boolean algebra and logic gates chapter 2 topicscourses.ece.ubc.ca/256/lectures/2010/digital logic...

Post on 27-Jun-2018

235 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

9/21/10

1

BooleanAlgebraandLogicGatesChapter2

EECE256Dr.SidneyFels

StevenOldridge

Topics

•  DefiniGonsofBooleanAlgebra•  AxiomsandTheoremsofBooleanAlgebra–  twovaluedBooleanAlgebra

•  BooleanFuncGons– simplificaGon

•  Canonicalforms– mintermandmaxterms

•  Otherlogicgates9/18/10 2(c)S.Fels,since2010

BooleanAlgebra

•  AllowsustodefineandsimplifyfuncGonsofbinaryvariables

•  Importantfordesignerstocreatecomplexcircuits–  funcGonsofcomputer

– ASICdevices– programmablelogic– determinemachinestatetransiGons

9/18/10 (c)S.Fels,since2010 3

9/21/10

2

BooleanAlgebra

•  Adherestothelawsofanalgebra– closure– associaGve– commutaGve–  idenGty–  inverse– distribuGve+foraddiGon(0isidenGty)formulGplicaGon(1isidenGty)

9/18/10 4(c)S.Fels,since2010

AxiomsofBooleanAlgebra

•  closurefor+and•  IdenGty:

x+0=x1=

•  commutaGvex+y=xy=yx

•  distribuGvex(y+z)=x+(yz)=

9/18/10 (c)S.Fels,since2010 5

AxiomsofBooleanAlgebra

•  Complement–  x+x’=1xx’=0

•  twoelementsforTwo‐ValuedBooleanAlgebra0and1;0!=1AND=,OR=+,NOT=inverse‐  checkwithTruthtablesandyou’llseeitmeetsalltheaxioms

•  switchingalgebra(Shannon,1928)–  basisofalldigitalcomputers

•  Precedence:–  parentheses,NOT,AND,OR

9/18/10 (c)S.Fels,since2010 6

9/21/10

3

TheoremsandProperGesofBooleanAlgebra

9/18/10 (c)S.Fels,since2010 7

idempotent0and1ops

complementidenGty

TheoremsandProperGesofBooleanAlgebra

9/18/10 (c)S.Fels,since2010 8

Duality:interchange0for1andANDandOR

idempotent0and1ops

complementidenGty

TheoremsandProperGesofBooleanAlgebra

9/18/10 (c)S.Fels,since2010 9

Duality:interchange0for1andANDandOR

idempotent0and1ops

complementidenGty

TheoremsusedtosimplifycomplexfuncGonsofbinaryvariables

9/21/10

4

UsefulTheorems

•  SimplificaGonTheorems:–  XY+XY’=–  X+XY=–  (X+Y’)Y=

•  DeMorgan’sLaw:–  (X+Y)’=

•  TheoremsforMulGplyingandFactoring:–  (X+Y)(X’+Z)=XZ+X’Y

•  Proofsbyalgebracomplicated–  usetruthtablesinstead

9/18/10 (c)S.Fels,since2010 10

Somealgebraicproofs

ProvingTheoremsviaaxiomsofBooleanAlgebra:

e.g.,Prove:XY+XY’=X

e.g.,Prove:X+XY=X

e.g.,Prove:(X+Y)(X’+Z)=XZ+X’Y

9/18/10 (c)S.Fels,since2010 11

SomealgebraicproofsProvingTheoremsviaaxiomsofBooleanAlgebra:

e.g.,Prove:XY+XY’=XLHS=X(Y+Y’)distribuGve =X(1)complement =X=RHSidenGty

e.g.,Prove:X+XY=X LHS=X(1+Y)distribuGve =X(1) idenGty =X=RHS

9/18/10 (c)S.Fels,since2010 12

9/21/10

5

Somealgebraicproofs

e.g.,Prove:(X+Y)(X’+Z)=XZ+X’Y LHS=(X+Y)X’+(X+Y)ZdistribuGve

=XX’+YX’+XZ+YZdistribuGve

=0+X’Y+XZ+YZcomplement,associaGve,distribuGve

=X’Y(Z+Z’)+XZ(Y+Y’)+YZ(X+X’)idenGty/complement

=X’YZ+X’YZ’+XYZ+XY’Z+XYZ+X’YZdistribuGve,associaGve

=XZ(Y+Y’)+X’Y(Z+Z’)idempotent,associaGve,distribuGve

=XZ+X’Y=RHScomplement

9/18/10 (c)S.Fels,since2010 13

Someproofsusingtruthtables

9/18/10 (c)S.Fels,since2010 14

DeMorgan’sLaw

(X+Y)’=X’Y’

(XY)’=X’+Y’

X Y X’ Y’ (X+Y) (X+Y)’ X’*Y’

0 0 1 1

0 1 1 0

1 0 0 1

1 1 0 0

X Y X’ Y’ (X*Y) (X*Y)’ X’+Y’

0 0 1 1

0 1 1 0

1 0 0 1

1 1 0 0

Someproofsusingtruthtables

9/18/10 (c)S.Fels,since2010 15

DeMorgan’sLaw

(X+Y)’=X’Y’

(XY)’=X’+Y’

X Y X’ Y’ (X+Y) (X+Y)’ X’*Y’

0 0 1 1 0 1 1

0 1 1 0 1 0 0

1 0 0 1 1 0 0

1 1 0 0 1 0 0

X Y X’ Y’ (X*Y) (X*Y)’ X’+Y’

0 0 1 1 0 1 1

0 1 1 0 0 1 1

1 0 0 1 0 1 1

1 1 0 0 1 0 0

9/21/10

6

DeMorgan’sThereom

Example:Z=A’B’C+A’BC+AB’C+ABC’

Z’=(A+B+C’)(A+B’+C’)(A’…..

