2007 年度 p6 課題研究 on 2008/3/7

58
2007 年年 P6 年年年年 On 2008/3/7 PART1: PART1: 年年年年 () 年年年年 () Geant4 Geant4 ~10 ~10 by by PART2: PART2: 年年 年年 RX J1713.7-3946vs RX J1713.7-3946vs 年年年年年年 年年年年年年 X X 年年年年年年年年年年年年年年年 年年年年年年年年年年年年年年年 ~15 ~15 by by 年年 年年 PART3: PART3: 年年年年) ) 年年年年年年年年年 年年年年年年年年年 BG BG 年年年年年年年年 年年年年年年年年 ~15 ~15 by by

Upload: pascale-frank

Post on 03-Jan-2016

28 views

Category:

Documents


1 download

DESCRIPTION

2007 年度 P6 課題研究 On 2008/3/7. PART1:  (基本編) Geant4 ~10 分 by 劉 PART2: (応用①)  RX J1713.7-3946vs 分子雲仮想の X 線スペクトルのシミュレーション ~15 分 by 芝原 PART3 : ( 応用② ) 宇宙線による検出器 BG シミュレーション  ~15 分 by 劉. PART1 Geant4. 前半: Geant4 の簡単な説明 後半: Geant4 の確認実験. Geant4 とは GEometry ANd Tracking 4. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 2007 年度 P6 課題研究 On 2008/3/7

2007年度P6課題研究

On   2008/3/7

2007年度P6課題研究

On   2008/3/7

PART1:PART1:  (基本編) (基本編)

Geant4Geant4                   ~10~10 分分 byby 劉劉

PART2: PART2: (応用①) (応用①) 

RX J1713.7-3946vsRX J1713.7-3946vs 分子雲仮想の分子雲仮想の XX 線スペクトルの線スペクトルのシミュレーションシミュレーション                            ~15~15 分分 byby 芝原芝原

PART3: PART3: (応用②(応用② ))   

宇宙線による検出器宇宙線による検出器 BGBG シミュレーション シミュレーション  ~15~15 分分 byby 劉劉

PART1:PART1:  (基本編) (基本編)

Geant4Geant4                   ~10~10 分分 byby 劉劉

PART2: PART2: (応用①) (応用①) 

RX J1713.7-3946vsRX J1713.7-3946vs 分子雲仮想の分子雲仮想の XX 線スペクトルの線スペクトルのシミュレーションシミュレーション                            ~15~15 分分 byby 芝原芝原

PART3: PART3: (応用②(応用② ))   

宇宙線による検出器宇宙線による検出器 BGBG シミュレーション シミュレーション  ~15~15 分分 byby 劉劉

Page 2: 2007 年度 P6 課題研究 On 2008/3/7

PART1Geant4

前半: Geant4 の簡単な説明

後半: Geant4 の確認実験

Page 3: 2007 年度 P6 課題研究 On 2008/3/7

Geant4 とはGEometry ANd Tracking 4

物質を通過する粒子の過程をモンテカルロシミュレーションする TOOLKIT である。

高エネルギー物理、宇宙線物理、放射線医療などの分野で広く使用されている。

User は目的に応じ Geant4 が提供した C++ 言語の LIBARY群から必要なもの実装し、自分で Program を書かなければならない。 CMS/LHC

INTEGRAL/ESA

Page 4: 2007 年度 P6 課題研究 On 2008/3/7

Geant4 のモンテカルロシミュレーション

モンテカルロ法とは、乱数を用いた統計的なサンプリングによって問題の近似解を求める数学的手法である。

positron

Gamma #1

Gamma #2

Step 乱数を用い、反応断面積や物質の性質を対応させることにより粒子と物質の相互作用が決定される。粒子の軌跡

は、 Step という単位で区切られる。

Page 5: 2007 年度 P6 課題研究 On 2008/3/7

Geant4シミュレーションの構築 (1)

