discrete-time fourier transform - sjtumin.sjtu.edu.cn/files/wavelet/0-3_dt_fourier_transform.pdfct...

Post on 25-Feb-2021

13 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Discrete-Time Fourier Transform

Hongkai Xiong ็†Š็บขๅ‡ฏ

http://min.sjtu.edu.cn

Department of Electronic Engineering Shanghai Jiao Tong University

๐‘ฅ๐‘ฅ๐‘˜๐‘˜[๐‘›๐‘›] โ†’ ๐‘ฆ๐‘ฆ๐‘˜๐‘˜[๐‘›๐‘›] โŸน ๏ฟฝ ๐‘Ž๐‘Ž๐‘˜๐‘˜๐‘ฅ๐‘ฅ๐‘˜๐‘˜[๐‘›๐‘›]๐‘˜๐‘˜ โ†’ โˆ‘ ๐‘Ž๐‘Ž๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘ฆ๐‘ฆ๐‘˜๐‘˜[๐‘›๐‘›]

โ€ข If we can find a set of โ€œbasicโ€ signals, such that โ–ซ a rich class of signals can be represented as linear

combinations of these basic (building block) signals. โ–ซ the response of LTI Systems to these basic signals are both

simple and insightful

โ€ข Candidate sets of โ€œbasicโ€ signals โ–ซ Unit impulse function and its delays: ๐›ฟ๐›ฟ(๐‘ก๐‘ก)/๐›ฟ๐›ฟ[๐‘›๐‘›] โ–ซ Complex exponential/sinusoid signals: ๐‘’๐‘’๐‘ ๐‘ ๐‘ก๐‘ก , ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘—/๐‘ง๐‘ง๐‘›๐‘›, ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›

LTI Systems

2

CT Fourier Transform of Aperiodic Signal ๐’™๐’™(๐’•๐’•)

โ€ข General strategy โ–ซ approximate ๐‘ฅ๐‘ฅ ๐‘ก๐‘ก by a periodic signal ๐‘ฅ๐‘ฅ๐‘‡๐‘‡ ๐‘ก๐‘ก with infinite period ๐‘‡๐‘‡

3

๐‘ฅ๐‘ฅ ๐‘ก๐‘ก

โˆ’๐‘‡๐‘‡1 0 ๐‘‡๐‘‡1

โŸน lim๐‘‡๐‘‡โ†’โˆž

๐‘ฅ๐‘ฅ๐‘‡๐‘‡ ๐‘ก๐‘ก = ๐‘ฅ๐‘ฅ(๐‘ก๐‘ก) ๐‘ฅ๐‘ฅ๐‘‡๐‘‡ ๐‘ก๐‘ก

โˆ’๐‘‡๐‘‡ โˆ’ ๐‘‡๐‘‡2

โˆ’ ๐‘‡๐‘‡1 0 ๐‘‡๐‘‡1 ๐‘‡๐‘‡2

๐‘‡๐‘‡

โ‹ฏ โ‹ฏ

CT Fourier Transform Pair โ€ข Fourier transform (analysis equation)

๐‘‹๐‘‹ ๐‘—๐‘—๐‘—๐‘— = โ„ฑ{๐‘ฅ๐‘ฅ(๐‘ก๐‘ก)} = ๏ฟฝ ๐‘ฅ๐‘ฅ(๐‘ก๐‘ก)๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘ก๐‘ก๐‘‘๐‘‘๐‘ก๐‘กโˆž

โˆ’โˆž

where ๐‘‹๐‘‹ ๐‘—๐‘—๐‘—๐‘— called spectrum of ๐‘ฅ๐‘ฅ(๐‘ก๐‘ก)

โ€ข Inverse Fourier transform (synthesis equation)

๐‘ฅ๐‘ฅ ๐‘ก๐‘ก = โ„ฑโˆ’1{๐‘‹๐‘‹(๐‘—๐‘—๐‘—๐‘—)} =12๐œ‹๐œ‹๏ฟฝ ๐‘‹๐‘‹ ๐‘—๐‘—๐‘—๐‘— ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘ก๐‘ก๐‘‘๐‘‘๐‘—๐‘—

โˆž

โˆ’โˆž

Superposition of complex exponentials at continuum of frequencies, frequency component ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘ก๐‘ก has โ€œamplitudeโ€ of ๐‘‹๐‘‹ ๐‘—๐‘—๐‘—๐‘— ๐‘‘๐‘‘๐‘—๐‘—/2๐œ‹๐œ‹

4

Fourier Series of DT Periodic Signals โ€ข Recall a periodic DT signal ๐‘ฅ๐‘ฅ[๐‘›๐‘›] โ–ซ with fundamental period ๐‘๐‘, and โ–ซ fundamental frequency ๐‘—๐‘—0 = 2๐œ‹๐œ‹/๐‘๐‘

โ€ข Fourier series represent ๐‘ฅ๐‘ฅ[๐‘›๐‘›] in terms of harmonically related complex exponentials โ–ซ Synthesis equation

๐‘ฅ๐‘ฅ ๐‘›๐‘› = ๏ฟฝ ๐‘Ž๐‘Ž๐‘˜๐‘˜๐‘˜๐‘˜โˆˆ ๐‘๐‘

๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘› = ๏ฟฝ ๐‘Ž๐‘Ž๐‘˜๐‘˜๐‘˜๐‘˜โˆˆ ๐‘๐‘

๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜2๐œ‹๐œ‹๐‘๐‘ ๐‘›๐‘›

โ–ซ Analysis equation

๐‘Ž๐‘Ž๐‘˜๐‘˜ =1๐‘๐‘

๏ฟฝ ๐‘ฅ๐‘ฅ ๐‘›๐‘› ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘›

๐‘›๐‘›โˆˆ ๐‘๐‘

=1๐‘๐‘

๏ฟฝ ๐‘ฅ๐‘ฅ ๐‘›๐‘› ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘˜๐‘˜2๐œ‹๐œ‹๐‘๐‘ ๐‘›๐‘›

๐‘›๐‘›โˆˆ ๐‘๐‘

5

โ€ข General strategy โ–ซ approximate ๐‘ฅ๐‘ฅ[๐‘›๐‘›] by a periodic signal ๐‘ฅ๐‘ฅ๐‘๐‘[๐‘›๐‘›] with infinite period ๐‘๐‘

DT Fourier Transform of Aperiodic Signal ๐’™๐’™[๐’๐’]

6

โŸน lim๐‘๐‘โ†’โˆž

๐‘ฅ๐‘ฅ๐‘๐‘[๐‘›๐‘›] = ๐‘ฅ๐‘ฅ[๐‘›๐‘›]

โ€ข Step 1: โ–ซ Let ๐‘ฅ๐‘ฅ[๐‘›๐‘›] be a aperiodic DT signal with supp ๐‘ฅ๐‘ฅ โŠ‚ ๐‘๐‘1,๐‘๐‘2

โ–ซ Construct a periodic extension ๐‘ฅ๐‘ฅ๐‘๐‘[๐‘›๐‘›] with period ๐‘๐‘ > N2 โˆ’N1 + 1

๐‘ฅ๐‘ฅ๐‘๐‘ ๐‘›๐‘› = ๏ฟฝ ๐‘ฅ๐‘ฅ[๐‘›๐‘› + ๐‘˜๐‘˜๐‘๐‘]โˆž

๐‘˜๐‘˜=โˆ’โˆž

DT Fourier Transform

7

โ€ข Step 2๏ผšFourier series representation for ๐‘ฅ๐‘ฅ๐‘๐‘[๐‘›๐‘›], ๐‘—๐‘—0 = 2๐œ‹๐œ‹๐‘๐‘

๐‘Ž๐‘Ž๐‘˜๐‘˜ =1๐‘๐‘

๏ฟฝ ๐‘ฅ๐‘ฅ๐‘๐‘ ๐‘›๐‘› ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘›

๐‘›๐‘›โˆˆ ๐‘๐‘

=1๐‘๐‘๏ฟฝ ๐‘ฅ๐‘ฅ ๐‘›๐‘› ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘›๐‘๐‘2

๐‘›๐‘›=๐‘๐‘1

=1๐‘๐‘๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0)

โ–ซ where we define

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = ๏ฟฝ ๐‘ฅ๐‘ฅ ๐‘›๐‘› ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›โˆž

๐‘›๐‘›=โˆ’โˆž

DT Fourier Transform

8

๐‘๐‘๐‘Ž๐‘Ž๐‘˜๐‘˜ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—

โ€ข As ๐‘๐‘ increases, discrete frequencies are sampled more densely

๐‘Ž๐‘Ž๐‘˜๐‘˜ =1๐‘๐‘

๏ฟฝ ๐‘ฅ๐‘ฅ๐‘๐‘ ๐‘›๐‘› ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘›

๐‘›๐‘›โˆˆ ๐‘๐‘

=1๐‘๐‘๏ฟฝ ๐‘ฅ๐‘ฅ ๐‘›๐‘› ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘›๐‘๐‘2

