1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/lecture160704.pdf1生11...

56
1生11 運動系 小脳・大脳基底核 2016年 7 月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を 理解する 1 標準生理学 カンデル神経科学 神経科学-脳の探求- 使用した図の主な出典 脳と運動(丹治 順)

Upload: trinhdung

Post on 21-May-2018

279 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

1生11 運動系Ⅲ

小脳・大脳基底核

2016年 7 月4日(月)

9:00- 12:20

目標:小脳や大脳基底核における運動の調節機構を理解する

1

標準生理学

カンデル神経科学

神経科学-脳の探求-

使用した図の主な出典

脳と運動(丹治順)

Page 2: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

小脳cerebellum

2

Page 3: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

小脳 cerebellum小脳皮質(灰白質)、髄質(白質)、小脳核

小脳の構造

小脳回 folium:横走する多数の小脳溝

小葉 lobule:小脳回の集まり(10葉)

小脳の区分 5つの深い裂による区分が基本

第一裂 primary fissure

後上裂 posterior superior fissure

水平裂 horizontal fissure

錐体前裂 prepyramidal fissure

後外側裂 posterolateral fissure片葉小節葉 flocculonodular lobe と小脳体を分ける

小脳体 corpus cerebelli

前後の区分 前葉 anterior lobe(1-5葉)

後葉 posterior lobe(6-9葉)

第一裂で分けられる

内外側の区分 虫部 vermis

半球 hemisphere

中間部 intermediate part

外側部 lateral part

3

Page 4: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

系統発生学的分類

原小脳 archicerebellum :片葉小節葉

前庭神経からの入力を受ける → 前庭小脳 vestibulocerebellum

魚類、両生類の小脳のほとんどを占める

古小脳 paleocerebellum:虫部

主に脊髄からの入力を受ける → 脊髄小脳 spinocerebellum

鳥類、哺乳類でよく発達

新小脳 neocerebellum:半球

大脳皮質からの入力を受ける → 大脳小脳 cerebrocerebellum

霊長類、特にヒトで発達

4

Page 5: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

5小脳核

内側核 medial nucleus(室頂核 fastigial nucleus)

虫部に対応、主に体幹の運動に関係

中位核 interposate nucleus

球状核 globose nucleus

栓状核 emboliform nucleus

中間部に対応、主に四肢の運動に関係

外側核 lateral nucleus(歯状核 dentate nucleus)

半球部に対応、主に四肢の運動

小脳脚

上小脳脚 superior cerebellar peduncle

主に小脳核から脳幹および視床へ向かう遠心性線維

中小脳脚 middle cerebellar peduncle

大脳皮質から橋核を介して主として小脳半球部へ向かう求心性線維

下小脳脚 inferior cerebellar peduncle

脳幹と脊髄から主として小脳虫部および中間部へ向かう求心性線維

Page 6: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

小脳と他の中枢神経系との連絡

入力系・前庭系(前庭器官からの一次求心性線維や前庭神経核)からの入力

原小脳(片葉小節葉)へ

・脊髄系(脊髄小脳路、脳幹の諸核を介して)からの入力

古小脳(虫部、中間部)へ

体部位局在性下肢領域:前葉吻側部

上肢領域:前葉尾側部

・大脳皮質系(脳幹の諸核を介して)からの入力

新小脳(半球部)へ

小脳への投射がみられる領域:頭頂連合野(5野)、一次運動野(4野)、運動前野(6野)、前頭連合野(9、10野)