最小構成

Detector Construction•物理環境 (Geometry )

•有感部分 (Sensitive Detector)

Physics List•粒子の種類

•必要な物理相互作用 

•生成粒子 Cut Value

Primary Generation•初期粒子の情報

(種類、位置、運動エネルギ

-、方向など)

Page 6: 2007 年度 P6 課題研究 On 2008/3/7

Geant4シミュレーションの構築 (2)管理階層と UserAction

G4 のシミュレーションは Run 、

Event 、 Track 、 Step の順に

管理階層が細かくなっていく。

User は各階層に対して、各

G4UserAction クラスでシミュ

レーションを制御したり、情報

を取り出すことが出来る。

Hit を定義し、検出応答も可能

Page 7: 2007 年度 P6 課題研究 On 2008/3/7

Geant4シミュレーションの流れ

以上は Geant4 の簡単な説明

次は、 G4 の確認実験のお話

初期化

•Run-Manager

•Geometry

•Physics

Run 開始

•初期情報を読み込む

•BeamOn で START

進行中

•粒子をStepbyStep を追跡

•各階層で情報をメモリーに保存

UserAction

•Hit の場合

•情報を書き出し

LOOP

Run 終了

•メモリー解放

Page 8: 2007 年度 P6 課題研究 On 2008/3/7

PMTPMT

Source

NaI

PreAmp

HighV1090V

LowV15V

MCA600PC

OUTPUT

Pb実験配置

Geant4の確認実験をした

NaIシンチレータによる γ 線の測定 2007/12/29

線源は

•137Cs ( 662keV )

•22Na(511keV&1275keV)

測定時間は

LT=1500Sec

Page 9: 2007 年度 P6 課題研究 On 2008/3/7

Geant4で NaI実験を再現した

•PhysicsList :

光電効果、 Compton 散乱、電子対

生成、電離損失、制動放射などの相互

作用を G4 に取り入れた。

•DetectorConstruction :

NaI 、 PMT 、 Pb ブロック、空気密

度 etc

•PrimaryGeneration

線源から出る各々の光子エネルギーと

強度比を考慮した。

by   Geant4

Page 10: 2007 年度 P6 課題研究 On 2008/3/7

実際の実験の測定結果

赤 :137Cs紫 :22Na

赤 :137Cs紫 :22Na

各ピークの分解能を解析し、 G4 の生データの解析に使用した

511keV662keV

1275keV

Page 11: 2007 年度 P6 課題研究 On 2008/3/7

662keV の光電 PEAK

G4 シミュレーションの結果( Cs137)

赤:実際の実験緑: G4 の生結果青: G4&Gaussian

赤:実際の実験緑: G4 の生結果青: G4&Gaussian

477keVの

ComptonEdge

184keV の後方散乱

Pb のK 系列 X 線

I のEscape

keV

ratio

Page 12: 2007 年度 P6 課題研究 On 2008/3/7

赤:実際の実験

緑: G4 の生結果

青: G 4の生結果をGaussian で処理したもの

G4 シミュレーションの結果( Na22)

緑:実際の実験

赤: G4&Gaussian

緑:実際の実験

赤: G4&Gaussian

511keV の

光電 PEAK1275keV

光電 PEAK

Pb の

K 系列 X 線

keV

counts

ratio

Page 13: 2007 年度 P6 課題研究 On 2008/3/7

Part1 のまとめ

完全再現とはいえないが、物質と粒子の相互作用をよく再現できた。

Geant4 は検出器の性能を User が設定できるため、実際の検出装置が見えないものを予測できる。

Page 14: 2007 年度 P6 課題研究 On 2008/3/7

RX J1713.7-3946 vs RX J1713.7-3946 vs  分子雲分子雲仮想の仮想の XX 線スペクトルシミュレー線スペクトルシミュレー

ションション

P6P6松本班松本班

芝原光樹芝原光樹

PART2PART2

Page 15: 2007 年度 P6 課題研究 On 2008/3/7

目次11 .動機・目的.動機・目的

22 .. RXRX J1713.7-3946J1713.7-3946 についてについて

33 .方法~シミュレーション~.方法~シミュレーション~

     3-13-1 .シミュレーションのために.シミュレーションのために

     3-23-2 .予備シミュレーション.予備シミュレーション

     3-33-3 .. γγ 、、 pp 、、 e-e- の相対値はいくらくらい?の相対値はいくらくらい?