๐‘›๐‘›=๐‘๐‘1

=1๐‘๐‘๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0)

โ–ซ where we define

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = ๏ฟฝ ๐‘ฅ๐‘ฅ ๐‘›๐‘› ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›โˆž

๐‘›๐‘›=โˆ’โˆž

DT Fourier Transform

9

๐‘๐‘๐‘Ž๐‘Ž๐‘˜๐‘˜ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—

โ€ข As ๐‘๐‘ โ†’ โˆž, ๐‘—๐‘—0 โ†’ 0, ๐‘๐‘๐‘Ž๐‘Ž๐‘˜๐‘˜ approaches envelope ๐‘ฟ๐‘ฟ ๐’†๐’†๐’‹๐’‹๐Ž๐Ž

๐‘Ž๐‘Ž๐‘˜๐‘˜ =1๐‘๐‘

๏ฟฝ ๐‘ฅ๐‘ฅ๐‘๐‘ ๐‘›๐‘› ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘›

๐‘›๐‘›โˆˆ ๐‘๐‘

=1๐‘๐‘๏ฟฝ ๐‘ฅ๐‘ฅ ๐‘›๐‘› ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘›๐‘๐‘2

๐‘›๐‘›=๐‘๐‘1

=1๐‘๐‘๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0)

โ–ซ where we define

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = ๏ฟฝ ๐‘ฅ๐‘ฅ ๐‘›๐‘› ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›โˆž

๐‘›๐‘›=โˆ’โˆž

DT Fourier Transform

10

๐‘๐‘๐‘Ž๐‘Ž๐‘˜๐‘˜ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—

โ€ข Step 3: Synthesis equation for DT Fourier series of ๐‘ฅ๐‘ฅ๐‘๐‘[๐‘›๐‘›],

๐‘ฅ๐‘ฅ๐‘๐‘ ๐‘›๐‘› = ๏ฟฝ ๐‘Ž๐‘Ž๐‘˜๐‘˜๐‘˜๐‘˜โˆˆ ๐‘๐‘

๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘› = ๏ฟฝ1๐‘๐‘๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0)

๐‘˜๐‘˜โˆˆ ๐‘๐‘

๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘›

since ๐‘—๐‘—0 = 2๐œ‹๐œ‹/๐‘๐‘,

๐‘ฅ๐‘ฅ๐‘๐‘ ๐‘›๐‘› =12๐œ‹๐œ‹

๏ฟฝ ๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0)

๐‘˜๐‘˜โˆˆ ๐‘๐‘

๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘›๐‘—๐‘—0

As ๐‘๐‘ โ†’ โˆž โŸน๐‘—๐‘—0 โ†’ 0, ๐‘ฅ๐‘ฅ๐‘๐‘[๐‘›๐‘›] โ†’ ๐‘ฅ๐‘ฅ[๐‘›๐‘›],๐‘—๐‘—0 โ†’ ๐‘‘๐‘‘๐‘—๐‘—,โˆ‘ โ†’ โˆซ

๐‘ฅ๐‘ฅ ๐‘›๐‘› = lim๐‘๐‘โ†’โˆž

๐‘ฅ๐‘ฅ๐‘๐‘[๐‘›๐‘›] = lim๐‘—๐‘—0โ†’0

12๐œ‹๐œ‹

๏ฟฝ ๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0) ๐‘˜๐‘˜โˆˆ ๐‘๐‘

๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘›๐‘—๐‘—0

=12๐œ‹๐œ‹๏ฟฝ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›๐‘‘๐‘‘๐‘—๐‘—

๐Ÿ๐Ÿ๐…๐…

DT Fourier Transform

11

Integration can take any period of length 2๐œ‹๐œ‹

DT Fourier Transform Pair โ€ข DT Fourier transform (analysis equation)

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = โ„ฑ{๐‘ฅ๐‘ฅ[๐‘›๐‘›]} = ๏ฟฝ ๐‘ฅ๐‘ฅ ๐‘›๐‘› ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›โˆž

๐‘›๐‘›=โˆ’โˆž

โ–ซ where ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— called spectrum of ๐‘ฅ๐‘ฅ[๐‘›๐‘›], periodic with period 2๐œ‹๐œ‹

โ€ข DT inverse Fourier transform (synthesis equation)

๐‘ฅ๐‘ฅ[๐‘›๐‘›] = โ„ฑโˆ’1{๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—)} =12๐œ‹๐œ‹๏ฟฝ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›๐‘‘๐‘‘๐‘—๐‘—

2๐œ‹๐œ‹

โ–ซ frequency component ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘› has โ€œamplitudeโ€ of ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐‘‘๐‘‘๐‘—๐‘—/2๐œ‹๐œ‹ โ–ซ integrate over a frequency interval producing distinct ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›

12

High vs. Low Frequencies for DT Signals

โ€ข High frequencies around (2๐‘˜๐‘˜ + 1)๐œ‹๐œ‹, low frequencies around 2๐‘˜๐‘˜๐œ‹๐œ‹

13

High vs. Low Frequencies for DT Signals

โ€ข Discrete frequencies of periodic signals with period ๐‘๐‘ โ–ซ evenly spaced points on unit circle โ–ซ low frequencies close to 1, high frequencies close to โˆ’1

14

High vs. Low Frequencies for DT Signals

15

CT Fourier Series of Periodic Signal ๐’™๐’™๐‘ป๐‘ป(๐’•๐’•)

โ€ข Fourier Transform of a finite duration signal ๐‘ฅ๐‘ฅ[๐‘›๐‘›] that is equal to ๐‘ฅ๐‘ฅ๐‘๐‘[๐‘›๐‘›] over one period, e.g., for ๐‘๐‘1 โ‰ค ๐‘›๐‘› โ‰ค ๐‘๐‘2

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = โ„ฑ{๐‘ฅ๐‘ฅ[๐‘›๐‘›]} = ๏ฟฝ ๐‘ฅ๐‘ฅ ๐‘›๐‘› ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›โˆž

๐‘›๐‘›=โˆ’โˆž

โ€ข Fourier coefficients of periodic signal ๐‘ฅ๐‘ฅ๐‘๐‘[๐‘›๐‘›] with period ๐‘๐‘

๐‘Ž๐‘Ž๐‘˜๐‘˜=1๐‘๐‘

๏ฟฝ ๐‘ฅ๐‘ฅ๐‘๐‘ ๐‘›๐‘› ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘› =1๐‘๐‘๏ฟฝ ๐‘ฅ๐‘ฅ๐‘๐‘ ๐‘›๐‘› ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘›๐‘๐‘2

๐‘›๐‘›=๐‘๐‘1๐‘›๐‘›โˆˆ ๐‘๐‘

=1๐‘๐‘

๏ฟฝ ๐‘ฅ๐‘ฅ ๐‘›๐‘› ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘›โˆž

๐‘›๐‘›=โˆ’โˆž

=1๐‘๐‘๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—)๏ฟฝ

๐‘—๐‘—=๐‘˜๐‘˜๐‘—๐‘—0

โŸน proportional to equally spaced samples of the Fourier transform of ๐‘ฅ๐‘ฅ[๐‘›๐‘›], i.e., one period of ๐‘ฅ๐‘ฅ๐‘๐‘[๐‘›๐‘›]

16

Convergence of DT Fourier Transform

โ€ข Analysis equation will converge if

โ–ซ ๐‘ฅ๐‘ฅ[๐‘›๐‘›] is absolutely summable

๏ฟฝ ๐‘ฅ๐‘ฅ[๐‘›๐‘›] < โˆžโˆž

๐‘›๐‘›=โˆ’โˆž

โ–ซ or ๐‘ฅ๐‘ฅ[๐‘›๐‘›] has finite energy

๏ฟฝ ๐‘ฅ๐‘ฅ[๐‘›๐‘›] 2 < โˆžโˆž

๐‘›๐‘›=โˆ’โˆž

โ€ข Synthesis equation in general has no convergence

issues, since the integration is taken over a finite interval

17

Example โ€ข Unit impulse

๐‘ฅ๐‘ฅ ๐‘›๐‘› = ๐›ฟ๐›ฟ ๐‘›๐‘› โ„ฑ

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = 1

โ€ข DC signal

๐‘ฅ๐‘ฅ ๐‘›๐‘› = 1 โ„ฑ

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = 2๐œ‹๐œ‹ ๏ฟฝ ๐›ฟ๐›ฟ[๐‘—๐‘— โˆ’ 2๐œ‹๐œ‹๐‘™๐‘™]โˆž

๐‘™๐‘™=โˆ’โˆž

โ–ซ Proof:

