마스터 부제목 스타일 편집 wonho choe fusion plasma transport research center (fptrc)...

21
마마마 마마마 마마마 마마 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014 Research Activities in KAIST-FPTRC PPPL Visit

Upload: harry-clement

Post on 16-Dec-2015

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

마스터 부제목 스타일 편집Wonho CHOE

Fusion Plasma Transport Research Center (FPTRC)

Korea Advanced Institute of Science and Technology (KAIST)

February 18, 2014

Research Activities in KAIST-FPTRC

PPPL Visit

Page 2: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

2SXR & VUV imaging diagnostics on KSTAR (as of now)

Soft X-ray array (SXRA) 2 arrays, 32 ch (64 ch) t = 2 μs, r = 5 cm Ar Ross filters (Cl & Ca K-edge): 2.8 – 4.0 keV Be filters (10, 50 μm: 0.5, 1.0 keV): 2 color

VUV spectroscopy 28 ch for imaging (5 - 20 nm), t = 13 ms 1 ch for survey (15 - 60 nm), t = 13 ms

2-D Tangential X-ray pinhole camera (TXPC) Duplex (2 color), 50x50 ch t = 0.1 ms, r = 2 cm

GEM detector for 2-D X-ray camera 12x12 pixels, 128 ch t = 1 ms, r = 2 - 6 cm 3 – 30 keV

Tomographic reconstruction codes developed

Max. Entropy Method Phillips-Tikhonov Min. Fisher Information Cormack

Page 3: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

3

edge

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

HD arrays (33-64)

HU arrays (1-32)

16 ch (32)

16 ch (32)

HU

HD

VD2

VU2

• 4 arrays, 256 ch• 2 cm, 2 μs

1 array, 60 ch

• 2 filters multi energy,

neural network• 1.3 cm, 2 μs

(1) SXR array diagnostic system

4 array, 256 channels

2013 20142 array, 64 ch

• Be filters (10, 50 mm)• Ar Ross filters (Ar trans-

port)• Bolometer (No filter)

S.H. Lee J. Jang

Page 4: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

4

(2) Imaging VUV spectroscopy

2013 (5-20 nm, ~3 ms)2012 (15-60 nm, 13-40 ms)

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

ITER prototype on KSTAR (5 – 60 nm)

Vacuum extension

VUV spectrometer on the optical table

28 ch, imaging

In collaboration with ITER KO-DA (C.R. Seon)

1 ch, survey

He I : 53.70 nmHe II : 25.63, 30.37 nmO V : 15.61, 19.28, 21.50 nmO VI : 17.30, 18.40 nmC III : 38.62 nmC IV : 24.49, 38.41, 41.96 nmC V : 22.72, 24.87 nmFe XV : 28.42 nmFe XVI : 33.54, 36.08 nm

W : 5-20 nmAr XIV 18.79 nmAr XV 22.11 nmAr XVI 35.39 nm

Page 5: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

5

2.50 2.52 2.54 2.56 2.58 2.60 2.62 2.64 2.66 2.68 2.700

100

200

300

400

500

600 r/a = 0.10 r/a = 0.30

Time (s)

X-r

ay p

hoto

n co

unt (

A.U

.)

(a) (b)

Sawtooth crash in #7640

(3) ‘Tangential’ X-ray pinhole cameraIn collaboration with KAERI (M. Moon)

‘Duplex (2-color) Multi-Wire Proportional Counter (MWPC) detector

7640image-81.1s - 81.2s

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7640image-81.2s - 81.3s

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Channel

Ch

an

ne

l

Channel

Outboard Outboard

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50 -20

-15

-10

-5

0

5

10(b) - (a)

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Page 6: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

6

TXPC, RT-EFIT

Major radius, R

Visible camera

Major radius, R

Vloop

Ip

Stored en-ergy

ECE

Da

Shot 7886

Consistent with RT-EFIT and visible camera Tangential reconstruction on-going

X-ray imaging of VDE

S. Jang et al., CAP 13, 819 (2013)

Page 7: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

7

Pulse Height Analyzer mode

Te by TXPC (PHA mode)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

Te

(A

.U.)

