4-therya mandujanoetal 2010

20
43  Abril 2010 MANDUJANO ET AL - GEOGRAPHIC DISTRIBUTION OF DEER Comparison of geographic distribution models of white- tailed deer Odocoileus virginianus (Zimmermann, 1780) subspecies in Mexico: biological and management impli- cations Salvador Mandujano 1 , Christian. A. Delfín-Alfonso 2,3 and Sonia Gallina 1 1  Red de Biología y Conservación de Vertebrados , Instituto de Ecología A. C., Carretera Antigua Coatep ec  No. 351, Congregación del Haya, Xalapa 91070, Ver., México. 2 Red de Medio Ambiente y Sustentabilidad, Instituto de Ecología A. C. , Carretera Antigua Coatepec No. 351, Congregación del Haya, Xalapa 91070, Ver., México. 3 Facultad de Ciencias Naturales, Univ ersidad Autónoma de Querétaro, Av. de la Ciencia S/N Juriquilla,  Delegación Santa Rosa Jáuregui, Santiago de Querétaro, C. P. 76230, Querétar o, México. * Send correspond to this author: E-mail: [email protected] du.mx Abstract The white-tailed deer ( Odocoileus virginianus) is the most widely distributed ungulate in the American continent. This species is found throughout Mexico, except on the peninsula of Baja California and in some areas of northern Chihuahua and Sonora. In this study we compared three geographic distribution models (Kellogg 1956, Hall 1981 and Villarreal 1999) of white-tailed deer subspecies on a national scale, by state and by principal vegetation types. We found that neither the number of subspecies (13 or 14 of the 38 recognised subspecies), nor the geographical limits between subspecies coincided completely between models. Furthermore, for several subspecies, marked differences in distribution area were found depending on the distribution model used. Using multivariate analyses we found that the 14 subspecies can be separated into three groups associated with different vegetation types: the northern subspecies associated with shrub land, the Pacific subspecies associated with temperate forest and tropical dry forest, and the south-eastern subspecies associated with tropical evergreen forest, cloud forest and tropical semi-deciduous forest. We suggest the classification of the 14 subspecies into three ecoregions. The data analyzed here is relevant to the management and conservation of the white-tailed deer subspecies and/or geographical variations in Mexico, and to avoid the translocation of individuals into inappropriate areas with respect to their evolution and adaptation to different ecoregions. Key words : distribution, ecoregions, management, Mexico, subspecies, vegetation types. Resumen El venado cola blanca ( Odocoileus virginianus) es el ungulado con mayor área de distribución en el continente Americano. En México, se le encuentra en todo el territorio excepto la península de Baja California, algunas áreas del norte de Chihuahua y norte de Sonora. En este trabajo comparamos algunos modelos (Kellogg 1956, Hall 1981, Villarreal 1999) de distribución geográfica de las subespecies de venado cola blanca, a nivel del país, por entidad federativa y por tipos principales de vegetación. Se encontró que no coinciden totalmente ni en el número de subespecies (13 ó 14 de las 38 subespecies reconocidas), ni en los límites geográficos entre subespecies; además de que para algunas subespecies existen claras diferencias en las áreas de distribución dependiendo el modelo de distribución. Con base en análisis multivariados encontramos que las 14 subespecies pueden separarse en tres grupos asociados a diferentes tipos de vegetación: las subespecies norteñas asociadas al matorral xerófilo, las subespecies del Pacífico asociadas al bosque templado y bosques tropical seco, y las subespecies del sureste asociadas al bosque tropical perennifolio, bosque mesófilo y bosque tropical subcaducifolio. Sugerimos clasificar a las subespecies en tres ecoregiones. La información generada es relevante para el manejo y conservación de las subespecies y/o variaciones geográficas del venado cola blanca en el país, y evitar translocar individuos a sitios que no les corresponden de acuerdo a su evolución y adaptación a las diferentes ecoregiones. Palabras clave: distribución, ecoregiones, manejo, México, subespecies, tipos de vegetación. Correspondent: Salvador mandujano, [email protected] ©2010 Therya www.mastozoologiamexicana.com

Upload: soniagallina2392

Post on 06-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 1/20

43 Abril 2010 MANDUJANO ET AL - GEOGRAPHIC DISTRIBUTION OF DEER

Comparison of geographic distribution models of white-

tailed deer Odocoileus virginianus (Zimmermann, 1780)subspecies in Mexico: biological and management impli-

cations

Salvador Mandujano1, Christian. A. Delfín-Alfonso2,3 and Sonia Gallina1

1 Red de Biología y Conservación de Vertebrados, Instituto de Ecología A. C., Carretera Antigua Coatepec No. 351, Congregación del Haya, Xalapa 91070, Ver., México.

2 Red de Medio Ambiente y Sustentabilidad, Instituto de Ecología A. C., Carretera Antigua Coatepec No.351, Congregación del Haya, Xalapa 91070, Ver., México.

3 Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de la Ciencia S/N Juriquilla, Delegación Santa Rosa Jáuregui, Santiago de Querétaro, C. P. 76230, Querétaro, México.

* Send correspond to this author: E-mail: [email protected]

Abstract

The white-tailed deer (Odocoileus virginianus) is the most widely distributed ungulate in the American continent.This species is found throughout Mexico, except on the peninsula of Baja California and in some areas of northern Chihuahua and Sonora. In this study we compared three geographic distribution models (Kellogg1956, Hall 1981 and Villarreal 1999) of white-tailed deer subspecies on a national scale, by state and by principalvegetation types. We found that neither the number of subspecies (13 or 14 of the 38 recognised subspecies), northe geographical limits between subspecies coincided completely between models. Furthermore, for severalsubspecies, marked differences in distribution area were found depending on the distribution model used. Usingmultivariate analyses we found that the 14 subspecies can be separated into three groups associated with different

vegetation types: the northern subspecies associated with shrub land, the Pacific subspecies associated withtemperate forest and tropical dry forest, and the south-eastern subspecies associated with tropical evergreenforest, cloud forest and tropical semi-deciduous forest. We suggest the classification of the 14 subspecies intothree ecoregions. The data analyzed here is relevant to the management and conservation of the white-taileddeer subspecies and/or geographical variations in Mexico, and to avoid the translocation of individuals intoinappropriate areas with respect to their evolution and adaptation to different ecoregions.

Key words : distribution, ecoregions, management, Mexico, subspecies, vegetation types.

Resumen

El venado cola blanca (Odocoileus virginianus) es el ungulado con mayor área de distribución en el continenteAmericano. En México, se le encuentra en todo el territorio excepto la península de Baja California, algunas

áreas del norte de Chihuahua y norte de Sonora. En este trabajo comparamos algunos modelos (Kellogg 1956,Hall 1981, Villarreal 1999) de distribución geográfica de las subespecies de venado cola blanca, a nivel del país,por entidad federativa y por tipos principales de vegetación. Se encontró que no coinciden totalmente ni en elnúmero de subespecies (13 ó 14 de las 38 subespecies reconocidas), ni en los límites geográficos entre subespecies;además de que para algunas subespecies existen claras diferencias en las áreas de distribución dependiendo elmodelo de distribución. Con base en análisis multivariados encontramos que las 14 subespecies pueden separarseen tres grupos asociados a diferentes tipos de vegetación: las subespecies norteñas asociadas al matorral xerófilo,las subespecies del Pacífico asociadas al bosque templado y bosques tropical seco, y las subespecies del suresteasociadas al bosque tropical perennifolio, bosque mesófilo y bosque tropical subcaducifolio. Sugerimos clasificara las subespecies en tres ecoregiones. La información generada es relevante para el manejo y conservación delas subespecies y/o variaciones geográficas del venado cola blanca en el país, y evitar translocar individuos asitios que no les corresponden de acuerdo a su evolución y adaptación a las diferentes ecoregiones.

Palabras clave: distribución, ecoregiones, manejo, México, subespecies, tipos de vegetación.Correspondent: Salvador mandujano, [email protected]

©2010 Therya www.mastozoologiamexicana.com

Page 2: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 2/20

44 Therya vol. 1 No. 1

The white-tailed deer Odocoileus virginianus(Zimmermann, 1780) is the most widely distributed

cervid in the American continent. It is found from alatitude of 60º N in the south of Canada, through mostof the United States, except some regions of the south-east, throughout Central America, and into SouthAmerica in the north of Brazil and south of Peru at alatitude of 15º S (Smith 1991). In Mexico this speciesis found throughout the country, except on the penin-sula of Baja California and in some areas of northernChihuahua and Sonora (Leopold 1959). The high lev-els of reproductive, behavioural and ecological plas-ticity observed in this species, are factors that have

allowed it to expand its geographic distribution (Baker1984). As a consequence, this browser cervid inhabit-ing an extensive variety of different plant communi-ties. In Mexico this species is found in temperate pine,oak and fir forests, mixed oak – pine forest, shrub land,tropical dry forest, semi-evergreen and evergreen for-ests, subaquatic vegetation and secondary vegetation(Galindo-Leal & Weber 2005).