๐‘ฅ๐‘ฅ ๐‘›๐‘›

=12๐œ‹๐œ‹

๏ฟฝ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›๐‘‘๐‘‘๐‘—๐‘— =12๐œ‹๐œ‹

๏ฟฝ 2๐œ‹๐œ‹ ๏ฟฝ ๐›ฟ๐›ฟ[๐‘—๐‘— โˆ’ 2๐œ‹๐œ‹๐‘™๐‘™]โˆž

๐‘™๐‘™=โˆ’โˆž

๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›๐‘‘๐‘‘๐‘—๐‘—2๐œ‹๐œ‹2๐œ‹๐œ‹

=1

2๐œ‹๐œ‹๏ฟฝ 2๐œ‹๐œ‹๐›ฟ๐›ฟ ๐‘—๐‘— ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›๐‘‘๐‘‘๐‘—๐‘—๐œ‹๐œ‹

= 1

18

Example โ€ข One-sided Decaying Exponential

๐‘ฅ๐‘ฅ ๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘›๐‘›๐‘ข๐‘ข[๐‘›๐‘›] โ„ฑ

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =1

1 โˆ’ ๐‘Ž๐‘Ž๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘— ๐‘Ž๐‘Ž < 1

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =1

1 โˆ’ 2 ๐‘Ž๐‘Ž cos๐‘—๐‘— + ๐‘Ž๐‘Ž2, arg๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = โˆ’ arctan

๐‘Ž๐‘Ž sin๐‘—๐‘—1 โˆ’ ๐‘Ž๐‘Ž cos๐‘—๐‘—

19

Example โ€ข Two-sided Decaying Exponential

๐‘ฅ๐‘ฅ ๐‘›๐‘› = ๐‘Ž๐‘Ž|๐‘›๐‘›|๐‘ข๐‘ข[๐‘›๐‘›] โ„ฑ

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =1 โˆ’ ๐‘Ž๐‘Ž 2

1 โˆ’ 2 ๐‘Ž๐‘Ž cos๐‘—๐‘— + ๐‘Ž๐‘Ž2 ๐‘Ž๐‘Ž < 1

20

Example โ€ข Rectangular Pulse

๐‘ฅ๐‘ฅ ๐‘›๐‘› = ๐‘ข๐‘ข ๐‘›๐‘› + ๐‘๐‘1 โˆ’ ๐‘ข๐‘ข[๐‘›๐‘› โˆ’ ๐‘๐‘1] โ„ฑ

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =sin 2๐‘๐‘1 + 1

2 ๐‘—๐‘—

sin ๐‘—๐‘—2

21

Example โ€ข Ideal Lowpass Filter ๐‘ฅ๐‘ฅ ๐‘›๐‘› =

sin ๐‘Š๐‘Š๐‘›๐‘›๐œ‹๐œ‹๐‘›๐‘›

โ„ฑ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = ๏ฟฝ1, 2๐‘˜๐‘˜๐œ‹๐œ‹ โˆ’๐‘Š๐‘Š โ‰ค ๐‘—๐‘— โ‰ค 2๐‘˜๐‘˜๐œ‹๐œ‹ + ๐‘Š๐‘Š

0, 2๐‘˜๐‘˜๐œ‹๐œ‹ + ๐‘Š๐‘Š โ‰ค ๐‘—๐‘— โ‰ค 2๐‘˜๐‘˜ + 2 ๐œ‹๐œ‹ โˆ’๐‘Š๐‘Š

22

DT Fourier Transform of Periodic Signals

โ€ข A periodic signal ๐‘ฅ๐‘ฅ๐‘๐‘[๐‘›๐‘›] with fundamental frequency ๐‘—๐‘—0 = 2๐œ‹๐œ‹/๐‘๐‘ has a DT Fourier series representation

๐‘ฅ๐‘ฅ๐‘๐‘[๐‘›๐‘›] = ๏ฟฝ ๐‘Ž๐‘Ž๐‘˜๐‘˜๐‘˜๐‘˜โˆˆ ๐‘๐‘

๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘›

โŸน ๐‘‹๐‘‹๐‘๐‘ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = โ„ฑ{๐‘ฅ๐‘ฅ๐‘๐‘[๐‘›๐‘›]} = ๏ฟฝ ๐‘Ž๐‘Ž๐‘˜๐‘˜๐‘˜๐‘˜โˆˆ ๐‘๐‘

โ„ฑ{๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘›}

โ€ข Question then becomes

โ„ฑ{๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘›} =?

23

DT Fourier Transform of Periodic Signals

โ€ข Basic Fourier transform pair

๐‘ฅ๐‘ฅ ๐‘›๐‘› = ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—0๐‘›๐‘› โ„ฑ

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = 2๐œ‹๐œ‹ ๏ฟฝ ๐›ฟ๐›ฟ ๐‘—๐‘— โˆ’ ๐‘—๐‘—0 โˆ’ 2๐œ‹๐œ‹๐‘™๐‘™โˆž

๐‘™๐‘™=โˆ’โˆž

โ–ซ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— has impulses at ๐‘—๐‘—0, ๐‘—๐‘—0 ยฑ 2๐œ‹๐œ‹, ๐‘—๐‘—0 ยฑ 4๐œ‹๐œ‹, โ€ฆ

โ€ข Verified using the synthesis equation

โ„ฑโˆ’1 ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =12๐œ‹๐œ‹

๏ฟฝ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›๐‘‘๐‘‘๐‘—๐‘—2๐œ‹๐œ‹

=12๐œ‹๐œ‹

๏ฟฝ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›๐‘‘๐‘‘๐‘—๐‘—๐œ‹๐œ‹

โˆ’๐œ‹๐œ‹

=12๐œ‹๐œ‹

๏ฟฝ 2๐œ‹๐œ‹๐›ฟ๐›ฟ ๐‘—๐‘— โˆ’ ๐‘—๐‘—0 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›๐‘‘๐‘‘๐‘—๐‘— = ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—0๐‘›๐‘› = ๐‘ฅ๐‘ฅ[๐‘›๐‘›]๐œ‹๐œ‹

โˆ’๐œ‹๐œ‹

24

DT Fourier Transform of Periodic Signals

โ€ข DT Fourier series representation

๐‘ฅ๐‘ฅ๐‘๐‘[๐‘›๐‘›] = ๏ฟฝ ๐‘Ž๐‘Ž๐‘˜๐‘˜๐‘˜๐‘˜โˆˆ ๐‘๐‘

๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘›

โ€ข with ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—0๐‘›๐‘› โ„ฑ

2๐œ‹๐œ‹โˆ‘ ๐›ฟ๐›ฟ ๐‘—๐‘— โˆ’ ๐‘—๐‘—0 โˆ’ 2๐œ‹๐œ‹๐‘™๐‘™โˆž๐‘™๐‘™=โˆ’โˆž , then

๐‘‹๐‘‹๐‘๐‘ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = ๏ฟฝ๐‘Ž๐‘Ž๐‘˜๐‘˜โ„ฑ{๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘›} = ๏ฟฝ๐‘Ž๐‘Ž๐‘˜๐‘˜ โ‹… 2๐œ‹๐œ‹ ๏ฟฝ ๐›ฟ๐›ฟ ๐‘—๐‘— โˆ’ ๐‘˜๐‘˜๐‘—๐‘—0 โˆ’ 2๐œ‹๐œ‹๐‘™๐‘™โˆž

๐‘™๐‘™=โˆ’โˆž

๐‘๐‘โˆ’1

๐‘˜๐‘˜=0

๐‘๐‘โˆ’1

๐‘˜๐‘˜=0

= 2๐œ‹๐œ‹ ๏ฟฝ ๏ฟฝ ๐‘Ž๐‘Ž๐‘˜๐‘˜๐›ฟ๐›ฟ๐‘๐‘โˆ’1

๐‘˜๐‘˜=0

โˆž

๐‘™๐‘™=โˆ’โˆž

๐‘—๐‘— โˆ’ ๐‘˜๐‘˜๐‘—๐‘—0 โˆ’ ๐‘™๐‘™๐‘๐‘๐‘—๐‘—0

= 2๐œ‹๐œ‹ ๏ฟฝ ๏ฟฝ ๐‘Ž๐‘Ž๐‘˜๐‘˜+๐‘™๐‘™๐‘๐‘๐›ฟ๐›ฟ๐‘๐‘โˆ’1

๐‘˜๐‘˜=0

โˆž

๐‘™๐‘™=โˆ’โˆž

๐‘—๐‘— โˆ’ (๐‘˜๐‘˜ + ๐‘™๐‘™๐‘๐‘)๐‘—๐‘—0 = 2๐œ‹๐œ‹ ๏ฟฝ ๐‘Ž๐‘Ž๐‘š๐‘š๐›ฟ๐›ฟโˆž

๐‘š๐‘š=โˆ’โˆž

๐‘—๐‘— โˆ’๐‘š๐‘š๐‘—๐‘—0

25

DT Fourier Transform of Periodic Signals

โ€ข Can also verify using synthesis equation

12๐œ‹๐œ‹

๏ฟฝ ๐‘‹๐‘‹๐‘๐‘ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›๐‘‘๐‘‘๐‘—๐‘— = ๏ฟฝ ๏ฟฝ ๐‘Ž๐‘Ž๐‘˜๐‘˜๐›ฟ๐›ฟโˆž

