betydelsen av svetsteknologin, sett ur ett värdeskapande...

Post on 30-Apr-2018

219 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Betydelsen av Svetsteknologin, sett ur ett värdeskapande perspektiv.

The significance of Welding Technology, from a value added perspective.

SVK 1

• What is welding? • Development & Economy • The Arc • Pipelines • Summary

”Inom svetsningstekniken finnas dock en hel ouppklarade problem, vilka äro

ägnade att bearbetas vid de tekniska högskolornas laboratorier …

värmespänningar … lämpliga konstruktioner … lämpliga provningsmetoder

Hand i hand därmed bör självfallet undervisning bedrivas vid högskolorna…”

Teknisk Tidskrift 10, SEPT. 1932 SVETSNINGSTEKNIK SOM LÄROÄMNE

2

What is welding? This…?

3

…or this?

4

Tandem arc

5

Development & Economy

“Solve customers problems. Give them

the possibility to increased profitability,

safety and quality in their business.

Help them to introduce new and better

technology. “

Gustaf Dalén, AGA

Welding of lead 1840,

de Richemond

Carbon arc 1881, Bernardos Nikolay Nikolayevich

Metallic arc 1888, Slavianoff

Coated electrode 1904, Kjellberg Swedish patent: 27152, June 29, 1907

Gas welding

Le Chatelier 1895

Oxy-Acetylene1901

Picard, Fouche

Oxy-Hydrogen 1898,

Wiss

Gas shielded arc, 1930

Hobart, Devers

MAG-welding (CO2) 1946,

Gibson

MIG-welding 1948,

Airco

Submerged arc, 1930

Kennedy

TIG-welding 1941,

Meredith

Demonstration 1902

Dalén & Gylling

Development of fusion welding

6

7

Manual Metal Arc – MMA 10 % (50%)

Gas Metal Arc Welding – GMAW (MIG/MAG) 85 % (40%)

Submerged Arc Welding – SAW 5 % (8%)

Estimated Weld Metal Deposited 1976 – 2006, ESAB.

30 years of conversion

Sweden; steel consumption ca 500 kg per capita

finished steel products. EU average 370 kg per

capita. World Steel Association, 2008

Weight reduction of welding power sources

8

400 Amp power sources

1955 - 1990

100 Amp and 65 years

ESAB

1920 Welding transformer

1910 Welding converter

1950 Rectifier

1970 Thyristor controlled rectifier

1980 Primary switched inverter

M G

9

Space frame welding

GMAW/GTAW, Steel & AL

Laser welding

& brazing

Stud welding

Structural gluing

Spot welding

Hybrid methods

Laser + GMAW Gas Metal

Arc Welding

Folding Clinching

Riveting

Press joining

bolts, nuts, inserts

MIG brazing

Joining complexity – Processes, Design and Materials

Car body joining

technologies

Gas Metal

Arc Welding

Space frame welding

GMAW/GTAW, Steel & AL

Laser welding

& brazing

Hybrid methods

Laser + GMAW

Spot welding

Stud welding

Structural gluing

Folding Clinching

Riveting

Press joining

bolts, nuts, inserts

MIG brazing

AGA

IWE

Materials

Capability

What is Welding Technology?

Simulation Modeling

Experiments

Karlöf, DVS

Productivity

To do it right. Units/hour.

Efficiency

Customer value. Value/price. Right things.

10

Choquet

Efficiency and Productivity, an act of balance

11

Low High

High

Efficiency

Customer value,

“right things”

Productivity

“to do it right”, units/h

Karlöf

Trabant

Saab

Methods

Materials

Automatization

QA, Simulation & Design

Safety & Health

2008

12

DVS research areas (founding spent)

Methods Spending

Gas shielded arc

welding

38%

Other welding

methods

19%

Laser welding 14%

Hybrid methods 14%

Resistance welding 10%

Electron beam welding 5%

DVS Forschung in der Fügetechnik 2008

Cap

ital c

ost

SE

K

Welding speed m/min

Oxy-Acetylene

Arc welding

Electron Beam & Laser

104

105

106

107

0,05 5 0,5 50 Mendez & Eager

Investments and welding speed

Investment

Complexity & Analysis

13

W/mm2

106

105

104

103

Plasma welding

Is it…?

• Cheap filler materials

• High welding speed

• Small amount of rework

• No distortions

Or is it…?

• High process throughput

• Low non-value added time

• Low part support time

• Stability in the process

• No “bottlenecks”

What is efficient welding ?

VCE, ABB T50 14

Example: ABB T50 program

• Total value adding time: 18%

• Non-value adding time + support time: 82%

15

Growth sectors

Sector

• High Strength Steels

• Stainless Steels

• Duplex Steels and other high-alloyed

• Aluminium alloys

• Thermal Spraying

• Robotic Welding

• Lasers

• Customer Services

Growth rates p.a.