Time (sec)

ECE_2 TXPC_11

40 60 80 100 120 140 160 180 200 220 240 260

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0 1 s 2 s 3 s 4 s Linear Fit of 1 Linear Fit of 2 Linear Fit of 3 Linear Fit of 4

# of

pho

tons

(lo

g_sc

ale)

Pulse height (A.U.)

Page 8: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

8

(4) GEM detector for TXPC Front Back

128 ch in 12x12 cm2 Spatial & time resolution:

2-6 cm, 1 ms

In collaboration with ENEA (D. Pacella)

55Fe Source

Gas in

Gas out

Lan cable

HV cable

FPGA

Zoom in & out

GEM

[4] W. Bonivento et al., Nucl. Instr. and Meth. A, 491, 233 (2002)

X-position mov-able

GEM foils: 50 µm thick kapton foil, copper clad on each side

Triple-GEM geometry: 3/1/2/1 mm Front-end electronics: CARIOCA micro chips by

LNF and CERN [4]

Active area: 10 x 10 cm2

Channels: 12 x 12 pixels (each pixel has 0.8 x 0.8 cm2)

Temporal: 10 µs (up to 255 frames), 1 ms (60k frames)

Mixed gas (flow): 70% Ar, and 30% CO2 at 1 atm

Movable system (zoom in & out and horizontally movable)

Page 9: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

9

Preliminary result of GEM detector

shot 9033Zoom in

shot 9034 shot 9035 shot 9056

Zoom in & out

Page 10: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

10

Time (s)

Fre

qu

en

cy (

kHz)

2.632 2.634 2.636 2.638 2.64 2.6420

20

40

60

80

100

Sawtooth crash in H-mode

m = 1 (f = 19 kHz) is shown by spectrogram. Maximum displacement from the initial posi-

tion: 0.13 m Maximum rotation speed: 10.7 km/s

Spectrogram

m = 1f = 19 kHz

R (m)

Z (

m)

Time 2.642000 sec

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Trajectory of the hot core

rtEFIT

Page 11: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

11

2.632 2.634 2.636 2.638 2.64 2.642

0.6

0.8

1

SX

R00

7 (k

W/m

2 )

2.632 2.634 2.636 2.638 2.64 2.6420

0.1

0.2

(m

)

2.632 2.634 2.636 2.638 2.64 2.6420

5

10

15

v (

km/s

)Time (s)

Comparison between L- & H-mode

1.028 1.03 1.032 1.034 1.0360.2

0.3

SX

R00

7 (k

W/m

2 )

1.028 1.03 1.032 1.034 1.0360

0.1

0.2

(m

)

1.028 1.03 1.032 1.034 1.0360

5

10

15

v (

km/s

)

Time (s)

Crash

< 5 km/s

0.1 m

Crash

< 10 km/s

< 0.1 m

L-mode, low vФ H-mode, high vФ

1.028 1.03 1.032 1.034 1.0360.2

0.3

SX

R0

07

(k

W/m

2 )

1.028 1.03 1.032 1.034 1.0360

0.1

0.2

(m

)

1.028 1.03 1.032 1.034 1.0360

5

10

15

v (k

m/s)

Time (s)

2.632 2.634 2.636 2.638 2.64 2.642

0.6

0.8

1

SX

R0

07

(k

W/m

2 )

2.632 2.634 2.636 2.638 2.64 2.6420

0.1

0.2

(m

)

2.632 2.634 2.636 2.638 2.64 2.6420

5

10

15

v (k

m/s)

Time (s)

Crash in multi steps

Crash in a single step

Displacement from central position

Displacement from central position

Poloidal velocity Poloidal velocity

Page 12: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

12Correlation between SXR rotation speed & vФ (XICS)

50 100 150 200 2500

5

10

15

20

25

Toroidal Rotation Velocity [km s-1]

Fre

quen

cy (

m =

1)

[kH

z]

#7640#7642#7644#7645#7646#7647

• The m=1 SXR rotation speed is compared with toroidal rotation speed (XICS).

• Toroidal rotation frequency

0 5 10 15 20 250

5

10

15

20

25

Rotation Frequency [kHz]

Fre

quen

cy (

m =

1)

[kH

z]

#7640#7642#7644#7645#7646#7647

Rf

2

Page 13: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

13

ECH effect on Ar transport Argon gas injection through a piezo valve (nAr/ne < 0.1%)

Different transport with varying ECH positions Feasibility of impurity control?