๐‘˜๐‘˜=โˆ’โˆž

๐‘—๐‘— โˆ’ ๐‘˜๐‘˜๐‘—๐‘—0 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›๐‘‘๐‘‘๐‘—๐‘—2๐œ‹๐œ‹โˆ’๐œ‹๐œ‹๐‘๐‘

โˆ’๐œ‹๐œ‹๐‘๐‘

2๐œ‹๐œ‹โˆ’๐œ‹๐œ‹๐‘๐‘

โˆ’๐œ‹๐œ‹๐‘๐‘

โ€ข Only terms with ๐‘˜๐‘˜ = 0, 1, . . . ,๐‘๐‘ โˆ’ 1 in the interval of integration

๏ฟฝ ๏ฟฝ ๐‘Ž๐‘Ž๐‘˜๐‘˜๐›ฟ๐›ฟ๐‘๐‘โˆ’1

๐‘˜๐‘˜=0

๐‘—๐‘— โˆ’ ๐‘˜๐‘˜๐‘—๐‘—0 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›๐‘‘๐‘‘๐‘—๐‘—2๐œ‹๐œ‹โˆ’๐œ‹๐œ‹๐‘๐‘

โˆ’๐œ‹๐œ‹๐‘๐‘

= ๏ฟฝ๐‘Ž๐‘Ž๐‘˜๐‘˜๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘›๐‘›๐‘๐‘โˆ’1

๐‘˜๐‘˜=0

= ๐‘ฅ๐‘ฅ๐‘๐‘[๐‘›๐‘›]

โ€ข Therefore, verified

๐‘ฅ๐‘ฅ๐‘๐‘[๐‘›๐‘›] =12๐œ‹๐œ‹

๏ฟฝ ๐‘‹๐‘‹๐‘๐‘ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›๐‘‘๐‘‘๐‘—๐‘—2๐œ‹๐œ‹

26

DT Fourier Transform of Periodic Signals

โ€ข Recall DTFS coefficient ๐‘Ž๐‘Ž๐‘˜๐‘˜ is amplitude at frequency ๐‘—๐‘— = ๐‘˜๐‘˜๐‘—๐‘—0

๐‘Ž๐‘Ž๐‘˜๐‘˜ =1๐‘๐‘๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0 , where ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = โ„ฑ ๐‘ฅ๐‘ฅ ๐‘›๐‘› , ๐‘—๐‘—0=

2๐œ‹๐œ‹๐‘๐‘

27

๐‘๐‘๐‘Ž๐‘Ž๐‘˜๐‘˜ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—

DT Fourier Transform of Periodic Signals

โ€ข DT Fourier transform 12๐œ‹๐œ‹๐‘‹๐‘‹๐‘๐‘ ๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0 is density at frequency ๐‘—๐‘— = ๐‘˜๐‘˜๐‘—๐‘—0

๐‘‹๐‘‹๐‘๐‘ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = 2๐œ‹๐œ‹ ๏ฟฝ ๐‘Ž๐‘Ž๐‘˜๐‘˜๐›ฟ๐›ฟโˆž

๐‘˜๐‘˜=โˆ’โˆž

๐‘—๐‘— โˆ’ ๐‘˜๐‘˜๐‘—๐‘—0 = ๐‘—๐‘—0 ๏ฟฝ ๐‘‹๐‘‹(๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0)๐›ฟ๐›ฟโˆž

๐‘˜๐‘˜=โˆ’โˆž

๐‘—๐‘— โˆ’ ๐‘˜๐‘˜๐‘—๐‘—0

28

๐‘‹๐‘‹๐‘๐‘(๐‘—๐‘—๐‘—๐‘—) ๐‘—๐‘—0๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—

Example โ€ข Sinusoids

๐‘ฅ๐‘ฅ ๐‘›๐‘› = cos ๐‘—๐‘—0๐‘›๐‘› + ๐œ™๐œ™ =๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—

2๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—0๐‘›๐‘› +

๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—

2๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—0๐‘›๐‘›

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = ๏ฟฝ [๐œ‹๐œ‹๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐›ฟ๐›ฟโˆž

๐‘™๐‘™=โˆ’โˆž

๐‘—๐‘— โˆ’ ๐‘—๐‘—0 โˆ’ 2๐‘™๐‘™๐œ‹๐œ‹ + ๐œ‹๐œ‹๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐›ฟ๐›ฟ ๐‘—๐‘— + ๐‘—๐‘—0 โˆ’ 2๐‘™๐‘™๐œ‹๐œ‹ ]

29

Example โ€ข DT Periodic Impulse Train

๐‘ฅ๐‘ฅ ๐‘›๐‘› = ๏ฟฝ ๐›ฟ๐›ฟ ๐‘›๐‘› โˆ’ ๐‘˜๐‘˜๐‘๐‘ โ„ฑ

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =2๐œ‹๐œ‹๐‘๐‘

๏ฟฝ ๐›ฟ๐›ฟโˆž

๐‘˜๐‘˜=โˆ’โˆž

๐‘—๐‘— โˆ’ ๐‘˜๐‘˜2๐œ‹๐œ‹๐‘๐‘

โˆž

๐‘˜๐‘˜=โˆ’โˆž

30

๐‘ฅ๐‘ฅ ๐‘›๐‘› โ„ฑ

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— , ๐‘ฆ๐‘ฆ[๐‘›๐‘›] โ„ฑ

๐‘Œ๐‘Œ(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—)

โ€ข Periodicity (different from CTFT)

๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—(๐‘—๐‘—+2๐œ‹๐œ‹)) = ๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—) โ€ข Linearity

๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ[๐‘›๐‘›] + ๐‘๐‘๐‘ฆ๐‘ฆ[๐‘›๐‘›] โ„ฑ

๐‘Ž๐‘Ž๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—) + ๐‘๐‘๐‘Œ๐‘Œ(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—)

โ€ข Time and frequency shifting

๐‘ฅ๐‘ฅ ๐‘›๐‘› โˆ’ ๐‘›๐‘›0 โ„ฑ

๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›0๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— , ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—0๐‘›๐‘›๐‘ฅ๐‘ฅ ๐‘›๐‘› โ„ฑ

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘— ๐‘—๐‘—โˆ’๐‘—๐‘—0

Properties of DT Fourier Transform

31

Example: Highpass vs. Lowpass Filters

๐ป๐ปhp ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = ๐ป๐ปlp ๐‘’๐‘’๐‘—๐‘—(๐‘—๐‘—โˆ’๐œ‹๐œ‹) โŸบ โ„Žhp ๐‘›๐‘› = ๐‘’๐‘’๐‘—๐‘—๐œ‹๐œ‹๐‘›๐‘›โ„Žlp ๐‘›๐‘› = โˆ’1 ๐‘›๐‘›โ„Žlp ๐‘›๐‘›

โ€ข Highpass filtering ๐‘ฆ๐‘ฆ[๐‘›๐‘›] = ๐‘ฅ๐‘ฅ[๐‘›๐‘›] โˆ— โ„Žhp ๐‘›๐‘› implemented by lowpass filter

(1) ๐‘ฅ๐‘ฅ1 ๐‘›๐‘› = โˆ’1 ๐‘›๐‘›๐‘ฅ๐‘ฅ ๐‘›๐‘› , (2) ๐‘ฆ๐‘ฆ1 ๐‘›๐‘› = ๐‘ฅ๐‘ฅ1 ๐‘›๐‘› โˆ— โ„Žlp ๐‘›๐‘› , (3) ๐‘ฆ๐‘ฆ ๐‘›๐‘› = โˆ’1 ๐‘›๐‘›๐‘ฆ๐‘ฆ1 ๐‘›๐‘›

32

Example โ€ข One-sided Decaying Exponential

๐‘ฅ๐‘ฅ ๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘›๐‘›๐‘ข๐‘ข[๐‘›๐‘›] โ„ฑ

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =1

1 โˆ’ ๐‘Ž๐‘Ž๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘— ๐‘Ž๐‘Ž < 1

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =1

1 โˆ’ 2 ๐‘Ž๐‘Ž cos๐‘—๐‘— + ๐‘Ž๐‘Ž2, arg๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = โˆ’ arctan