44 .シミュレーション結果.シミュレーション結果

4-1.4-1.掲示掲示

4-2.4-2.陽子由来の陽子由来の 6.4keV6.4keV~再考~再考

55 .まとめ.まとめ

Page 16: 2007 年度 P6 課題研究 On 2008/3/7

1.動機・目的

•超新星残骸 RX J1713.7-3946

・ Fe などの輝線が見られない。

→ほんと?

 もし Fe を含む分子雲通過→輝線はどの程度見える? ?

南西部の X 線スペクトル

Page 17: 2007 年度 P6 課題研究 On 2008/3/7

2. 2. RX J1713.7-3946RX J1713.7-3946 についてについてさそり座の尾の中付近に見られる(目では見えません)超新星残骸距離 ~ 1 kpc年齢 ~ 1600 yr (中国の文献に載っている!)ROSAT All-Sky Survey により発見ASCAによりその北西部からのシンクロトロン放射によるX線スペクトルを確認( Koyama et al. 1997Koyama et al. 1997 )

Page 18: 2007 年度 P6 課題研究 On 2008/3/7

• photon 強度スペクトル

~ keV :熱的放射<非熱的放射

~ TeV : keV領域に匹敵するほどの強度

→ p originp origin (( ππ 00崩壊)?崩壊)?

    e- origine- origin (逆コンプトン散乱)?(逆コンプトン散乱)?

今回は陽子起源だとして話を進めます。

Photon Energy(eV)

Flu

x(/

erg

/cm

2/

s)

E.G.Berezhko,E.G.Berezhko,H.J.Volk 2006H.J.Volk 2006

Page 19: 2007 年度 P6 課題研究 On 2008/3/7

3.方法~シミュレーション~

• 1~10keV1~10keV付近の強度スペクトル付近の強度スペクトルをシミュレーションする。

• 想定している状況は・・・↓

e-

p

X

π0 γ

Shock

SupernovaMolecular Cloud

Observer

Page 20: 2007 年度 P6 課題研究 On 2008/3/7

・球形の分子雲球形の分子雲に中心から中心から pp などなどを打ち込む。

・出てきた光子のみ出てきた光子のみを検出する。p

γ

e-

Molecular Cloud

検出方法は・・・

   ★分子雲★   ★分子雲★・組成比(個数比):・組成比(個数比):H 85%,He 14%,H 85%,He 14%,

C 0.6%,O 0.3%,Fe 0.1%C 0.6%,O 0.3%,Fe 0.1%・その他・その他

R~1pcR~1pc    T~10K T~10K   density~100/ccdensity~100/cc

Page 21: 2007 年度 P6 課題研究 On 2008/3/7

シミュレーションのために・・・• Geant4 では「 Kinetic EnergyKinetic Energy が○が○ MeVMeV の陽子を△本打つの陽子を△本打つ」

というような設定。

→何を何本打つか?何を何本打つか?

・~10keV   X 線を出さないものをやたら打ってもムダ。

・各粒子の応答性を見るために予備シミュレーションをしました。

Page 22: 2007 年度 P6 課題研究 On 2008/3/7

予備シミュレーション~数数 keV XkeV X 線線を生むのはを生むのは !?!?

p

e-

光子

1-1000keV

?

