1; - eng.shizuoka.ac.jp · `yonseiun沁ersity-shizuokaun沁ersitystudentsworksh()p2011

36
J。こ5 ’.n。F; 4jむ I丿:j TI゛・ ジド - - Y臨]/ijniversity-!S;hi zuoka砿1 Å `・・.こ; - - StudentsWor] 十▽jjムj Pro shop2011 ;■に。・ gs - - き、 ●゛ヤ 1’- - y4 !ゝ むぶ ……こヽj醜 祠, -

Upload: ngokhanh

Post on 01-Mar-2019

224 views

Category:

Documents


0 download

TRANSCRIPT

J。こ5

ノ 八’ . n 。 F ;

4 j む

I丿:j

TI゛・ジド言

-

- ■

ノ背牡

“IW“″`rr

1;

Y臨]/ijniversity-!S;hi’zuoka砿1

  二ヅ

ー’どIÅ

・`・.こ;

y y

や..6″..

」 

‘.・

J?

い一鞍杜氏0 白wmE

しノー・’--’

StudentsWor]

十▽jjムj

Pro

shop2011。;■に。・?

gs

kl

″̶りr6-

?”

//

d。-

jl

4J

き、

●゙ ヤ

||

1 ’ -

-

y 4j

!ゝ

むぶ

……こヽj醜

●1苛

匂゛lt’

jl

祠,

へj -

Yonseiunivl、lrsity-Shizuokaunl、yersity

Studellts’VVorkshop2011

PI’oceedings

D{3cemberyjl2011

Yonseiuniv{:う:17sity,Seou1,Korea

Program

Y`onseiun沁ersity-Shizuokaun沁ersityStudentsWorksh()p2011

1)ecembel‘5,2011(Monday)atYonseiU111versity,lくorea

11

21

19

17

13

SurfacePlasmonResonanceinDeep-UVRegion

Sung‘YongLim,lllyunseokYang,Kyoung-SuPark,No-CheoIPark,and

Young-PilPark(Yonseiuniveristy)

11:25-11:400-06

Storage

KoheiTakamatsu,W.lnami,andY.Kawata(Shizuokauniversity)

CoffeBreak

O-05

TrackingServoミMethodusingPre-patternsforHOlographicData

ObservationofWide-GapSemiconductors

Program

09:(X)-09:30

()9:30-09:45

09:45-10:10

Registration

openingRemark

O-01(lnヽ 4ted)

AutoconfocaITransmissionlVlicroscopyBasedonNonlinear

Detection

ChulminJoo,ChunZhan,QingLi,andlヨ;iavashYazdanfar

(Yonseiuniversity)

10:10-10:250-02

CharacteristicAnalysisofCFRPCuttingwithNanosecondPulsed

Laser

Kdsukeushida,W.lnami,Y.Shimamura,Y.Kawata

(Shizuokauniversity)

10:25-10:400-03

DynamicCharllderisticsPI’edictionofthePerforatedCylindrical

ShelHnSMARTUsingSI1111arityAnalysis ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 1 5

Young-lnChoiβeunghoLim,Young-PilPark,No-CheolPark,

Kyoung-SuPark(Yonseiun沁el゙ sity)

10:40-10:550-04

Two-PhotonExcitationwithvisibleFemto鎖慨ondLaserfor

10:55-11:10

11:10-11:25

MasahzuKikawada,A.0no,W.lnami,R』4kimoto,andY.Kawata

(Shizuokaun沁el’sity)

11:40-11:550-07

TribologicaIPropertiesofZnONanowires

HaeJinKim,KyeongHeeKang,andDaeJE皿Kim(Yonseiuniversity)

11:55-12:100-08

CeIIPIlcessingwithElectronBeam

23

●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 2 5

KenWatanabe,W.lnami,andY.Kawata(Shizuokauniversity)

1:2:10-13:30Lunch

1:3:30-13:450-09

PrecisionlVlachiningofGC鬘old

lVollkyunLee,Kyung-ln,lang,andByung-KwonMin

(Yonseiunivel`sity)

13:45-14:000-10

OpticallyCOI!trollableElectrophoresiswithaPhotoconductive

Substrate

27

29

TaikiNagashima,T.lwahashi,W.lnami,A.Miya㎞wa,andY.Kawata

(Shizuokauniverity)

lzl・:00-14:150-11

FabricationofAntirenectionSurfaceviaNanosphereLithography゙ 3̈1

HaesungPark,KyoungsikKim(Yonseiuniveristy)

1∠1・:15-14:300-12

AnalysisofLightandElectronScatteringinaThinFnmforEXA

OpticaIMkroscope

MasahiroFukuta,W.lnami,A.0no,andY.Kawata

(Shizuokaunivel°sity)

1,・1・:30-14:450-13

lmageRe虻orationMethodforHighResolutionlmageinDigital

HOlographicMicroscope

Do-HyungKim,SungbinJeon,San11’HyukLee,Kyoung’SuPark・

No4:;heoH)ark,HyunseokYangandYoung-PilPark(Yonseiun沁ersity)

33

35

:1∠1・:45-15:000-14

Cllthodelum㎞escencelmagingofMetamcNanostrllctures……………37

1RyujiNoda,S.Fukada,Y.l` rawa,A.0no,W.lnami,D.G.:Xliang,

IE;.Saito,andY.Kawata(Shizuokaun沁ersity)

15:00-15:15ClosingRemark

Proceedings

001~叩p卜叫ncl)JasuoQqUI)g・dop-lun!qJa叫ltuo町μ押!ltunS;g‘I~V‘gd心oloJdWこ)VJo3叩uJ叫)susp!daplaJn匙I

PuB9JU

lu!sn3oJ

fUO-p(1

刈puu

叩゙uduo!131aP

s9Λ!p9叫oado3soJ3!砥

fUOべ)oごI・(ld-!S明|

r)9pgpppu13oluopsnQOJsl?Mgldtuus叫l

qinoJ叩pgu!tusul?Jlulj!191LL°93Jnoslq聊IBsupaxoldlllasuMJasRlpuo3asolm弓uJligg・I~

Etuo町lu圃qv・WDVJoこ)!1uuJ叫3Sli日

j゚÷区E〕=l〔回ヅ(ljssl5t夥nsj 1ldglS

j●puidxaug●a

dnlaSI聊uaul!Jadxll’Z

回jlUUI)S

‘jQs引puoQgsolm弓1)QsEq-Jgqg

tuligg・I~ol((ld-!S)Q・l)o!I)olotlduo;)!I!s

Jo9suods;MJBglIHuouuopsr皿叩Jado八DVlu;)sQJdaMりdQ3uo;)jojooJdusv‘lu!励uj!

lujqJuo;)J(!Juo一一dlu!lu町)LIJgpuBgldul!sBsglquugq3!qMtpo!poloqd;1ドF凹AB

XI!pBQJ‘球iu!sBolu!pau!qtuo3QJeluQJJnc)

o!Jpg秤叫lolu!l叩!IJotlo!IBuJJqJsugJI叫|

puuuo!ldJosql?J13;}u!luoupaJ!sapa叩‘JaAoaJOW°puno鳶puqsnc)oJjo-lnorlurllguii!s

辿辿ふ超尨出匹s芯匹s回耳糾f畝峻Σy涼lsn;)oJ’u!叫l‘saslndlug}i)F)u!Jo9IUOJd凹秤dsPuBluJoduJal

uoml}pua(I叩XI叩!qs!QsuodsQJ泥au!luou

s!叩g;)u!S’心!Jll9LI!luouJOJ叩jo叫ls!乙j

μ

puBaJgug面卯ulqJop司叩g叩sげSraJall″`‘/1 £々7>jy>/IZ/1J()!l!puOC)叫lspalu

O’/)yaJguguoloqdlual)!3u!叫IJ!uo!l山osqeJ圃u!luouolanpluaJJn;)oloUdusQ3npu!JopnPuo;)!ul;)sl3uoSu声u!duj!川再lpaslnd1叫l;)I印u!Jd那uopasuqs!‘(Wこ)xz)xdo9soJ9凹

I圃〇Jtlo;)oUIBuUQIQMIF)!qM御聊ul叫1‘jopgl叩91Bls-p!losRu!110!laal叩F3oJuo3

lurUJ!AuopQslqgnb!ulpa1λdoQsoJo!uJuo!ss!uJsuBJII石3oJuo;)pΛouBPgdolaAaPgM‘9nss!叫lsgJppBolJgpJoul

’uJuaq

uo!113u凹nII!叫l限!超心srlouoJIF)u泡Qlollu!d

叫IQA01uououlBaq叫lu圃s叩OII)ぷ!nbgJs!u明11叫3Qml)QIlx)!p叩l?‘sQiieuJりJ!nbolol

j臥・(1Mdljla)sJol3mpg!l!sus郊拶川JOJ斜眼聯邦g2該5う原品uallj!』叫即tlsrU向I

P知!tusuBJI叫丿叫lu!‘叩oul(uopal叩自!d9Jo)uo!paUgJ叫IJaAog}ii14uuΛpguBs叫‘ugtu!3ads叫ltlino刈□叩!lpaμ!ulsuuJI

叫ISaJnSgUj叩!11M`apOⅢUO!SS!UIS眼JI叫l‘WSこ)lu!uo!lllJgdoJos叩otusno!』11AgqliiuoluV` punojii半)lqsnsqJ-jo-lnomolllt侈!IxuJ4siu!p9佃工叩1IAxpJnsuQulQqolμ侈!IJouo!1JodsnooJ-u!sMOIll

軍)!tIM‘Xluld3涵uJ!a叩u!Qlotlu!d匹)!球qdB/(qrgl叩ugs!WSこ)lu!/{l!I!qE八losaJ印面p

p回lsuJluo皿.pQ八〇Jd叫叫1‘心H!(41・du311u!uo!pQs一眼d叩叩!Msu91u!39ds押c)声olo!q

JosQ励uJ!tlo!lnlosaJ-111!q4lsuJlu()3-卯!qiitl!;)npoJdJo哨udu3s!(WSこ)1)X(l()3soJ;)叩IB3(IJuo3ju!uuBc)s-JasBI

uo!pnpoJlul’I

‘sgnss!II咎泌ぷnolo!qJosg訊1uH13uo!sugt11!P-9司nuasaJdl3uB‘uo!13alap

lg3oJuo3JBgu!lolpolpuJJnoJOXI!I!qude;)uo!p9皿pun()Jipt?q;りlql?Judtuo389坪JlsuouJ叩QM・仇I!別叫3!d()3soJ3!ulju!uo!13;)s-Llld叩皿〇JJQdolpuBpulloJ靭ouqQsr!IJ!psn3oJこJojno

pa帥olssa3ojduo!ldJosqEJI・g・u!luous!畢Moldx99MltuliこI四叩Jjiuol『βualaA13M叫Axl叩!IJouo!lml凹nlnPaslnd叫IJ叩unxl!suQltJHuc)!ldoluQppu!uoa3u;)l)uQd叩c)μuJpBnbu!sluQIJn3010tld;狛npoJdsJ(印司叩uo叫!S`QM)o!Pol叫duo3!1!sB叩卜uo!pQIQplu叩doJ13s)u!luouuopQsuqxd()こ)soJQ凹uo!ss!uJsu13JIlu3oJuo31)Qu即lujPs‘Qld叫sl叫男s叩9敵

pgJlsqv

祠‘3B`?SUOj ○01 3:1!BUI-Q.

a8g-Eaひ乙一乙8十:XvjっylΞ11VSn‘60alAN‘四nx明s!N‘913J!こ)叩Jugsalll‘tF)Jugsalllu(lolD∃D乙

uaJoうl‘(5紀-O乙IlnoaS‘olタsuo人Og痢!sJQ叫un?suoAiu!Jaau!iuEII13c)叩明oaWJI()lo()110S1

j町uBPzuA苧BAB!SpuB‘jlju!り≒u明ZunqD‘.,loofu!uJlnllこ)

uo!pal∂pJBau!luouuopasBqλd吠)soJ3!luuo!ss!ujsulJ11830Juo301nv

レO-○

Fig.2:(a卜(t))lmagesofafixedratretialissu12rt=cordedwithSi-PDbasedACMandGe-PDbased

linearcl(jtection,resljectively.NotetheirnprovedimallecontrastprovidedbySi-PDbasednonlinear

&tection.(c)-(f)Si-PDbasedACMirnag5ofnxedraにhorokltissueElttissueにfhceand20,40,60

μmbelowthetissuesuface,re5spectively.Vas㎝larstructuresaJld叩itheliumareclearlyvisibleateachdepthwithhighcontrast.Thescalebarrepresents50μm.