後葉半球部

運動前野、前頭連合野からの投射

霊長類などで見られる

手の運動機能の発達に伴う

体部位局在性下肢領域:前葉吻側部

上肢領域:前葉尾側部

6

Page 7: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

出力系

小脳と他の中枢神経系との連絡

・前庭系の出力

・脊髄系の出力

・大脳皮質系の出力

片葉小節葉 前庭神経核 外眼筋運動ニューロン脊髄運動ニューロン

頭の動きと眼球の動き、体の平衡との協調

虫部 内側核 橋、延髄網様体 脊髄

外側前庭神経核(ダイテルス核) 脊髄

体の平衡や姿勢の維持にかかわり、反射的要素の多い運動を調節

中間部 中位核 大細胞性赤核

視床腹外側核 運動野、前頭連合野

脊髄

大脳の運動性皮質と関連して、四肢の運動の細やかな調整

半球部 外側核 視床腹外側核・背内側核皮質運動野

前頭連合野

小細胞性赤核 下オリーブ核 小脳外側核

効率的で滑らかな、すばやい運動とそれに見合う姿勢の調整

7

Page 8: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

小脳の3つの領域はそれぞれ異なる入力元と異なる出力先をもつ

前庭小脳:前庭系

脊髄小脳:脊髄系

大脳小脳:大脳皮質系

前庭小脳

脊髄小脳

大脳小脳

8

Page 9: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

小脳の神経回路網 9

分子層

プルキンエ細胞層

顆粒 (細胞) 層

小脳皮質:層構造(3層)

Page 10: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

10分子層: ・バスケット細胞 basket cell(GABA作動性)

・星状細胞 stellate cell(GABA作動性)

プルキンエ細胞層:・プルキンエ細胞 Purkinje cell(GABA作動性)

顆粒細胞層: ・顆粒細胞 granule cell(グルタミン酸作動性)・ゴルジ細胞 Golgi cell(GABA作動性)・ルガロ細胞 Lugaro cell(GABA作動性)

小脳皮質の細胞

プルキンエ細胞 Purkinje cell

正面から見た図 側面から見た図

Page 11: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

小脳への入力線維

・苔状線維 mossy fiber

起始核:脊髄、脳幹網様体、前庭神経核、橋核など

上、中、下小脳脚を通る

顆粒細胞、ゴルジ細胞に終末

・登上線維 climbing fiber

起始核:下オリーブ核

下小脳脚を通る

すべての抑制性細胞(特にプルキンエ細胞)

小脳からの出力

・プルキンエ細胞(GABA作動性細胞)

小脳皮質唯一の出力細胞

(小脳核細胞、前庭神経核などへ)

小脳皮質内の神経回路 11

Page 12: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

プルキンエ細胞への興奮性入力

登上線維入力

樹状突起にまつわりつくように終止し、強い興奮作用を与える。

1個のプルキンエ細胞に登上線維1本(1対1の関係)

平行線維入力

登上線維 → プルキンエ細胞

苔状線維 → 顆粒細胞 → プルキンエ細胞

顆粒細胞からプルキンエ細胞への投射線維

平行線維 parallel fiber

樹状突起の先端部で終止

1個のプルキンエ細胞に平均約1800個の顆粒細胞が入力

12

糸球体構造

glomerulus

Page 13: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

プルキンエ細胞で観察される興奮性シナプス後電流

平行線維入力 登上線維入力

paired pulse facilitation(PPF) paired pulse depression(PPD)

2発刺激

段階的 All or none

2発刺激

平行線維

登上線維

13

Page 14: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

登上線維の単一支配は発達とともに形成される

多重支配 multiple innervation 単一支配 single innervation

Hashimoto and Kano, Neuron 38: 785-796, 2003

東京大学 狩野研HPより

14

Page 15: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

プルキンエ細胞の活動

登上線維入力によって生じる活動

平行線維入力によって生じる活動

複雑スパイク complex spike

~ 1 Hz

単純スパイク simple spike

~ 40 Hz

15

Page 16: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

小脳の機能単位

前後方向にモジュール構造:帯域(ゾーン)zone

下オリーブ核の特定の領域から登上線維入力

プルキンエ細胞の軸索を特定の小脳核、前庭神経核へ投射

zone はさらに微小領域マイクロゾーンmicrozone

に分けられる。

小脳皮質ー核ー複合体

前後方向

16

Page 17: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

小脳の協調作用

フルーラン (1824)

「小脳がなくても動物は動くことができる。動くこと自体は筋肉とこれを支配す

る脊髄の働きによるもので、小脳とは直接関係ないであろう。また、小脳がなく

ても、動物は自発的に動こうとする。従って、運動しようとする意志は小脳では

なくて、おそらくは大脳半球から起こるであろう。結局、小脳がないために起

こっている障害は、運動における協調の欠如である。」

協調:多くの筋を同時に、巧みに操り、身体の各部を有機的に組み合わせて運動を滑らかに遂行させること。

小脳を切除 協調が失われ、運動は不器用で拙劣なものとなり、歩くにしてもよろめきながらでしか歩けなくなる。

小脳を切除した鳩は、飛び方がふらふらして目的地にたどり着けない

小脳の機能 17

Page 18: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

指-鼻テスト Finger-nose test (FN test)