Analysis of Ar transport coefficients in L-mode (#7566, #7574) & H-mode (#7745, #7863)

by using UTC-SANCO code with diagnostic results (SXR, VUV, XICS)

0.4

0.2

0 1 2 3 4 Time (sec)

Ip (

MA

)

Ar puffing20 ms

#756

6

0.4

0.2

0 1 2 3 4 Time (sec)

Ip (

MA

)

Ar puffing20 ms

#757

4

ECH110 GHz350 kW

#786

3

L-mode

w/o ECH

R [m]

Z [

m]

1.2 1.4 1.6 1.8 2 2.2 2.4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Heating positions(r/a = 0, 0.16, 0.30, 0.59)

w/ ECH

40 cm20100

Ar puffing after ECH start

Ar

Page 14: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

14

1.8 1.9 2 2.1 2.2 2.3-10

0

10

20

30

40

50

60

70

80

Time [s]

PSX

R [

W

m-2

]

No ECHOn-axis ECH = 0.16 = 0.30 = 0.59

Depending on ECH position

Time (s)

400

mm

20

0 m

m

100

mm

O

n-ax

is

No

EC

HC

hord

#

1.5 2 2.5 3 3.5

1

161

161

161

161

16

No ECH

On-axis ECH

ECH @r/a = 0.16

0.30

0.59

Less core accumulation of Ar impurity with ECHMost effective (i.e., least core impurity concentration) with on-axis ECHLess effective with resonance layer position at larger radius

No ECH

On-axis ECH

0.16

0.30

r/a = 0.59

L-mode

Page 15: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

15

2-D Reconstructed Ar emissivity• Core-focused reconstruction (Cormack algorithm)• Emissivity images of mainly Ar16+ & Ar17+ impurities

No ECH On-axis ECH

1.4 1.6 1.8 2 2.20

0.1

0.2

0.3

R (m)

I SXR (

kW/m

3 )

0.04

0.06

0.08

PSX

R (kW

/m3 )

SXR004

0.1

0.15

0.2

PSX

R (kW

/m3 )

SXR007

0.1

0.15

0.2

PSX

R (kW

/m3 )

SXR010

0.01

0.02

0.03

0.04

0.05

PSX

R (kW

/m3 )

SXR019

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

0.1

0.15

0.2

0.25

Time (s)

PSX

R (kW

/m3 )

SXR024

Shot #7566, Time: 2.240000 s

1.4 1.6 1.8 2 2.20

0.1

0.2

R (m)

I SXR (

kW/m

3 )

0.04

0.06

0.08

0.1

PSX

R (kW

/m3 )

SXR004

0.1

0.15

0.2

0.25

PSX

R (kW

/m3 )

SXR007

0.1

0.15

0.2

0.25

PSX

R (kW

/m3 )

SXR010

0.02

0.04

0.06

PSX

R (kW

/m3 )

SXR019

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 30.1

0.15

0.2

0.25

Time (s)

PSX

R (kW

/m3 )

SXR024

Shot #7574, Time: 2.194000 s

1.41.6

1.82

2.2

-0.5

0

0.5

0

0.05

0.1

0.15

0.2

0.25

R (m)Z (m)

PS

XR (

kW/m

3 )

1.41.6

1.82

2.2

-0.5

0

0.5

0

0.05

0.1

0.15

0.2

0.25

R (m)Z (m)

PS

XR (

kW/m

3 )

Page 16: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

16

• With ECH, central diffusion and convection are increased.

• The pinch direction reverses at r/a < 0.3.