๐‘Ž๐‘Ž sin๐‘—๐‘—1 โˆ’ ๐‘Ž๐‘Ž cos๐‘—๐‘—

33

โ€ข Time reversal

๐‘ฅ๐‘ฅ โˆ’๐‘›๐‘› โ„ฑ

๐‘‹๐‘‹ ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—

โ€ข Conjugation

๐‘ฅ๐‘ฅโˆ— ๐‘›๐‘› โ„ฑ

๐‘‹๐‘‹โˆ— ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—

Proof: โ„ฑ ๐‘ฅ๐‘ฅโˆ—[๐‘›๐‘›] = โˆ‘ ๐‘ฅ๐‘ฅโˆ— ๐‘›๐‘› ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›โˆž๐‘›๐‘›=โˆ’โˆž = โˆ‘ ๐‘ฅ๐‘ฅ ๐‘›๐‘› ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›โˆž

๐‘›๐‘›=โˆ’โˆžโˆ— = ๐‘‹๐‘‹โˆ— (๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—)

โ€ข Conjugate Symmetry โ–ซ ๐‘ฅ๐‘ฅ[๐‘›๐‘›] real โŸบ ๐‘‹๐‘‹(๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—) = ๐‘‹๐‘‹โˆ—(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—) โ–ซ ๐‘ฅ๐‘ฅ[๐‘›๐‘›] even โŸบ ๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—) even, ๐‘ฅ๐‘ฅ[๐‘›๐‘›] odd โŸบ ๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—) odd โ–ซ ๐‘ฅ๐‘ฅ[๐‘›๐‘›] real and even โŸบ ๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—) real and even โ–ซ ๐‘ฅ๐‘ฅ[๐‘›๐‘›] real and odd โŸบ ๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—) purely imaginary and odd

Properties of DT Fourier Transform

34

Example โ€ข Two-sided Decaying Exponential

๐‘ฅ๐‘ฅ ๐‘›๐‘› = ๐‘Ž๐‘Ž|๐‘›๐‘›|๐‘ข๐‘ข[๐‘›๐‘›] โ„ฑ

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =1 โˆ’ ๐‘Ž๐‘Ž 2

1 โˆ’ 2 ๐‘Ž๐‘Ž cos๐‘—๐‘— + ๐‘Ž๐‘Ž2 ๐‘Ž๐‘Ž < 1

35

Differencing and Accumulation โ€ข First (backward) difference

๐‘ฅ๐‘ฅ ๐‘›๐‘› โˆ’ ๐‘ฅ๐‘ฅ ๐‘›๐‘› โˆ’ 1 โ„ฑ

(1 โˆ’ ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—)๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—)

โ€ข Accumulation (Running sum)

๏ฟฝ ๐‘ฅ๐‘ฅ[๐‘š๐‘š]๐‘›๐‘›

๐‘š๐‘š=โˆ’โˆž

โ„ฑ

11 โˆ’ ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—

๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—) + ๐œ‹๐œ‹๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—0) ๏ฟฝ ๐›ฟ๐›ฟ(๐‘—๐‘— โˆ’ 2๐œ‹๐œ‹๐‘˜๐‘˜)โˆž

๐‘˜๐‘˜=โˆ’โˆž

โ–ซ first term from differencing property

โ–ซ second term is DTFT of DC component โ„ฑ ๏ฟฝฬ…๏ฟฝ๐‘ฅ , ๏ฟฝฬ…๏ฟฝ๐‘ฅ = 12๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—0)

โ€ข Example: since ๐›ฟ๐›ฟ[๐‘›๐‘›] โ„ฑ

1,

๐‘ข๐‘ข ๐‘›๐‘› = ๏ฟฝ ๐›ฟ๐›ฟ[๐‘š๐‘š]๐‘›๐‘›

๐‘š๐‘š=โˆ’โˆž

โ„ฑ

11 โˆ’ ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—

+ ๐œ‹๐œ‹ ๏ฟฝ ๐›ฟ๐›ฟ(๐‘—๐‘— โˆ’ 2๐œ‹๐œ‹๐‘˜๐‘˜) โˆž

๐‘˜๐‘˜=โˆ’โˆž

36

Time Expansion โ€ข Recall time and frequency scaling property of CTFT

๐‘ฅ๐‘ฅ ๐‘Ž๐‘Ž๐‘ก๐‘ก โ„ฑ 1

๐‘Ž๐‘Ž๐‘‹๐‘‹

๐‘—๐‘—๐‘—๐‘—๐‘Ž๐‘Ž

,๐‘Ž๐‘Ž โ‰  0

โ€ข But in DT case, โ–ซ ๐‘ฅ๐‘ฅ[๐‘Ž๐‘Ž๐‘›๐‘›] makes no sense if ๐‘Ž๐‘Ž โˆ‰ โ„ค โ–ซ for ๐‘Ž๐‘Ž โˆˆ โ„ค, if ๐‘Ž๐‘Ž โ‰  ยฑ1, problems still exist, e.g., let ๐‘Ž๐‘Ž = 2, ๐‘ฅ๐‘ฅ[2๐‘›๐‘›] misses odd values of ๐‘ฅ๐‘ฅ[๐‘›๐‘›]

โ€ข We can โ€œslowโ€ a DT signal down by inserting consecutive zeros, for a positive integer ๐‘˜๐‘˜ โ–ซ ๐‘ฅ๐‘ฅ(๐‘˜๐‘˜)[๐‘›๐‘›] obtained by inserting ๐‘˜๐‘˜ โˆ’ 1 zeros between two successive

values of ๐‘ฅ๐‘ฅ[๐‘›๐‘›]

37

Time Expansion โ€ข Formally, for a positive integer ๐‘˜๐‘˜, define ๐‘ฅ๐‘ฅ(๐‘˜๐‘˜) ๐‘›๐‘› by

๐‘ฅ๐‘ฅ(๐‘˜๐‘˜) ๐‘›๐‘› = ๏ฟฝ๐‘ฅ๐‘ฅ ๐‘›๐‘›/๐‘˜๐‘˜ , if ๐‘›๐‘› is multiple of ๐‘˜๐‘˜ 0, otherwise

โ€ข If

๐‘ฅ๐‘ฅ ๐‘›๐‘› โ„ฑ

then

๐‘ฅ๐‘ฅ(๐‘˜๐‘˜) ๐‘›๐‘› โ„ฑ

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘— โ€ข Proof: โ„ฑ ๐‘ฅ๐‘ฅ(๐‘˜๐‘˜)[๐‘›๐‘›] = โˆ‘ ๐‘ฅ๐‘ฅ(๐‘˜๐‘˜) ๐‘›๐‘› ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›โˆž

๐‘›๐‘›=โˆ’โˆž = โˆ‘ ๐‘ฅ๐‘ฅ ๐‘™๐‘™ ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘˜๐‘˜๐‘™๐‘™โˆž๐‘™๐‘™=โˆ’โˆž = ๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—)

38

Example

39

Differentiation in Frequency

๐‘ฅ๐‘ฅ ๐‘›๐‘› โ„ฑ

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—

โ€ข Differentiation in frequency

๐‘›๐‘›๐‘ฅ๐‘ฅ ๐‘›๐‘› โ„ฑ

๐‘—๐‘—๐‘‘๐‘‘๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—)๐‘‘๐‘‘๐‘—๐‘—

โ€ข Proof:

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = ๏ฟฝ ๐‘ฅ๐‘ฅ[๐‘›๐‘›]๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›โˆž

๐‘›๐‘›=โˆ’โˆž

differentiate both sides, ๐‘‘๐‘‘๐‘‘๐‘‘๐‘—๐‘—

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = โˆ’๐‘—๐‘— ๏ฟฝ ๐‘›๐‘›๐‘ฅ๐‘ฅ[๐‘›๐‘›]๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›โˆž

๐‘›๐‘›=โˆ’โˆž

40

For a DT Fourier transform pair ๐‘ฅ๐‘ฅ ๐‘›๐‘› โ„ฑ

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—

๏ฟฝ ๐‘ฅ๐‘ฅ ๐‘›๐‘› 2โˆž

๐‘›๐‘›=โˆ’โˆž

= 1

2๐œ‹๐œ‹๏ฟฝ ๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—) 2๐‘‘๐‘‘๐‘—๐‘—

2๐œ‹๐œ‹= ๏ฟฝ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— 2 ๐‘‘๐‘‘๐‘—๐‘—

2๐œ‹๐œ‹

2๐œ‹๐œ‹

โ€ข Note: ๐‘—๐‘— is angular frequency and ๐‘“๐‘“ = ๐‘—๐‘—/2๐œ‹๐œ‹ is frequency

โ€ข Interpretation: Energy conservation โ–ซ โˆ‘ ๐‘ฅ๐‘ฅ ๐‘›๐‘› 2โˆž

๐‘›๐‘›=โˆ’โˆž : total energy

โ–ซ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— 2: energy per unit frequency, called energy-density

spectrum

Parsevalโ€™s Relation

41

โ€ข For a DT Fourier transform pair ๐‘ฅ๐‘ฅ ๐‘›๐‘› โ„ฑ

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—

๏ฟฝ ๐‘ฅ๐‘ฅ ๐‘›๐‘› 2โˆž

๐‘›๐‘›=โˆ’โˆž

= 1

2๐œ‹๐œ‹๏ฟฝ ๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—) 2๐‘‘๐‘‘๐‘—๐‘—