小脳失調(小脳性運動失調) cerebellar ataxia

平衡障害:体幹歩行失調 trunk and gait ataxia、眼振

筋緊張障害:筋緊張低下 hypotonia、筋力低下 asthenia

運動障害:小脳性時間測定異常 cerebellar dyschronometry、推尺異常 dysmetria、企画振戦 intention tremor、動作の解離 decomposition、協調運動不能 asynergia

18

Page 19: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

小脳による適応制御

小脳の機能

前庭動眼反射の適応

コントロール 拡大鏡装着

頭部回転

頭位

眼位

頭位-眼位

Boyden & Raymond, Neuron 39: 1031-1042, 2003

19

Page 20: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

前庭動眼反射の神経回路

前庭動眼反射には出力信号をフィードバックして入出力関係を調整する回路が存在しない

うまく働くための調節系=小脳

前庭神経核には、前庭神経からのプラス入力とプルキンエ細胞からのマイナス入力が入っており、両者のバランスによって前庭神経核からの出力の大きさが決定され、運動ニューロンに送られる

フィードフォワードのシステム

小脳は前庭動眼反射の大きさを制御する

顆粒細胞からプルキンエ細胞へのシナプス伝達効率を変化させる

登上線維:下オリーブ核からの入力線維

網膜上の像の動きを検知

20

Page 21: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

21小脳における前庭動眼反射適応の制御

Page 22: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

長期抑圧 long-term depression, LTD

小脳における運動学習のメカニズム平行線維と登上線維をほぼ同時に活性化すると、

平行線維とプルキンエ細胞間のシナプス伝達効率

が一定期間低下する

登上線維からの入力信号:教師信号

22

平行線維の活性化の2~300ミリ秒以内に登上線維が活性化した場合に長期抑圧が起こりやすい

Page 23: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

23

実行された運動の結果

視覚情報

実行された運動の軌道や結果に関する情報は,感覚情報として中枢神経系にフィードパックされる.このフィードパックされた感覚情報が,意図していた感覚情報と異なる場合,目的とするパフォーマンスを実現するためには,その誤差を修正して運動指令を書き換える

長期抑圧

Page 24: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

24小脳における長期抑圧のメカニズム

シナプス後部におけるAMPA受容体の数の減少

脳科学辞典より

Page 25: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

ステップ1

平行線維からの入力による代謝型グルタミン酸受容体mGuR1の活性化により小胞体からカルシウムが放出

登上線維からの入力による脱分極により電位依存性カルシウムチャネルからカルシウムが流入

プルキンエ細胞内のカルシウム濃度が上昇し、PKCが活性化

活性化されたPKCはAMPA受容体のGluA2サブユニットのC末細胞内領域のセリン残基(S880)をリン酸化

AMPA受容体はアンカータンパク質であるGRIPから解離

+

25

Page 26: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

26

側方拡散によってendocytic zoneに運ばれる

クラスリン依存性のエンドサイトーシスによって細胞内へ取り込まれる

AMPA受容体

シナプス後部におけるAMPA受容体の数の減少

ステップ2

Page 27: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

デルタ2グルタミン酸受容体(GluD2)の関与 27

脱リン酸化酵素

アミノ酸876番のチロシン(Y876)を脱リン酸化

Page 28: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

運動学習をめぐる2つの仮説

伊藤正男 Stephen G. Lisberger

片葉仮説

運動学習の際に重要であるのは小脳皮質であり、プルキンエ細胞上で生じるシナプス可塑性(たとえばLTD)がその原因である

反対仮説

小脳皮質以外の神経核(たとえば前庭神経核)が運動学習には重要であって、小脳皮質はその神経核へ必要な情報を送る役割をしている

小脳皮質が運動学習において主たる役割 小脳皮質が運動学習において副次的な役割

28

内野善生 めまいと平衡調節 金原出版

Page 29: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

視運動性反応(OKR)の適応:永雄らの実験

前庭神経核での活動は上昇していた

局所麻酔剤のリドカインを両側の片葉に微量注入しその神経活動を遮断すると、その日のトレーニングによって増加した利得は消去されるが、前日までのトレーニングによって増加した利得は影響を受けなかった