・それぞれ 106 本ずつ・一様確率密度で 1-1000[MeV など ]を

0.1刻みで打ってみる・出てきた 1-1000keV 光子を図にしました。

1MeV                 1000MeV

○ or ×

 1-1000MeV    1-100TeV 1-1000GeV

打ち込むエネルギーレンジ打ち込むエネルギーレンジ

Page 23: 2007 年度 P6 課題研究 On 2008/3/7

E = 1-1000 E = 1-1000 keVkeV

・・ 1-1000 [GeV]1-1000 [GeV] 、、 1-100 1-100 [TeV] [TeV]  は は 6.4keV 6.4keV  が それが それ

ぞれぞれ22 event event だけありました。だけありました。

他は何もなし。他は何もなし。

events

keV

photon の応答性  E = 1-1000 E = 1-1000

MeVMeV

keV

①①1-3keV 1-3keV  のかなりの光子のかなりの光子は光電効果、コンプトン散は光電効果、コンプトン散

乱を受ける乱を受ける②②7 keV 7 keV  あたりに鉄のあたりに鉄の

エッジが見られるエッジが見られる

events events

Page 24: 2007 年度 P6 課題研究 On 2008/3/7

 p の応答性

K = 1-100 K = 1-100 TeVTeV

K = 1-1000 K = 1-1000 GeVGeV

  K = 1-1000 K = 1-1000 MeVMeV

keV

events

events

keV

keV

events

・衝突電離による・衝突電離による 6.4keV6.4keV がほとんどがほとんど・どのレンジでも出てくる・どのレンジでも出てくる 6.4keV X 6.4keV X 

線はほぼ同じイベント数線はほぼ同じイベント数・・ 1-1000keV1-1000keV のpでは(のpでは( 1keV1keV 以上以上

の)の) XX 線は出てきませんでした。線は出てきませんでした。(SetCutForSecondaryPhotons=1k(SetCutForSecondaryPhotons=1k

eV eV  のせいのせい (( おかげおかげ ?))?))

Page 25: 2007 年度 P6 課題研究 On 2008/3/7

 K = 1-1000 K = 1-1000 MeVMeV

 K = 1-1000 K = 1-1000 keVkeVeventsevents

eventsevents

keV

keV

e-e-衝突による各原子に対する衝突による各原子に対する KK殻電子電離断面積 殻電子電離断面積  (( 実線実線 ))(V.Tatischeff   2002)(V.Tatischeff   2002)

e- の応答性~その1

Page 26: 2007 年度 P6 課題研究 On 2008/3/7

e- の応答性~その2

・衝突電離による・衝突電離による6.4keV6.4keV がほとんどがほとんど・制動放射による・制動放射による成分も見られる成分も見られる・出てくる・出てくる 6.4keV 6.4keV XX 線はどのレンジ線はどのレンジでもほぼ同じイベでもほぼ同じイベ

ント数ント数 K = 1-100 K = 1-100

TeVTeV

 K = 1-1000 K = 1-1000 GeVGeV

keV

keV

events

events

Page 27: 2007 年度 P6 課題研究 On 2008/3/7

予備シミュレーションまとめ予備シミュレーションまとめ  ~~ 1010 keVkeV のの XX 線線を生むのは・・・を生むのは・・・

• e-e- :どのレンジでも出てくる:どのレンジでも出てくる 1-10keV X1-10keV X線は同じくらい線は同じくらい

• pp :どのレンジでも出てくる:どのレンジでも出てくる 1-10keV X1-10keV X線は同じくらい線は同じくらい

• 光子:打ち込むのは光子:打ち込むのは 1-1- 数百数百 keVkeV で十分で十分

◎◎

○○

×× ○○○○○○

◎◎◎◎◎◎

×× (透過)(透過) ×× (透(透過)過)

×× (透(透過)過)

pp

e-e-

光光子子

1~1000 keV 1~100 TeV1~1000 

GeV1~1000 MeV

打ち込んだエネルギーレンジ打ち込んだエネルギーレンジ

Page 28: 2007 年度 P6 課題研究 On 2008/3/7

本シミュレーションの前に残念な話が1つ・・・

step

real trajectory

chords

★★今回は磁場はかけずにシン今回は磁場はかけずにシンクロトロンクロトロン XX 線はすでにでき線はすでにできたものとして打ち込むことにたものとして打ち込むことに

します。します。

磁場と e- から シンクロトロン X 線を再現したかった。→計算機の計算時間都合上と僕の力不計算機の計算時間都合上と僕の力不

足で足で無理でした無理でした。難しかったです・・・。

Page 29: 2007 年度 P6 課題研究 On 2008/3/7

各粒子の相対量は?各粒子の相対量は?