亀ecandr(lpetitionrate~50MHz)iscollimated,magnined,andfocusedontothespec】menvla

scatteredlijcollectedl

幽に叩

Foc-OBJ.Theforward斤omthesampleisthenthedetectionobjective

(Det-OBJ)all(1ref1)cusedontoSi-PDwithadiameterof~10μm.TheasponseofSi-PDunderfbcusedilluminationofcontinuous

(CW)andpulsed(PW丿ightat1.55μmwasthenexamined.FortheCWcase,nosignalwasobservedonthe(letector,since1.55μmli1111tenergy(~0.8ev)isbelowtheban(1gap()fSi(~1.12ev).However,PWilluillinationresultedinaremarkablesignE11increasedueton()nlinearabsorption(datanotshown).Weexaminedtheoutputsignalasafunctionoftheinci(1entopticalpowerfk)rthePWcase,andfoundthatthesignalexhibiteda

quadraticdependenceontheincidentopticalpower(~2.01),whichsuggeststwo-photoninducedphotocurrents.

3.ResultsandDiscussion

HavingobservednonlinearresponseofSi-PDtotheemr)1oyedfbmtosecondlaser,theimprovedimagecontrastandrejectionofout-oflfbcusbackgroundbyACMwasassessedbyimagingnxedratretina.Figs.20)and2(b)showth6nlag・5sobtainedwiththeSi-PDbasedn(mlineardetectionand

germaniumPDbasedlineardetection(Ge-PD).砥/hilevascularandmorphologicalstructureswerevisibleinbothim昭es,the

12

()ut41n〕cusba(;1cground哨ection(;apal3111tyinACMrelsultedinamuchhighercontrmand nlore de狙nedmorphologicalin11)rrnation.Wealsoperfi)rmedACMimagingona~80μmthickflxedratchoroidbyscanningthesamplealongtheopticalaxistodemonstratethree-dimensionalimaging(;apability.Therepresentativeimagesatthetissuesurnlceandin~20μmstepsbelowthesurfllceareshowninFigs.4(c-f).Thedistributionofvascularstructuresandepitheliumatdifferentdepthsisclearlyvisible,whilehighimagecontrastismaintained.

4.Summary

Acheapandsimpleschemeforautoconfocaltransmissionmicroscopywasdemonstrated.Theselfalignedvirtual

pinholewasachievedbyasinglelarge-areasiliconphotodiodethatgenerates

photocu汀entsinaquadraticdependenceonincidentintensityof~1.55μmpulsedillumination.High-contrast,depth-resolvedimagesofbiologicaltissuesampleswere

presented。

Reference

田C.Joomj・,0r)t.I-ett.35(57-(55)(2010)

○-02

Char£lderisticanalysisofCFRPcuttingwithnanosecondpulsedlaser

Keisukeushidal*,Watarulnami2’3,YoshinobuShimamural,andYoshimasaKawatal’3

1F11cultyofEngillaring,ShizuokauniversitM2Shizuokauniv.GRL,3JST-CREST

3-5-1Johoku,Naka,Hamamatsu,Shizuoka432-8561,JapanTEL&FAX:+ISI-53-478-1076

E-mail:kawata而e叩.sllizu()ka.ac.ip

Abstract

(JarbonFiberRe凶1)rcedP臨stics(CFRP)hElvefeaturc3sofhighspec姐cstren球h,highrigiditsnghtwe垣ht,etc,Thecuttingtechniquesusedf1)rCFRPtodayarewaterjetcuttingandmechanicalcuttingoperationssuchassawing,mming,o「

grinding.However,theyhaveproblemsofhightool-wear,wastewaterdisposa1,etc.ThesedisadvantageshmittheapplicationsofCFRP.WeperformthecuttingofCFRPwithnanosecondpulsedlaserandanalyzeditschara(lteristics.Weinvestigatedmachining-depthdependencesontheconditionoffocuspositionandtheamountofoverlappingareaof7focusspotonCFRPE3urface.

1.1ntroductiou

CarbonFiberRein拓rcedPlastics(CFRP)ε12(;ompositemateri111(;omposedbycarbonfiberandl)Jticresin.Thefbaturesofthellmterialillcludehighsl)ecificstrerlgth,highriがdity,1ightweight,etc[1].1’herefore,CFRPhavebecomeanessential{lngineeringmaterialinmanymodemindustrialappli(;ations[21.

Themaincuttingte(;11niquesusedfbrCFRPtodayarewaterjetcuttingandm(?(;11anicalcutting()I)c2rationssuchassawing,milling,orgrinding,However,theyhave

problemsofhightoo1-wear,wastewaterdisposa1,etc.Therefore,itisdimculttosaythattheserxocssingmethodsaresimplyandeasyway.ThedisadvantageslimittheElpplicationsofCFRP.

Lasercuttingispaidatterltionsbecauseithasl)otentialssolvingthedisadvantagesofwaterjetcuttingandmt?(;hanicalcutting()r){?rations[31.WepresentlaserprocessingcharE1(;teristicswithnanoscondlaserpulse.

2.CFRPandlasersource

lnthisstudy,981mmthickCFRPwereusedforlaserl)rocessing.Aplywascomposedofunidi祀ctionalnberandresinthathardenfiber.ltwaslam柚ated

FO°/9()゚ /90°/Oo]orielltation.WeusedaQ-switchNd:YAGlaser(wElv・うlength=532nm,pulsewidth=4ns).NumericE11aperture

13

(N.A.)oftheo句(・ctivelenswas0.10.

3.ExperimentalResultandDiscussion

We・1/estigatedlhemachin㎞g-depthdependenceonscanningspeedswithvariousfocusedl)ositions.Thefocuspositionwasvariedintheregionfrom-500μmto500μmandscanningspeedswere0.2μm/s,0.4

μmノs,0.8μm/s,1.6μm/s.Anerlaserirradiations,themachiningdepthandwidthweremeasuredwithscanningelectronmiaoscope(SEM).lntheseexperiments,wescannedlaserlightonlyonce。

FigurelshowsSEMimagesofcrosssectionso臼aserr)r()cessedCFRP.Figure2showstheresultsofthemachining-clel)thdependenceoneachfocuspositionwithvariousscanningspeeds.ltwasfoundthatthemachiningdepthswereinaeasedwiththelargervalueoffbcusedpositions,anddepthswerelimitedatcertainvalues.WhenthefocuspositionwasmovedtotheinsideoftheCFRPsurfacemore,themE1(2hiningdepth(lecreased.Themaximaofmachiningdepthsbecamesmallerwithhillherscanningspeed.

Fig.I.CrosssectionsofprocessedCFRJ).

IH 

H 

ljl 

H 

一llljlSE

φ02μ❹・

舘0,4μS/S

40,S11Sゝ

●1.61&sz6

◇ Q I ■ ■ ・

◇ ■ 東○

Q A s a △ △ A

○ △ 皿 “ △Q . ■ ● . A

A = ● ● ● ・ ‾■ ● ・

・ -W

- 4 { } に 2 0 0 0 2 Q 0 4 α )

foeuspositioatoale(7RPsurfaa【μm】

ぬ0

Fig。2.Themachiningdepthforeachs(;anning町)eedandfbcusposition。

l入/ealsoanalyzedthemachining-depthdependenceonoverlappingareaoffocusedspotandnumberoflaserscans.Figure3showstheoverlappingconditionoffocusspotonCFRPI;ul’face.lneachcondition,laserbeamwasscannedwiththenumberofl,5,10,20,50,100,200times.lnthese{5xperiments,thefocuspositionwasfixedontheCFRPsulface。

I;` igure4showsthedel)tlndenceofthemachining-depthonthe(;onditionofoverlal)1)ingareaoffocusspotandnumberoflaserscans.ltwasfoundthatthemachiningdepthsbecamelargerasthelll.lmberofscanswereincreased.Themachiningdepthsalsobecamelargerasthesizeofoverlappingareaswa‘eincreased.Wecouldalsol゙ ecognizethatincreasingrateofthemachiningdepthstotheincreasingllumberofbeamscangraduallybecamesmaller.Focusedspotwasslightlydefocusedduringthelaserl:)ro(;essingbecausetheCFR)ヨ)surfllcewasminedbylaserirradiations.Therefore,wemaysaythatmoreemcientprocessingcanbeperlFormedbya(!justingthefocuspositionintointemalsideoneveryscan.

四 回 ・ 咄 sSix箕鯉sval岡

A (涵てぶ 30

B ご 22j

C (互皿Σ) 15

D (遜皿) 7j

Fig。3.Theconditionofthesizeofoverlap

offocusspotonCFIU)surface.

14

四四10070HHH01000

【HmH 

mml

50 100

numberonasa・

150

SCanS

200

Fig。4.Thedependenceofthemachiningdepthontheconditionofoverlappingareaoffocusspotandnumberoflaserscans.

4.Conclusion

Weinvestigatedthemachining-depth(kl)endenceons(llnningspeedwithvariousfocusedl)ositions.ltwasfoundthatthe

叫北imumfbcuspositionsexistedineachs(;anningspeedinordertoachievelargemachiningdepths.ltwasfoundthattherewel‘ethresholdofthepowerdensityto

l:)rocess.Wealsoanalyzedthemachining-depth

del)tlndenceonovel°lappingareaoffocusedspotandnumber()flasgscans.ltwasfoundthatthemachining(lepthsalsobecamelargerasthesizeofover≒)pingareaswerei11(;reased.Wecouldalsol・gognizethathlcreaingrateof.themachiningdepthstotheincreasingnumberofbeamscans

graduallybecamesmaller.Asnextresearchissuesweshould

discusstheoptimumpl’ocessingconditionsfordecreasingl:)rocesstime.Heatefbctsinducedbylaserill皿linationonCFRPshouldbeanalyzedforfinelaserprocessing。

References

[1]K.Tohgo,UCHIDAROKAKUH0,2004[2]DirkHerzog,PeterJaeschke,011ver

Meier,HeinzHafel’kamp,“lnvestigationsonthethermaleffectcausedbylasercuttingwithrespecttostaticstrengthofCFRP”,lntemationaoournalofMachine’R)ols&Manufilcture48,2008,pp・

1464-1473.

[3]K.C.’ゝ 1m11,S.M.Md,T.M.Yue,”Astudyoftheheat4ffbctedzoneintheUVYAGlaserdrillingofGFRPmaterials”,JournalofMaterialsR・ocessinglechnologyl22,20021):278-285

○-03

DynamicChilracl:eristicsPI°edictionofthePerforatedCyl㎞{lricaIShellinSIART

UsingSilllilarityAnalysis

Young-lnChoiβeunghoLim,Young-PilPark,l` Jヽo-CheoH)arlc,Kyoung-SuPark゙

DepartmentofMechanicalEngilleerin9,Yonseiuniversity50Yonsei-『0,Seodaemun-9u,SeouS/120-749,KOrea

TEL&FAX:+82-2123-3847*e-mail:pks6348@yonsei.ac.k「

Abstract

Thispaperintroducesdynamicchal゙ 11cteristicidentifi(;ationofraKtorintemalsusingfiniteelementmethod.Theresearchalsoconsklersnuid-strtl(;tureinl:11ractionbetween(;oolantwaterandl・eactorintemals.Thel’esultsareverifiedbycomparingtheresultsofthemodaltest.lnaddition,thispaperintroducessimilarityanalysisusinglsJAVMlfilctor.Fromthisfactor,(妙namiccharElcteristicsofsubmergedstructureswhichhavediarents(;alefa(;torcanbepl’{idicted.

1.1ntroductionNowKoreanAtomicEnergyResearch

lnstituteisdevelopingtheSystem-integratedModularAdvancedReacTor(SMART).TheSMARrrincludescomponentslikeac()re,steam

gentlrators,coolantpumps,andapressurizerinsidetheonel’tlactorvtlssel.Thoughtheintegratedstillctureimprovesthesafbtyofther{lactor,itcanbeexcitedby飢earthquakeand

pumppulsations.ltisimportanttoidentifyd)rnamiccharacteristicsofthereactorintemalsconsi(leringfluid-structurekaaction.Thus,modalanalysiswiththemodaltestandthefinite・slementmethod(FEM)iり)erformedinordertoidaltifythed)rnamiccllaracteristicsofthereact()rintemals。Thenowskirt,whichisaperfbrated

(;ylindri(;alshelljslocatedinthelowerplenum()fthel’tlElctor.lnordertopelfomlthemodaltest,al/12sizes(;ale-simnaritymodelismanuf11(;turedandfiniteelementmodelisconstnlctedbasedonthisscale-simhritymodel.ThedynamiccharacteristicsofthesimilaritymodelareextractedbythemodaltestandFEmodelisverifiedbycomparingtheresultbetweenthemodaltestandtheFEanalysis.Thisstudy血rthercarriesoutthesimilarityanalysisforplでdictingthedynamiccharacteristicsofthereall‘eacta’intemals.Thellaturalfi’11(:111enciesoftherealreactorintemalsarecalculatedwiththeNj4VMlfactorandcalibratingfactors.Results

ofthesilnilarityanalysisareverifledbycompal゙ ingthelresultsoftheFEanalysis。

2.FiniteElement】VlodelThenowskirthastota11668holeswhichhaveatriangularpattem.ltis面曇ゑorcedbythreecircularribsontheinsideoftheshen.Sixlowernangesislocatedinthelowerpartofthenowskirtandtheyarefixedtohemisphericalsurfllceofthel・tlactorvessel.Afiniteelementmodelofal/12gale-simhritymodelisbuiltupandthefiniteelementanalysisisimplementedbyusingcolmnercialpackage,ANSYS.I;`igurelmustratesthefiniteelementmodelofthenowskirtandsurr()undingnuidswhichisappliedboundaryconditi()nsandthefluid-structureinttiraction.