Modification of D & V by ECH

0 0.2 0.4 0.6 0.8 10.1

0.2

0.3

0.4

0.5

Dif

fusi

on (

m2 /s

)

r/a0 0.2 0.4 0.6 0.8 1

-15

-10

-5

0

Con

vect

ion

(m/s

)

r/a

0 0.2 0.4 0.6 0.8 10.1

0.2

0.3

0.4

0.5

Dif

fusi

on (

m2 /s

)

r/a0 0.2 0.4 0.6 0.8 1

-15

-10

-5

0

5

Con

vect

ion

(m/s

)

r/a

Non ECH (#7566)

On-axis ECH (#7574)

Outward Inward

Inward

Page 17: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

17

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

3.5

4

4.5x 10

16

#/m

3

r/a

No ECH

Total Ar

Ar+17

Ar+16

0 0.2 0.4 0.6 0.8 10

2

4

6

8

10

12

14

16x 10

15

#/m

3

r/a

On-axis ECH

Total Ar

Ar+17

Ar+16

◈ Radial profile of total Ar density at peak time (2.3 s)

◈ Total Ar density

r/a

Tim

e (s

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.82.05

2.1

2.15

2.2

2.25

2.3

1

2

3

4x 10

16

r/a

Tim

e (

s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.82.05

2.1

2.15

2.2

2.25

2.3

0

2

4

6

8

10

12

14

16x 10

15

No ECH (#7566) On-axis ECH (#7574)

Total Ar Total Ar

Hollow Ar density profile by ECH

Page 18: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

18

Neoclassical contribution of Ar transport

No ECH (#7566)

On-axis ECH (#7574)

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

Dif

fusi

on (

m2 /s

)

r/a

0 0.1 0.2 0.3 0.4 0.5-15

-10

-5

0

5

Con

vect

ion

(m/s

)

r/a

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

Dif

fusi

on (

m2 /s

)

r/a

0 0.1 0.2 0.3 0.4 0.5-10

-5

0

5

Con

vect

ion

(m/s

)r/a

0 0.1 0.2 0.3 0.4 0.5

7

8

9

10x 10

-3

Dif

fusi

on (

m2 /s

)

r/a

0 0.1 0.2 0.3 0.4 0.5-0.1

-0.05

0

0.05

0.1

0.15

Con

vect

ion

(m/s

)

r/a

Neoclassical calculation of D and V by NCLASS - The same input (Te, ne) of SANCO calculation - Ar16+ (dominant charge state) distribution at the peak time is used.

D, V calculated by NLCASS is smaller by an order of magnitude than the experimental D, V.

The impurity transport is anomalous, rather than neoclassical.

NCLASS

Exp

Page 19: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

19

Impurity pinch 3 impurity pinch terms[1] in Weiland multi-fluid model

Pinch type DescriptionPinch direction

by turbulence type

Curvature pinch Compressibility of ExB drift v Inward

Thermodiffusion pinch Compression of the diamagnetic drift vITG Outward

TEM Inward

Parallel impurity compression

Parallel compression of parallel v fluctuations produced along the field line by fluctuating

electrostatic potential

ITG Inward

TEM Outward

GYRO and XGC simulations are on-going to find the dominant turbulence mode of No ECH and on-axis ECH cases.

It is expected that TEM is the dominant mode because of ECH effect on Te profile. It may be due to parallel impurity compression driven by increased R/LTe

[2]

[1] H. Nordman et al., 2011 Plasma Phys. Control. Fusion 53 105005 [2] C. Angioni et al.,2006 Phys. Rev. Lett. 96 095003

Curvature pinch

Thermodiffusion pinch

Parallel compression

pinch

Page 20: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

20Diagnostics & analysis tools ready for W injection experiment

5 - 20 nm wavelength range is mainly used for measurement of W emission spectra. ASDEX-U: VUV (~5 nm) JET: VUV (~5 nm) & SXR JT-60U: VUV (6.23 nm) LHD: EUV (6.09, 6.23 & 12.7 nm) KSTAR

- VUV (5 – 60 nm): ITER prototype- SXR

Simulation & Atomic data: SANCO-ADAS

W test particle injector under preparation/consideration Particle gun (under preparation on KSTAR) Laser blow-off system (C-Mod) Particle dropper (NSTX) Pellet injection (LHD)

Page 21: 마스터 부제목 스타일 편집 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014

21

Presentations and discussions

Design and tomography test of Soft X-ray Array diagnostics

on KSTAR (Seung Hun LEE)

Design and tomography test of Edge Multi energy Soft X-ray

Array diagnostics on KSTAR (Juhyeok JANG)

Impurity transport analysis and preparation of W injection

experiments (Joohwan HONG)

Development of a tungsten injection injector for high Z

impurity study (Joohwan HONG)