Thirty eight subspecies of the white-tailed deerhave been described, 14 of which are found in Mexico(Smith 1991). Of the many authors that have contrib-uted to the information regarding the distribution and

systematic of Mexican deer, several deserve mention-ing: Mearns (1898), Merriam (1898), Allen (1903),Cowan (1936), Goldman & Kellogg (1940),Armstrong et al. (1972), Genoways & Jones (1975).Although the level of subspecies is frequently em-ployed for conservation and management purposes,from a biological point of view its definition is con-troversial. Theoretically, subspecies are groups of lo-cal populations, within a species, that share a geo-graphical range and common characteristics (geneticand phenotypic), that are adapted to the environmen-

tal conditions found in their habitat, and that are sepa-rated from other populations by some kind of geo-graphical or climatic barrier; such qualities allow forthe distinction of one subspecies from another(Frankham et al. 2002). However, the classificationof the currently recognised white-tailed deer subspe-cies is entirely based on morphological characteris-tics (e.g., size, pelage colour, size and shape of maleantlers), from just a few museum specimens (Kellogg1956), and only a limited studies exist that presentdetailed or quantitative morphological or genetic data

(e. g., Krausman et al. 1978, Sheffield et al. 1985,Cronin 1991a, 1991b, Mathews & Porter 1993,

Ellsworth et al. 1994, Anderson et al. 2002, Van DenBussche et al. 2002, DeYoung et al. 2002, 2003). For

Mexico, very little information about morphometricor genetic variability in white-tailed deer is available.Studies exist for four north-eastern subspecies (Lo-gan-Lopez et al. 2006, 2007), and three species in thestate of Michoacan (Chassin, personal communica-tion). For these reasons, there is a clear need for fur-ther research in this topic.

The white-tailed deer is a highly valued species inMexico for many reasons, including: protein consump-tion, commerce, the elaboration of artisan crafts, andas an important component in the rituals of indigenouscultures (Mandujano & Rico-Gray 1991, Greenberg1992, Gonzalez-Perez & Briones 2000, Naranjo et al.

2004). Today the hunting of this species continues tobe important, both for subsistence and trophy hunt-ing. The white-tailed deer is the most important gamespecies in Mexico and its cynegetic exploitation hasincreased notably in Wildlife Conservation, Manage-ment and Sustainable Utilization Units (in Spanish:Unidades de Manejo y Aprovechamiento para laConservación de la Vida Silvestre, or UMAs) (Montielet al. 1999; Gonzalez-Marin et al. 2003, Segovia &Hernandez 2003, Villarreal-Espino 2006), providing

an important source of income, particularly in the northof the country (Villarreal 1999). In consequence, UMAmanagement has led to a greater national demand forthe hunting of white-tailed deer and an urgent needfor reliable biological and ecological data in order tosustainably manage the different populations and sub-species. In this sense, Natural Protected Areas (inSpanish ANPs) have proven to be important areas forsuch studies (Gallina et al. 2007).

From a cynegetic management point of view, inMexico only five of the 14 white-tailed deer subspe-

cies enter into the current international trophy recordbooks, such as those organised by the Boone andCrockett Club and Safari Club International. For thisreason, these are the subspecies that are given the mostattention and protection by ranchers and land owners.These subspecies are: O. v. texanus, O. v. couesi,O. v.

carminis, O. v. miquihuanensis and, in recent years,O. v. mexicanus (Villarreal-Espino 2002). The remain-ing subspecies have not been considered as recognisedtrophies by national or overseas sport hunters, owingboth to their smaller sized antlers and their lack of anindividual category in the trophy record books. Not-withstanding, the situation is beginning to change and

Page 3: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 3/20

45 Abril 2010 MANDUJANO ET AL - GEOGRAPHIC DISTRIBUTION OF DEER

a greater regional importance is being placed on thehunting of each individual subspecies (Villarreal

2009). As a result, one worrying aspect of white-taileddeer management is the translocation of subspecies todifferent parts of the country other than those areaswhere they are historically found. Given this prob-lem, the Wildlife Department of SEMARNAT (theMexican office for the Environment and Natural Re-sources) requires that any animals that are translocatedare of the same subspecies as those found in the localarea. This legislation forms part of Article 81 of theGeneral Wildlife Law of Mexico (D.O.F. 2006). Thisis particularly important in large UMAs, where ani-mals are often released with little control. For this rea-son there is an urgent need for a database of geographicinformation that allows both the authorities and farmowners to gain a better understanding of the subspe-cies they manage, and to maintain the genetic vari-ability of the species and, in turn, its conservation pros-pects.

The objective of this study was to compare threebiogeographic distribution maps for the subspecies of white-tailed deer in Mexico (Kellogg 1956, Hall 1981,Villarreal 1999). Specifically to: 1) estimate the dis-tribution areas of the subspecies on a national scale,

by state and by vegetation type, 2) identify relatedgroups of subspecies in function with the principalvegetation types found in the country in order to de-fine possible ecoregions, and 3) analyse the implica-tions of our results for the biology and managementof the 14 subspecies found in Mexico. Since a modelis a graphical, mathematical, physical, or verbal rep-resentation or simplified version of a concept, phe-nomenon, relationship, structure, system, or any as-pect of the real world, and a species distribution mapis a visual representation in which a biological taxon

is spatially arranged in an area, in this paper we useddistribution model as a synonym for distribution map.

Subspecies in Mexico

 Models or distribution maps of subspeciesBased on information from the Smithsonian Insti-

tution, Kellogg (1956) published an interesting map,now little known, in Taylor’s (1956) book “ Deer of 

 North America”, which has been considered a classicfor decades. Interestingly, the author only recognised13 white-tailed deer subspecies in Mexico and pre-

sented geographical limits between subspecies whichwere discontinuous. That is, he left empty spaces in

which it is difficult to define which subspecies aredistributed (Figure 1a). Later Rue (1979) published a

map in his book “The Deer of North America”, whichis also based on information from the SmithsonianInstitution, although with some modifications to thedistribution of the subspecies in northern Mexico. Thedistribution map by Hall (1981), developed for thewhite-tailed deer subspecies and published in the clas-sic book “The Mammals of North America”, presentsthe continuous distribution of 14 subspecies, basedon records from limits of the distribution of each sub-species (Figure 1b). This map appears to be the basisof others, such as that published by Baker (1984) inthe book “White-Tailed Deer: Ecology and Manage-

ment ” which, in turn, served as the basis of the mappresented by Smith (1991) in a monograph of the spe-cies published in “ Mammalian Species”, a mandatoryreference. For Mexico, Villarreal (1999) published adistribution map of the subspecies in the book “Venado

cola blanca: manejo y aprovechamiento cinegético”,which contains some important differences with re-spect to the other maps previously mentioned (Figure1c). This book is frequently consulted by deer manag-ers in Mexico, and the author based the map on thatproposed by Baker (1984), but introduced significant

changes based on field experience with the species.In Table 1 we present the type locations for each of the 14 subspecies found in Mexico.

 Description of the subspeciesThe range of individual variation found in white-

tailed deer, especially in size, antler details, and pel-age colour, is remarkable and has been used for theirsubdivision into subspecies (Kellogg 1956). However,one form can pass gradually into another, especiallywhere there are no abrupt changes in physiography.

Specimens from certain regions might with equal pro-priety be referred to as either of the contiguous sub-species. But where abrupt changes in physiographydo occur, such as the change from plains to high moun-tains, the deer tend to respond along rather sharp linesof differentiation. Generally, among the subspecies of white-tailed deer, the larger forms are found in thenorth and the smaller forms in the south. For example,the maximum size is reached in those races extendingwestward from the Atlantic coast across southernCanada and northern United States. The minimum size

is found in O. v. rothschildi, inhabiting Coiba Islandoff the Pacific coast of Panama. In Mexico, the larg-

Page 4: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 4/20

46 Therya vol. 1 No. 1

est subspecies is O. v. texanus, while the smallest isO. v. acapulcensis. Variation in antler-formation seems

to correlate mainly with various physical factors,among which are size, maturity, and general physicalcondition (Villarreal 1999). The larger northern sub-species carry larger antlers, with more numerous tines,than do the smaller southern forms. For example, inO. v. acapulcensis the antlers, even in fully maturebucks, may be reduced to single spikes; in contrast, inO. v. texanus subsidiary tines are more prevalent. In-dividual and subspecific variations in colour are sogreat that they are perplexing to explain, and grada-tions are so numerous that they are difficult to distin-guish. The pelages usually are quiet different amongseasons. For example, in the northern subspecies thewinter and summer colour differ, while in Mexico thereare variations between wet and dry seasons. In gen-eral, summer or wet season colour being predomi-nantly brownish or greyish, while winter or dry sea-son is tawny. The most vivid coloration, ranging fromtawny to rich orange-cinnamon, is shown by some of 

the subspecies inhabiting the tropical lowlands inMexico and Central America. The colours of individu-

als from the high mountains of these regions usuallyare dull and dark. A further factor confusing the situ-ation is the widespread translocation of various sub-species of white-tails into geographic ranges properlybelonging to others. Based on the studies by Kellogg(1956) and Villarreal (2009), in Table 2 we present adescription of the subspecies found in Mexico. How-ever, it is important to note that the data presented inTable 2 is based on measurements taken from one, or just a few individuals. In the case of O. v. toltecus nodata is available.