3.SimilarityAnalysisltisimpossibletopedormthemodaltest

withlargescalestl’1.1ctl,1reslikethel’eactolジrhus,simnarityanalysisisusedforpl’edictingllaturalfi‘(1(luerlciesoftherealra1(;torintemalsfi’omthesimilaritymodel.Kwak[I]isexpressedtheinnuenceoftheaddedmasseflFbctbythel4AVMI(Non-dimensionalAddedⅥrtualMasslncremental)factor.Natl.u` alfi゙ equenciesofthesubmergedreaII’eactorintemalscanbecalculated丘omthenaturalfi゙ equenciesofthes(;ale-simhritymodelintheairbyusingtheNAVMlfactor.

15

ailn , 。 w

5aw●S。。.t

Fig.IFEMModelofFlowSkirt

Table1SmHalityanalysisofnowskirtwithNAVMlfactor

Mode

1-

2-

1/12ScaleSimilarityModelofFlowSkirt

Aluminum(air)Aluminum(Water)

F E M F E M

988,1-

1097-

1974

757

789.3-

1402

NAVMIFactor

1.90-

2.52-

2.65

Fig.2explainsl)rocessofthesinlilarityEmalysis.Andnextequationshowsnatural介ci(lでlenciesofthesubmergedrealmodel.

几,一

た一

八J 匹宍 (1)

3.ResultsandDiscussionTablelshowsresultsofthesimilarityanalysis.NAVMlfactorisobtainedbythenaturalfyquenciesofthegale-similaritymode1.FromNAVIVIlfhctor,natura1丘t2cltlenciesoftherealsizemodelofthenowskirtinthewaterare(j111clllated.The(;ε11(;ulatedresultsarewe11matchedwiththeresultsoftheFEanalysis.

4.Conclusionlnthismsearch,dynamicchEll7acteristicsofthenowskirtinthereactorareextraetedbythenniteelementan211ysis.Furthermore,similarityanalysisiscarriedoutwiththeconstructedfiniteelementmodel.TheNAVINIlfactorisusedforcalculatingthe

ExtxtngualSquax;iesofSia山4mjlaritymodelinblifatxiwttg

Dcmi卜.Ela5ticModulusCalibriltionFactor

Cak4at。stualfi。qussi。。「牡x認alslctgin扮malsi皿t奴血

Nazllfiqll凹riaoftheraj

s●cこori11加malsindllwltg

Fig.2ProcessoSimilantyAnalysis

Stee1(Air)-

Calculation

82.34-

91.41-

164.5

RealSizeModelofFlowSkirt

Steel(Water)

Calculation

76.85-

78.63-

142.62

F E M-

76.8-

78.8

141.3

Error(%)

0.06-

・0.21

-

0.94

naturalfrequenciesoftherealsizemo(1elandtheseresultscomparewiththeresultsoftheFEanalysis.Theresultsshowvalidityofthesimilarityanalysis.

Reference

(1)M.K.KwakandK.C.Kim,1991,“AxisymmetricvibrationofCircularPlatesinContactwithFluid,”Joumal

()fSoundandvibration,146(3),pp.381-389

Calcula加NAVMIFa£tor

16

○-04

Two-PhotonExcitationwithvisibleFemtosecondLaserforobservationofWide-GapSemiconductors

Kohei’akamatsul,W11tarulnalrli2’3,YoshimasaKawatal’3

1FacultyofEnllineering,Shizuokauniversity,2Shizuokauniv.GRL,3JST-CREST

3-5-IJohoku,Naka,111mamatsu,Shizuoka43:2-8561,JapanTEL&FAX:+81-53478-1076

E-mail:kawata(lna.shizuoka.ac.‘

Abstract

Wehavedevelopedatechniqueoftwo-photonex(;itationinvisibleregion,andappliedtoobserveintemaldefectsofZnOcrystalwhichemitsphotoluminescenceinultravioletregion

(36’7nm).lnordertoobserveaZnOcrystal,weintroduced521nmSHGfbmtosecondsolid-statelasel’[1,2]asalightsource

1.1ntroduction

Semiconductorlasersinultravioletregionhavebeendevelopedbymanyresearchers.Stl・1.1cturedefectsinthesemi-con血ctorcrystalda;reasetheemissionemciencyofthedevices.lnordertoimprovethedeviceemciency,itisrequiredtoreducethestrljl(;turedefectsinacrystalasmuchas

l:)()ssibleinthestageofthecrystalgrowth.T11erefbre,11valuationofacrystalbecomesindispensable.

Two-photonexcitationmicroscopeisusedforevaluationofasemiconductorcrystal,andTi:Sapphirelaserisusedasaex(;nationlightsource.Sincewavelengthregi()11oftypicalTi:Sal)1)hirelaseris’7::20-900nm,wide-gapsemiconductors(;annotbeexcitedwithtwoi)hotonpl` ocess.lnordertoobserveasemiconductorcrystalwithawiderbandgap,weintroducedaSHGfbmtosec()ndsond-statelaserasanexcitationnghtsource.Weobservel(lintemaldefectsofZnocrystals.

:1’17wo-photonex{litationforevaluationofacrystal

Theabsorptionofatypicalsemi-coductorcrystalinthewavelengthregionthatisshorterthanthewavelengthλbg,whichcorrespondstoband-gapenergyofthematerial.Sincetheexcitationwavelengthshollldbeshorterthanthewavelengthλb8,theex(;il:ationlightismuchabsorbedinthematerial.F4urelshowscomparisonof{5x(;itationregionbetweeningle-and

two-photonexcitation.lnasingle-photonexcitation,theexcitationlightcannot

penetrateintodeepareaofthematerial,becauseitabsorbedduringthepropagation.Thislimitstheusageofphotohlmintlscencestudiesinthree-dimensionalobservation。

Two-photonexcitationwillallowthree-dimensionalimagingofthecrystalsbecausethewavelengthusedintwo-photonexcitationismuchlongerthanthewavelengthλbg・Photoluminescenceisexcitedonlyinthefocalvolumeintwo-photonexcitation.Thusobservationofthel)articularpositioninsideacrystalispossible.