陽子陽子

電子電子

シンクロトシンクロトロンロン XX 線線

観測量観測量

TeVγTeVγ 線線 fluxflux とシとシンクロトロンンクロトロン fluxflux比(観測量~比(観測量~ 0.00.077 )より)より

(Yamazaki et al. (Yamazaki et al. 2006)2006)

陽子の陽子の ~10~10-3-3倍倍(Yamazaki et (Yamazaki et 

al.2006)al.2006)

         種類           分配関数の形種類           分配関数の形                  相対量の決め方相対量の決め方   

(Uchiyama et al. (Uchiyama et al. 2003)2003)

Page 30: 2007 年度 P6 課題研究 On 2008/3/7

E

が決定した。実際打ちが決定した。実際打ち込むのは反応するレン込むのは反応するレン

ジから。ジから。

その結果・・・その結果・・・p→ 1 MeV~p→ 1 MeV~ をを 1.3×101.3×1099 本本e-→1 keV~e-→1 keV~ をを 2.5×102.5×1099 本本

Synchrotron X raySynchrotron X ray  →  →  1 keV~ 1 keV~ を を 10101212 本本

Page 31: 2007 年度 P6 課題研究 On 2008/3/7

Synchrotron XSynchrotron X 線 由線 由来来

e- e- 由来由来

40keV

Flux 

(photon/keV/s)*(keV)2

6.4 keV6.4 keV

4.結果 4.結果 1-40 keV 1-40 keV  のの XX 線フラ線フラックスックス

p p 由来由来

Page 32: 2007 年度 P6 課題研究 On 2008/3/7

青(青(赤赤++緑緑++ピンクピンク))

40keV

重ね合わせる重ね合わせる

p,e-p,e-由来の成分はほとんど寄与しない。(由来の成分はほとんど寄与しない。( FluxFlux 比~比~0.0010.001 ))

Flux 

(photon/keV/s)*(keV)2

Page 33: 2007 年度 P6 課題研究 On 2008/3/7

ここを拡大するここを拡大すると・・・と・・・

40keV

1-3keV1-3keV での吸収が激しいでの吸収が激しい

打ち込んだ打ち込んだ γγ・ ・  gaussgauss かける前かける前× gauss× gauss かけた後かけた後

すざくのすざくの XISXIS は分解能が~は分解能が~ 130eV 130eV (FWHM)(FWHM)

GaussianGaussian をかをかけるける

Flux 

(photon/keV/s)*(keV)2

Page 34: 2007 年度 P6 課題研究 On 2008/3/7

5-8keV5-8keV の拡大図の拡大図

8keV5keV

等価幅 等価幅 of 6.4keV of 6.4keV 山山~~ 21.5eV21.5eV

KKβ β + K+ K吸収端吸収端

わずかに見える・・・?