Methods

Sources of information used Information relating to the distribution of the sub-

species of white-tailed deer in Mexico was gatheredby consulting the following studies: Goldman &Kellogg (1940), Miller & Kellogg (1955), Hall &

Table 1. Subspecies of white-tailed deer present in Mexico according to Smith (1991). In parenthesis isshow the abbreviations of subspecies used in the following tables and figures.

Odocoileus virginianus acapulcensis (Caton, 1877). Type locality: Acapulco, Guerrero, México. (aca )Odocoileus virginianus carminis Goldman and Kellogg, 1940. Type locality: “Botellas Cañón, Sierradel Carmen, northern Coahuila, México. (car )Odocoileus virginianus  couesi (Coues and Yarrow, 1875). Type locality: “Rancho Santuario”, north-western Durango, México. (cou )Odocoileus virginianus mexicanus (Gmelin, 1788). Type locality: “Valley of México”, México. (mex )Odocoileus virginianus miquihuanensis Goldman y Kellogg, 1940. Type locality: “Sierra Madre Orien-tal, near Miquihuana, southwestern Tamaulipas, México”. (miq )

Odocoileus virginianus nelsoni Merriam, 1898. Type locality: “San Cristobal, highlands of Chiapas,México”. (nel )

Odocoileus virginianus oaxacensis Goldman y Kellogg, 1940. Type locality: “Mountains 15 miles westof Oaxaca, México”. (oax )Odocoileus virginianus sinaloae J. A. Allen, 1903. Type locality: “Escuinapa”, southern Sinaloa, México.(sin )Odocoileus virginianus texanus  (Mearns, 1898). Type locality: “Fort Clark”, Kinney County, Texas,

USA. (tex )Odocoileus virginianus thomasi Merriam, 1898. Type locality: “Huehuetan”, Chiapas, México. (tho )Odocoileus virginianus toltecus (Saussure, 1860). Type locality: “Orizaba”, Veracruz, México. (tol)

Odocoileus virginianus truei .Merriam 1898. Type locality: “Sibube”, Panamá.  (tru ) Odocoileus virginianus veraecrucis Goldman and Kellogg, 1940. Type locality: “Chijol, northern Veracruz, México”.(ver )Odocoileus virginianus yucatanensis (Hays, 1872). Type location: “Throughout Yucatán and the southern

part of México”. (yuc )

Page 5: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 5/20

47 Abril 2010 MANDUJANO ET AL - GEOGRAPHIC DISTRIBUTION OF DEER

Kelson (1959), Taylor (1956), Rue (1979), Hall (1981),Smith (1991), Villarreal (1999) and Heffelfinger

(2006). We also obtained the bibliographical databasespublished in Mandujano (2004) and Gallina et al.

(2008, 2009). Biogeographic models of physiographicregions and vegetation in Mexico were taken fromRzedowski & Reina-Trujillo (1990), Arriaga et al.(1997), Palacio et al. (2000) and Morrone (2005).Further, several digital maps of the 32 federal entitiesof Mexico (31 states and one Federal District; herein-after ‘states’) were obtained, including: State Politi-cal Divisions of INEGI (National Institute of Statis-tics and Geography), Biogeographic Regions (Arriagaet al. 1997), National Forest Inventory (Palacio et al.

2000), and Floristic Divisions (Rzedowski & Reyna-Trujillo 1990). All of the maps on which this studywas based were obtained from the databases if INEGI(http://mapserver.inegi.org.mx/) and CONABIO (Na-tional Commision for the Understanding and Use of Biodiversity - http://www.conabio.gob.mx/ informacion/gis/).

 Analysis of geographic and statistical data

The three distribution maps used were digitalisedusing Arc View ver. 3.2 (ESRI 1999) and homogenised

into a plane coordinate system in order to simplify thearea calculations into kilometres squared. Themetadata used were from a map generated byCONABIO (http://www.conabio.gob.mx/informacion/ gis/metadatos). The resulting maps were geo-refer-enced to allow for simple, comparative referencing.Each of the distribution models was broken down intosection by state and vegetation type, as mentionedearlier. Later, the areas of the different sections werecalculated for each distribution model: the total areaoccupied by each subspecies, the area occupied by

each subspecies in each state, and the area occupiedby each subspecies in each vegetation type.With the data we generated with regard to the area

occupied by each subspecies within each vegetationtype in each distribution model, we obtained percent-ages for each subspecies. With the percentage datafor each vegetation type, we carried out Cluster Analy-ses (with the algorithm Euclidean Paired Group Simi-larity Index) and Principal Component Analyses(PCA), using correlation matrices and Euclidean Simi-larity Index) for each distribution model using, in both

cases, the statistics program PAST (Hammer et al.2001). The results of both multivariate analyses al-

Figure 1. Maps or distribution models of the white-taileddeer subspecies in Mexico, proposed by Kellogg (1956),Hall (1981) and Villarreal (1999). ? Indicates the regionswith doubt as to which subspecies are present.

Page 6: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 6/20

48 Therya vol. 1 No. 1

Measurements (mm)Subspecies Total

length

Tail Feet Height Cranial

length

AntlerMinimumscore for

trophyhunting

Pelage

O. v. couesi 1530 270 415 890 241 8-10 spikes,with thetendency of the mainbranches toform oval inthe front part

70 typical90 atypical

Brownish gray or drab to dullcinnamon or cinnamon buff. Inwinter pelage the individualhairs, especially on the back,are black at tips with a grayishsub-terminal band, belowwhich they are dark brown

O. v. texanus 1829 254 420 1048 288 The biggest

sized of antlers of allMexicansubspecies

100 typical

125 atypical

Pelage short, color of upper

parts in winter pelage incliningtoward gray, usually withgrizzled pattern approachinggrayish light cinnamon drab

O. v. carminis 1520 220 490 793 246 Moderatelyspreadingwith shortspikes

70? typical90? atypical

A drab colored subspecies.Upperparts in winter pelage amixture of brownish black andDrab Gray.

O. v.

miquihuanensis 1530 270 420 820 247 similar to

“texano” butsmall andshort spikes

80? typical90? atypical

Darker, especially over mediandorsal area. A grizzled Drabsubspecies; with conspicuousbrownish black upper side of 

tail; upperparts in worn winterpelage a mixture of Snuff Brown and Buff. Summerpelage more brownish.

O. v.

veraecrucis 1560 220 400 800 247 small and

closer60? typical70? atypical

with tail usually more or lessdistinctly blackish bone brownon upper side sub terminally.

O. v. toltecus 1440 71 4 to 8 spikes,verticalbranchesslightly toback

40? typical50? atypical

Characterized by dark

O. v.mexicanus  1550 235 410 915 241 4 to 8 spikes,branches

curve to thefront

60? typical70? atypical General coloration of upperparts Mummy brown toCinnamon brown

O. v.

oaxacensis

 

1340 170 362 750 230 4 to 8 spikes,branchescurve to thefront

60? typical70? atypical

Present a grizzled pattern of coloration

O. v. sinaloae 1490 223 415 820 234 Antlerslonger withmorenumerous

points

Varying in color from nearSayal Brown to drabbish diluteSnuff Brown, mixed with blackover back

O. v. 1394 195 385 677 224 Small, 70 typical Varying from drabbish Snuff 

Table 2. Description of the subspecies of white-tailed deer present in Mexico, based on Kellogg (1956) andVillarreal (2009).

Page 7: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 7/20

49 Abril 2010 MANDUJANO ET AL - GEOGRAPHIC DISTRIBUTION OF DEER

low related groups of subspecies, sharing similar veg-etation types, to be defined. We defined these groups

as ecoregions. Further, we analysed the numerical datafrom Table 2 using PCA with a correlation matrix,with the idea of ordering the 13 Mexican subspecies(excluding O. v. toltecus, for which data was unavail-able) in function with their size.

Results

Geographic distribution of subspeciesThe total distribution area for any given subspe-

cies differed markedly, depending on the distributionmodel used (Table 3). The subspecies that differed in

their distribution area, depending on the model were:O. v. carminis, O. v. oaxacensis, O. v. miquihuanensis,

O. v. nelsoni, O. v. toltecus, O. v. veraecrucis and O. v.

 yucatanensis. If we do not consider the model usedby Kellogg (1956), that underestimates distributionarea, the subspecies with the greatest distribution areawas O. v. couesi, which inhabits more than half a mil-lion kilometres squared, followed by O . v.

miquihuanensis (~200,000 km2), O. v. mexicanus, O.

v. texanus, O. v. sinaloae and O. v. thomasi (~106,000to 172,000 km2). Other subspecies that varied between60,000 and 106,000 km2 were: O v. carminis, O. v.acapulcensis, O. v. veraecrucis and O. v. yucatanensis.Finally, the remaining subspecies, O. v toltecus, O. v.nelsoni, O. v truei and O. v. oaxacensis, were found tohave the most restricted distribution areas (< 62,000km2).