Laserlight

```‾’゛゛‾‾‾‾‾’゜‘ぺLens``’`「‾`‾’‾’ ’ ’ ’‾ ’ ’ ‘‾‾″゛ノ

ニ J ヨ 1 c i t a t i o n r e g i o ぞ` ` ` - シ 帽 j

’ S e m i c o n d u c t o r j

Single-photon’I`w()-photonexcitationexcitation

I゙ igurel.Comparisonofexcitationregion

3.0bservationofinternaldefectsinZnocrysta

Figure2showstheeM)erimentalsetupof

17

two-pholonQccitationmkr〔〕scope.ASHGfemtoseconds()1id-statelaser(pulsewidth:350R,repetition:2.85GHz)isusedasa(3)(citationlightsource,andscannedthroughthesampleareausinggalvanometermirrors。

lnthisresearch,wechooseZnocrystalasasampleforobservation.BandgapofZnOis3.37evandwavelengthseqtl沁alenttothisbandgapenergyis368.9nm。

Figure3showsresultsofobservationofZnO(;rystaltothedepthof10μminside.Weu刄,hievedthreedimensionalimagingofZno(;rystal,whichemitslumirlescenceinanultravioletregion.Theexcitationregionislimitednearthefbcalpointbytwo-photon

processes,andwecouldalsoobservetheoutline()fintemaldefbctsofacrystal。

Figure4showscomparisonofcross-stl(;tionalpromeofthemarkedpositioninFig.3.1naportionwithalowqualitycrystal,adecreaseinlurninotlsemciencyo(;curs.ltisthoughtofasanintemaldefbctexistsinthe

portionwhichislowintensitycomparedtothecrystalsurface.

Samplc

皿 -

()iectiveL4ns

NA0.85,x40

ロ コPMT

Bcam

Expandcr

I . 1 1 1

/S110rl-PassFiltcr

(~450nm)

NDFiher

SHGFcmtosccondS()lid・StateLjscr

λ=521nm

Galvanometer

Mirror

ム こ

λ に

Figure3.ResultorlheobservationofZno

吊m叩m 1叩m

Fjgure2.Thee)cperimenlalsctupoflwo-

photonexcitationrTlk;roscope

||

Dichroic

Mirror

18

1.2

1一

回0.8a一IUn

0.6

0.4

0.2

}ノ 溥 幕 矢

ジ ー 六 大

- O F l m

一一-10μm

0 5 1 0

Length[μm]

Figure4.Comparisonofcross-sectionalproflle

4.Colclusion

Weintroduced521nmSHGfemtoseconds()lid-statelaserfbr(3xcitationlightsource,andachievedthreedimensionalobservationofZnocrystalwhichemitslightinultravioletregion.Wearetrytoextendourtechniquetoobserveotherwidegapsemiconductors,suchasGaNandSiC.Wealsotrytilleうtspectralinfbrmationinordertoi(lentifythedefbctsorigins..

Reference

川S,Yamazoeeta1・,0皿Lett.,vo1.35,N0.5,plλ748-750,2010.

[2]T.Kasamatsuetal・,IWHM&D2009paper4F-1

○-05

’7『rackingServoMethodusingPre-patternsforHOlographicDataStorage

Sun11-YongLim,Hyunse()kYang゙ ,Kyoung-SuPark,No-CheolPark,andYoung-Pi1Park

D111)EIrtmentofMechanicalEngineerinlyyonseiuniv・,262Seorlgsanno,Se()daemun-Gu,Seoul,KoreaTEL&FAX:+82-2-2123-2824*e-mail:11町ang@yonsliLac.k「

Abstract

IF゙ age-orientedholographicdata就()rage(HDS)isverysnsitivetothedistul` banceswhichllffectthepositionofthergordingmedia.7rherefore,morer)recisetrackingservoisl` equiredfol’1’!1(;ordingprocessanditisalsoessentialforhighdensiりぐrherefore,comμ11sationmethodwhichisesentialforthel’ecordingprocessisneededinHDS.lnthispaper,wesu霜曇stsome

pre-pattemfortrackingservoinl’ecordin1四宍)cess.ThismethodwasmotivatedbythetrackingservomethodinHardDiskDrive.Fordesigningthepattemshape,HDS(;hal’actel゙ isticswere(l{}nsidered.Secondly,thetrackerr()1゙ signalswereanalyzed.Lastly,intervalsofthepre-pattemscollsideringtracktolerancewere(kermined.

1.1ntroduction

Pag11-orientedHolographicDataStorage

(HDS)isoneofthemostpromisingcandidatesfornext-容nerationst()ragesl:)e(;lluseofhighdensity,highdatatransfbrrateandshortaccesstime.ltslargeMorage(;ε11)acityisachievedbymukiplexingscheme.Theifilstdatatransferratecanbel・ealizedfi` omitsstorageinpag{lunits.Theone-pageunitcanincludemorethanonemillionbits,sothedatatransfbrratecanbefllsterthanconv(・ntionalopticalDiscDrive(ODD)[1].However,theconventionaloff・axisHDShassomedisadvantagesofconstructingtrackingservomechanismsystemjnlerefore,variouscompensationmethodsconsideredfortheHDScharacteristicshavebeenproposed.Thepreviousresearchesforde-trackcompensationhavelimitationsothattheyareonlyavailableforretrievalprocess.’I’herefore,wesuggestsomepre-pattemfor

trackingservoinl’ecordingl:)rocess.Themethodl)1゛()posedinthis芦perwasmotivatedbythet警kingservomethodinHardDiskDrive(HDD).lndecision

pa` ametersforproposedmethod,resultsf1°omtoleranceanalysisbyl㎡)haseCooperatewerereferred[2].

2.Pre-patternsDesign

Theeccentricityofthedisccanbe

19

regardedasam耐oreflbctformthetrackerrorinth{1ミl-H:}S.0thersde-tracksourceslikedeviationandunbalanceofdisccannotllffecttrackerror.Because,readingandre(;ordingl)1°ocessesareconductedwithstop-gorotationmechanism。

Typicalsizeoffocusedservobeamfortrackingservoisinafbwμz71units.lnsimulations,focusedbeamsizeis2.75μ扉.However,theHDSdischasmuchbiggertrackpitchthanfocusedservobeamspotbecausesizeofmultiplexedhololgramspot(kerminedbypolytopicfilterisabout600芦77.Tosolvethisproblem,discformattingandproposedpattemsdesigningwillbemadeasfollowingprocedure.Firstofall,datazoneandservopattemsareplacedinthedisc,assllowninFig.1(a).Datatracksareincludedinthedatazone.Thedatabetweenservopattemsisl゛ecordedsequentiany.Thedataovell‘lapisavailableduetopolytopicmultiplexing[31,asshowninFig.1(b).Adiagonalpattemislocatedbetweentwostraightpattems,asshowninFig.1(c).PMtemsmustbeabletol‘decttheincidentbeam。

1`heTrackErrorSignal(TES)is

1111neratedbytimedmFclrenceamongthethreerenectedbeamsn゙ omthepre-pattems.Afterdiscisinsertedoverataperedspindle,thediscisrotatedwithaconstantspeeduntildetectingoneTESsignalsset.AlthoughservobeamspotissignificantlysmaUerthan

thetrackpitch,linearTEScanbegerleratedbyusingμ’oposemethod.lnotherwords,thismethodh4sTESrangewhichcancoverthetrackpitch.Therenectedservobeams丘omthel:)attemsgneratetheTES,asshowninFig.2.Whenservobearncrossesthepattems,A,R,B,I:)eakstimesoftherenectedbeamsarel‘el)resentedas7:,/ら,7;.TESislleneratedaccordingtoEq.1。

:ZE;S’=(7;,-7;,)-(7;べ,)(1)

QuantifledTESduetotheslountofeccentricityandl’otationangleofdiscisanalyzed.Firstofan,parEmletersforanalysis,whereeisamountofde-track,δisamountofe(;centricity,り,isdistancefi’omcenterofsl)indletooriginalbeamspot,Qisdistancefi・omcenterofec(;entricitydisctorotatedbeElmspot,andr’isdiぬmcef1°omcenterofe・c(;entricitydisctorol:atedbeamspotandθisanglebetweenQandら・

Basedonthesepllal’neters,de-trackcanbい¥rittenasEq.2.Beanlspotisonthediscwhichisらfi’omcenterofspindlesothatthe

l)roperdatarecordingandretrievalprocessispossible.Howeveらafterthediscisr()tatedinθforotherdata,distancebetweenspindleandbeamspotischangedasr’,asshowninFig.3.Therefore,ドーらlcanbedefinedasde-track.

川一ド=e

(y’=(Qcosθ+δ)2+(Qsiilθ)2,Q=らーダ)(2)

ThroughtheEq.2,itiscertainthat

l:sroperintervalangleofservotrackis∂=30・withδ=100z,。{lccentricityand25zj摺de-tracktokrance.

tzldg

Fig.IProposedpre’patternanddiscformatting

20

s-

・/

A-

-/--/-

aボis&r.7177、

i ’

M H( C ) I S 、

Fig.2TESduetodirectionofthetrackerrorS

Θce幽afsiizde

@g:;,血z・recceiiyifitydiz

@8eagt

I;` i11.3Analy818ofTESduetorotationofdiscwitheccentricity

3.Conclusion

lnthispaper,anadaptivede-trackcompensationmethodforconventionalofモf:・axisHDSwasproposed.Thismethodhasanadvant顎啓thatitcanbeappliedtore(;ordingl)n:)cessdUfel’㎝tly丘ompreviousl゙ {lseal’ches.Therefore,thehighqualitydata

pagescanbereconstructed.Throughtheanalysisandsimulation,theproposedde-trackcompensationmethodwasverifiedthatitisenoughtocompensatede-track.

Reference

田Cou匍I・I.J・,PsaltisD.j;incerboxGT・,HolographicDataStorage,HclM{11berg,Germany(Springt・10000).

[2]AlanHoskins,BradSisson,FrisoSchlottau,EdelineFotheringham,KevinCurtis,“Tole17ancesofaPage-BasedHolographicDataStorageSystem”Proc.ofSPIEVol.6620.

[3]Ken勣ldersonandKevinCurtis,“POlytopicmultiplexing”,0PTICS

LETTERSハ4)1.29,N0.12/2004.

○-06

SurfacePlasmonResonanceinDeep-UVRegion

MasakazuKikawadal,AtsushiOno2・3,Wataru弛ami2・3,RentaroAkimotol,andM)shimasaKawatal・3*

lacultyofEnがneering,S111zuokauniversity,2Shizuokauniv.{:iRL・,3JST・CREST3-5-1Johoku,Naka,}{厦namatsu,Shizuoka432-8561,Japan

TEL&FAX:+8卜53-478-1076E-mail:kawataen.hiloka.゛

Abstract

WedemonMratedthesrfaceplasmonresollance(SPR)withde9-ultra-violet(Dt・q)-UV)region.WefoundthataluminumisgoodmaterialtoexciteSPRwithDeep-UVlightbycalculationsonrenectanceusingfiesnelequation.WealsodemonstratedtheexcitationofSPRinDeel)-UVregion.

1.1ntroduction

Therearemanystudiesonsurfilceplasmonresonance(SPR)anditsapplkationshavebeendevelopedinvariousl’ields[1].SPRhasmanyadvantages,suchasenhancementofdectricfieldinl:ensity,highsn血ivitytore丘activeindexchangeofsamplenearthemetalmr17ace.lnmanystudiesandlll)plicationsofSPR,visibleornear-infraredlightsourcehaveusedforex(;itationofSPR,1:)ecausegoldandsilverhaveverygood

propertiesinthatwavelengthregion.Fewstudieshavebeenl` eportedonthe{lx(;itationofSPRusingDeep-UVlight.Wel)resenttoexcitesurfilceplasmonusing

Deep-IJVlight.Deep-UVlighthashigher

photonenergythanthatofvisiblelight,soSPRwithDeep-UVlightopensmanyapplicationssuchasenhancementfluorescenceexcitation,nuorescentobservationofthenon-labeledbiologicalspecimens.lnthispaper,wedemonstratetheexcitationofSPRwithDeep-UVlight。

2.PI‘incipletoexciteSPR

WeexplaintheprincipleofSPR.Surface

plasmoncanbeexcitedwithaevanescentlightsatisfyingthedispersionrelationship・M41enwavenumbervectoroflongitudinalwaveandwavenumbervectorofpolarization

paralleltoincidenceplane.Becausedistributionofthef1・eeelectroninmetalcondensesparalleHnmrface.Equation(1)showsthepropagationconstantoflrfaceplasmon.

21

KspニぞへRI?i?iJE(1)

=糾疏既:侑廳脂配随?j皆i‾cRe【Em】+Esc匹’豆i∃i同JI

where(1)istheangularfi’equencyofsllrfllce

plasmon,ssisthedielectricconstantoftheぷelectricmaterials,andsmisthecomplexdiel{lctricconstantofthemetal,Here,imaginarypartofsmrepresentsdecayofsurfllceplasmon.lnordertoexciteSPR,weneedametalwithnegativerealpartandsmallimaginarydielectricconstant.I;゙ igurelshowsreall)artandimaがnarypartofthecomplexdielectricconstantofgold(a)andElhninum(b).