2๐œ‹๐œ‹= ๏ฟฝ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— 2 ๐‘‘๐‘‘๐‘—๐‘—

2๐œ‹๐œ‹

2๐œ‹๐œ‹

โ€ข Proof:

๏ฟฝ ๐‘ฅ๐‘ฅ ๐‘›๐‘› 2โˆž

๐‘›๐‘›=โˆ’โˆž

= ๏ฟฝ ๐‘ฅ๐‘ฅ ๐‘›๐‘› ๐‘ฅ๐‘ฅโˆ—[๐‘›๐‘›]โˆž

๐‘›๐‘›=โˆ’โˆž

= ๏ฟฝ ๐‘ฅ๐‘ฅ ๐‘›๐‘›12๐œ‹๐œ‹

๏ฟฝ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—2๐œ‹๐œ‹

๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›๐‘‘๐‘‘๐‘—๐‘—โˆ—โˆž

๐‘›๐‘›=โˆ’โˆž

= ๏ฟฝ ๐‘ฅ๐‘ฅ ๐‘›๐‘›12๐œ‹๐œ‹

๏ฟฝ ๐‘‹๐‘‹โˆ— ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—2๐œ‹๐œ‹

๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›๐‘‘๐‘‘๐‘—๐‘—โˆž

๐‘›๐‘›=โˆ’โˆž

=12๐œ‹๐œ‹

๏ฟฝ ๐‘‹๐‘‹โˆ— ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๏ฟฝ ๐‘ฅ๐‘ฅ[๐‘›๐‘›]๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›โˆž

๐‘›๐‘›=โˆ’โˆž2๐œ‹๐œ‹๐‘‘๐‘‘๐‘—๐‘—

=12๐œ‹๐œ‹

๏ฟฝ ๐‘‹๐‘‹โˆ— ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—)2๐œ‹๐œ‹

๐‘‘๐‘‘๐‘—๐‘— =12๐œ‹๐œ‹

๏ฟฝ ๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—) 2

2๐œ‹๐œ‹๐‘‘๐‘‘๐‘—๐‘—

Parsevalโ€™s Relation

42

๐‘ฆ๐‘ฆ[๐‘›๐‘›] = ๐‘ฅ๐‘ฅ[๐‘›๐‘›] โˆ— โ„Ž[๐‘›๐‘›] โ„ฑ

๐‘Œ๐‘Œ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐ป๐ป(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—)

โ€ข Note: dual of multiplication property of CTFS

๐‘ฅ๐‘ฅ ๐‘ก๐‘ก ๐‘ฆ๐‘ฆ ๐‘ก๐‘ก โ„ฑ๐’ฎ๐’ฎ

๏ฟฝ ๐‘Ž๐‘Ž๐‘š๐‘šโˆž

๐‘š๐‘š=โˆ’โˆž๐‘๐‘๐‘˜๐‘˜โˆ’๐‘š๐‘š

โ€ข Note: Similar to CTFT, applicable when formula is well-defined

โ€ข Proof:

๐‘Œ๐‘Œ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = ๏ฟฝ ๐‘ฆ๐‘ฆ[๐‘›๐‘›]๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›โˆž

๐‘›๐‘›=โˆ’โˆž

= ๏ฟฝ ๐‘ฅ๐‘ฅ[๐‘›๐‘›] โˆ— โ„Ž[๐‘›๐‘›]๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›โˆž

๐‘›๐‘›=โˆ’โˆž

= ๏ฟฝ ๏ฟฝ ๐‘ฅ๐‘ฅ[๐‘˜๐‘˜]โ„Ž ๐‘›๐‘› โˆ’ ๐‘˜๐‘˜โˆž

๐‘˜๐‘˜=โˆ’โˆž

๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›โˆž

๐‘›๐‘›=โˆ’โˆž

= ๏ฟฝ ๐‘ฅ๐‘ฅ[๐‘˜๐‘˜] ๏ฟฝ โ„Ž ๐‘›๐‘› โˆ’ ๐‘˜๐‘˜โˆž

๐‘›๐‘› โˆž

๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›โˆž

๐‘˜๐‘˜ โˆž

Convolution Property of DTFT

43

Frequency Response of LTI Systems โ€ข Fully characterized by impulse response โ„Ž[๐‘›๐‘›]

๐‘ฆ๐‘ฆ[๐‘›๐‘›] = ๐‘ฅ๐‘ฅ[๐‘›๐‘›] โˆ— โ„Ž[๐‘›๐‘›]

โ€ข Also fully characterized by frequency response ๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =โ„ฑ{โ„Ž ๐‘›๐‘› }, if ๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— is well defined โ–ซ BIBO stable system: โˆ‘ โ„Ž ๐‘›๐‘› < โˆžโˆž

๐‘›๐‘›=โˆ’โˆž โ–ซ other systems: e.g., accumulator โ„Ž[๐‘›๐‘›] = ๐‘ข๐‘ข[๐‘›๐‘›]

โ€ข Convolution property implies โ–ซ instead of computing ๐‘ฅ๐‘ฅ[๐‘›๐‘›] โˆ— โ„Ž ๐‘›๐‘› in time domain, we can analyze

a system in frequency domain ๐‘ฆ๐‘ฆ[๐‘›๐‘›] = ๐‘ฅ๐‘ฅ[๐‘›๐‘›] โˆ— โ„Ž[๐‘›๐‘›]

โ‡“

๐‘Œ๐‘Œ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— โ‹… ๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— , ๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =๐‘Œ๐‘Œ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—= ๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘— ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—

44

Example โ€ข Determine the Response of an LTI system with impulse response โ„Ž[๐‘›๐‘›] = ๐‘Ž๐‘Ž๐‘›๐‘›๐‘ข๐‘ข[๐‘›๐‘›], to the input ๐‘ฅ๐‘ฅ[๐‘›๐‘›] = ๐‘๐‘๐‘›๐‘›๐‘ข๐‘ข[๐‘›๐‘›], where ๐‘Ž๐‘Ž < 1, ๐‘๐‘ < 1

โ€ข Method 1: convolution in time domain ๐‘ฆ๐‘ฆ[๐‘›๐‘›] = ๐‘ฅ๐‘ฅ[๐‘›๐‘›] โˆ— โ„Ž[๐‘›๐‘›]

โ€ข Method 2: solving the difference equation with initial rest condition ๐‘ฆ๐‘ฆ ๐‘›๐‘› โˆ’ ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ[๐‘›๐‘› โˆ’ 1] = ๐‘๐‘๐‘›๐‘›๐‘ข๐‘ข[๐‘›๐‘›]

โ€ข Method 3: Fourier transform

๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =1

1 โˆ’ ๐‘Ž๐‘Ž๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—,๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =

11 โˆ’ ๐‘๐‘๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—

โŸน ๐‘Œ๐‘Œ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =1

(1 โˆ’ ๐‘Ž๐‘Ž๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—)(1 โˆ’ ๐‘๐‘๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—)

โ–ซ If ๐‘Ž๐‘Ž โ‰  ๐‘๐‘,๐‘Œ๐‘Œ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = ๐‘Ž๐‘Ž/(๐‘Ž๐‘Žโˆ’๐‘๐‘)1โˆ’๐‘Ž๐‘Ž๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—

โˆ’ ๐‘๐‘/(๐‘Ž๐‘Žโˆ’๐‘๐‘)1โˆ’๐‘๐‘๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—

โŸน ๐‘ฆ๐‘ฆ[๐‘›๐‘›] = 1๐‘Ž๐‘Žโˆ’๐‘๐‘

๐‘Ž๐‘Ž๐‘›๐‘›+1 โˆ’ ๐‘๐‘๐‘›๐‘›+1 ๐‘ข๐‘ข[๐‘›๐‘›]

โ–ซ If ๐‘Ž๐‘Ž = ๐‘๐‘,๐‘Œ๐‘Œ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = ๐‘—๐‘—๐‘Ž๐‘Ž๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐‘‘๐‘‘

๐‘‘๐‘‘๐‘—๐‘—1

1โˆ’๐‘Ž๐‘Ž๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—โŸน ๐‘ฆ๐‘ฆ ๐‘›๐‘› = ๐‘›๐‘› + 1 ๐‘Ž๐‘Ž๐‘›๐‘›๐‘ข๐‘ข[๐‘›๐‘›]