Flux 

(photon/keV/s)*(keV)2

Page 35: 2007 年度 P6 課題研究 On 2008/3/7

ここで話を少し戻して・・・ここで話を少し戻して・・・ππ00 崩壊崩壊 γγ の山を作ってみましたの山を作ってみました

目的 実際の図を利用して、目的 実際の図を利用して、陽子陽子由来の由来の 6.4keV6.4keV FluxFlux がどの程がどの程度シンクロトロンの山に隠れるのか度シンクロトロンの山に隠れるのかをもう一度をもう一度別の視点から別の視点から評価する。評価する。

Page 36: 2007 年度 P6 課題研究 On 2008/3/7

EventEvent 数は数は ππ00 の静止の静止エネルギーの約半分でエネルギーの約半分で

ピークピークフラックスの図を作るフラックスの図を作る

と・・・と・・・

21261 events @ 6.4keV21261 events @ 6.4keV→→p origin 6.4 keV Fluxp origin 6.4 keV Flux は は

8.7×108.7×101111 [eV/s] [eV/s]

6.4keV π0 decay

67.5MeV 

Page 37: 2007 年度 P6 課題研究 On 2008/3/7

ev

~6

ケ タ

p origin 6.4keV Flux

Flux Flux [eV/s][eV/s]

E.G.Berezhko,E.G.Berezhko,H.J.Volk 2006H.J.Volk 2006

π0崩壊 γ の肩は~1018 [eV/s] 。

→ p originp origin 6.4keV Flux 6.4keV Flux とと約約 66 ケタの差ケタの差がある。 pp 由来 由来 6.4keV 6.4keV  はやはりシンクはやはりシンク

ロトロンの山に完全に埋もれてしロトロンの山に完全に埋もれてしまう。まう。

Page 38: 2007 年度 P6 課題研究 On 2008/3/7

☆☆全体のまとめ☆全体のまとめ☆

• p,e-p,e- (二次的なものも含む)の衝突電離による(二次的なものも含む)の衝突電離による6.4keV6.4keV はは無視できる程度である無視できる程度である。

• 連続成分連続成分 XX 線の、主に光電効果による線の、主に光電効果による 6.4keV6.4keV輝線は輝線はわずかに見えるわずかに見える。

• しかし、しかし、「もし今回想定したような分子雲を通過し「もし今回想定したような分子雲を通過したら」たら」 1-3keV1-3keV での吸収が著しいスペクトルが輝線での吸収が著しいスペクトルが輝線と同時に観測されるはずである。と同時に観測されるはずである。

Page 39: 2007 年度 P6 課題研究 On 2008/3/7

宇宙線による観測器の BackGround のシミュレーション

1.シミュレーションの背景

2.シミュレーションの目標

3.シミュレーションモデルの構築

4.シミュレーションの手順

5.シミュレーションの結果と分析

内容

PART3

Page 40: 2007 年度 P6 課題研究 On 2008/3/7

宇宙空間の人工衛星は常に宇宙線を浴びている。

宇宙線とは、高いエネルギー持つ

光子 (Photon)

電子 (Electron)

陽子 (Proton)

など。

• 宇宙空間の人工衛星は常に宇宙線を浴びているので、衛星搭載の観測器は宇宙線による放射損傷を受ける。 

• また、宇宙線が直接あるいは間接的に検出器によって観測されてしまうことが BackGroundの原因になっている。

XIS搭載

宇宙線 CosmicRay

Page 41: 2007 年度 P6 課題研究 On 2008/3/7

宇宙線 BackGround

宇宙線 BackGround ( ノイズ )

Target天体の情報(貴重なデータ)

観測スペクトル全体

BG の影響を取り除くには、1.宇宙線 BG を細かく再現し (Anada.2005) 、観測スペクトルを再現した BG で処理する方法。2.検出器の周囲をシールドし、宇宙線 BG を直接減らす方法。(今回のテーマ)

Page 42: 2007 年度 P6 課題研究 On 2008/3/7

現役の X 線天文衛星 SUZAKU をモデルとして、次期X線天文衛星を想定し、その XIS 検出器と宇宙線の相互作用を Geant4 でシミュレートし、 BG を大域的に再現する。 

いくつかのシールドに変えながらシミュレーションを繰り返し、各々の宇宙線が作る BGの性質を調べ、結果をまとめる。

Page 43: 2007 年度 P6 課題研究 On 2008/3/7

電子陽子二次粒子

電子陽子一次粒子

光子

宇宙線環境の再現

太陽光を除くために、夜の地球を想定し、地表から 600km の宇宙空間では

Based on GLAST Balloon Experiment (Mizuno.2004)