ml Hこ

‘.唖●

Wivがen9廿1【nmlx x 3 a 晦 幽 泗 聊

Wiv嚇呵吋刈

71

Fig.1.Complexdielectricconstantofvariousmetals(a)Gold(b)A111minum

Asshowninfigl(a),complexdielectricconstantofgoldhaspositiverealpartandlargeimallillarypartinDeep-UVregion.IVhilecomplexdielectricconstantofaluminumhasan響啓tiverealpartandsma111maginaryl:)artandsatisfiestheconditionsofSPRexcitationinDeep-UVregion.

3.ExcitationSPRinDeep-UVregion

Wecalculatedrenectancefor31ayersmodelusingFresnelequations.171gure2(a)showsrenectancedependenceontheincidentangle.TheresultofAlshowsthattherenectancedecreasesapproximatelyoattheangleof45.4degrees.Atthiimgle,incidentlightcoupleswithf1’eeelectroninmetal,incidentphotonexcitesSPRandthephotonenergyistransfbrredtothesrfllceplasmon.0ntheotherhands,theresultatAushowtherenectancedtl(;reasesgraduanyfi’omtheangleof42degreesinDeep-IJVregion.HoweverthiscurveofAudoesnothavesharpdipandtotalrenectionhasnothappened.SOSPRcan゙ tbeexcitedwithAuinDeel)-UVregion。I;’igure3showsexperimentalprocedure

andourexperimentalsetuptomeasurerena;tarlce.ThemethodtocreatethethinAImmisvacuunleval)orationanditscontrolledthicknessis21.4nm.ThisthicknesswasdeterminedbycalculationatoptimumthicknesstoexciteSPR.TheprismwiththinAlfilmsetontherotationstagaWe(;ollectedthesedatawithchangingincidentangletoboundaryblltweenprismandmetal.Wemeasuredthereflectancewiththe

l)hotodiode。I;’igure2(b)showsexperimenl;a11゙ esultsofl゙ tlflectancewithl)-polarizedlightsource.Wefk)undthattherene(;tedintensityd11(;reasesattheangleof55degrees.ThisresultsthatSPRcanbeexcitedonsurfaceofAI.M41enwecompareexperimentalresultwithcalculation,wecouldalsol’e(;()gnizethatangleofdipwasshiftedincomparisonwithcalculationresultshowninFig.2.Theshiftiscausedby

producedoxidizationofAlsurfaceproduced.Weneedtoevaluatel;hicknessofoxidizationofAhurface.

4.Conclusion

WedemonstratedthatAlisagoodmaterialtoexcitesurfilceplasmonwithDUVlight.Experimentalresultsshowtheex(;itationofSPR.Asaresult,renectedintensitydtl(;reasesattheangleof55degrees.WedemonstratedSPRex(;itationinD{1叩-UVregion.WethinkthatDeep-UV;・SPRhasuniqueapplicationforvariousfields.

22

11

l 

Mmla

11

1 t 1    M

@Q’‘SQq』`Q″・

”Z。,6.。,。ぶ。gl609,。:;,。,。。4,こ1’゜

加萎。2.Experimentalllesult:(a)Cal(3ulationsfor31ayerswithconsiderationofAlandAu.

Refi・activeindexofAI,Au,and{lxcitation

wavelengthare馬l°0.16+2.6::!い7all°1.38+1.80i,

and266nmrespectively.(b)Experimental

resultofthicknessthat21。4nmAlfilmat266

nmwavelength.

Fig.3.Experimentalsetup.De叩-UVLaser

ヽvavdength266nm,AHilm21.4nm,

Reference

[1]KeikoTawa,[Flil‘onobuHori,KenjiKintaka,KazuyukiKiyosuらYoshirolatsu,andJ呵iNishiiθj:’77CS’£λ7)j?Zi;;SS9781(2008ハ/ol.16・,N0.13.

○-07

TribologicalPropertiesofZnONanowiresHaeJinKim,KyeongHeeKang,andDae-EunKim*

DepartmentofMechanicalEngineering,Yonseiuniversity,50Yonsei-ro,Seodaemun-gu,Seou□20-749,Korea

TEL&FAX:+82-2-2123-7424e゙-mail:kimde④yons❼.ac.kr

Abstract

Znonanowireshavereceivedmuchinterestoverthepastyearsduetotheiruniquestructureandpieizoelectricbehavior.lnmanyappli(;ationsofZnOnanowires,thetrib()I()gical

propertiesofthenanowiresneedtobeclearlyunderstood.lnthisl)asentationthetrit)ological(;1121racteristicsofverticallygTownZnonanowiresstudiedundervarious(;onditionsarereviewed.Particularly,thefHctionalb{2haviorandwearcharacteristicsoftheZnonanowiresare(jscussed.Theresultsr)2sentedare(3xpectedtoaidinimprovingthedurabmtyofZnonanowires.

1.1ntroduction

CoatingshavebeenwidelyeixploitedtoattainsuperiorfiictionandwearpmpertiesofvariouscomponentsandcontinuedefTortsarebeingmadetogainbetterunderstandingofthektribologic111behaviors.

0verthepastyears,muchworkhasbeendonetodevelopnanowiresof(linirentmatclrialsfornumerousengineeringapl)Hcations.Nanowiresareiterestingmaterialsowingtotheiruniquestructureandsize(1-31.

1nl)Rviousworks,thecontactdamage(;11ε1racteristicsofZnOnanowiresgrownverticallyonasiliconsubstratewereinvestigated[41.TheliictionalbehaviorunderdifTerentscalesofloadwasinvestigatedbyperfbrmingcontactslidingexperiments[51。

2.Experiment

ThemorphologyofZnonanowiresdependsontheprocessingcondition.Znonanowiresinthisstudyweremadebytwodif秘rentmethods,anaqueoussolutionmethodE6]andmetalorganicchemicalvapordel)osition(MOCVD)method.lnFig・1,theSEMimageofatypicaIZnonanowirespecimensynthesizedbytheaqueoussolutionmethodisshown。

Contactslidingtestswereperfbrlnedunderdinbrentloads.TheweartrackwasobservedtocharacterizethecontactdamageofZnonanowiresforeachload.

23

Fig.1SEMimagesofZnonllnowires(a)evenlycoatedonSiwafbrand(b),(c)at

higherrllagnification

3.ResultsandDiscussion

ThecontactslidingtestswereconductedusingtheZnonanowirespecimensundervariousloadswhileobtainingthefyictionalfbrce.lnmi(;m-scale,the削ctioncoemcientwasabout0.35fordinlrentappliedloadsthrou帥outtheentireslidingcycles.UnderthelownormE111oad,thewearrateofZnonanowirescouldbequantifiedbycalculatingthevolumediffiごrenceofthecolltacting

parts。

4.Conclusion

lnthisresearchthecontactdamage

(;11EIracteristicsandf1・ictionalbehaviorof

ZnonanowireswereinveMigated.Basedon

thel゙ esults,tribologicaldaract❶sticsandfailuremechanismofZnOnanowireswereassessed.

Acknowledgement

ThisworkwassupportedbytheNationalResearchFoundationofKorea(NRF)grantfi,1ndedbytheKoreagovemment(MEST).(No.2011-(珀()0409)

Reference

[1]X.S11eng,Q.Yong,X.Chen,WYaguang,YIRusenandW.ZhongLin・“Selflpowerednanowiredevices”,Nat.

Nalotechnol・,5(2010):ES66-373.

[2]L.IL,i-’Yil,S.Ji-Min,J.Min-Chang,K.Kyung-Jin,K.Dae-Eun,M.Jae゛Min,“Wearrateofve函canygrownZno

nanOI¥1reS slidingagainststeelmicro-sphere”,Mater.Sci.Eng.A4truct.

Mater.Prop.Micl’ostruct.1ヨ)1’ocess・,jl{iO-461(2007):ES’70-376.

[3]H.W()()ng-KtS;.Junglnn,H.Dae-Kue,K.Soon-Shin,J.Gunho,S.Sunghoon,K.Seong-Min,K.Hang-Ju,RSeong-Ju,W.MarkE.,andL.’:lllkhee,“TunableElectronic’I` ransportCharacteristicsofl;11rfllceArchkecture-ContronedZnoNanowireFieldEflFbctTransistors”,Nanol..ett・,8(20011)950-956.

[4]K.KyeongHee,K.HaeJin,andK.Dae-Eun,“CharacteristicsofProgressiveDam聊啓ofZnONanowiresduringContactSlidingunderRelativelyLowLoads“,J.ofNanomat.,(2011).

[5]L.Li-’yu,S.Ji-Min,J.Min-Chang,K.Kyung-Jin,K.Dae-Eun,andM.Jae-Min,”Wearrateofvel’ticanygrownZno

nanowiresslidingagainststeelmicro-sphere”,Mat.Sci.&Eng.A,460411:1(200’7),3’70-376.

[6]『;!.A』・1nulhaq,A.Umar,yB.Hahn,“GrowthofalignedZnOnanorodsand

nanopencilsonZnO/Siinaqueoussolution:growthmechanismandsl;1’tlcturalandoptica11)roperties”,

24

14anotechnology,1.11(200’7)115603.

○-08

Cellprocessingwithelectronbeam

KenWatEmabel≒WEltarulnami2・3,andYoshimasaKawatal’3

’DepartmentofMahanicalEnginec3ring,Shizuokauniversity,Japan2DivisionofGloba1ReserchLeaders,Shizuokauniversity,Japan,JST,CREST

3-5-IJohoku,Hamamatsu,Shizuoka,JapanTEL&FAX:+13卜523-478-1076e゙-mai1:wEltanabe.1(en④()ptsci.e昭.shizuokE1.acjp

Abstract

Wel)resentcharacteristicex/211uationofce1II)rocessingusingan(?lectronbeam,inorderto

realizenanometricfabdcation.lnthise)(periment,irradiationareaswereobservedwitha

phase-(;ontrastmi(;roscopeandanatomicfbrceITlkroscope.

1.1ntroduction

Nanote?chnologyhasbeenstudiedf1)rmedicineandbiologyappli(;ations.ThetechnologyofFocessingcellsisstudiedinresearchofcarlcertreatmentandgleneticenllineering.FigurelshowsanexampleofcellscuttingbylaserElblation□].Laser

processinghastheresolutionofhundredsofllm-orderbyfo(;usedlight.

Fig.1.Theyeastcellwass叩aratedby

ferlltosecond111ser.ltcanbeconnrmedthatthe

laserprocessingwasachievedwithoutany

dalnageonthecells。

lnthisresearch,wepresenttousean

electronbeaminsteadoflaserfbrce11

1)rocessing.ltisexpectedthatthe(?lectronbeamcanbeusedfor伍bricatingina

nanometricregionsincetheelectronbeam

canbefocusedtoafbwtensofnanometer.ln

this{IM}eriment,we卜radiatean{?lectron

beamonnxedanddriedcells,and

investigatedamagesonthecelL

2, Theexperimentalsetupwhichirradiateswithan(ilectronbeam

Figure2showsaschematicdiagramof

scanningofelectronbeam.Theelectronbeam

wasirradiatedascircleshapebyscanning

operation.

25

‾Electronbeam

Hela-cellFig.2.Aschematicdiagramofscanningof

electronbeam.

Forirradiatingandectronbeamonace11,ascanningelectronmi(;roscope

(SEM)wasused.TheceUsusedinthe(2xperimentareHelacellswhichwere(;ulturedonaslideがass,andtheywerenxedanddriedinordertol)r()cessinavacuum。

Figure3showstheschematicviewofthe(3xperimentalsetupfordectronbeamirradiation.AscanningcoiliscontronedbyextemalCurrentfioma恒nction11{jlleratortoscanthe(?lectronbeamwithanarbitraryshape。

A(xeleratingvoltageoftheelectronbeamischangedas20kV,10ky5kV,2.5kvTheirradiationareaisthesameona11conditions(magnincation:×800).Amountofeうlectronsaresameamountina11conditions.

3.0bs{lrvationafterirradiating

Anerirradiatinge】ectronbeamonace11,itwasobservedwiththeopticalphasemicroscopeandtheatomicforcemicro-scopaFigure4andFigure5showobsclrvationresultswhenitirradiatesdectronbeamof20kvofaxeleratingvoltage,lnaphasemicr()scope,irradiatedareaisRc()gnizedclearlyflsthelineshapeonthe(;e)lsurface.

Electron

gun

Condenserlens

Magnetic,

1ens

こたご

rml

Electron

beam

HM

erture

s a m p l e 卜 し

㎜XYZ-Stage

Fig.4.Theauditobservationinaphase-

contrast1111(3roscopeFElbri(3atedarea

1481.0S

[nm]

113り5

Fig.5.TheauditobservalioninAFM

lntheobservationresultbyAFM,adepthofdentabout170-nmwasproducedattheirradiatedarea.Thedepthofdentwas130-nmwhentheaccderEltingvoltagewas10kv,Wkhtheirradiationof5kvand2.5kMitwasdi伍culttorecognizethedentsonthecells.

26

PC

&ondary