29

永雄、北澤 Brain and Nerve 60:783-790, 2008より

Page 30: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

短期の運動記憶は小脳皮質に形成されるが、長期の運動記憶は前庭神経核に保持される

運動学習における記憶痕跡は、学習の時間経過に依存して移動する可能性が注目されている

これまで対立してきた片葉仮説とその反対仮説は、運動学習の時間経過まで考慮すると、共に支持されうる

30

永雄、北澤 Brain and Nerve 60:783-790, 2008より

Page 31: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

小脳まとめ

・運動の 調整 と運動 学習 に関与

・小脳皮質: 3層構造・・・分子 層 、 プルキンエ細胞 層 、顆粒細胞 層

興奮性入力: 登上線維 と 苔状線維

抑制性出力:プルキンエ細胞(登上線維 入力と平行線維 入力を受ける)

・小脳の機能単位:ゾーン と マイクロゾーン

顆粒細胞( 興奮性 )プルキンエ細胞( 抑制性 )介在ニューロン群( 抑制性 )

長期抑圧

・小脳における運動学習のメカニズム

31

00

主なニューロン

平行線維 と 登上線維 の活性化により生じる

平行線維 と プルキンエ細胞 間のシナプス伝達効率が低下する

Page 32: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

大脳基底核Basal ganglia

32

Page 33: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

大脳基底核 basal ganglia

終脳の基底部にあり、内包によって間脳から隔てられている大きな神経核群

終脳の分化に伴い線条体 (striatum) から発生

原線条体 archistriatum・・・扁桃体(辺縁系)

旧線条体 paleostriatum・・・淡蒼球 globus pallidus

新線条体 neostriatum・・・尾状核 caudate nucleus

被殻 putamen

線条体(尾状核、被殻)

淡蒼球(内節、外節)

視床下核

黒質(網様部、緻密部)

33

Page 34: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

大脳基底核の構成

入力部

線条体(尾状核+被殻)

介在部

淡蒼球外節

視床下核

出力部

淡蒼球内節

黒質網様部

調整部

黒質緻密部

34

Page 35: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

基底核の構成

尾状核 caudate nucleus

被殻 putamen

(1)線条体 striatum

・有棘細胞 spiny neuron

出力細胞、GABA作動性

・無棘細胞 non-spiny neuron

Ⅰ型 --小さい、GABA作動性

Ⅱ型 --巨大細胞、ACh作動性

線条体のニューロン

35

Page 36: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

線条体の構造:コンパートメント構造

・パッチ(齧歯類ではストリオソーム)

・マトリックス

MOR: μオピオイド受容体

ラット線条体

パッチは発生学的に早く生まれ、ドーパミン入力を

受けながら出現してくるのでドーパミンアイランド

とも呼ばれるが、マトリックスはその後に発生し結

果的に線条体全体の85%程度を占めるようになる

脳科学辞典より

・パッチ(ストリオソーム)

脳科学辞典より

オピオイド受容体が濃密に分布

・マトリックス

アセチルコリンエステラーゼ

カルビンディン

ソマトスタチン が強く発現

緑蛍光:ストリオソーム

無蛍光:マトリックス

μオピオイド受容体の抗体染色

36

Page 37: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

パッチ・マトリックスへの入力

脳科学辞典より

視床からの入力はマトリックスへ

主に眼窩前頭皮質や島などの辺縁系大脳皮質

パッチ

広範囲な大脳新皮質

37

Page 38: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

(2)淡蒼球 globus pallidus

(3)視床下核 subthalamic nucleus

(4)黒質 substantia nigra

内節 internal segment

外節 external segment

大型細胞はGABA作動性

グルタミン酸作動性ニューロン

網様部 pars reticulata

GABA作動性ニューロン

緻密部 pars compacta

ドーパミン作動性ニューロン

38

Page 39: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

主な入力投射路

(1)皮質-線条体投射

広範な皮質領野から投射

前頭前野 尾状核

運動前野 尾状核、被殻

運動野、体性感覚野 被殻

基本的には両側性

体部位局在(運動野 → 被殻)

