: Hiroshima-university STARC IGFET Model

1990 JJAP Sub-1μm MOSFETs short-channel effect model 1991 SISPAD “ 1st surface-potential-based model

parameter extraction strategy1994 ICCAD “ simulation time & stability verification1995 Siemens Flash-EEPROM concurrent device/circuit development1998 STARC 100-nm MOSFET collaboration start

Release Activity2001 Oct. release to vendors HiSIM1.0.0 source code and manual2002 Jan. release to public “ “

June “ HiSIM1.1.0 “Oct. “ HiSIM1.1.1 “

2003 Oct. Test release to STARC clients HiSIM2.0.0 source code and manual2005 May release to CMC members HiSIM2.0.0 “

July “ + Verilog-A codeOct. “ HiSIM2.2.0 “

2006 Jan. release to vendors HiSIM2.3.0 2006 Dec. “ HiSIM2.3.12007 March HiSIM2.4.0

HiSIM2 4

回路モデル

Compact Model: Meyer Model (1971)

Drain Current: Sah’s Equation

(drift近似)

2ds ox gs th ds ds

1( ) - 2

-μ ⎡ ⎤⎢ ⎥⎣ ⎦

WI = C V V V VL

HiSIM2 5

Vout

Vin

VDD

( ( ))( ) ( ( )) d Q V tI t I V td t

= +

過渡解析

Inverter:

conductivedisplacement

time

回路シミュレーターが解く式

モデルが回路シミュレーターに渡す情報

電流:Ι電荷:Q + 微分

HiSIM2 6

物理原理に基づく高精度高速計算

既存の回路モデル

Vth-Based Model (BSIM4)Surface-Potential-Based Model (HiSIM, PSP)Inversion-Charge-Based Model (ACM, EKV, BSIM5)

Nanotech’05

HiSIM2 7

基本デバイス方程式

SPICE )

s

HiSIM2 8

Vth-Based Model

Inversion-Charge-Based Model

linearization

2ds ox gs th ds ds

1( ) - 2

-μ ⎡ ⎤⎢ ⎥⎣ ⎦

WI = C V V V VL

drift近似

HiSIM2 9

Surface-Potential

(analytical)

(exact)

Vth-Based

Charge-Based

Models Year 9896 02 0400

BSIM(UC Barkeley)

Model11(Philips)

EKV(Swiss IT)

SP2000(Penn.SU)

HiSIM

CMC最終候補

決定

CMCによる標準化

PSP

HiSIM2 10

• Normalized run time based on HiSIM2.2.0/C: 2005年10月

– Through circuit-1-3, HiSIM/C runs faster than BSIM4.3.0. – In case of circuit-2, HiSIM/C is 30% faster than BSIM4.3.0.– In case of circuit-3, HiSIM/Verilog-A is 55% faster than PSP.– In case of circuit-4, Runtime comparison between HiSIM vs PSP is 1:25.

Circuit Source code Simulator BSIM4.3.0 HiSIM2.2.0 PSPC spice3f5 116 100 -

Verilog-A HSPICE 741 391 564C spice3f5 143 100 -

Verilog-A HSPICE no conv. 553 616C spice3f5 128 100 -

Verilog-A HSPICE 627 545 1227C spice3f5 no conv. 100 -

Verilog-A HSPICE no conv. no conv. 2549C spice3f5 no conv. 100 -

Verilog-A HSPICE 5136 no conv. 48005

4

3

2

1

STARChttp://www.eigroup.org/cmc/next_gen_cmos/phase3/phase3.html

計算時間の比較

HiSIM2 11HiSIM2.4.0はHiSIM2.3.1より約20%高速

Eval

uatio

n Ti

me

Vgs

HiSIM2.3.1BSIM4.5.0HiSIM2.4.0

評価法: default model-parameter values10000 nMOSFETs connected in parallelwith junction models, w/o leakage currents

L=W=1μmVds=1V, Vbs=0

計算スピードの比較

HiSIM2 12

0.はじめに

1.HiSIMの物理原理

2.CMOSのモデリング

3.SOI-MOSFETのモデリング

4.LDMOSのモデリング

5.イメージセンサのモデリング

6.MOS-Varactorのモデリング

7.研究開発とサポート環境について

目次

HiSIM2 13

HiSIMのモデリング法

HiSIM: 反復法

PSP: 解析式で近似

Poisson方程式を解く

計算スピード:

BSIM3<HiSIM231=BSIM4<PSP理由:

式の関数が単純モデルパラメタが少ない

長所:

様々のデバイスに容易に拡張可能

HiSIM2 14

表面ポテンシャルの比較

コンパクトモデルの精度の鍵

HiSIM2 15

Measurement

HiSIM

Wg/Lg=2μm/40nm

微分値の再現性

HiSIM2 16

45nmノードにおける電流の再現性

Measurement

HiSIM

Wg/Lg=2μm/200nm Wg/Lg=2μm/40nm

HiSIM2 17

Gummel Symmetry Test

HiSIM2 18

表面ポテンシャル

φSLは飽和する

HiSIM2 19

Pinch-off点以降の寄与

PSP: Vfb treated as channel length dependentHiSIM: inclusion of the lateral electric field

Inversion-Layer Thickness ~ 0Gradual-Channel Approximation Valid for long channel

近似:

短チャネル効果のモデル

ドレイン端でポテンシャルの急激な増加短チャネルで顕著

HiSIM2 20

(approximating a quadratic potential distribution)

短チャネル効果のモデル

M. Miura-Mattausch et al., IEEE TED, 48, p. 2449, 2001.

HiSIM2 21

表面ポテンシャルはVds依存

HiSIM2 22

ポケット注入モデル

高濃度注入によるポケットのテール

H. Ueno et al., IEEE T ED, 49, p. 1783, 2002.

V th

(V)

HiSIM2 23

: 2D-device simulation

Pocket Implantationwith NSUBP

ポケット濃度の予測性

デバイスばらつき予測に耐え得る

HiSIM2 24

極限動作で問題になる現象

高調波ひずみノイズNon-Quasi-Static効果デバイスばらつき

HiSIM2 25

Microscopicな特性

S. Laux et a., IBM J. Res. Develop., 34, p. 466, 1990.

Car

rier E

nerg

y

Position in the Channel

Macroscopicな特性

どこまで流体近似が有効か?

キャリア挙動

2ds ox gs th ds ds

1( ) - 2

-μ ⎡ ⎤⎢ ⎥⎣ ⎦

WI = C V V V VL

HiSIM2 26

Non-linearity

V(t)=Vgs+sin(2πf0t)

Higher-order derivatives of I-V characteristics are important.

高調波ひずみ

Good Surface-Potential Calculation

HiSIM2 27

Vds=0.1V

移動度との比較

Mobility determines the harmonic distortion characteristics.D. Navarro et al., Proc. SISPAD, p. 259, 2004.

HiSIM2 28

ノイズ特性

1/f NoiseThermal NoiseInduced Gate NoiseCross-Correlation Noise

Shot NoiseJunction Noise

d

dsi

Δ=

Noise Spectral Density

2i

Sf

HiSIM2 29

Different Origins

1/f Noise:

Thermal Noise:

Induced Gate Noise:Cross-Correlation Noise:

HiSIM2 30

1/f ノイズの起源

HiSIM2 31

1/fからのずれ

HiSIM2 32

Trap Densityの不均一性

HiSIM2 33

Wafer上の統計

Homogeneous Distribution on a Wafer

HiSIM2 34

モデル式

HiSIM2 35

Ntrap is fitted to measurements.If technology is mature, Ntrap is nearly universal.

測定値との比較

I-V characteristics determine 1/f noise characteristics.1/f noise is predictable.