Page 44: 2007 年度 P6 課題研究 On 2008/3/7

CCD カメラ

100mm100mm (面積)

100μm (空乏層の厚み)

シリコン板

周りの機材:

球殻シールド

( 物質層の厚さ ~10g/cm2)

の金属

検出器環境の再現

  XIS を想定して検出器モデルを簡単化した

2005by穴田

2007 by p6

Si

Page 45: 2007 年度 P6 課題研究 On 2008/3/7

外殻物質 内殻物質 物質厚さ

TYPE0視野方向を想定

なし なし 0

TYPE1XIS を想定 Al37mm Au0.5μm 10g/cm2

TYPE2お試し Au0.5μm Al37mm 10g/cm2

TYPE3おまけ Pb37mm なし 42g/cm2

検出器シールドの TYPE

Si

Si

Si

Si

Page 46: 2007 年度 P6 課題研究 On 2008/3/7

1)打ち込む粒子の種類(光子、電子、光子)と観測時間(粒子数)を決める。

2)Geant4 シミュレーション開始。

3)作ったエネルギースペクトルから粒子の運動エネルギーとCount 数を読み取る。

4)天球( 4π )からランダムに選んだ点を発射位置として、中心の Si板に向かって粒子を打ち込む。

5) Si板が吸収したエネルギーを外部 Data-file に書き出す。

6)Geant4 シミュレーション終了。

7)最後は、 Date-file を処理し、スペクトルとしてグラフ化する。

Page 47: 2007 年度 P6 課題研究 On 2008/3/7

光子

電子と陽子

シールドなし

全体の BG ( TYPE0 で一年間分)

• 光子:    1~100keVに   渡って count数が減少する。• 電子:   

10~1000keVに渡って、山を作った。• 陽子:   

10~1000keVに渡って、電子より緩やかな山を作った。   

Si

Page 48: 2007 年度 P6 課題研究 On 2008/3/7

解釈の準備

荷電粒子の阻止能 Stopping Power荷電粒子は電離損失が主要反応である

電離損出による単位物質長 [g/cm2] あたりエネルギー損出 dE/dxはBethe の式で与えられる。

Proton

Page 49: 2007 年度 P6 課題研究 On 2008/3/7

高エネルギー荷電粒子が Si板に落とすエネルギーは

吸収エネルギー ΔE= (阻止能 dE/dx ) × (有感部の中で通過した距離 d )

高エネルギー粒子 (v~c) に対して、阻止能 dE/dx がほぼ一定になる。

電子と陽子の山型スペクトルの解釈

Si

dmindmax

Emin  ∝ dmin

Emax  ∝ dmax

山の理由:•スペクトルには最大と最小吸収端がある。•幾何的な理由から、その間には PEAKが現れる。•PEAKは 2MeV*cm2/gから 40keV程度である。

Page 50: 2007 年度 P6 課題研究 On 2008/3/7

外 Al  37 mm内 Au 0.5 μm 物質厚さ 10g/cm2

全体の BG (シールド TPYE1 で一年間分)