下肢領域:背吻側

上肢領域:腹尾側

(2)視床-線条体投射

正中中心核、束傍核 被殻

髄板内核群 尾状核

(中心傍核、内側中心核)

(3)縫線核-線条体投射

背側縫線核からの投射線維

セロトニン作動性グルタミン酸作動性

グルタミン酸作動性

(4)皮質-視床下核投射

主に前頭葉からの入力

体部位局在がみられる

ハイパー直接路の入力部

39

Page 40: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

主な中継路

(1)線条体-淡蒼球投射、線条体-黒質投射路

新線状体 淡蒼球(内節、外節)、黒質網様部GABA

P 物質 substance P

淡蒼球、黒質のGABA濃度低下

ハンチントン舞踏病

(2)黒質-線状体投射路

黒質緻密部 吻側 尾状核

尾側 被殻

ドーパミン作動性線維:主にコリン作動性介在ニューロンと結合

新線状体でのドーパミン含有量低下

パーキンソン病

(3)淡蒼球-視床下核投射

外節 視床下核

視床下核-淡蒼球投射

視床下核 内節

グルタミン酸

GABA

視床下核に限局した損傷

ヘミバリズム(対側性)

hemiballism

40

Page 41: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

主な出力投射路

(1)淡蒼球-視床投射路

内節

(2)黒質-視床投射路

網様部

(3)黒質-上丘、黒質-被蓋投射路

網様部上丘中間層

外側腹側核吻側部 (VLo)

前腹側核主部 (VApc)

正中中心 (CM)

内節の外側(レンズワナ)

内節の内側(レンズ束)視床束

H 野

前腹側核大細胞部 (VAmc)

外腹側核内側部 (VLm)

背内側核外側部 (MDpl)

前頭連合野

運動野

脚橋被蓋核

41

Page 42: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

大脳皮質-基底核ループ

大脳皮質からの入力を収集し、その情報を処理して、出力を視床経由で大脳皮質へ送る

脳全体からみるとループ状の神経回路を形成

42

大脳皮質で計画された運動プログラムに基づいて,必要とされる運動を促通し,不要な運動を抑制する

Page 43: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

ループの構造化 ある領野から入力を受け取るループはその出力をその関連領野へ送る 43

Page 44: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

大脳基底核の動作原理

入力部

線条体

大脳皮質から大量の入力線維

多数の情報が収束

線条体の細胞

簡単には興奮せず、少しばかりの入力には反応しない

興奮させ、出力信号を発生するためには

・多くの入力が同時に入る

・極めて強い入力が入る

必要がある

・多数の入力が収束

・線条体細胞の入出力特性

多数の入力情報の中から、特定の意味のある情報を取り出す

情報のフィルターとしての役割

ドーパミンによって調節

特性が可変なフィルター

線条体の特性

44

Page 45: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

大脳基底核の動作原理

出力部

淡蒼球内節、黒質網様部

出力細胞:抑制性細胞

出力先の活動にブレーキをかけている

定常的抑制=大脳基底核の出力作用

基底核出力の直前に2つの作用系が存在

・脱抑制系

抑制出力を取り除きブレーキを外す

・抑制強化系

抑制性出力をさらに強める

45

必要とされる運動を促通

不要な運動を抑制

Page 46: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

直接系と間接系直接系:脱抑制系

線条体の出力が基底核の出力部に直接接続抑制性 抑制性

細胞活動

上昇興奮性入力

細胞活動

低下

出力先の細胞活動

上昇脱抑制

間接系:抑制強化系

線条体の出力 淡蒼球 視床下核 基底核の出力部

抑制性 抑制性 抑制性興奮性

細胞活動

上昇興奮性入力

細胞活動

低下

出力先の細胞活動

低下

細胞活動

上昇細胞活動

上昇

抑制強化

大脳連合野 運動野

線条体

直接系間接系

淡蒼球

視床下核

基底核出力部

視床

46

Page 47: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

黒質網様部の上丘における脱抑制効果

Glu

GABA

GABA

Glu

47

Page 48: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

ハイパー直接路と間接路は直接路とは反対の効果48

Page 49: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

ドーパミン調節系

直接系 D1 受容体を介してプラス方向(興奮性)の作用を受ける

間接系 D2 受容体を介してマイナス方向(抑制性)の作用を受ける

ドーパミン受容体

Gタンパク質共役型受容体

ドーパミンD1 受容体とD2 受容体を持つニューロンにそれぞれチャネルロドプシンを発現させて直接路と間接路をそれぞれ活性化させた場合

D1~D5の5つのサブタイプ

・D1 様受容体(D1、D5)