S. Matsumoto et al., IEIEC T E, E88-C, p. 247, 2005.

HiSIM2 36

22 ds

eff ds

ds0

id4 ( )

4

kTS g yL IkTg γ

=

=

∫ dy gds0: at Vds=0

van der Ziel Equation based on Nyquist Theorem:

gds(y): Channel Conductance

γ : Noise Coefficient

Thermal Noiseの起源

HiSIM2 37

測定値との比較

Lg=0.17μmLg=0.3μmLg=0.5μmLg=1.0μm

Lines: HiSIMSymbols: Measurements

No Additional Model Parameters

HiSIM2 38

• Knoblinger et al. (2001): Hot Electron Contribution• Jamal Deen et al. (2002): Channel Length Modulation• Scholten et al. (2002): Velocity Saturation

短チャネルにおけるノイズ係数, γ

Different Explanations

HiSIM2 39

First γ Reduction and Increase in the Saturation RegionNo Drastic Increase of γ γ Minimum Increase from 2/3

Lines: Simulation (HiSIM) Symbols: Measurements

Potential Increase Mobility ReductionOrigin of γ IncreaseS. Hosokawa et al., Appl. Phys. Lett., vol. 87, p. 092104, 2005.

測定値との比較:Excess Noise

HiSIM2 40

Universal Relationship

Vth Shiftとの比較

Grad. γ

Grad. ΔVth

HiSIM2 41

T. Warabino et al., Proc. SISPAD, p. 158, 2006.

Induced Gate Noise と Cross-Correlation Noise

HiSIM2 42

g ch th0

0

0

( ) ( )

( ) ( ) ( )

( ) ( )

V x V V x V

V x V x v x

I x I I x

= − −

= − Δ⎧⎪⎨ = − Δ⎪⎩

{ }( )( )

( ) ( ) ( )

i x Wj v x

x d

dV x V x I x

x W

εω

εμ

⎧⎪

∂⎪ = −⎪⎪ ∂⎨⎪⎪ ∂⎪ = −

∂⎪⎩

Continuity eq.

Current Density eq.

( )( ) ( )

g

g d

i

i i

g

g d

22

1 2

1 2 2

2

2**

i I I

i i I I I

S dx v dx

S dx v dx

′ ′Δ Δ + Δ

′ ′ ′Δ Δ Δ + Δ Δ

∴ = = Δ

= = Δ

∫ ∫

∫ ∫

: cross - correlation

M. Shoji, IEEE TED, pp. 520-524, 1966.

HiSIM2 43

実測値との比較

HiSIM results reproduce the excess noise for short-channel devices.

A. J. Scholten, IEDM03, pp.867-870, 2003.

HiSIM2 44

ノイズ相関計数 c

HiSIM results reproduce the theoretical features of the cross-correlation.

i i

i i

g d

g d

Sc

S S=Correlation Coefficient :

HiSIM2 45

Excess Noiseの比較

Excess noise in Sig starts to saturate for further Vds increase.

Reason: mobility distribution along the channel

iggs

ds0

2

54C

gS kTω

β⎛ ⎞⎜ ⎟⎝ ⎠=

HiSIM2 46

Quasi-Static Approximation: spontaneous carrier response

Non-Quasi-Static Effects

( ( ))( ) ( ( )) d Q V tI t I V td t

= +

HiSIM2 47

キャリアの遅延

Carrier Deficit in the Channel

HiSIM2 48

NQS効果のモデリング

N. Nakayama et al., IEE Electron. Lett., 40, p. 276, 04.

Channel Segmentation

HiSIM2 49

Performance of an Element: PLL

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1.0

Voltage [V]

TIME[nsec]

Fourier Transform

0

5000

1 104

1.5 104

2 104

2.5 104

3.0 6.0 9.0Spectrum[V2/Hz]

Frequency[GHz]

Time-Domain Analysis Frequency-Domain Analysis

HiSIM2 50

Numerical AC Analysis

Analytical Transformation

Numerical AC Analysis

Analytical Transform

K. Machida et al., SiRF, P. 57, 2006.

Analytical Transformation

Consistent Model both for Time- and Frequency-Domain Analysis

HiSIM2 51

S. Jinbou et al., Ext. Abs. SSDM, P. 26, 2002.

with Rg without Rg

Y-Parameter Analysis

Strong External Contribution

HiSIM2 52

Conventionalな方法

H. Kawano et al., Digest Microwave Symp., P. 2121, 2002.

Equivalent-Circuit Modelwith Substrate Network

パラメタ抽出が困難NQSモデルが本質

HiSIM2 53

高周波における高調波ひずみ

Carrier transit delay dominates the HD characteristics.