Display一

● 二 - ち ・ , 二 - j . - .

・ ・ = J - - 光照厘 回 lCP!` i`ヨ

X石〇6`rdinat{i”‾‾’

electrondetector

Fig.3.Anexperimentalsetupwhenirradiatingwithelectronbeam

4.Discussion

Wecouldobservedclearchangein(;ontrastthroughaphasecontrastrllkroscope,Thereweresurelychangeonsurfaceshapesof20kvand10kv,butitisverysmallchange。

Comparedwithlaser,thepermeabmtyofelectronbeamislowandenergyofitishigh.lthinktheirradiatedareaofcellisshockedmostonsurfllceofit.Asaresultofit,Wemaysaythatsomestructuralchangewasinducedinthecenandtherewerenotopologicalchanges.

5.Conclusion

Asanext2searchissue,weneedtoinvestigatechangeofacellinthreedimensionsusingaconfocalmicroscope.Wewouldliketooptimizetheconditionsoftheamountofelectrons,orf1)cusedspotsize.Finally,wewouldliketoconducttheexperimentusingtheEXA-microscope[21.1tispossibletoprocessingcellsinatmosphere,andwecanexperimentandobservewithlivingcells.

Reference

[1]JapanScienceandTechnologyCorpo-ration,wwwjst.go.jl)/pr/report/report226/,

(H/15/2011).E2]Y.Nawa,W.lnami,A.0no,A.Miyakawa,

¥Kawataand!S.’rerakawa,ProceedingsofllthlntemationalConferenceonlヽ Jar-FieldOI)tics,(2010).

○-09

PrecisionmllchiningofGCmold

M4)nkyunLee,Kyung-lnJang,andByung-KwonMin゙

SchoolofMe,(lhanicalEngineering,Yonseiuniversity,j5(Pyonsei-Ro,Se!()daemun-Gu,Seoul120-749,KoreaTEL&FAX:+82-2-2123-5813/+82-2-364-6769’e-mail:1)kmin④yongi.ac.kr

Abstract

Thispapehntroducesanovelmachiningr)rocessofglassycarbon(GC)surfaceutilizingtheelectrochemicaloxidation.Hardandbrittlemat❶alscanbemachinedbythesynergyef秘ctofmahnicalmElchiningandele(;trochemicalreaction.Aseriesof(lxperimentswere

performedtoverifytheadvantagesoftheproposedprocess.

1.1ntroduction

Glassycarbon(vitreouscarbon,GC)is

prefbrredasamoldmaterialtobeusedinglassmoldingpress(GMP)becauseofitshighhardnessandthermal乱ability.Furth(lrmore,the(;()hesionbetweenGCand

glassisr{lhltivelyweak.[日However,itishardtomachinethecomplexshapesonGCsurfllcesbecausetheGCisabrittlematerialwahahighhardnes亘S;horc・11ardness>100).AltemativemE1(Jhiningl)r()cessessuchassawing,laser;1blationandfocusedionbeam

(FIB)havebeenr)roposedforl)recisionmachiningofGC.[2-4]Waf・3rswingisasimplestl〕rocess,but,itislimitedtomachinesimplefbaturessuchasstraight(;hannel.[2]I)ire(;tlaserablationusingapulsedUVlaserissunableforrapidprototypingofcomplexshapes,However,ithaslimitationinformllccuracytよe(;auseofthebeamshape.[3]FIBmillingofGCcanachievenanometerscaleE1(;curacy,but,mllchiningspeedisextremelyslowandthemachiningareaismicrometerrange.[4]

ToovercometheabovelimitaUons,anovelm161,hiningprocessusingthesynergismofelectrochemicaloxidationandme(;hnicalmachiningispr()posed.Asoftenedsurfllceis11{?neratedonGCsurfllceasaresultofelectrochemicaloxidation,andmech21nicallyremoved。

lnthisstudy,experimentalinx/tistigationsoftheefTbctofelectr()chemicaloxidationonmachiningwereperfom!ed.Themachiningresultsoftheproposedmethodandconventionalmillingwerecomparedto

27

demonstratethefeElsibilityofther)r()posed

l)rocess.

2.Experimental

Fig.1illustratestheprocessm(?〔;hanismofl〕roposedr)rocess:(a)ElectmchemicalequilibriumonsurfacearebrokenbyapplyingovervoltagebetweenGCworkpiece

(TokaiCarbon)andPtcounterelectrode(ALS),Anoxidelayerisile・neratedonGCsurface.(b)TheoxidelayeriseasilyremovedbyatoolmadeofZr02becauseits

( a ) ( b )

(c)

Electrolyte

Electrolyte

(d)

Electrolyte

❼GC■OxidelayerDCounterelectrode(Pt)

Fig.IEktrochemicalojdationassisted

micromElchiningl)rocesses:(a)fbnnationof

()xidayerbe拓remEhining,(b)removalof

()xidelayerandGC,(Oregenerationofoxide

layer,and,(d)micromflchiningofGCbythe

r(うpetitionofthe(1))and(c)

1゚88-698

(OIOZ;)OSaJnl呵nullへlp回sloo1Qu!IloBWJolluJnoflluo!IBuJ司ul4Q9’I

TSp回u!W°li-‘a‘)loQS‘f‘S回f°IうI[g]

t゚78S;乙一児gi::(900Z;)91宕叩;)9u!liuaoJo!lへI

p四so!1113q;)Quloぷ)!WJo呻LlnofipQIW‘llpaolo9‘H‘!qsllllnieL‘lぺ【‘llrloλ゚ 葱゚ S[tァ]

I゚・tァー5M;(ヤ00Z;)SIァー517sulIH

P!loSII!ILL‘unr()葱‘vpul・laIQtpS°E)゙ E)‘!pμO‘a‘1.1g・ddrllL‘;l)iullりI’W[E]

’(瓦:E-9?:IE:(Z,00Zj1181-∠,81屈oF)ull3aL

11111!ssQ3oJdsllリQ坪lへIJO11111.n‘1of`11pQBIへI°Ilp回ol()9゙ H‘叩叩l)i11L°lべI‘unoλ゚ M゙ S[Z;]

‘g09g-009g(g()()乙)叶s;)!s胡d

l:)9!lddVJo叩JnofQsQ四dBf喘)91W°Ilp回0101xl押nS̈)l‘!Ils13111・:ゝ iljL°W[I]

sa3uaJalall

ぶ)3!AQppugsplouIDgJoiluFI!1101ul

(:lgJOJI)()lpuluo!郡)!Jq町Su!s!uloJdlsBI);1.19p!suo3S!po叩Qull)SodOJdQ叩sllnsQJlllugul!JgdxgQqluoQsla’pQ!J!JgAXIllluQulリQdxQpullpgsodoJdslM

ssQ;)oJdiu!u!1101uloJo!ulpQls!ssluo!坪p!xo

llo!ulQq3oJI;)QpuB‘JQ面ds!叩ul

suo!snpuoこ)’17

8乙

S゚umlplul

iu!JnppQIloJluo3Qqu133pQIJQX111Quj(sQ弔111qlsulQulll’QS司loA・IQAopQ!lddBQ叩olIBuoFμodoJds!ssoHIμQ111ulQ叩詞叩心リQA

plno39Moslv°uo!1叩!xo1113!uIQ1100JI;)Qppull日u!u!1101ul1130!u13110Qululo4J:loQIJ9jaJQu尨Q叩xqpQIJ111uQs!ssoIF!JQ詞ulQILLlpQ!lddlslMΛZ:゚ IJOQillloAJgAOQ叩QJQIIMuo!SJ叫lu!%OEu13qlQJoulp;193QJ3u!sBMgu!IJolQJIIBuo!loasssoJこ)

uo!sn3s!(lpul9lnsall°g

‘sgnllAlu司suoo

押pQu!司u!lulQJQM即IJpQ弓IBluoz!Joll

p四XQuQnbQ・!luo叩loりooドQOJOJIBuuousBlF)nssuo!l!1)uo;)Su!u再;)llべ【’Su!u!1131ulQu!I

叫IJo叫pp!ul叫luH】Q!lddl9Jgg(d91sΛZ;゚ 0叩!gΛZ;゜lolArO)sgS司loAJQAosnoFAQ叩s`solll!JQ111uluouo!Wp!xoll;)!u191130J13al9

J o p q l J Q Q 叩 Q 聊 1 9 s Q A u ! o 1‘SuFI!IF)lulii叫mppQIloJluo;)

P皿pgJol!uoulQ3JOJIBuIJouQ叩IB叩910N°ssQ3oJdllAoul9Jll!JQ秤uIQloqMQq11叫mp

p;l狸9dQJs!JQ庇I叩!xoJouo!狸.IQuQ11QJ-FAoulaトuo!秤JQu9日91LL(p)’Q313JJns

こ)911s94JpQsodxgj(IMgu9叩uop9113JQu9宕QJs!Jgxll9p!xoggN(o)’uo!11・lildoJd)1;)11J;)叫lp!oAlolpQIloJluo3Qqplnoqs

こ)Duol)Q!lddBssgJls叫l‘QJOJgJrl’;);)町mspQulll3BulrQJnloB・11『lspQ93XQこ』Duol)Q!lddBssQJls

叫IJI[ヤ]゚ こ)9jlo坪ql回IllJggols!ssgupJr

29

0j.0

Opticanycontronableelectrophoresiswithaphotoconductivesubstrate

TaikjN宅誤himaA,’lでaka恒milwahashiA,WatarulnamiB’c,AtsuoMiyakawaA・c,

andYoshimasaKawataA’cAFacultyofEngic?ering,Shizuokauniversity,Japan

8DivisionofGloba1ResearchLaders,Shizuokauniversity,Japan

cJapanS;cierlceand’r7echnologyAgency,CREST,Japan

e-mai1:kawata④eng.shizuoka.acjp

Abstract

Wedevelopopticallycontrollableelectrophoresiswithaphotoconductivesubstrate.M厄demonstrate

simultaneousmanipulationofmicrol3articleswithoutanynow(;hnnels.

1.1ntroduction

MicroTota1AnalysisSystems(μTAS)and

Lab-on-a-chiphavebeendevelopedinamedical

andbiologicalapplications,andtheyhavebeen

irltensivelystudied.Thesystemsareexpectedto

havemorequickproceduresandhigher

functionality.

0bjectiveofthisstudyistocontrol

microparticlesinnuidwithlaserirradiation.By

combiningpropertyofphotoconductivesubstrate

and c31ectrophoresis,wecanElchieve

isreducedinlheregionthatthelaserwas

irradiatedbecausecondu(;tanceofirradiatedarea

isincreased.Figurelshowsschematic(1iagramof

r)rincipleofphotoconductivembstrate.Bil2Si020

(BSO)isusedasphotoconductivesubmate[I’21.

Light

4 4 〔 旬 匹 返 誕 ・ D

目 口 ; 粉 面 ; i a i i a 〕

eee4i)価9←≒う,瘤総垂心要轟

2.Experimentalsetupofoptieal

mieroparticlescontrol

2.1Photoconductiv{lsubstrate

Photoconductivesubstrateisakindof

semiconductor,anditsconductanceisincreased

byalaserirradiation.Nvhenthephotoconductive

substrateisappliedavoltage,potentialgradient

whichrelatedtoresistanceofsubstratearise.0n

thephotoconductivesubstrate,potentialgradient

AI・ea

Fig.ISchematic(liagramofpincipleof

photc3c【】nductivesbstrate.Dashedlineindicates

potentialgradientxvithoutlaserirradiation.SOlidline

indicatesr)otentialgradientwithlaserirradiation.

2.2Ekctrophoresis

Figure2showsr)rirlcipleofelectrophoresis.

IElectrophoresisisthemotionofdispersed

particlesrelativetoanuidundertheinnuenceof

microparticles()I)erationwithoutnowchanne1.j

Webelievethatthistechniquecontributeto。

developmentofthehighfun(;tionalityanalysislン

devices.

’E89E(££61)‘lllア‘’ga/f陣与’

7。‘o乙09Dzl旧puuoこO!Sこl!au!ssa3oJd

J町suuJlalJuq3puuiu!pJo3aJmuJjololl

Qulnl(汰59‘tl()Jaり!W°とlpuuJり19d°W[乙]

・S6なI£61)‘gy°5jf’瓦f7治雄?。og(⊃!Sgl!aJO

s叩・I∂clo、KI卜)!ldOI)1IB芦)!耳)allLymAJBH

’TKPuがnoH’TS‘U;)!JPrv’FII[I]

sa3uaJaJaU

‘?uur3MOU宕LI!ssQ3oJdlno叩!M

tlo卵!puE!jasulxqsgp!μudoJ;)!uJloJluoこ)ugこ)恒摂

’;)IBJlsqnsc)Λ!pnpuo3010LldBql!Ms!sQJOLldoJpQI9

司qlllloJluooxll圃!ldopdopA叩御衣

uo!snpuoJ)゜t7

OS

Q゚μjlsqnsgA!pnPuo301011du叩!Ms!sQJolldoJpaIQ

司qulloJluoj/(IIE吊doJodnps凹uaal!gdxHE°即こI

「フゴ

= → て に 卜 一 髪 S

Ξ亘EEi]匯冲i]ロ

‘sal3!μud UJO町 IL抑!I

匡己

jtl!鉛平3s

咀!MQ涵tu!已JQuluこ)(1こ)こ)μipueuj9平d

¥uuJii11!lu明3心uJa印dJasgII)a嗣puJJ!loJluo3

ul3aAX`uJliols!Qz!s叫lpuu‘s叩)!μl?doJ叫u

supsngJ召sal3!μudx斗?lauQMls/(lodA)ig’Es!

’awJlsqnsOSa而叫oAp叫ddv‘uluaヤs!q侶uaIQΛIM匹e‘Mtu

叫1uol)即3!pe祠s!uj即udJQsul託lnaJ!DSt?JlsqnsglsoaModJQsel’Qc)Jnosl叩!lusB同sns!Jasul

OSUuos!s;)J(,qdo耶)alaJOQ涵LuoJaulBo(1こ)こ)t7・匙19po!pgn旧‘dn19slBlugLu!gdxQsMo甲EgJnl!j

uo!4ypuoc)Fluau』!Jadx2IC°Z

・叩oJ13QIQaΛ!l!sodoりAouJsSJ叫31圃!Jpalas)A叩乱u

叩!Mgl叩2d‘s!sgJoqciojpal3Jo町dpu!Jd乙角J

一 一r’-問・¶’・・’-曜’’-”ぼ’

二 T … … … 1 ( ジ →u゙QJ131)a司pu祠pun()J11pgllo3

sap!μld叫l‘daQlssQ山o3Qq召Q21)9嗣puJJ!

叫IJguuo!励JQqlJoltlc)!puJill?!lualod‘I)即3!芦Jj!

sリ9sBI叫lu叫M4pur工叫lo叫luolo!113!pu祠

JQsullno町mlmi爪掛m!塵l毒泣証ねodiuol13g}poJpap

aA!l!sodol;}I)oJloaPQAn而QuuJo4JQΛoulsQp!μud

叫1’i)lols(1nsOSaa叩uos!saJolldoJ1319

Joa涵m!召JQulu3(1こ)こ)sMotlstアQJnl!こI

uO!ll!pli.IJ!Jasllql!M

OSa叫luos!saJoqdoJpalaJosllnsaU°1;

!lJed一 一 一 一 一 一 - - - ‥ - 一 一 -一 一 一 一

’sluauJgAo田9p!IJldoJc)!ul

loJluo3uu;)QMjlJa!puJIB!lu910d叫llojluojgM

JリI口ollnsQJlsvluQ!plJj凹luQloduopuad叩

sQI3!μudJouo!pQJ!Ppu13心!301QΛ’Q3JOJqulolnoこ)

311131soJpapul?斗axaP19113!J139pluuJ司xa皿

叩川MuoSQ忠明3Qa町Jns3!J13QIQQΛltlsQI-

l)asJads!p叫1°pl叫3リ13alawJOJ!unxH19udsB

11皿○

Fal)l°icationofAntir{lflectionsurfaceviaNllnosphereLitl14}graphy