Gs/olfに共役してアデニル酸シクラーゼを活性化する

・D2様受容体(D2、D3、D4)

Gi/oに共役してアデニル酸シクラーゼを抑制する

運動促進 運動抑制

49

Page 50: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

大脳基底核による運動学習

運動の手続き学習(技能や習慣)に関与

予想に反して報酬が得られた場合:活動上昇

ドーパミンニューロン

報酬が得られなかった場合:活動減少

実際の報酬と予想した報酬の差をコード

50

Page 51: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

51

運動学習における大脳基底核と小脳の役割

外界の手がかりに応じた適切な運動を,経験を通じて選択していく「条件つき運動学習」(conditional motor learning)に関与

大脳基底核

小脳

課題を繰り返す間に感覚情報における誤差を検出して,長期抑圧(LTD)に基づいてその誤差を減少させる「誤差学習」(error

learning)に関与

Page 52: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

大脳基底核疾患

臨床的には、錐体外路症候群と呼ばれる症状を示す

・運動減少症:運動開始や遂行が困難hypokinetic disorder

・運動過多症:不随意運動を伴うhyperkinetic disorder

大脳基底核が障害を受けると、筋の緊張と運動に様々な障害を生じる

運動量と筋緊張の2軸でみると

52

Page 53: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

運動減少症

パーキンソン病

①無動症 akinesia、寡動 bradykinesia

運動の開始ができない、できても速さが十分でない

②振戦 tremor4~5 Hzの安静時にみられる手足のふるえ

③固縮 rigidity

筋緊張の亢進

主徴

④姿勢反射障害、姿勢歩行の異常

⑤抑うつ傾向

黒質緻密部のドーパミン作動性ニューロンの欠落

運動減少と筋緊張亢進

脚橋被蓋核

橋網様体

脊髄抑制性介在ニューロン

脱抑制筋緊張亢進

53

Page 54: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

運動過多症

(1)ハンチントン病 Huntington’s disease

①常染色体優性遺伝

②舞踏病 chorea と呼ばれる顔面、四肢などにおこる速やかで不規則な異常運動

③痴呆などの精神症状

発症後15-20年で死亡

脚橋被蓋核

橋網様体

脊髄抑制性介在ニューロン

抑制強化筋緊張低下

主徴

筋緊張が低下した状態で不随意運動が生じる

随時、視床や大脳皮質に脱抑制が起こるため不必要なときに不必要な運動が生じる

54

Page 55: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

運動過多症

(2)ヘミバリスム hemiballism

四肢を乱暴に投げ出すような突然の激しい不随意運動

視床下核の病変(通常は出血、梗塞)

淡蒼球内節・黒質網様部ニューロンの活動が減弱(4)ジストニア dystonia

(3)アテトーゼ athetosis

主に四肢や顔面に生じる緩やかで緩慢な不随意運動

筋緊張は異常運動に伴って亢進したり弛緩したりする

アテトーゼよりゆっくりした動き

緊張が亢進した状態で、不随運動が生じている

固定されたような異常姿勢

直接路と間接路ともに活動性が亢進

55

Page 56: 1生11 運動系 - 奈良県立医科大学公式ホームページ1phy/Lecture160704.pdf1生11 運動系Ⅲ 小脳・大脳基底核 2016年7月4日(月) 9:00- 12:20 目標:小脳や大脳基底核における運動の調節機構を

大脳基底核

脱抑制 と 抑制強化

大脳皮質 と 脳幹 の時間的・空間的な活動動態を協調的に制御し、適切な運動機能の発現に寄与する

大脳基底核の障害やドーパミン作動系の異常

随意運動の異常や筋緊張の異常などの特有な運動障害が生じる

ドーパミン作動性ニューロン

運動の手続き学習に関与

大脳基底核の活動を調整

56

直接路と間接路