 Distribution by federal entityThe number of subspecies that could apparently

be found in each state (federal entity) varied depend-ing on the distribution model used, primarily varyingwith the use of the Kellogg (1956) model, which couldbe considered over-conservative (Table 4). The statewith the greatest number of subspecies was Oaxaca,with 5 or 6, followed by Veracruz, Guanajuato,Durango, Jalisco and Guerrero, with 3 or 4. Thosestates that contained only one subspecies were: DistritoFederal, Estado de México, Morelos, Tabasco,Tlaxcala and Yucatán. Of the 30 states considered, onlyin 13 did the number of subspecies found coincidebetween the three models. In the case of the state of Aguascalientes, in Kellogg’s (1956) model no sub-species are reported to be found. May be as this area

is within one of the regions that the author considered

problematic to define the geographic limits betweensubspecies (Figure 1).

The subspecies that inhabited the greatest numberof states was O. v. mexicanus (13 of 30, includingDistrito Federal), followed by O. v. couesi, O. v.miquihuanensis and O. v. sinaloae. The only subspe-cies limited to just one state was O. v. nelsoni; whileO. v. oaxacensis and O. v. truei were limited to twostates (Figure 1). Although we do not present the data,given the differences in the distribution of subspeciesbetween models, the area inhabited by each subspe-cies in each state varied considerably.

 Distribution by vegetation type

It is important to note that of the 14 subspeciesfound in Mexico, only two (O. v. texanus and O. v.

carminis) did not inhabit tropical forests; while all of the other 12 subspecies included at least some tropi-cal forest within their distribution areas (Figure 2 andTable 5). The subspeciesO. v. miquihuanensis and O.

v. couesi, considered to be principally found in shrubland and temperate forest respectively, were also foundto marginally inhabit dry tropical forests. However,those subspecies with a greater part of their total dis-tribution area occupied by deciduous or tropical dry

forests were: O. v. sinaloae, O. v. mexicanus, O. v.acapulcensis and O. v. yucatanensis. In contrast, thesubspecies O. v. veraecrucis, O. v. toltecus, O. v.

thomasi, O. v. nelsoni and O. v. truei, mainly inhab-ited tropical evergreen forest, tropical semi-decidu-ous forest and cloud forest.

Groups of subspecies by vegetation typeBoth PCA (Figure 3) and Cluster Analysis (Figure

4) gave similar results for all three distribution mod-els. In general, PCA revealed a clear order of the sub-

species O. v. texanus, O. v. miquihuanensis, O. v.carminis and O. v. couesi in function with the pres-ence of shrub land in the north of Mexico; althoughO. v. couesi is more clearly associated with temperateforests. The subspecies O. v. mexicanus, O. v. sinaloae,

O. v. oaxacensis and O. v. acapulcensis formed a groupassociated with temperate pine-oak forest and tropi-cal dry forest, mostly in the Pacific region and thecentre of the country. The subspecies O. v. veraecrucis,O. v. thomasi, O. v. toltecus, O. v. truei and O. v.

 yucatanensis are associated with tropical rain forest,

semi-deciduous forest, cloud forest, thorn forest and

Page 8: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 8/20

50 Therya vol. 1 No. 1

aquatic and sub-aquatic vegetation in the southeast.Finally, the subspecies O. v. nelsoni was an interme-diate subspecies between the temperate and dry for-est group and the tropical rainforest and semi-decidu-ous group. With slight variations, this tendency wasobserved in all three models (Figure 3).

Cluster Analysis revealed similar groups of sub-species, with slight differences. The main differencebeing that O. v. couesi was associated with the tem-perate/dry forest group, depending on the distributionmodel used (Figure 4). Consequently, both PCA andCluster Analysis defined three distinct groups of sub-species, clearly associated with vegetation types. Thisclassification into three groups can be considered as aproposal for distinct ecoregions, or possible ecotypesfor white-tailed deer in Mexico: the ecoregion thatincludes the shrub land of the northeast; that which

includes the temperate forests and tropical dry forestsof the Pacific and central country; and that which in-

cludes the tropical rain forests, semi-deciduous for-ests and cloud forests of the Gulf and southeast of thecountry.

Size of subspeciesAnalysis by PCA demonstrated that 13 of the 14

subspecies found in Mexico (excluding O. v. toltecus,for which data was unavailable) can be organised bysize, based on total length, chest height and antlermeasurement (Figure 5). The largest subspecies wasO. v. texanus, followed by O. v. carminis, O. v.

miquihuanensis, O. v. veraecrucis, O. v. mexicanus

and O. v. couesi; while the smallest subspecies wereO. v. sinaloae, O. v. thomasi, O. v. yucatanensis, O. v.

truei, O. v. oaxacensis, O. v. acapulcensis and O. v.

nelsoni. Using a bigger sample size, a recent study byLogan-Lopez et al. (2007) made detailed morphologi-

cal comparisons (body and cranial measurements)between four subspecies (O. v. texanus, O. v. carminis,

D i s t r i b u t i o n M o d e l

S u b s p e c i e s

K e l l o g g H a l l V i l l a r re a l

O . v . a c a p u l c e n s i s 6 6 , 01 4 6 9 , 2 4 8 6 4 , 0 77

O . v . c a r m i n i s 2 6 ,3 1 5 9 4 , 0 3 1 1 0 2 , 3 9 0

O . v . c o u e s i 4 5 1 , 5 1 8 5 4 8 , 8 0 2 5 2 8 , 9 2 8

O . v . m e x i c a n u s 1 2 1 , 5 4 4 1 7 1 , 5 7 4 1 4 3 , 6 9 7

O . v . m i q u i h u a n e n s i s 9 4 ,2 5 0 1 75 , 2 2 1 2 2 3 , 3 6 2

O . v . n e l s o n i 3 8 , 14 2 4 0 , 5 0 0 2 7 , 7 50

O . v . o a x a c e n s i s 4 4 , 75 1 7 , 8 2 0 3 0 , 2 23

O . v . s i n a l o a e 8 6 ,0 4 7 1 35 , 5 3 6 1 6 8 , 2 2 5

O . v . t e x a n u s 1 4 7 , 5 5 8 1 6 7 , 5 1 8 1 4 1 , 0 2 6

O . v . t h o m a s i 7 6 ,9 3 9 1 05 , 7 3 7 1 1 7 , 3 6 3

O . v . t o l t e c u s 2 4 , 65 4 6 2 , 1 8 6 3 2 , 4 55

O . v . t r u e i - 2 6 , 3 7 8 4 6 , 1 8 9

O . v . v e r a e c r u c i s 3 7 , 29 6 7 6 , 2 5 7 9 5 , 5 05

O . v . y u c a t a n e n s i s 1 2 7 , 9 6 5 8 4 , 6 1 2 7 1 , 7 53

Table 3. Areas (km2) occupied by each of the white-tailed deer subspecies, depending on the distributionmodel used.

Page 9: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 9/20

51 Abril 2010 MANDUJANO ET AL - GEOGRAPHIC DISTRIBUTION OF DEER

O. v. miquihuanensisand O. v. veraecrucis) in a north-eastern region of Mexico. They found that O. v. texanus

was the largest subspecies and differed appreciablyfrom the other three subspecies, which were all quitesimilar to each other.

Discussion

 Differences between distribution modelsThe maps, or distribution models, proposed by

Kellogg (1956), more than 50 years ago, Hall (1981),which was widely accepted, and Villarreal (1999),which is the most commonly used map in Mexico, arenot exempt from errors in their definitions of the bio-

geographical limits between subspecies. However,they all contain a significant amount of similarities,so the use of any of the three could be satisfactory, aslong as the possible sources of error are considered.Given the lack of quantitative morphometric and ge-netic data for the subspecies, it is impossible to con-firm the taxonomic validity of the subspecies presentin the country. Further, the absence of phylogeographicstudies means that the redefinition of the geographiclimits between subspecies is not possible. Indeed,when faced with a species with such capacity for ad-aptation to different environments, it is hard to definewhere the distribution of one subspecies ends and an-other begins (i.e., zones of sympatry) as, basically,some kind of geographic (mountains, rivers, drasticchanges in vegetation type) or climatic barrier oughtto exist in order to clearly define subspecies. How-ever, in some cases we may expect to find a gradientof variations, or cline, from one subspecies to the nextand, therefore, the distribution limits between thembecome arbitrary. In this sense, Kellogg (1956) pre-sented distribution areas in which the geographicallimits between subspecies were discontinuous.

Hall (1981) extended the geographic distributionof each subspecies and proposed clearly defined lim-its. However, these limits were defined on the basis of the author’s own criteria and not necessarily on thebasis of quantitative studies. Further, this authorrecognised a fourteenth subspecies, O. v. truei (=nemoralis), located in the southeast of the country.Another important difference between the models isthat Hall (1981) significantly increased the distribu-tion area of O. v. carminis, which Kellogg (1956) re-ported as found only in a highly restricted area of the

Sierra del Carmen, Coahuila. Morphometric studiesof O. v. carminis by Krausman et al. (1978) confirmed

Figure 2. Distribution models of the white-taileddeer subspecies in Mexico within the principal veg-etation types proposed by Rzedowski and Reyna-

Trujillo (1990).