45

Example โ€ข Determine the Response of an LTI system with impulse response โ„Ž[๐‘›๐‘›] = ๐‘Ž๐‘Ž๐‘›๐‘›๐‘ข๐‘ข[๐‘›๐‘›], to the input ๐‘ฅ๐‘ฅ[๐‘›๐‘›] = cos(๐‘—๐‘—0๐‘›๐‘›), where ๐‘Ž๐‘Ž < 1

โ€ข Frequency response:

๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =1

1 โˆ’ ๐‘Ž๐‘Ž๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—

โ€ข Method 1: using eigenfunction property

๐‘ฅ๐‘ฅ[๐‘›๐‘›] =12๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—0๐‘›๐‘› +

12๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—0๐‘›๐‘›

๐‘ฆ๐‘ฆ[๐‘›๐‘›] =12๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—0 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—0๐‘›๐‘› +

12๐ป๐ป ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—0 ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—0๐‘›๐‘› = โ„›โ„ฏ ๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—0 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—0๐‘›๐‘›

=1

1 โˆ’ 2๐‘Ž๐‘Ž cos๐‘—๐‘—0 + ๐‘Ž๐‘Ž2cos ๐‘—๐‘—0๐‘›๐‘› โˆ’ arctan

๐‘Ž๐‘Ž sin๐‘—๐‘—0

1 โˆ’ ๐‘Ž๐‘Ž cos๐‘—๐‘—0

46

Example โ€ข Method 2: using Fourier transform

๐‘ฅ๐‘ฅ[๐‘›๐‘›] =12๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—0๐‘›๐‘› +

12๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—0๐‘›๐‘›

โŸน ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = ๏ฟฝ [๐œ‹๐œ‹๐›ฟ๐›ฟ ๐‘—๐‘— โˆ’ ๐‘—๐‘—0 + 2๐‘˜๐‘˜๐œ‹๐œ‹ + ๐œ‹๐œ‹๐›ฟ๐›ฟ ๐‘—๐‘— + ๐‘—๐‘—0 + 2๐‘˜๐‘˜๐œ‹๐œ‹ ]โˆž

๐‘˜๐‘˜=โˆ’โˆž

๐‘Œ๐‘Œ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = ๏ฟฝ ๐œ‹๐œ‹๐ป๐ป ๐‘’๐‘’๐‘—๐‘—(๐‘—๐‘—0โˆ’2๐‘˜๐‘˜๐œ‹๐œ‹) ๐›ฟ๐›ฟ ๐‘—๐‘— โˆ’ ๐‘—๐‘—0 + 2๐‘˜๐‘˜๐œ‹๐œ‹โˆž

๐‘˜๐‘˜=โˆ’โˆž

+ ๏ฟฝ ๐œ‹๐œ‹๐ป๐ป ๐‘’๐‘’โˆ’๐‘—๐‘—(๐‘—๐‘—0+2๐‘˜๐‘˜๐œ‹๐œ‹) ๐›ฟ๐›ฟ ๐‘—๐‘— + ๐‘—๐‘—0 + 2๐‘˜๐‘˜๐œ‹๐œ‹โˆž

๐‘˜๐‘˜=โˆ’โˆž

โŸน ๐‘ฆ๐‘ฆ[๐‘›๐‘›] =12๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—0 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—0๐‘›๐‘› +

12๐ป๐ป ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—0 ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—0๐‘›๐‘›

47

Example: Ideal Bandstop Filter

48

๐‘—๐‘—

๐‘ฅ๐‘ฅ ๐‘›๐‘› โ‹… ๐‘ฆ๐‘ฆ ๐‘›๐‘› โ„ฑ

12๐œ‹๐œ‹

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— โŠ› ๐‘Œ๐‘Œ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =12๐œ‹๐œ‹

๏ฟฝ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐‘Œ๐‘Œ ๐‘’๐‘’๐‘—๐‘— ๐‘—๐‘—โˆ’๐‘—๐‘— ๐‘‘๐‘‘๐‘‘๐‘‘2๐œ‹๐œ‹

โ€ข Note: dual of periodic convolution property of CTFS

๐‘ฅ๐‘ฅ ๐‘ก๐‘ก โŠ› ๐‘ฆ๐‘ฆ ๐‘ก๐‘ก โ„ฑ๐’ฎ๐’ฎ

๐‘‡๐‘‡๐‘Ž๐‘Ž๐‘˜๐‘˜๐‘๐‘๐‘˜๐‘˜

โ€ข Proof:

โ„ฑ ๐‘ฅ๐‘ฅ ๐‘›๐‘› ๐‘ฆ๐‘ฆ[๐‘›๐‘›] = ๏ฟฝ ๐‘ฅ๐‘ฅ[๐‘›๐‘›]๐‘ฆ๐‘ฆ[๐‘›๐‘›]๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›โˆž

๐‘›๐‘›=โˆ’โˆž

= ๏ฟฝ12๐œ‹๐œ‹

๏ฟฝ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›๐‘‘๐‘‘๐‘‘๐‘‘2๐œ‹๐œ‹

๐‘ฆ๐‘ฆ[๐‘›๐‘›]๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›โˆž

๐‘›๐‘›=โˆ’โˆž

=12๐œ‹๐œ‹๏ฟฝ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—

2๐œ‹๐œ‹๏ฟฝ ๐‘ฆ๐‘ฆ[๐‘›๐‘›]๐‘’๐‘’โˆ’๐‘—๐‘—(๐‘—๐‘—โˆ’๐‘—๐‘—)๐‘›๐‘›โˆž

๐‘›๐‘›=โˆ’โˆž

๐‘‘๐‘‘๐‘‘๐‘‘

=12๐œ‹๐œ‹๏ฟฝ ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐‘Œ๐‘Œ ๐‘’๐‘’๐‘—๐‘— ๐‘—๐‘—โˆ’๐‘—๐‘— ๐‘‘๐‘‘๐‘‘๐‘‘

2๐œ‹๐œ‹

Multiplication Property of DTFT

49

Example โ€ข ๐‘ฅ๐‘ฅ ๐‘›๐‘› = ๐‘ฅ๐‘ฅ1 ๐‘›๐‘› ๐‘ฅ๐‘ฅ2[๐‘›๐‘›], where ๐‘ฅ๐‘ฅ1 ๐‘›๐‘› = sin( 3๐œ‹๐œ‹๐‘›๐‘›/4)

๐œ‹๐œ‹๐‘›๐‘›, ๐‘ฅ๐‘ฅ2 ๐‘›๐‘› = sin( ๐œ‹๐œ‹๐‘›๐‘›/2)

๐œ‹๐œ‹๐‘›๐‘›

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =12๐œ‹๐œ‹

๐‘‹๐‘‹1 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— โŠ› ๐‘‹๐‘‹2 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =12๐œ‹๐œ‹

๐‘‹๐‘‹๏ฟฝ1 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— โˆ— ๐‘‹๐‘‹2 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—

50

periodic aperiodic

Example โ€ข ๐‘ฅ๐‘ฅ ๐‘›๐‘› = ๐‘ฅ๐‘ฅ1 ๐‘›๐‘› ๐‘ฅ๐‘ฅ2[๐‘›๐‘›], where ๐‘ฅ๐‘ฅ1 ๐‘›๐‘› = sin( 3๐œ‹๐œ‹๐‘›๐‘›/4)

๐œ‹๐œ‹๐‘›๐‘›, ๐‘ฅ๐‘ฅ2 ๐‘›๐‘› = sin( ๐œ‹๐œ‹๐‘›๐‘›/2)

๐œ‹๐œ‹๐‘›๐‘›

12๐œ‹๐œ‹

๐‘‹๐‘‹1 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— โŠ› ๐‘‹๐‘‹2 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =12๐œ‹๐œ‹

๐‘‹๐‘‹๏ฟฝ1 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— โˆ— ๐‘‹๐‘‹2 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =12๐œ‹๐œ‹

๏ฟฝ ๐œ๐œ2๐‘˜๐‘˜๐œ‹๐œ‹ ๐‘‹๐‘‹๏ฟฝ1 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— โˆ— ๐‘‹๐‘‹๏ฟฝ2 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—โˆž

๐‘˜๐‘˜=โˆ’โˆž

51

periodic aperiodic aperiodic

Example โ€ข ๐‘ฅ๐‘ฅ ๐‘›๐‘› = ๐‘ฅ๐‘ฅ1 ๐‘›๐‘› ๐‘ฅ๐‘ฅ2[๐‘›๐‘›], where ๐‘ฅ๐‘ฅ1 ๐‘›๐‘› = sin( 3๐œ‹๐œ‹๐‘›๐‘›/4)

๐œ‹๐œ‹๐‘›๐‘›, ๐‘ฅ๐‘ฅ2 ๐‘›๐‘› = sin( ๐œ‹๐œ‹๐‘›๐‘›/2)