HaesungPark,KyoungsikKim*S;(;11001ofMechanicalEnllineerinlyYonseiuniversity,50Yonsei-ro,Seodaenmn-gu,Seou1120-749,Ko警彗

TEL&FAX:+82-2-2123-5815*e-man:kks@yonsei.ac.k「

Abstract

lnthispaper,weinvestigateopticalabsorptioncharacteristicofthesubwavelengthlmtirenectionsrfllceswhichareflibricatedbysin111e-stepdeepl’eactiveionetchingwithn飢ospherelithography.Byintegratingconventionalquarter-wavelengthantirenectioncoatingandSinanoconical-fhlstum,wesuccessfilnyextendthealltirenectionbandwidthinclduing1111ar-UVregionwithoutfabricatingsub-300nmnanostl’1.1cture.

1.1ntroduction

Afterfirstdemonstrationofsolarcen,manyresearchershavebeenstrivedtoimprovephotovoltaicemciencyandaneconomicalrationality.Duetotheinnatehighl’t・ifi゙ activeindexvalueofsilicon(Si)material,Sibasedsolarcellmflヲerf1・omalowabsorptionofthesolarenergy.T11ereforethecostaductionandabsorptionenhancementbecomeam司orillterestin

photovoltaictechnology.Thesl.lrfllcel;exturing(suchas㎞V・・1’tedpynlmidetc.)developedforanenhancedlighttrappinginbulkSioverbroadspectralrangeandwideincidentangle.Thiscouldbeabettersolutionthanthequarter-wavelengthantirenectioncoatingwhichcanonlyimprovetheabsorptionofaspecificwavelengthrangeandlimitedangleofincidentsolarenergy.However,duetothethicknesslimitation,thisstrategycannot411rectlycompatiblewiththinmmSisolarce11,whichisabouttwoorderofmagnitudethinnerand(;heaperthanbulkSisolarce11.R{1(;ently,newstrategyofenhancedlightabsorptionbasedonnanostrl。l(;ture,suchasSinanocone(SiNC)[1]andSinanowire

(SiNW)[2]isl)I゛・:)posed.Thesenanostl’1lcturescanl)rovideagraduanyincreasednanoscalerefi・毒tiveindexsl:1’l.lctureandminimizerenectionarisingfi・omrefi・ε1ctiveindexdiferenceattheSiandllh・inta・fllce.[3]T11erefore,itismlcessarytoinvestigatethecorrelationbetweenabsorptioncharacteristicandgeomeU’yofSinanostructure.

31

lnthispapel;wehavefabricatedARnanoislandsonSinanoconic醤溢血鬘marraybyusingnanospherelithographyandsingle-stepdeepreactiveionetching.Andwehaveinvestigatedtotal(spectraland(nfヲfused)absorptionandl’elFlectionl)I゙ opertyofnanostl・ucturesoncrystanineSisubstratebasedonUV/VISspectrometerwithintegratingsphere。

2.Samplepreparation

ourE11:)1)roachtohighlyorderedSinanosl:1’uctureusingself・assembledllanospherelithographyiscomposedoftwosteps.Thefirststepisdepositionof

l)olystyrene(PS)11ε1110spheremask.Andthesecondstepisin4:luctivelycoupledl)lasma

(肥I))etching.I∃Seforethedepoition,p-type(100)crystallinesiliconsubstrateswerecutintopiecesof20mmx20mm2.Every

pieceswerecleanedwithstandardRCAIprocess(keptinasolutionofNH40H(25%),l{202(30%),andwaterat80℃for15min)tomakehydrophilicl;isurlヲ11ce。

Thedep(:・sitionofPSsphere(dia.=500nm,360nm),beginsfi’omintroducingofananospheremixturesolutiononthemrfaceofdeionizedwater(18MΩ・cm)inalarge

petridish(dia.=20cm).Themixturesolutionconsistsofethanolandnanospherewatersuspension(10%w/V)withproperratio.Asyou(;anseetheinsetofFig.I(a),onlywhenwemakethesuitablemixtureconcentration,wecanseetheiridescent(;olorfi‘omamonolayerofhighlyordered2Dclosel)ackedPSnanosphereonthewater.

uslng Reference

川J.Zhu,Z.Yu,G.F.Burkhard,C.Hsu,S.T.Connor,¥xu,Q.Wang,M.MCGehee,

S.Fan,andY.Cui,NanoLett・,!}(2009)毘思-282.

圖K.Peng,Y.xu,yWu,Y.ゝりれS,Lee,andJ,Zhu,Sma1LI(2005),1062-1067.

[3]Sでhllang,H,Chen,J.Shieh,C.Lin,C.{2heng,}tLiu,andC.Yu,Nalloscale,2

(2010λ799-805.

[4]H.Park,D.shin,G.Kang,S.Baek,K.Kim゛,andぺVJ.Padina,“召Γθαどyゐa17d

皿紅9廻郵Zμ魯万営&&ZZ芯RI多夕Zw?!二二弧丘可μ尽回沿i

み7たgアα治?gα甜かび匹z加ez?ay7θ-/s/aηゐ

wj訪∫治cθ7777α17θcθ雨c❹畳心地朋ご717α川”,

/ゝdvancedMaterialらAeapt・・d,(2011).

UV-VIS-NIRpeclrc)I)h()lometer(UV3600,Shimadzu&jentificlnstruments)witha60mm-diameteritegratingsphere

(MPC-3100)bysca皿ingamonochromator(;oupledtoahalogenlamp.The£1veragerenectanceofourstructureintheNUVspectralrange000~400n111)issjgnincantlyrducedto3.8%,whilethatofsharp-tippednanocone雌1’ucturesisasmuchas9.2%。Thefilrtherdetailsofour(lxperimentalresultsarediscussedattheconfbrence.

32

4.Conclusion

Theantir(lnectionl)mpertyofourdesignissignincantlytうnhancedcomparedtothatofsharp-tippednanoconestructures,sothatthe21veragerene(;tanceintheNUvspectralrange(300~400nm)ぶicreasedfyom9.2%to

(e:-

柚●

lafeSI

き●

・〃゛

J-

-

〃 ・

suni1Ce・.秘xtu吻dj・ ご 端 lll ol 01

51 ol  1  1 091110101 ol l  13 ol

〃 -

J 。 〃 ’ ,

Fig.1(a)Anoptic・11phololSrapllaild(b)aSEMimag(nom!ahiew)of2DPSnan()sphereslll(・nolayermaskp21tlemtransflrredonl;istlbstrate(20×20mm).(c)SEMimalleofl)5;sphereislandsontopofSiNCFarrayswhileNCFarraysare泌datedvial(2Petching・(d)Capturedsidewallprofileimageusingadu211-beamFIB?stem.(e)Aphotograpllofbaresiliconar1(1surfacetexttlr{2dsilicon.

Subse(luently,thedeionizedwaterisdrained3.8%.andevaporated.Finally,themonolayerofToourbestknowledge,thisisthenrstllanoSpherewasslowlytranSferredontothemethodtoextendantirdectionsl)ectrumsiliconsbstratelocatedbeneaththepetriincludingtheNUvregionwithoutanydish.coml)licatedprocesstofllbri(:atefeaturesize

below300nm.[4]3.ExperimentaIResults

lnorderto(;haracterizetherenei(;tanceof

oursamples,weperformedabsolute

hemispherica1 measurement

2j.0

AnalysisoflightandelectronscatteringinathinmmforEXAopticalmkroscope

MasahiroF吐utaljyatarulnami2’3,j4tsushiono2’3,andYoshimasaKawatal’3

II;` acultyofMechanicalEngineering,Shizuokauniversity,Japan2DivisionofGlobalResearchLzaders,Shizuokauniversityjapan

:3JapanScienceandTechnologyAgency,CR】ES’nJapan

E-mail:kawata@e・n11.shizuoka.acjp

Abstract

’Syeanalyzedthelightandelectronbeamscatteringinananometricthinfilm.Wehave

developedanew1111alysismethodthatcombinesMonteCarlosimulationandFDTD(FiniteDiffbrenceTimeDomain)method.TheMonteCarlosimulationisusedtoanalyzeelectronbe肛nscattering,andtheFDTDmethodistoanalyzelightscattering.Wecoatagoldthinmmonthenuorescentmmtocuttheelectronbeanltransmission.Thethicknessofthegoldthinfilmis20nm.Asaresult,theelectronbealTltransmissionwasO%,andthef1111widthathalfmaxi17nunlwas47.1nmattheplanewhichis10nmawayfi’omthemrfaceofthegoldthinmm.

1.1ntroduction

Theelectronbeamelccitationassistedopticalmkroscope(EXAopticalrllicr4:)scope)isanewmkrosc()pewhichcanobservespecimensinthelivingstatewithhighl’esolution.TheEXAol:)ticalmicr゙ oscopeemploysananometriclightsourcewhichis

lleneratedinanuorescentfilmbyelectronbealljrradiEII:ion.[1]1:)isadvantageoftheEXAoptical

mkroscopeisthedamageforthespecimenduetotheelectronbeElmtransmissionofnuorescentfilm.Thetransmissionishighnearly100%whentheincidentenergyisover3keVOurresearchot!jectiveistoeliminatethe(hlrnageonspecimensbytheelectronbeElm.Toachievethiso句ective,wecoatagoldthinmmonafluorescentfilm。Weanalyzedtheelectronbeamandlight

scatteringofnanometriclightsourceinthenuorescentmmcoatedagoldthinnlm.WeuseanewanalysismethodthatiscombinationofMonteCarlomethodandFDTDmethod.TheelectronbeamscatteringinthenuorescentfilmwasanalyzedbyMonteCarlosimulation.Thenuol・escenceexcitedbyelectronbeamwasanalyzedFDTDmethod.

2.Analyticalmethod

l;` igurelshowsschematicofelectronbeamscattering.TheelectronscattersatPotoP3in

33

thisfigure.Weca11PotoP3scattering

position.Whentheelectronsareirradiatedthenuorescentmm,theypropagatestraightlyinthedisUlnce∠1・Slofmeanfi゙ ee

path,andchangepathwayduetoscatteringatatoms.Weanalyzedtheelectronbeamscatteringbycalculatingthedi就ance∠1・SnandsEltterillgangle6k,4foreach61ectron。Theelectronlossestheenergyasitpasses

throughthemeanfi’eepath.Thedipoleswereexcitedbytheenergylossastheelectronpassesthroughthemeanfi’eepath.

PO`1

lncidentelectronbeam

l / X

Y △ S I

PI,べ’je2φ2

--へゝ

≒ / ″≒ / /

⊇ 。φ 1 Θ 4△S2△S3..如

P 、 Θ 3 P 3` φ 31 `

Fig.1:Theschematicofelectronbeams(;attering

We{:a}cu】atetheenergylossf1〕ralls(;atteringprocess.Weassumethedφoleswereelxcitedinthecenterbetweenscatt❶ng

r)ositions,suchasPlandP2inFig.1.Thenumber(迂excitedl)hotonsGaregivenby[2]

G =∠MF

3£,&(1)

where∠1£isenergylossand£BGisbandgapofmaterial.Thedipolepolarizationisrandom.Weanalyzedlights(;atteringfbreachdipolebyFDTDmethod.Thelightintensitydistributionofnuorescencenlmwasobtainedbyaddingtheeach(;alculationresult.Wecoatthegoldthinnlmonthenuorescentn】m.Thethicknessofgoldthinnlmis20nm.WechoseSiNasthenuorescentfilm.Thewavelengthofthenanometriclightsourceis337nm.

E{’()りg一二()に

11  l  l  011  011 iil 111  041 011  011  011  011  11  011 11  oll  011  011  oll  011  oll  011  01101 11 1411  olt

[ ニ ー ¬ A 。・皿(j-・・●-aa.-.JJ

レ iご S i N

rFI照男

20nm-

一 一

’1雫『1111177耐|唯

Fig.3:TheresultoflightscatteringbyFDTDmethod

34

IElectronbeam

0.5kcv3kcvJ _ _ L

3.Simulationresult

Figure2showslheresultofthreedimmsionalanalysisofelectronbeams(;attering.ThethicknessofSiNis50nm,thethicknessofgoldthinfilmis20nm.Acceleratingvoltageis3kevFromtheresultsshowninFig.1,allthecllectronsarestoppedbythegoldthinmm。Figure3showstheresultoflight

s(;atteringofdipolesthatareS;eneratedbyelectronbeamscattering.FromFig.2,wecanflndthatthelightintensityislargeatnearlygoldthinmm.Thisisbecausetherenectedellectronsbythegoldthinnlmalsoe?xcitedthedipolesneartheinterfhcebetweenSiNandgoldnlm,。Wemeasuredthedectricneldintensityat

theplanewhichis10nmaway行omthesurfaceofgoldthinnlm.Thefilllwidthathalfmaximumofc2xcitationHghtspotis47.1nnl.

4.Conclusion

TheelectronbeamtransrTlissionise?Hrninatedbycoatingthegoldthinnlmonthenu()rescentmm.Thethicknessofgoldthinmmis20nm.Tocoatthegoldthinmmonthe

nu()r(?scencenlm,then111widthathalfmaximumofe3)ccitationlightspotis47.1nm.EXA()pticalmi(ごroscopecanrealizelessthan50nmresolution.Wehaved(3velopedthenewanalysis

methodcombinedMonteCarlomethodandFDTDmethod.TheMonteCarlomethodanalyzedtheelectronbeamscattering,andFDTDmethodanalyzednuorescence