Page 10: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 10/20

52 Therya vol. 1 No. 1

ample, Ortiz-Martínez et al. (2005) and Briones &García (2005) identify O. v. oaxacensis for the northof the state of Oaxaca. The map proposed by Villarreal(1999) identifies 14 subspecies, but modifies their dis-tribution limits: for example, in the case of  O. v.

oaxacensis important changes are made, while thedistribution of O. v. sinaloae is extended to the southof Sonora and the distribution limits are modified forO. v. texanus, O. v. miquihuanensis and O. v. carminis

(Figure 1).

D i s t r i b u t i o n m o d e lStateK e l lo g g H a l l V i l l a r r e a l

A g u as ca l i en t e s c o u , m i q c o u , m i q

C a m p e c h e t ho , yuc tho , t ru , yuc tho , t ru , yuc

C h i a p a s + n e l , t h o n e l , t h o n e l , t h o

C h i h u a h u a + c a r , c o u , t e x c a r , c o u , t e x c a r , c o u , t e x

Coahu i l a c a r , c o u , m i q , t e x c a r , m i q , t e x c a r , m i q , t e x

C o l i m a a c a , s i n a c a , s i n s i n

Dis t r i t o Federa l+ m e x m e x m e x

D u r a n g o c o u , s i n c a r , c o u , m i q , s i n c a r , c o u , m i q , s i n

G u an a j u a t o m e x c o u , m e x , m i q , s i n c o u , m e x , m i q , s i n

Guer rero a c a , me x , o a x a c a , me x , s i n a c a , me x , o a x , s i nH i d a l g o m e x m e x , v e r m e x , v e r  

J a l i s co aca , cou , mex , s in aca , cou , miq , s in cou , miq , s in

M é x i c o + m e x m e x m e x

M i c h o a c á n + a c a , me x , s i n a c a , me x , s i n a c a , me x , s i n

M o r e l o s + m e x m e x m e x

N ay ar i t s i n c o u , s i n c o u , s i n

N u e v o L e ó n + miq , t ex miq , t ex miq , t ex

O a x a c a a c a , o a x , t h o , t o l a c a , me x , o a x , t h o , t o l a c a , me x , o a x , t h o ,to l , ve r  

Puebla me x , o a x , t o l , v e r me x , t o l , v e r me x , t o l , v e r  

Q u er é t a r o me x me x , v e r me x , m i q , v e r  

Q u i n t a n a R o o   yuc t ru , yuc t ru , yuc

S an Lu i s P o t o s í   me x , m i q me x , m i q , v e r me x , m i q , v e r  

S i n a l o a + c o u , s i n c o u , s i n c o u , s i n

S o n o r a c ou c o u c o u , s i n

T a b a s c o + t h o t h o t h o

T a m a u l i p a s + mi q , t e x , v e r m i q , t e x , v e r m i q , t e x , v e r  

T l a x c a l a + m e x m e x m e x

V e r a c r u z t ho , t o l , ve r mex , t ho , t o l , ve r mex , t ho , t o l , ve r  

Y u ca t án +   yuc yuc yuc

Zaca t ecas + c o u, m i q c o u, m i q c o u, m i q

the difference with other subspecies. By increasingthe distribution area, Hall (1981) introduced this sub-species into areas of shrub land, where O. v. texanus

and O. v. miquihuanensis were also found. Anotherdifference between the models is that, while Kellogg(1956) presents a wide-ranging distribution area forO. v. oaxacensis, Hall (1981) reduces this distributionto a very small area of the Valles Centrales of Oaxaca(Figure 1). This means that distinguishing O. v.

oaxacensis from O. v. toltecus can be complicated andtheir areas of sympatry can be hard to define. For ex-

Table 4. Distribution of the white-tailed deer subspecies in each state or federal entity in Mexico.

+ In these states, the number of subspecies is the same in the three models used

Page 11: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 11/20

53 Abril 2010 MANDUJANO ET AL - GEOGRAPHIC DISTRIBUTION OF DEER

Table 5. Distribution potential (km2) of the white-tailed deer subspeceis in each of the vegetation types usedby Rzedowski and Reyna-Trujillo (1990) and modified by CONABIO.

Distribution modelSubspe cies Vegetation types

Kellogg Hall VillarrealO. v. acapulcensis Temperate forest

Thorn forestCloud forestTropical dry forestTropical semi-deciduou s forestTropical rainforestGrasslandShrub landAquatic vegetation

26,038969

1,22126,87410,002

-207

--

26,5922,4081,225

28,9868,691

-312

--

29,7511 5 6

1,22123,692

8,894-

3 8 4--

O. v. carminis Temperate forestTho rn forestCloud forestTropical dry forestTropical semi-deciduous forestTropical rainforestGrasslandShrub landAquatic vegetation

78 3-----

1,03724,444

-

1,429-----

4,10788,487

-

1,585-----

7,02193,359

-O. v. couesi Temperate forest

Thorn forestCloud forestTropical dry forest

Tropical semi-deciduous forestTropical rainforiestGrasslandShrub landAquatic vegetation

146,33957,047

-31,342

--

100,917115,426

-

173,89156,989

-57,725

--

110,364149,177

-

173,91242,842

-46,453

--

120,832143,746

-O. v. mexicanus Temperate forest

Thorn forestCloud forestTropical dry forestTropical semi-deciduous forestTropical rainforestGrassland

Shrub landAquatic vegetation

41,5257,461

61430,406

-658

9,601

29,1392,140

66,4156,5011,970

55,707811

4,1834,833

28,9552,198

46,1904,5921,738

53,063-

5,6803,995

26,1952,245O. v.

miquihuanensis

Temperate forestThorn forestCloud forestTropica l dry forestTropical semi-deciduous forestTropical rainforestGrasslandShrub landAquatic vegetation

14,841-----

1,78377,626

-

18,2591,608

1422,038

350-

12,839139,986

-

20,5983 7 51 3 6

1,0141 8 8

-7,881

193,169-

O. v. nel soni Temperate forest

Thorn forestCloud forest

15,091

-1,279

15,814

-949

8,958

-1 9 2

Page 12: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 12/20

54 Therya vol. 1 No. 1

  Biological implications

The taxonomic rank of subspecies has been thesubject of long-running controversy (Mayr 1982). Tra-ditionally, subspecies have been recognised on thebasis of discontinuities in the geographical distribu-tion of phenotypic traits. It has long been establishedthat populations on islands encounter a physical im-pediment to gene-flow between local populations, andit is therefore expected that such populations may di-verge in isolation (Mayr & Ashlock 1991). In con-trast, continental subspecies will often have geographi-cal ranges that directly adjoin, or even overlap, thoseof conspecific subspecies, and thus any phenotypicadaptation to local environments will need to takeplace in the face of gene flow (e. g., ecotype). Through-out the geographic range of white-tailed deer inMexico, we see a lot of variation in body size, pelagecolour, antler shape, and other attributes (Kellogg1956, Villarreal 2009). For example, subspecies in thesouthern latitudes are generally smaller in body sizethan those in the north, and those inhabiting open habi-tats appear lighter in colour than those in heavily for-ested habitats. As was the case with mule deerOdocoileus hemionus (Heffelfinger 2006), the geo-

graphic range of several white-tailed deer subspecieswas drawn somewhat arbitrarily. In fact, the purporteddifferences between subspecies were often based onsubjective opinions regarding characteristics or mea-surements of only one or a few specimens. Fortunately,recent advances in DNA analysis techniques now al-low researchers to evaluate genetic data in ways that

Figure 4 (Rigth). Classification of the subspecies of white-tailed deer in function with vegetation type for each of thethree distribution models, following the algorithm Euclid-ean Paired Group Similarity Index. The coefficients of cor-relation were 0.93, 0.91 and 0.87 for the Kellogg, Hall andVillarreal models, respectively.

Figure 3 (left). Ordination of the subspecies of white-taileddeer in function with vegetation type for each of the three

distribution models. The variation explained by the first twoprincipal components were 53.4%, 53.2% and 54.04% forthe Kellogg, Hall and Villarreal models, respectively. Ab-breviations: shrub land (SL), grassland (G), temperate mixedforest (TMF), tropical dry forest (TDF), tropical humid for-est (THF), tropical semi-deciduous forest (TSF), cloud for-est (CF), thorn forest (TF), semi-aquatic vegetation (AV).

 

TMF 

TF  CF 

TDF 

TSF THF

G

SL VA

aca

car

cou

mex

miq

nel

oaxsin

tex tho

tolveryuc

 

TMF 

TF BC 

TDF 

TSF 

THF

G

SL VA

aca

car

cou

mex

miq

nel

oax

sin

tex

tho

tol

tru

ver yuc 

TMF 

TF CF 

TDF 

TSF 

THF

G

SL AV

aca

car

cou

mex

miq

nel

oax

sin

tex

tho

tol

tru

ver

yuc 

Kellogg model

Hall model

Villarreal model

Page 13: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 13/20

55 Abril 2010 MANDUJANO ET AL - GEOGRAPHIC DISTRIBUTION OF DEER

provide managers with meaningful ecological man-agement units on an ecoregion scale.