5 -10 %

5 - 7 %

> 25 % (small it is a niche)

8 %

10 %

10%

10%

> 25 %

Global welding segments and comparison

Sector Annual growth to 2015 Comment

Aerospace Volatile Highly specified

Automotive

Heavy Vehicles

1,5 to 2% Highly specified

Specialist area

Construction 2 to 2,5% Lower end technology

Electrical industries

generally

2 to 3% Interesting growing niches

Machinery 3 to 3,5% Many and varied

applications

Process, Chemical, Oil %

Gas

1,5 – 2,5% Processing, Tanks,

Pipelines

Rail Several big projects Line & Track

Rolling stock

Ship building Volatile Specialist area

AGA, Metra 16

Cost versus low price - what’s the risk?

“It’s unwise to pay too much, but it’s also unwise to pay too little ….

• too much - you loose a little,

• too less - you sometimes loose everything.

Thus for a lowest bidder, it is well to add something to the risk you run,

then you will have enough to pay for something better”

Professor in Art

at Oxford

18

The Arc

Der Schweißlichtbogen - ein technologisches Werkzeug by M. Schellhase

GMAW material transfer (solid wire)

Also IIW classification 19

• Spray

Streaming

Free flight

• Globular

• Rotating

• Explosive

• Dip

Penetration profiles – GMAW solid wire

AGA 20

• Tailored welding arcs

• Digital feedback and

control systems

• Constant current feed-

back systems

Cost ˜ a2

a = throat thickness

21

Same weld – Gain in productivity 100%!

Traditional spray arc

Forced short arc

AGA

Ar + 8%CO2

Conventional spray and Rotating spray arc: +160% in productivity!

Rotating MAG

Plate thickness [mm] 10 10

Welding speed [cm/min] 55 3x63

Deposition rate [kg/h] 14.4 7.4

Throat thickness [mm] 8.0 8.0

1 pass 3 passes

AGA

Rotating spray

Conventional spray

22

Ar + 8%CO2

Process parameter windows

23

Short

arc

Spray

arc

Forced short arc

Moderated spray arc

Rotating spray arc Arc voltage

Wire feed speed © AGA AB

CMT

AGA

Fume emission vs arc voltage at different wire feed speeds

mg/s

V

Carbon steel

AGA

25

Short arc / Dip transfer Spray arc / Free flight transfer

AGA

26

Forced short arc welding

AGA

27

Moderated spray Rotating spray

AGA

28

Pipelines

“The front gang”

CRC-Evans

Pipeline projects is an international business

29

• Laser based vision system

• Control systems (QA)

• Tandem welding (two wire solution)

• Digital-to-Digital system communication

CRC-Evans Pipeline International

30 CRC-Evans

High Strength Steel Pipeline Economics

CAPEX ($M)

X70 (490 MPa)

X120 (827 MPa)

X120 Savings

Linepipe 1 850 1 820 30

Freight 800 530 270

Other material 490 480 10

Construction 1 620 1 300 320

Compr. Stations 1 100 1 050 50

Indirect Costs 910 830 80

Total Project 6 770 6 010 760

Optimum OD 35” 32”

Corbett et al. 31

Present development; X120 pipelines (TMCP steels)

Tensile property Charpy-V impact property DWTT

YS TS E, -30 C vTrs SA -20 C

827 MPa 931 MPa 231 J - 50 C 75%

Parent metal (target values), 16 mm thickness

Tensile property Charpy-V impact Fracture toughness

Welded joint HAZ WM HAZ WM

TS E, -30 C E, -30 C CTOD, -20 C CTOD, -20 C

931 MPa 84 J 84 J 0,08 mm 0,08 mm

Mechanical properties for the weldment (target values)

C Si Mn Others Ec Pcm

0,05 0,06 1,56 Cu, Ni, Cr, Mo, Nb, V, Ti, B 0,52 0,20

P < 0,008 % & S < 0,001 %. Vacuum degassed. Martensite + low temprature bainite.

Chemical analysis of parent metal

Okaguchi et al. 32

“Leak-before-break” criterion (thin walled pressure vessels)

33

K1c > 1,908*Rel* a

• Irwin’s model and the Dugdale-model (1970)

• Jc plane stress and flow controlled fracture (1980, CEGB)

• Modern pipelines (X70) BM, WM & HAZ; > 180 – 390 kN/m

SSAB, SV & KTH

FAD

• Cleavage fracture speeds 500 – 800 m/s, or even higher

• Ductile fracture speeds 200 m/s - Fast Running Ductile Fractures

• Rupture times in the order of 0,1 - 1 ms for through wall rupture

• Maxey et al. 1972 (ASTM & Batelle) and Shoemaker, AISI, Mannesmann (1980)

• Empirical equations [f = (Rel, D, t)] : Jc > 150 kN/m

34

“Crack arrest” criterion (pipelines)

Summary

• Longer life time, less corrosion and lower life cycle costs.

• Focus on working environment.

• New design rules and standards, e.g. new Eurocode and EN 3834

Safety, quality,

environment…

• Overall drive to reduce total supply costs

• Reduction of transactions costs

• Reduction of weight

• Process optimization

• Increasing degree of automatisation and robotisation

Productivity and

efficiency…

• Use of “new” materials…

• Development of new production technologies Applications and

technologies…

AGA, Linde

top related