11{?rleratedbyelectronscattering。

Reference

田W.lnami,K.Nak匈ima,A.111汐akawa,andY.Kawata,01〕t.Express18,128!)7(2010)

[2]DavidC.Joy,“MonteCarlo1110delingfordectronmicroscopyandrTlkroanalysis”,0XFORD(1995)

Qりー.0

lmageresれ】ratiolmethodforhighnsolutionimageindigitalholographicmicroscope

Do-HyungKiml),SungbinJeon2),Sang-HyukLeel)

Kyoung-SuPark2),No-CheolPark2),HyunseokYang2)andYoung-Pi1Park2)1)CenterforlnformationStorageDevice,Yonseiuniversity,Seoul,120-749,Korea

2)DepartmentofMe?(;hanica1Enllilleering,YonseiuniversityS;eoulj20-749,Korea

Phone:+82-2-2123-4677,Fax:+82-2365-8460,E-mail:pnch④yons(?i.ac.kr

Abstract

Thispaperintroducestheimager(2乱orationmethodindigitalholographicm化roscope.Suggestionofr(?searchusestheexactPSFfunctionasimagemtertocompensatetheim昭e(kgradationbyopticalsystemofmicroscope.Phaseshindigitalholographicmi(;roscopesystemisconstructedtoapplythisr(2storationmethod.Fromtheexperimentalresults,improvementofimager{lsolutioncouldbeverified.

1.1ntroduction

Fromthefirstresearchol` holographybyDennisGabor[11,hol()graphyhasstudiedinvariousapr)kations.Digitalholo11raphyisonetechnicofholography,DigitalholographyusestheCCDasthematerialtorecordthehologramandreconstructstheinfbrmationbyopticalornumerical

pr()cessing[21.ThismethodhaslldxyantageinthelimitationoftheRlcordingmaterialandreprocessingbycomputlltionalmethod.Digitalholographicmicroscopyisoneofthemostdesirable111)plicationsindigitalholography.Digitalholographicmicroscopy

XyW

lj●

l ミ

㎜ ● 皿

㎜ l 岫 e

徊 仙印ler

Laxf

|豪,jL少・゙ニ

Fig.1.1)haseshittdigil;11110】ographic

lnlcroscpy

wouldllrovidetlle3Din丘)rmationofthesample.ltwouldbeusefulinmanyresearchareas.Reうs()lutionofdigitalholographicmicroscopyisstronglydePendedonsizeofCCD,pixelpitch,andsamplingrate.lnsveralreRarches,thesefllctorsareanalyzed

圖lntheimagingsystem,qualityoftheimageislimitedbyspecofopticalcomponents.lnotherword,alloptica1(;()mponentslimittheperfbrmanceofimage

qualitywhichisequaUy叩pliedindigita1110防graphicmicroscope.

lnlhisl]aper,imagerelgorationmethodis

proposedtoavoidthelimitationof()pticalcomponentsandll(;hievethehighr(lsolution.

2.Phaseshiftdigitalholographicmicroscopy

TheschematicviewofexpenmentalsetupisshowninFig.1.4-stepphaseshiftingmethodisusedinsystem.532nm

greenlaserisusedaslightsource.1536*1024(pixelpitchgum)にolutionCCDcameraisusedasthesensor.Phaseshiningisperfonnedby2kindsofwave

plates.0tjectlensis20xmicroscopelensUSAFchartisadaptedastlletargetsample.

35

ljjて否否否帚重吼-a7θJ/‘ a ∂ 心 町 ‘ 酎 7 引 町 ∂ j 冶 j 7 口 μ 句

。9JmJadりs!nbxN叫IJojSd叫lju!snSuH13;)sdniiu!而lu!xqtu91以s謡BJols琲叩こ)!1μuJiolotII)g)suq-SRdlJo心!su叩aiiuJols叫lii11!sll9J3ul。

)iJudl!d-lunoA

pue‘)μudnSJunoxx‘iuuA河oasunxH‘yudloaqJ)-oN‘uIりl釦oa祠uN

ul□lu()y・タLlnS‘9rl)inx}{-iiuuS[g]

口6脈拍 ∠ 2 r か 卯 Jn7m77勿‘jtldlJjololl呻押!piu阻!甲-as明d。

‘liu叫Z°lpull叩n涵ul臥’I[tア]

け/θJI`夕-9/こaA/ぢ’/吻聊/勿ノフ;η/j印‘Ju91弧s

心血JOlo111叫再puJollo!lnlosQll。!punsvpuuuvp晩ouHuuA[E]

び66Z封/θこー石垣三∠’ayV‘ノ/ここ哭泣叫忿芒万?二77箔回抒ol叫r);}pJo3aJν(IFI!≒)

Jo9sn甲!爪心la山oJ町丿叫u!uluJol叫u!uo叩ll!uIJ91Qpas叫dl3QJ!(1。sJuu叩SJn[乙]

応妬りS∠∠-∠∠∠。・/釘a』μW。;Md!3u!Jd叫do;)soJ3!uJMQuv、、(IJoquD[11

a3uaJaJall

u`o!lnlosQJaiietuリoluaulQAOJd田!

;現|皿弓uo3QM‘sllnsaJFluaLu!gdxa

叫ltuoJj゛pQsns!I)olPuliiLI!F3sdn9別叫I)QJol9JJouo!lnl()saJa甲lu!AOJduJIloj°uopurUjSdpuBa別叫I四!乖JO

uollljolsgJaiiEul!JosllnsajlBlu;luJpadx3・E・li!j

に11111£ミぷ」川川|‖山IL二二ぷ川川ヒI゙ :乙:J:l往捜j

●暉’?4°IS,

を1苧7,1 1 ・

s l ●- -

9S

Jouo!11110Auo3ap硝1〕;XI!llqos!ajlul!uo!秤Jolsall’JQIIUa加Luり甲supasnuo!13u弓

jSd哨!lunba海叫Q限Jouo’弓§戻回坂単叫IQ15ugdLuooo1’ulQlsy(slB叩do願心叩nb泥u叫Jouo!11?pl?JI叩叫lp!oAuolpotPuJllo!μ3JolsaJa叩19而nsaM‘Ja面ds円lul

uo!snpuoこ)‘ヤ

‘a励tu!luu!1!Jourltlo!lnlosQJJ叫i!tl叫l

sMo緊Q励磁!uoりuJols911°a113uJ!uo!113JolsQJ

Puu9励1u!luu声!JOJosllns;)JllluQm!gdxQ叫lsMo緊E’司j’Q加ul!PgpnjlsuoaaJ叫IJotlo!lnlosgJ9叩9AOJdtuloll〕ald叩uoslus!po1UQtuiiu!IBosdn°QJ13AXUosuo叩ln叫slu叩do凹3Jaluulo3心I)au凹qos!uo!pu叫jSdpBXH・乙゜S!こlu!uMollss!I)oql9uJI)司sa而nsJolulu励!pStl!sgaoJd’pol伊muo叩JolsQJ叫lslsa而nsJQ面ds!甲

哨叩nb9励1u!Jotlo芯㈹京皿即毒oAt?ol‘tu9ls心lu叫doJouoPu男

JSdxql);)puJSps!Q励1u!pu!圃qO°9huj!llu!1!Jopu8uo!pu叫jSdJouo叩loAuoc)xql)JQ!tl38Qqul30Q励ul!仙Qls尨lu声uul!ul°tuQlsxsF叫doJo和9doJd

ln!ldo;}11いu!gluo;)ul13Jiol叫pQu!ulqo

Su!IB3sdfl

puusa3oJduo!lllJolsallaSuull‘C

・uo!131荏J!p

pusQJjxqxH召;)!JQ田nupalonJlsuo3aJS;|!uolnllBI“II(リlul!(IS\‘ltulBIJillololtlglllllLuolJlj‘lagQOJoas明dpuB叩nl!ldulBuo!1肌uJqJu!

叩oqu!uluoc)司叩u113Jiiolollpau!BlqO・[例po叩Quls!叩xqPau!ulqos!司BptuuJiioloH

ss930Jduo照JolsgJj如uJI7・j!j

iyl慟i哉11

11111謐㎞li幽ii

, ́ ・

三芝

鳶,

ぐ μ y‘` ヽ、こノJ

2 ご りミ ● ●

四-

t-.、

鼎1

〃ル ・

4こ4

4J.0

CathodeluminescencelmagingofMetallicNan()structures

RytjiNodE11゙ ,SyotaFukadal,ゝ f£lsunoriNawal,Atsushiono2’3,Watarulnami2’3,DuGuanxiang4,ShinSait♂,andYoshimasaKawatal’3

1)I)t?partlnentofM(?(;11anicalEnllilleerinl乱FacultyofEngiee面g,Shizuokauniversity2)DivisionofGlobalResearchLeaders,Shizuokauniversity

3)CREST,JapanS;(;ienceandTe(;hnologyAgency

3-5-1Johoku,Naka-ku,Hamamatsu,Shizuoka432-8561,Japan4)D・・i)ε1rtmentofIElectronicEngill。ering,Graduate5SehoolofEngirleaing,Tohokuuniversity

6-6-05Aoba,Aramaki,Aoba-ku,Sendai,Miyagi980-8579,JapanTEL&FAX:+81-53478-1076e゙-mail:kawata④eng,shizuol(a.acjp

Abstract

Thepurpose()fthisresearchistoanalyzethee)ccitationl)ropertyofasurfaceplasmon(SP)ona

nanometgscalestructure.TheSPlunliescentpropertyoane-dimensionalgratingstructureofthegold

thinfilmwasinvestigated.Wescceededinobservationwlth200nmoapati111resolutionandobtained

cathodelum柚escence(CL)imageofgoldnanorods.

1.1ntroductiol

Recently,awav昭uideandanlterwithSPhavebeende?veloped.Sinceametallicnan(心ructureisusedforthewav昭uideandthenlter,itisnecessa叩toinvest治atetheSPe)(citEltionpropertyinametallicnanostructure。

SPisgeneraUyexcitedbylight.SincetheexcitationareaofSPiscomparableasthewavelengthoflight,itisdimculttoirlvestigatetheSPex(;itationpropertyofthenanostructurebelowthewavelengthoflight。

Thepurposeofthlresearchistoanalyzetheex(;itationpropertyofaSPonananometerscalestructure.Ane?lectronbeamisusedtoovercomethedimactionlimitof゙ thelight.Thisisbecauseaspotsizeoftheelectronbeamcanbelessthanthatofthelight.Theelectronbc?amcanbefbcusedtoaspotsizeintheregionofafewnanometers.ThefbcusedelectronbeamlocallyexcitesaSPatthesurfllceofametallicnanoMructure.Theref1)re,theSPelx(;itationpropertyinananostructuresmallerthanthewavelengthoflightcanbeanalyzed.

2.Theobservationprincipleofcathodeluminescence

17汝ure.1showsthe()bservationl)Hnciple

37

ofSP.TheelectronbeamisR)cusedatthesurfllceofthemetallicstructure,andexcitesaSP.W11enaSPrestorestoitsfbrmerstate,emitsaCL.Theemissionspectrumdependsonananostructure.Anol〕ticalimageisbuiltbyrasterscanningofanelectronbeam.Theexcitationpropertyisanalyzed丘omthisinformation.

Cathodelulninescence

/(CL)

Fig.ITheobser7ationl】rincipleofSP.When

asurnlceofgoldisiaadiatedwithanelectron

beElm,SP四煥neratedandpropagatesatthe

surface.

3.ExperimentahetupfortheSP

propertyonmetamcnanostructure

Figure.2showstheschematicdiagramofaexperimentalsetup.lnthisexperiment,thescanningelectronmicroscope(SEM)wasusedn)rirradiationofandectronbeam.An(11ectronbeamwasfocusedonasamplesurfacewith飢o句ectlens.Thelight,whichwasQccited介omasampleis(;ollectedwithalensbuiltintotheopticalstage,anda

I)tloto-mukiplier(PMT回etectsthelight,An(叩ticalimageisl)roducedbysyn(;hronizing21(;quisitionofthePMTsignalandanelectronbeamscanning,

Fig.2Theschematicviewofthe(2)(perimental

面vicefbrCLim昭ellquisition.

4.ExperimentlllresultsofSPemissionfromFating4rueture

I゙ 胎re.3(a)showstlle()ptielllimageofSPemission介omolltl-(Umenがona11;rating,andFigure.3(b)sh()wsthelineprofUealongthelin(・in(1icated(a).Thelightc・missionwhichcausedbySPsEltteringonroughsulfhceofthegoldnlmwasm㎝stlred.TOmakethe11rating,wedugt祀nchesonthe

goldfilmwith(?1ectronbeamlithography.ln向ure.3(a)and(b),thelurninescenceintensityofthetopsurfaceofthegratingishigherthanthatofthebottomofthe廿enches.ltseemsthattheSPemissionefnciencyonthetopsurfaceofthegratingishighbecausetheelectronbeamwasfocusedonthetopsurfllceofthegrating,Theluminescenceintensityinthetopsurnlceofthegratingisconstantineveryposition.Fromthisresult,SPemissionwasllc3nerated()fthetopsurfllceofthegrating・

Fig.3(a)TheCLimageofthesllmple

21cquir(・dinthisexperill!ent,(b)ThJrlepronle

()17theporti()noftFleredlirle()fFig.3.

38

5 . S → 皿 d n a n o r o d s

Tor(?vealtheSP,ご7ccitationl)r()pertyin

goldnanorods,weproducedgoldnanorods.GoldnanorodshaveadvantagestocontroltheSPband.So,theseareusedforbiosenslngoomagmg。

Goldnanorodsweresynthesizedbyseed-mediatedgrowthmethod.lmpuritieswereremovedbycentri恒galsl)aration.Naturalseasoningwasca❹edoutafterbeingdroppedatasiliconwa狗r.Figure.4showstheSEMimageofgoldnanorods.

Fig.4TheSEMimageofsynthesizedgold

rlilnorods.Sizeswereabout60nmatlongaxis,

about22nmatshortaxis,andtheaspectratiois

2.7.TheabsorptionpeakwasinthewElvelength

or520nmand700nm.

6.Conclusion

lnthisresearch,weacquiredtheCLimagewhichisemitted丘omagoldthinfilmwithone-dimensionalgratingMI’ucture,Thelumirlescenceirltensityinthesuriceofa

goldthinnlmwasconstantineveryposition.Fromthisresult,thelightemissionwascausedbySPscatteringroughsurfaceof

goldnlm。Furthermore,wesynthesizedgold

nanorodstoinvestigateitsSP。Fromnowon,theSPexcitationproperty

ofgoldnanorodswillbemeasured.

Rearence

[I]N.Yamamot0,0YOBUTURIJ5(2006)41.

[2]B,Nil(oobakht,M.IE1-Sayed,Chem.Matc・d5(2003)回mミ-1962.

?r . J

●-4

/ _ M ●

.4!.IS;・.

こfp

,「j・r-

T・,-

I =

乃I

y=

⑤JI

1・

一丿万

丿

-心’皿け・・

E;4

i l I-ゝ

いにjJ

lj゛.一

& 7