Translocation implicationsGiven the lack of data supporting the validity of 

the biogeographic limits of the subspecies, thereshould be strict control over the deliberate, or evenaccidental, movement of subspecies to localities wherethey have not been historically reported. One impor-tant problem is posed by those regions where morethan one subspecies converge and the criteria to de-fine the geographic limits between the subspecies arearbitrary. The translocation of animal species has re-sulted in severe consequences for conservation, suchas interspecific competition and the introduction of diseases and parasites (Waldrup et al. 1990, Kock et 

al. 2007). For example, Galindo and Weber (1994)reported incidences of dystocia (difficulty in parturi-tion), probably caused by the translocation of someindividuals of other subspecies, such as O. v. texanus,into the distribution range of  O. v. couesi,  in LaMichilía, Durango. Unfortunately, some programmestranslocate individuals, principally of the subspeciesO. v. texanus, to other parts of the country, with theidea of “improving the breed”, mainly the size of their

antlers. In such a case, Storfer (1999) suggested thatknowledge of gene flow rates and understanding eco-logical differences among populations is necessarybefore embarking on a program to artificially enhancegene flow. This situation could change in the mediumterm. For example, recently, the Comisión de Flora yFauna Silvestres de Nuevo León (CEFFSNL) statedthat although they had always supported and devel-oped cynegetic activities for the benefit of theeconomy, they would not agree to support the transferof individuals of the subspecies O. v. texanus from

the north of Mexico (Coahuila, Nuevo León andTamaulipas) to other parts of the country, even underregulated management schemes such as in UMAs. Thisis to avoid cross breading between subspecies that areadapted to differing ecological conditions and thatform part of the biological heritage of the country(Villarreal 2009).

Classification of ecoregionsOur results suggests that the 14 subspecies can be

grouped into three ecoregions: north-eastern shrub

land (O. v. texanus, O. v. miquihuanensis and O. v.

0 1. 6 3.2 4.8 6.4 8 9.6 11.2 12 .8-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

     S     i    m     i     l    a    r     i     t    y

    n    e     l

    o    a    x

    s     i    n

    a    c    a

    c    o    u

    m    e    x

     t     h    o

     t    o     l

    v    e    r

    y    u    c

    m     i    q

    c    a    r

     t    e    x

Kellogg model

 

0 1.6 3.2 4.8 6.4 8 9.6 11.2 12.8 14.4

- 100

-9 0

-8 0

-7 0

-6 0

-5 0

-4 0

-3 0

-2 0

-1 0

     S     i    m     i     l    a    r     i     t    y

    n    e     l

     t     h    o

     t    o     l

    v    e    r

    y    u    c

     t    r    u

    m    e    x

    s     i    n

    o    a    x

    a    c    a

    c    o    u

    m     i    q

    c    a    r

     t    e    x

Hall model

 

0 1.6 3.2 4.8 6 .4 8 9.6 11.2 12.8 14.4

-108

-96

-84

-72

-60

-48

-36

-24

-12

     S     i    m     i     l    a    r     i     t    y

    n    e     l

     t    o     l

    v    e    r

     t     h    o

     t    r    u

    y    u    c

    m    e    x

    s     i    n

    a    c    a

    o    a    x

    c    o    u

    m     i    q

    c    a    r

     t    e    x

Villarreal model

Page 14: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 14/20

56 Therya vol. 1 No. 1

carminis), Pacific and central temperate and tropicaldry forests (O. v. couesi, O. v. sinaloae, O. v.

mexicanus, O. v. acapulcensis and O. v. oaxacensis),and Gulf-southeast tropical humid, sub-deciduous andcloud forests (O. v. veraecrucis, O. v. toltecus, O. v.

thomasi, O. v. nelsoni. O. v. truei, and O. v. yucatanensis). An ecoregion is defined as a relativelylarge area of land or water that contains a geographi-cally distinct assemblage of natural communities andenvironmental conditions (WWF 1999). These com-munities share a large majority of their species, dy-

namics, and environmental conditions, and functiontogether effectively as a conservation unit at globaland continental scales (Dinerstein et al. 1995). Sev-eral standard methods of classifying ecoregions havebeen developed, with climate, altitude, and predomi-nant vegetation being important criteria (Olson et al.

2001). Because ecoregions are defined by their sharedbiotic and abiotic characteristics, they represent prac-tical units on which to base conservation planning. Amap of Mexican ecoregions was presented byDinerstain et al. (1995).

The use of ecoregions for deer classification andmanagement has also been suggested for mule deer

(Heffelfinger et al. 2006). The 11 subspecies of muledeer and black-tailed deer are distributed throughoutwestern United States and the northern Mexican states.With this wide latitudinal and geographic range, muledeer occupy a great diversity of climatic regimes andvegetation associations, resulting in an incredibly di-verse set of behavioural and ecological adaptationsthat have allowed this species to succeed. Within thegeographic distribution of mule deer, however, areascan be grouped together into ecoregions, within whichdeer populations share certain similarities. With re-

gard to the issues and challenges that deer managersface, deVos et al. (2003) has designated seven sepa-rate ecoregions: California Woodland Chaparral, Colo-rado Plateau Shrubland and Forest, Coastal Rain For-est, Great Plains, Intermountain West, Northern Bo-real Forest, and Southwest Deserts. The diversityamong the ecoregions presents different challenges todeer managers and guidelines for managing habitatmust address these differences (Heffelfinger et al.

2003).For the distribution of white-tailed deer subspe-

cies in the United States, Deckman (2003) classifiedthe 16 subspecies into six regions: Western Region I

Figure 5. Ordination of the white-tailed deer subspecies in Mexico in function with the morphological characteristicsdescribed in Table 2. The variation explained by the first two principal components was 79.9%. The first component (60%)characterises, in the right side of the graph, those subspecies of greater size expressed as the total length (total), height of shoulder (height) and antler size (antler).

 

total 

tail

leg

height

skull

antlercou

tex

car

miq

ver

mex

oax

sinaca

tho

nel

yuc tru

-2.4 -1.2 1.2 2.4 3.6 Component 1

-1.6

-0.8

0.8 

1.6 

Component 2 

Page 15: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 15/20

57 Abril 2010 MANDUJANO ET AL - GEOGRAPHIC DISTRIBUTION OF DEER

(O. v. leucurus, O. v. ochrourus and O. v. couesi), NorthCentral Region II (O. v. dacotensis), Central Plains

Region III (O. v. texanus and O. v. macrourus), Gulf Coast Region IV (O. v. mcilhennyi, O. v. osceola, O.

v. seminolus and o. v. clavium), Atlantic Islands andSoutheastern Region V (O. v. nigribarbis, O. v.

hiltonensis, O. v. venatorius, O. v. taurinsulaeand O.

v. virginianus), and Northeastern Region VI (O. v.

borealis). However, this author also recognised thatwhite-tailed deer subspecies could overlap in manyareas and that the genetic pool in these areas are likelyto be mixed.

For Mexico, the CEFFSNL recently proposed toSafari Club International the inclusion of ninecynegetic regions, with the objective of recognisingall of the 14 different subspecies of white-tailed deerin Mexico on an international scale as different sporthunting trophies (Villarreal 2009). This proposalcomes from the fact that the Safari Club Internationaland Boone and Crockett Club only recognises fivesubspecies. The cynegetic regions were defined on thebasis of antler size, in such as way that males of thedifferent subspecies are competitive within any givengeographic region with particular ecological charac-teristics. The cynegetic regions proposed by Villarreal

(2009) are presented in Figure 6, in which we alsocompare the classification of the ecoregions proposedin this article.

Conservation implicationsPhillimore and Owens (2006) suggest that subspe-

cies may be of considerable conservation value, asproxies for the sub-structure found within species.They suggest that the conservation value of subspe-cies is likely to be greatest in situations where mo-lecular data is absent, a scenario that is encountered

in the white-tailed deer in Mexico. However, there isan urgent need to integrate biographic models andmolecular studies (e. g., Moodley & Bruford 2007) asa framework for the conservation of white-tailed deerat the national and continental scale. Thus, it is im-perative to obtain data on the geographical variationof white-tailed deer throughout the country. The stud-ies must investigate both morphological and geneticvariation. This evaluation will provide not only a ba-sis for conservation efforts (Gallina & Mandujano2009), but also help solidify the range of different

subspecies into and among ecoregions. Clear delinea-tion of the boundary among subspecies is an issue that

the governmental offices (SEMARNAT, DGVS,CONANP, CONABIO) and international agenciessuch as Safari Club International must address in or-der to maintain the integrity of the different geographi-cal haplotypes and for trophy record books.

Acknowledgements

We are grateful to the editor Ticul Álvarez for theinvitation to contribute in this inaugural edition of the  journal Theyra. Teresa Pérez kindly helped with theorganisation of the tables. To Jacob A. Dunn checkedthe final version of the manuscript in English. Thisstudy forms part of the Red de Biología yConservación de Vertebrados of the Instituto deEcología A.C.