D. Navarro et al., IEEE T ED, vol. 53, p. 2025, 2006.

HiSIM2 54

Y. Takeda et al., CICC, p. 827, 2005.D. Navarro et al., IEEE MWC Lett., p. 125, 2006.

f0 = 1kHz

IP3 Prediction

HiSIM2 55

1/f Noise Thermal Noise

No model parameters are required.Features are determined only by I-V characteristics.

Harmonic Distortion

高次特性

Electrostatic effect is still dominating.

Surface potential is important.

HiSIM2 56

[Phenomena] [Subjects]

Short Channel:

Reverse-short Channel: impurity pile-uppocket implant

Poly-Depletion:

Quantum-Mechanical:

Channel-Length Modulation:

Narrow-Channel:

Temperature Dependency: thermal voltagebandgapniphonon scatteringmaximum velocity

Mobility Models: universalhigh Field

Shallow-Trench Isolation: threshold voltagemobilityleakage current

Capacitances: intrinsicoverlaplateral-field inducedfringing

[Phenomena] [Subjects]

Non-Quasi-Static: transient time-domainAC frequency-domein

Noise: 1/f thermal induced gatecross-correlation

Leakage Currents: substrate currentgate currentGIDL current

Source/Drain Resistances:

Junction Diode: currentscapacitances

HiSIM2でモデル化されている現象

HiSIM2 57

Binning OptionUser Required Improvements

DFM SupportBrushed up Source Code

HiSIM2.4.0: release March’07

e. g. STI-Model Improvements

HiSIM2.3.0 HiSIM2.3.1Parameter Extraction Procedure / Tools

Tests with Real Production Circuits

about 1 year

ばらつき予測

HiSIM2 58

0.はじめに

1.HiSIMの物理原理

2.CMOSのモデリング

3.SOI-MOSFETのモデリング

4.LDMOSのモデリング

5.イメージセンサのモデリング

6.MOS-Varactorのモデリング

7.研究開発とサポート環境について

目次

HiSIM2 59

MOSFET SOI-MOSFET DG-MOSFET Fin-FET

production

Motivation for Technology Innovation

高密度化

高性能化

高生産性

Siliconの微細化技術の開発

HiSIM2 60

2D-Device

表面ポテンシャルの計算

HiSIM2 61

HiSIM-SOI

現在History効果の検証:dynamic fully-, partially-depletion change

HiSIM2 62

1/fノイズ特性

HiSIM2 63

Bulk-MOSFETとの比較

HiSIM2 64

SOI膜厚依存性

HiSIM2 65

0.はじめに

1.HiSIMの物理原理

2.CMOSのモデリング

3.SOI-MOSFETのモデリング

4.LDMOSのモデリング

5.イメージセンサのモデリング

6.MOS-Varactorのモデリング

7.研究開発とサポート環境について

目次

HiSIM2 66

Different LDMOS StructuresCase 1.

Case 2.

Case 3.

Ldrift

Lover

Ldrift

Lover

Ldrift

Small overlap

LDMOS構造

Large overlap

Medium overlap

HiSIM2 67

Channel-Length ModulationOverlap Capacitance

HiSIM for Bulk-MOSFET

Complete Surface-Potential-Based Model

Beyond Gradual-Channel Approximation

φS0 : at source edge

φSL : at the end of the gradual-channel approx.

φS(ΔL) : at drain edge (calculated from φSL)

HiSIM2 68

Ldrift

Ndrift

1. Drift Regionのモデル化

Potential drop in the drift region

All important potential values are known.No sub-circuit for the potential drop is necessary.

HiSIM2 69

Comparison of Key Potential Values

: potential determining LDMOS characteristics

HiSIM reproduces φS(ΔL) calculated by 2D-device simulator.

φS(ΔL)φ S

(ΔL)

[V]

φS(ΔL)

φ S(Δ

L)[V

]

φ S(Δ

L)[V

]φ S

(ΔL)

[V]

Vgs [V] Vds [V]

HiSIM2 70

Comparison of Id-Vgs

: 2D-Device Simulation Results: HiSIM-LDMOS Results

I d[A

]

Vds=20V

Vds=10V

Vds=5V

Vds=0.1V

Good agreement between HiSIM result and 2D-device simulation result is achieved.

g m[S

]

HiSIM2 71

Comparison of Id-Vds

: 2D-Device Simulation Results: HiSIM-LDMOS Results

I d[A

]

Vgs=2.5V

Vgs=5V

Vgs=7.5V

Vgs=10V

Quasi-saturation behavior of LDMOS is reproduced.

g d[S

]

HiSIM2 72

Ldrift = 1.5μm Vds = 10V

invgs

QV

∂∂

driftC

invdrift

gs

Q CV

∂+

Charge in the drift region is modeled explicitly.