SUZAKU の XIS モデル

•20keV 以下では光子と電子が作る BGが主要

•20keV 以上では陽子と電子が作る BGが主要

光子

陽子

電子

Si

Page 51: 2007 年度 P6 課題研究 On 2008/3/7

[counts

]光子の各シールド TYPE の比較

青:シールドなし

赤:外 AL  内 Au

緑:外 Au  内 Al

無シールド

Al&Au シールド

Page 52: 2007 年度 P6 課題研究 On 2008/3/7

シールドによる光子 BG 分析

シールド Al と Au の影響で、光電吸収や Compton 散乱で入射光子が吸収/散乱され、無シールドの時と比べて全体的 BG が4〜5桁減少した

シールドの構成( TPYE1 と TYPE2 )は、 BG に殆ど影響がなかった

[ particles/cm2/sr/sec/keV] 単位に換算すると、 10の -5乗というオーダーになる。

BG低減の一般対策

当たり前のことであるが、光電吸収とCompton 散乱が主要反応なので、より原子番号 Z の大きいシールドを使うのが効果的であろう。

Page 53: 2007 年度 P6 課題研究 On 2008/3/7

電子の各シールド TYPE の比較

青:シールドなし

赤:外 AL  内 Au

緑:外 Au  内 Al

無シールド

Al&Auシールド

Page 54: 2007 年度 P6 課題研究 On 2008/3/7

シールドによる電子 BG の分析

シールドの影響で、 20keV 以上の BG が少し減少したが、 20keV 以下では BG が劇的に増加した。これは、宇宙線電子とシールドの相互作用で作られた多数の二次粒子に由来するものと考えられる。

シールドの構成( TYPE1 と TYPE2 )に依存性があった。外 Au内 Alは外 Al内 Au より BG が少ない。

[ particles/cm2/sr/sec/keV] 単位に換算すると、 20keV 以下では~10 の -5乗、 20keV 以上では 10 の -4乗というオーダーになる。

16

BG低減の一般対策

•電離損出( Z )と制動放射 (Z2) が主要反応なので、原子番号Z の大きいものが必要であろう。•原子番号大のものを外に、原子番号小のものを内にしたシールドの方が BG がやや少ない。

Page 55: 2007 年度 P6 課題研究 On 2008/3/7

陽子の各シールド TYPE の比較

青:シールドなし

赤:外 AL  内 Au

緑:外 Au  内 Al

無シールド

Al&Auシールド

Page 56: 2007 年度 P6 課題研究 On 2008/3/7

陽子 BG の分析

シールドの影響を全く受けず、高エネルギー陽子の BG は殆ど変わらない(多少エネルギーを失うのも進路を変えずに貫通した)。

逆に、シールドによる二次粒子のせいで、 20keV 以下の BG が一桁増えた。シールドがない方がよいではないか ! ?

しかし、 シールドの構成を変えることで( Au を外に置く)、 20keV 以下のBG を無シールドのときを同じレベルに押さえることが出来る。

BG低減の難点

•20keV 以上の BG山は、普通のシールド( AL 、 Au 、 Pb にも!)影響されない。•磁場シルードにしても、高エネルギー陽子 (1000MeV) のため、ラモーア半径を小さく (1cm) するにはかなり強い磁場( 1000G )ばをかけざるを得ない。

Page 57: 2007 年度 P6 課題研究 On 2008/3/7

陽子対策ここで、考え方を変えて、 BG を減らすのではなく、

山を観測範囲 [1~100keV] から移動させる方法を試した。

Emin ~ dE/dx × dmin

Emax~ dE/dx × dmax

空乏層を厚くすれば、Emin と Emax は大きくなり、

BG山は右(エネルギー高い方)へ移動する。

Emin Emax

空乏層 400μm

空乏層 100μm

Page 58: 2007 年度 P6 課題研究 On 2008/3/7

全体のまとめ

全体20keV 以下では、光子が主要な BG を作る。20keV 以上では、陽子が山型の BG を作る。電子による BG はそれぞれの半分程度だった。

光子

金属シールドは有効であった。現在 XIS のシールド( 10g/cm^2 )は無シールド時と比

べて、 BG を5桁減少させた。

電子

20keV 以上では、 BG の山をやや(一割程度)押さえたが、20keV 以下では、シールドによる二次粒子で BG が逆に増えた。 Au を外に置くことで多少改善される。

陽子

金属シールドは殆ど無効果でした。逆に、 20keV 以下の BG が増えた。20keV 以上の BG山はかなり堅い、普通のシールドでは BG低減が無理。BG の山を空乏層を厚くすることで移動させることが可能。