References

Allen, J. A. 1903. A new deer and a new lynxs fromthe state of Sinaloa, Mexico. Bulletin of the Ameri-

  Subspecies Hunting regions Ecoregions

O. v. texanus Texas white-tailed

deer

Northeastern shrub lands

O. v. carminis Carminis white-tailed

deer

O. v. miquihuanensis Chihuahuan Desert

white-tailed deer

O. v. couesi Coues white-tailed

deer

Pacific and Central temperate and

tropical dry forests

O. v. sinaloae North Pacific white-

tailed deer

O. v. acapulcensis South Pacific white-

tailed deer

O. v. mexicanus

O. v. oaxacensis

Mexican white-tailed

deer

O. v. toltecus

O. v. thomasi

O. v. nelsoni

O. v. truei

O. v. yucatanensis

Southeastern white-

tailed deer

Southeastern and Gulf tropical

humid, semi-deciduous and cloud

forestsO. v. veraecrucis Gulf white-tailed

deer

Figure 6. Classification of the subspecies of white-tailed

deer in Mexico according to hunting regions by Villarreal(2009) and ecoregions by Mandujano et al. (this paper).

Page 16: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 16/20

58 Therya vol. 1 No. 1

can Museum of Natural History 19:613-615.Anderson, J. D., R. L. Honeycutt, R. A. Gonzalez, K.

L. Gee, L. C. Skow, R. L. Gallagher, D. A.Honeycutt, and R. W. DeYoung. 2002. Develop-ment of microsatellite DNA markers for the auto-mated genetic characterization of white-tailed deerpopulations. Journal of Wildlife Management 66:67-74.

Armstrong, D. M., J. K. Jones Jr., and E. C. Birney.1972. Mammals from the Mexican state of Sinaloa.III. Carnivora and Artiodactyla. Journal of Mam-malogy 52:48-61.

Arriaga, L., C. Aguilar, D. Espinosa-Organista, andR. Jiménez. 1997. Regionalización ecológica ybiogeográfica de México. Taller de la ComisiónNacional para el Conocimiento y Uso de laBiodiversidad (CONABIO), México, D. F.

Baker, R. H. 1984. Origin, classification, and distri-bution. Pages 1-19 in: L. K. Halls (ed.). White-tailed deer: ecology and management. StackpoleBooks, Harrisburg, PE.

Barrowclough, G. F. 1982. Geographic variation,predictiveness and subspecies. Auk 99: 601-603.

Briones-Salas, M., and C. García-Cruz. 2005.Estimación de la densidad del venado cola blanca

(Odocoileus virginianus oaxacensis) en la sierranorte de Oaxaca. Revista Mexicana deMastozoología 9: 141-145.

Cowan, I. McT. 1936. Distribution and variation indeer (genus Odocoileus) of the Pacific CoastalRegion of North America. California Fish andGame 22: 155-246.

Cronin, M. A. 1991a. Mitochondrial and nuclear ge-netic relationships of deer (Odocoileus spp.) inwestern North America. Canadian Journal of Zo-ology 69: 1270–1279.

Cronin, M. A. 1991b. Mitochondrial-DNA phylogenyof deer (Cervidae). Journal of Mammology 72:533.

D. O. F. 2006. Ley General de Vida Silvestre.Publicada el 3 de Julio del 2000 y reformada el 26de Enero del 2006. Cámara de Diputados del H.Congreso de la Unión, Gobierno de los EstadosUnidos Mexicanos-SEMARNAT.

Deckman, D. 2003. North American White-tailed deer:distributions and subspecies. Whitetailes Unlim-ited, Inc. Sturgeon Bay, WI.

Dinerstein, E., D. M. Olson, D. J. Graham, A. L.Webster, S. A. Primm, M. P. Bookbinder, P. Marnie,

and G. Ledec. 1995. Conservation assessment of the terrestrial ecoregions of Latin America and the

Caribbean. Banco Mundial, Washington, D.C.deVos, Jr. J. C., M. R. Conover, and N. E. Headrick(editors). 2003. Mule Deer conservation: issues andmanagement strategies. Berryman Institute Press.Utah State University, Logan, Utah.

DeYoung, R. W., S. Demarais, R. A. Gonzalez, R. L.Honeycutt, and K. L. Gee. 2002. Multiple pater-nity in white-tailed deer (Odocoileus virginianus)revealed by DNA microsatellites. Journal of Mam-malogy 83: 884-892.

DeYoung, R. W., S. Demarais, R. L. Honeycutt, A. P.Rooney, R. A. Gonzales, and K. L. Gee. 2003.Genetic consequences of white-tailed deer(Odocoileus virginianus) restoration in Mississippi.Molecular Ecology 12: 3237-3252.

Ellsworth, D. L., R. L. Honeycutt, N. J. Silvy, J. W.Bickham, and D. Klimstra. 1994. Historical bio-geography and contemporary patterns of mitochon-drial DNA variation in white-tailed deer from thesoutheastern United States. Evolution 48: 122-136.

ESRI. 1999. Arc View ver. 3.2. Environmental Sys-tems Research Institute, Inc. Redlands, California,USA.

Frankham, R., J. D. Balou, and D.A. Briscoe. 2002.Introduction to conservation genetics. CambridgeUniversity Press, UK.

Galindo-Leal, C., and M. Weber. 2005. Venado ColaBlanca Odocoileus virginianus (Zimmermann,1780). Pp: 517-521, in: Ceballos, G. y G. Oliva(eds.), Mamíferos Silvestres de México.CONABIO-Fondo de Cultura Económica, México.

Galindo-Leal, C., and M. Weber. 1994. Translocationof deer subspecies: reproductive implications.Wildlife Society Bulletin 22: 117-120.

Gallina, S., and S. Mandujano. 2009. Ecology, man-agement and conservation of ungulate species inMexico. Tropical Conservation Science 2: 116-127.Available online: tropical conservationscience.org.

Gallina, S., S. Mandujano, and C. Delfín-Alfonso.2007. Importancia de las Áreas NaturalesProtegidas para conservar y generar conocimientobiológico de las especies de venados en México.Pp. 187-196 in: Hacia una cultura de conservaciónde la diversidad, Halffter G, S. Guevara & A. Melic(eds.). Monografías del 3er. Milenio Vol. 6.Sociedad Entomológica Aragonesa, CONABIO,CONANP, INECOL, A. C. y MAB-UNESCO.

Page 17: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 17/20

59 Abril 2010 MANDUJANO ET AL - GEOGRAPHIC DISTRIBUTION OF DEER

Gallina, S., S. Mandujano, J. Bello, H. López-Fernandez, and M. Weber. 2009. White-tailed deer

Odocoileus virginianus (Zimmermann, 1780). Pp.101-118, In: González. S. (ed.), NeotropicalCérvidos. Deer specialist Group, IUCN. (enprensa).

Genoways, H. H., and J. K. Jones, Jr. 1975. Anno-tated checklist of mammals of the Yucatan Penin-sula, Mexico. IV. Carnivora, Sirenia,Perissodactyla, Artiodactyla. Occasional PapperMuseum, Texas Tech University 26: 1-22.

Goldman, E. A., and A. R. Kellogg. 1940. Ten newwhite-tailed deer from North and Middle America.Proceedings Biological Society Washington 53: 81-90.

González-Marín, R. M., E. Montes, and J. Santos.2003. Caracterización de las unidades de manejopara la conservación, manejo y aprovechamientosustentable de la fauna silvestre en Yucatán,México. Tropical and Subtropical Agroecosystems2: 13-21.

González-Pérez, G., and M. Briones-Salas. 2000.Venado cola blanca (Odocoileus virginianus) encomunidades indígenas de Oaxaca. InvestigaciónHoy 94: 20-27.

Greenberg, L. S. Z. 1992. Garden hunting among theyucatecan maya: a coevolutionary history of wild-life and culture. Etnoecologica 1: 23-33.

Hall, E. R. 1981. The mammals of North America.John Wiley and Sons, New York, NY.

Hall, E. R. and K. R. Kelson 1959. The mammals of North America. Ronald Press Co., N.Y.

Hammer, Ø.,O., D. A. T. Harper, D.A.T., and P. D.Ryan,Ryan. 2001. PAST: Paleontological StatisticsSoftware Packagesoftware package for Educationand Data Analysis. Palaeontologiaeducation and

data analysis. Paleontological Electronica 4(1): 9pp. http://palaeo-electronica.org/2001_1/past/ issue1_01.htm

Heffelfinger, J. 2006. Deer of the Southwest: a com-plete guide to the natural history, biology, and man-agement of southwestern mule deer and white-tailed deer. Texas A&M University Press. 282 pp.

Heffelfinger, J. R., C. Brewer, C. H. Alcalá-Galván,B. Hale, D. L. Weybright, B. F. Wakeling, L. H.Carpenter, and N. L. Dodd. 2006. Habitat Guide-lines for Mule Deer: Southwest Deserts Ecoregion.Mule Deer Working Group, Western Associationof Fish and Wildlife Agencies.

Heffelfinger, J. R., L. H. Carpenter, L. C. Bender, G.L. Erickson, M. D. Kirchhoff, E. R. Loft, and W.

M. Glasgow. 2003. Ecoregional differences inpopulation dynamics. Pages 63-91 in: J. C. deVos,M. R. Conover, N. E. Headrick, editors, Mule DeerConservation: Issues and Management Strategies.Western Association of Fish and Wildlife Agen-cies and Jack H. Berryman Institute, Logan, Utah.