Vgs [V] Vgs [V]

Comparison of Key Capacitances

HiSIM2 73

Lover

Ldrift

2.Gate-Drain Overlap領域のモデル化

Overlap領域でのdepletion, accumulation状態を考慮

Effect of GateEffect of Gate--Drain OverlapDrain Overlap

HiSIM2 74

0.はじめに

1.HiSIMの物理原理

2.CMOSのモデリング

3.SOI-MOSFETのモデリング

4.LDMOSのモデリング

5.イメージセンサのモデリング

6.MOS-Varactorのモデリング

7.研究開発とサポート環境について

目次

HiSIM2 75

Commercial use:- Sensor arrays with integrated processingcircuitry (for e. g. digital cameras)

Under R & D:- Opto-electronic integatedcircuits (OEICs)

- Prosthetic health care(e. g. artificial eye)

OEIC concept

HiSIM-PD

HiSIM2 76

Modeling of Lateral Photodiode

Approximations:

- Homogeneous field E inhorizontal (x) direction

- Holes move to p+ regioninstantly

- Negligible recombinationin intrinsic region

HiSIM2 77

Negligible Recombination

Main Justification:

- Low carrierconcentration in i-region

- Fast separation of generated carrierpairs

xy

n x y t J x y t G y tt q x

J x y t q n x y t E y

G y t e t

( , , ) 1 ( , , ) ( , )

( , , ) ( , , ) (: )

( , ) ( ): α

μ

α φ−

∂ ∂− =

∂ ∂=

=

電流連続の式:

電流密度式

キャリア発生確率

μ φα

⎛ ⎞⎜ ⎟⎝ ⎠

: elementary charge, : mobility, : photon flux,: absorption coefficient, : carrier number density, : current density

qn J

HiSIM2 78

Measured Generation Current

HiSIM-PD compact model results are in good agreement with measurements.

HiSIM2 79

Attenuation-Length Dependence

A small attenuation length results in an extended current tail.

HiSIM2 80

Integration into Circuit Simulator

HiSIM-PD receives terminal voltages and to responds with the respective photocurrents.

HiSIM2 81

Consistent Simulation Necessity

Is a phenomenological current source model already a satisfactory solution ?

HiSIM2 82

Simulated Test Configuration

Tested dependencies:

- Vout (RL)- IPD (RL)

Compared methods:- HiSIM-PD model- Current source model- 2-D device simulation

HiSIM2 83

Comparison with Current Source

HiSIM-PD and current source results are even qualitatively different.

HiSIM2 84

Comparison with Device Simulator

2-D device simulation verifies the correctness of the HiSIM-PD results.

HiSIM2 85

0.はじめに

1.HiSIMの物理原理

2.CMOSのモデリング

3.SOI-MOSFETのモデリング

4.LDMOSのモデリング

5.イメージセンサのモデリング

6.MOS-Varactorのモデリング

7.研究開発とサポート環境について

目次

HiSIM2 86

AccumulationモードMOS Varactor

HiSIM2 87

キャリアの移動遅延: τ

τは電場に反比例する

HiSIM2 88

ΜΟS Varactorの周波数依存性

HiSIM2 89

0.はじめに

1.HiSIMの物理原理

2.CMOSのモデリング

3.SOI-MOSFETのモデリング

4.LDMOSのモデリング

5.イメージセンサのモデリング

6.MOS-Varactorのモデリング

7.研究開発とサポート環境について

目次

HiSIM2 90

ナノデバイス・システム研究センター

HiSIM研究センター

極微細デバイス工学STARC

准教授特認助手客員教授研究員

HiSIM研究センターの役割

A 会社

B 会社広島大学

教授准教授

教授准教授