9/18/10 (c)S.Fels,since2010 16

BooleanFuncGons

•  Now,wehaveeverythingtomakeBooleanFuncGons– F=f(x,y,z…)wherex,y,zetc.arebinaryvalues(0,1)withBooleanoperators

– circuitscanimplementthefuncGon– algebrausedtosimplifythefuncGontomakeiteasiertoimplement

9/18/10 (c)S.Fels,since2010 17

Example•  F1=x+y’z

9/18/10 (c)S.Fels,since2010 18

x y z y’z x+y’z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

9/21/10

7

Example•  F1=x+y’z

9/18/10 (c)S.Fels,since2010 19

x y z y’z x+y’z

0 0 0 0 0

0 0 1 1 1

0 1 0 0 0

0 1 1 0 0

1 0 0 0 1

1 0 1 1 1

1 1 0 0 1

1 1 1 0 1

SimplificaGonallowsfordifferentimplementaGons

•  F=AB+C(D+E)=requires3levelsofgates

9/18/10 (c)S.Fels,since2010 20

2‐levelimplementaGon

•  F=AB+C(D+E)=AB+CD+CE

9/18/10 (c)S.Fels,since2010 21

9/21/10

8

CanonicalForms

•  ExpressallBooleanfuncGonsasoneoftwocanonicalforms– enumeratesallcombinaGonsofvariablesaseither•  SumofProducts,i.e.,m1+m2+m3…etc•  ProductofSums,i.e.,M1M2M3…etc

– eachvariableappearsinnormalform(x)oritscomplement(x’)

–  ifitisaproductitiscalledaMINTERM–  ifisisasumitiscalledaMAXTERM– nvariables‐>2nMINTERMSorMAXTERMS

9/18/10 (c)S.Fels,since2010 22

CanonicalForms

9/18/10 (c)S.Fels,since2010 23

CanonicalFormExample

9/18/10 (c)S.Fels,since2010 24

9/21/10

9

CanonicalFormExample

9/18/10 (c)S.Fels,since2010 25

m1

m4

m7

m3

m5

m6

m7

CanonicalFormExample:SumofProducts(Minterms)

•  SowecanreadoffofTTdirectly•  SumofproductsissumofMinterms

F1=m1+m4+m7 =x’y’z+xy’z’+xyz

F2 =m3+m5+m6+m7 =x’yz+xy’z+xyz’+xyz

9/18/10 (c)S.Fels,since2010 26

mi∑

CanonicalFormExample

9/18/10 (c)S.Fels,since2010 27

M0

M2

M5

M6

M3

M0

M1

M4

M2

9/21/10

10

CanonicalFormExample:ProductofSums(Maxterms)

•  SowecanreadoffofTTdirectly•  ProductofsumsisproductofMaxterms

F1=M0M2M3M5M6=(x+y+z)(x+y’+z)(x+y’+z’)(x’+y+z’)(x’+y’+z)

F2=M0M1M2M4=(x+y+z)(x+y+z’)(x+y’+z)(x’+y+z)

9/18/10 (c)S.Fels,since2010 28

Mi∏

ConverGngbetweenthem

•  YoucanusecomplementanddeMorgan’stheorem–  ifF=m1+m3+m5i.e.Σ(1,3,5)then– F’=m0+m2+m4+m6+m7•  F=(m0+m2+m4+m6+m7)’

– useDeMorgan’snowtogetProductofSum•  F=Π(0,2,4,6,7)

•  RemembertoincludeallMinterms/Maxterms– nvariables,2nterms

9/18/10 (c)S.Fels,since2010 29

Standardform•  SumofProductswithone,two,threeormorevariablesinproduct

form–  F1=y’+xy+x’yz’

•  ProductofSumwithone,two,threeormorevariablesinsumform–  F2=x(y’+z)(x’+y+z’)

•  NoGce:canonicalandstandardformare2‐levelimplementaGons–  butmayhavemanyinputsforgate

•  calledfan‐in;limitedbypinsonICandmanufacturing

9/18/10 (c)S.Fels,since2010 30

9/21/10

11

OtherlogicaloperaGons

•  for2inputgates,youcanhave16differentlogicoperaGons22

nwheren=2

9/20/10 (c)S.Fels,since2010 31

OtherlogicaloperaGons

9/20/10 (c)S.Fels,since2010 32

DigitalLogicGates

9/20/10 (c)S.Fels,since2010 33

9/21/10

12

ExtendingtomulGpleinputs

•  worksfinefor– AND,OR;noproblem–commuteandassociate– NAND,NOR–commutebutdon’tassociate•  so,becarefulwhenusingthemcascaded•  instead:

–  definemulG‐inputNANDasmulG‐inputANDthatisinvertedattheend»  xNANDyNANDz=(xyz)’

–  definemulG‐inputNORasmulG‐inputORthatisinvertedattheend»  xNORyNORZ=(x+y+z)’

9/20/10 (c)S.Fels,since2010 34

ExtendingtomulGpleinputs

9/20/10 (c)S.Fels,since2010 35

ExtendingtomulGpleinputs

9/21/10 (c)S.Fels,since2010 36

9/21/10

13

Summary

•  two‐valuedBooleanalgebrasupports–  switchinglogic–  simplificaGonpostulatesandtheorems–  digitallogicgates

•  TruthtablescanbeusedtodefinefuncGon•  CanonicalandstandardformsmakeiteasytocreatefuncGonsthatcanbeimplemented

•  finitenumberof2inputgates–  easytoimplementlargercomplexfuncGons

•  2inputgatescanbeextendedtomulGpleinputs

9/21/10 (c)S.Fels,since2010 37

9/21/10 (c)S.Fels,since2010 38

top related