Kellog, R. 1956. What and where are the whitetails?Pp. 31-55, in: W. P. Taylor (ed.), The deer of NorthAmerica. The Stackpole Company, Harrisburg,Pennsylvania.

Kock, R. A., P. S. Soorae, and O. B. Mohammed. 2007.Role of veterinarians in re-introductions. Interna-tional Zoo 41: 24–37.

Krausman, P. R., D. J. Schmidly, and E. D. Ables. 1978.Comments on the taxonomic status, distribution,and habitat of the Carmen Mountains white-taileddeer (Odocoileus virginianus carminis) in Trans-Pecos Texas. The Southwestern Naturalist 23: 577-590.

Leopold, A. S. 1959. Wildlife of Mexico. Universityof California Press, Berkeley.

Logan-López, K, E. Cienfuegos-Rivas, F. C. Sánchez,G. Mendoza, A. M. Sifuentes, and L. A. Taranfo.

2006. Caracterización morfométrica de cuatrosubespecies de venado cola blanca (Odocoileusvirginianus) en la zona noreste de México. RevistaCientífica 1: 14-22.

Logan-López, K, E. Cienfuegos-Rivas, A. M.Sifuentes, M. González, F. Clemente-Sánchez, G.Mendoza, and L. A. Taranfo. 2007. Patrones devariación genética en cuatro subespecies de venadocola blanca del noreste de México. Agrociencia 41:13-21.

Mandujano, S. 2004. Análisis bibliográfico de los

estudios de venado en México. Acta ZoologicaMexicana (nueva serie) 20: 211-251.Mandujano, S., and V. Rico-Gray. 1991. Hunting, use,

and knowledge of the biology of the white-taileddeer, Odocoileus virginianus (Hays), by the Mayaof central Yucatan, Mexico. Journal of Ethnobiology 11: 175-183.

Mathews, N. E., and W. F. Porter. 1993. Effect of so-cial structure on genetic structure of free-rangingwhite-tailed deer in the Adirondack mountains.Journal of Mammology 74: 33-43.

Mayr, E. 1982. Of what use are subspecies? Auk 99:593-595.

Page 18: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 18/20

60 Therya vol. 1 No. 1

Mayr, E., and P. D. Ashlock. 1991. Principles of sys-tematic biology. McGraw-Hill, New York.

Mearns, E. A. 1898. Description of a new deer( Dorcelaphus texanus) from texas and northernMexico. Proceedings of the Biological Society of Washington 12: 23-26.

Merriam, C. H. 1898. The earliest generic name fromthe North American deer, with descriptions of fivenew species and subspecies. Proceedings of theBiological Society of Washington 12: 99-104.

Miller, F. S., and R. Kellogg. 1955. List of NorthAmerican recent mammals. U. S. National Mu-seum, Bull. 205.

Montiel-Ortega, S., L. M. Arias, and F. Dickinson.1999. La cacería tradicional en el norte de Yucatán:una práctica comunitaria. Revista GeografíaAgrícola 29: 43-51.

Moodley, Y., and M. W. Bruford. 2007. Molecularbiogeography: towards an integrated framework forconservation Pan-African biodiversity. PLoS ONE5: e454

Morrone, J. J. 2005. Hacia una síntesis biogeográficade México. Revista Mexicana de Biodiversidad76: 207-252.

Naranjo, E. J., Guerra M. M., Bodmer R. E, and

Bolaños J. E. 2004. Subsistence hunting by threeethnic groups of the Lacandon forest, México. Jour-nal of Ethnobiology 24: 233-253.

Olson, D. M., E. Dinerstein, E. D. Wikramanayake,N. D. Burgess, G. V. N. Powell, E. C. Underwood,J. A. D’amico, I. Itoua, H. E. Strand, J. C. Morrison,C. J. Loucks, T. F. Allnutt, T. H. Ricketts, Y. Kura,J. F. Lamoreux, W. W. Wettengel, P. Hedao, andK. R. Kassem. 2001. Terrestrial Ecoregions of theWorld: A New Map of Life on Earth a new globalmap of terrestrial ecoregions provides an innova-

tive tool for conserving biodiversity. BioScience51: 933–938.Ortiz-Martínez, T., S. Gallina, M. Briones-Salas, and

G. González-Pérez. 2005. Densidad poblacional ycaracterización del hábitat del venado cola blanca(Odocoileus virginianus oaxacensis, Goldman yKellogg, 1940) en un bosque templado de la sierranorte de Oaxaca, México. Acta ZoológicaMexicana (nueva serie) 21: 65-78.

Palacio, J. L., G. Bocco, A. Velásquez, J. F. Mas, F.Takaki, A. Victoria, L. Luna, G. Gómez, J. López,M. Palma, I. Trejo, A. Peralta, J. Prado, A.Rodríguez, R. Mayorga, and F. González. 2000.

La condición actual de los recursos forestales enMéxico: resultados del Inventario Forestal

Nacional. 2000. Investigaciones Geográficas,UNAM. Boletín Instituto de Geografía 43: 183-203.

Phillimore, A. B., and I. P. F. Owens. 2006. Are sub-species useful in evolutionary and conservationbiology? Proceedings of the Royal Society B 273:1049-1053.

Regiones y Provincias Mastogeográficas. Escala 1:4000 000. Extraido de RegionalizaciónMastofaunística, IV.8.8. Atlas Nacional de México.Vol. III. Instituto de Geografía, UNAM. México.

Rue, L., L. 1979. The deer of North America: an il-lustrated guide to their lives, their world, their re-lations with man. Book Division , Times MirrorMagazines Inc., Crown Publisher Inc, New YorkOutdoor Life, USA. 436 pp.

Rzedowski, J., and Reyna-Trujillo, T. 1990. Divisionesflorísticas’. Escala 1:8’000,000. En: Tópicosfitogeográficos (provincias, matorral xerófilo ycactáceas. IV.8.3. Atlas Nacional de México. Vol.II. Instituto de Geografía, UNAM. México.

Segovia, A., and S. Hernández-Betancourt. 2003. Lacacería de subsistencia en Tzucacab, Yucatán,

México. Tropical and Subtropical Agroecosystems2: 49.

Sheffield,S. R., R. P. Morgan II, G. A. Feldhamer, andD. M. Harman. 1985. Genetic variation in white-tailed deer (Odocoileus virginianus) populationsin western Maryland. Journal of Mammalogy 66:243-255.

Smith, W. P. 1991.Odocoileus virginianus. Mamma-lian Species 388: 1-13.

Storer, R. W. 1982. Subspecies and the study of geo-graphic variation. Auk 99: 599-601.

Storfer, A. 1999. Gene flow and endangered speciestranslocations: a topic revisited. Biological Con-servation 87: 173-180.

Taylor, W. P. 1956. The Deer of North America.Stackpole Company. Harrisburg, PA. 668 pp.

Van Den Bussche, R. A., T. G. Ross, and S. R. Hoofer.2002. Genetic variation at a major histocompat-ibility locus within and among populations of white-tailed deer (Odocoileus virginianus). Jour-nal of Mammalogy 83: 31-39.

Villarreal, J. 1999. Venado Cola Blanca: Manejo yAprovechamiento Cinegético. Unión GanaderaRegional de Nuevo León. Monterrey, N. L.,

Page 19: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 19/20

61 Abril 2010 MANDUJANO ET AL - GEOGRAPHIC DISTRIBUTION OF DEER

México. 401pp.Villarreal, J. 2009. Propone el CEFFSNL

regionalización cinegética de venados cola blancamexicanos para libro récords internacionales delSCI. Boletín Cuenca Palo Blanco, CEFFNL 4: 3-7.

Villarreal-Espino, O. 2002. El grand slam del venadocola blanca mexicano, una alternativa sostenible.Archivos de Zootecnia 51: 187-193.

Villarreal-Espino, O. 2006. El Venado Cola Blancaen la Mixteca Poblana: Conceptos y Métodos parasu Conservación y Manejo. Fundación ProducePuebla A. C., Puebla. A. 2006. El Venado ColaBlanca en la Mixteca Poblana: Conceptos yMétodos para su Conservación y Manejo.Fundación Produce Puebla A. C., Puebla.

Waldrup, K., A. Kocan, R. Barker, and G. Wager. 1990.Transmission of  Babesia odocoilei in white-taileddeer by Ixodes scapularis . Journal of Wildlife Dis-eases 26: 390-391.

Worldwide Fund for Nature. 1999. WWF in action.Ecoregion-based conservation. [WWF’s GlobalConservation Programme 1999/2000]. Availablefrom: http://www.panda.org/resources/publica-tions/sustainability/global/eco-based.html (ac-

cessed June 19, 2002).

Submitted 03 November 2009.

Accepted xx xxxx 2010

 Asociated Editor was Jan Schpper and Sergio Ticul Alvarez Castañeda

Page 20: 4-Therya mandujanoetal 2010

8/3/2019 4-Therya mandujanoetal 2010

http://slidepdf.com/reader/full/4-therya-mandujanoetal-2010 20/20

62 Therya vol. 1 No. 1