๐œ‹๐œ‹๐‘›๐‘›

12๐œ‹๐œ‹

๐‘‹๐‘‹1 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— โŠ› ๐‘‹๐‘‹2 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =12๐œ‹๐œ‹

๐‘‹๐‘‹๏ฟฝ1 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— โˆ— ๐‘‹๐‘‹2 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =12๐œ‹๐œ‹

๏ฟฝ ๐œ๐œ2๐‘˜๐‘˜๐œ‹๐œ‹ ๐‘‹๐‘‹๏ฟฝ1 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— โˆ— ๐‘‹๐‘‹๏ฟฝ2 ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—โˆž

๐‘˜๐‘˜=โˆ’โˆž

52

periodic aperiodic aperiodic

Example: DT Modulation ๐‘ฆ๐‘ฆ ๐‘›๐‘› = ๐‘ฅ๐‘ฅ ๐‘›๐‘› ๐‘๐‘ ๐‘›๐‘› , where ๐‘๐‘ ๐‘›๐‘› = cos(๐‘—๐‘—๐‘๐‘๐‘›๐‘›)

โ€ข No overlap between replicas:

๏ฟฝ๐‘—๐‘—๐‘๐‘ > ๐‘—๐‘—๐‘€๐‘€ ๐‘—๐‘—๐‘๐‘ + ๐‘—๐‘—๐‘€๐‘€ < ๐œ‹๐œ‹ โŸน๐‘—๐‘—๐‘€๐‘€ <

๐œ‹๐œ‹2

53

Example: DT Modulation ๐‘ง๐‘ง ๐‘›๐‘› = ๐‘ฆ๐‘ฆ ๐‘›๐‘› ๐‘๐‘ ๐‘›๐‘› , where ๐‘๐‘ ๐‘›๐‘› = cos ๐‘—๐‘—๐‘๐‘๐‘›๐‘›

โ€ข Recover ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— by lowpass filtering ๐‘Œ๐‘Œ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— with ๐‘Š๐‘Š โˆˆ (๐‘—๐‘—๐‘€๐‘€, 2๐‘—๐‘—๐‘๐‘ โˆ’ ๐‘—๐‘—๐‘€๐‘€)

54

Duality in Fourier Analysis โ€ข CTFT: Both time and frequency functions are continuous and

aperiodic in general, identical form except for โ–ซ different signs in exponent of complex exponential โ–ซ constant factor 1/2๐œ‹๐œ‹

๐‘ฅ๐‘ฅ ๐‘ก๐‘ก =1

2๐œ‹๐œ‹๏ฟฝ ๐‘‹๐‘‹ ๐‘—๐‘—๐‘—๐‘— ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘ก๐‘กโˆž

โˆ’โˆž๐‘‘๐‘‘๐‘—๐‘—

โ„ฑ ๐‘‹๐‘‹ ๐‘—๐‘—๐‘—๐‘— = ๏ฟฝ ๐‘ฅ๐‘ฅ(๐‘ก๐‘ก)๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘ก๐‘ก

โˆž

โˆ’โˆž๐‘‘๐‘‘๐‘ก๐‘ก

โ€ข Suppose two functions are related by

๐‘“๐‘“ ๐‘Ÿ๐‘Ÿ = ๏ฟฝ ๐‘”๐‘”(๐œ๐œ)๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐œ๐œโˆž

โˆ’โˆž๐‘‘๐‘‘๐œ๐œ

โ–ซ Let ๐œ๐œ = ๐‘ก๐‘ก, and ๐‘Ÿ๐‘Ÿ = ๐‘—๐‘—, โŸน ๐‘”๐‘” ๐‘ก๐‘ก โ„ฑ

๐‘“๐‘“ ๐‘—๐‘—

โ–ซ Let ๐œ๐œ = โˆ’๐‘—๐‘—, and ๐‘Ÿ๐‘Ÿ = ๐‘ก๐‘ก,โŸน ๐‘“๐‘“ ๐‘ก๐‘ก โ„ฑ

2๐œ‹๐œ‹๐‘”๐‘” โˆ’๐‘—๐‘—

โ€ข Duality: ๐‘ฅ๐‘ฅ ๐‘ก๐‘ก โ„ฑ

๐‘‹๐‘‹ ๐‘—๐‘—๐‘—๐‘— โŸบ ๐‘‹๐‘‹(๐‘ก๐‘ก) โ„ฑ

2๐œ‹๐œ‹๐‘ฅ๐‘ฅ(โˆ’๐‘—๐‘—๐‘—๐‘—)

55

Example of Duality in CTFT

๐‘ข๐‘ข ๐‘ก๐‘ก + ๐‘Ž๐‘Ž โˆ’ ๐‘ข๐‘ข ๐‘ก๐‘ก โˆ’ ๐‘Ž๐‘Ž โ„ฑ

2 sin(๐‘Ž๐‘Ž๐‘—๐‘—)

๐‘—๐‘—

2 sin(๐‘Ž๐‘Ž๐‘ก๐‘ก)

๐‘ก๐‘ก โ„ฑ

2๐œ‹๐œ‹[๐‘ข๐‘ข ๐‘—๐‘— + ๐‘Ž๐‘Ž โˆ’ ๐‘ข๐‘ข ๐‘—๐‘— โˆ’ ๐‘Ž๐‘Ž ]

56

Duality between DTFT and CTFS

57

๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = ๏ฟฝ ๐‘ฅ๐‘ฅ[๐‘›๐‘›]๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›โˆž

๐‘›๐‘›=โˆ’โˆž

= ๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘— ๐‘—๐‘—+2๐œ‹๐œ‹ )

๐‘ฅ๐‘ฅ ๐‘›๐‘› =1

2๐œ‹๐œ‹๏ฟฝ ๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—)๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›๐‘‘๐‘‘๐‘—๐‘—2๐œ‹๐œ‹

๐‘ฅ๐‘ฅ ๐‘ก๐‘ก = ๏ฟฝ ๐‘Ž๐‘Ž๐‘˜๐‘˜๐‘’๐‘’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—0๐‘ก๐‘กโˆž

๐‘˜๐‘˜=โˆ’โˆž

= ๐‘ฅ๐‘ฅ ๐‘ก๐‘ก + ๐‘‡๐‘‡ ,๐‘—๐‘—0 =2๐œ‹๐œ‹๐‘‡๐‘‡

๐‘Ž๐‘Ž๐‘˜๐‘˜ =1๐‘‡๐‘‡๏ฟฝ ๐‘ฅ๐‘ฅ ๐‘ก๐‘ก ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘—๐‘—๐‘œ๐‘œ๐‘ก๐‘ก๐‘‘๐‘‘๐‘ก๐‘ก

๐‘‡๐‘‡,๐‘—๐‘—0 =

2๐œ‹๐œ‹๐‘‡๐‘‡

LCCDEs โ€ข Determine the frequency response of an LTI system described by

๏ฟฝ๐‘Ž๐‘Ž๐‘˜๐‘˜๐‘ฆ๐‘ฆ[๐‘›๐‘› โˆ’ ๐‘˜๐‘˜]๐‘๐‘

๐‘˜๐‘˜=0

= ๏ฟฝ๐‘๐‘๐‘˜๐‘˜๐‘ฅ๐‘ฅ[๐‘›๐‘› โˆ’ ๐‘˜๐‘˜]๐‘€๐‘€

๐‘˜๐‘˜=0

โ€ข Method 1: using the eigenfunction property

let ๐‘ฅ๐‘ฅ[๐‘›๐‘›] = ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘› โ†’ ๐‘ฆ๐‘ฆ[๐‘›๐‘›] = ๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘›๐‘›

substitution in to the difference equation yields

๏ฟฝ๐‘Ž๐‘Ž๐‘˜๐‘˜๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—(๐‘›๐‘›โˆ’๐‘˜๐‘˜)๐‘๐‘

๐‘˜๐‘˜=0

= ๏ฟฝ๐‘๐‘๐‘˜๐‘˜๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—(๐‘›๐‘›โˆ’๐‘˜๐‘˜)๐‘€๐‘€

๐‘˜๐‘˜=0

๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =โˆ‘ ๐‘๐‘๐‘˜๐‘˜๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘˜๐‘˜๐‘€๐‘€๐‘˜๐‘˜=0

โˆ‘ ๐‘Ž๐‘Ž๐‘˜๐‘˜๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘˜๐‘˜๐‘๐‘๐‘˜๐‘˜=0

58

LCCDEs โ€ข Method 2: taking the Fourier transform of both sides

โ„ฑ ๏ฟฝ๐‘Ž๐‘Ž๐‘˜๐‘˜๐‘ฆ๐‘ฆ[๐‘›๐‘› โˆ’ ๐‘˜๐‘˜]๐‘๐‘

๐‘˜๐‘˜=0

= โ„ฑ ๏ฟฝ๐‘๐‘๐‘˜๐‘˜๐‘ฅ๐‘ฅ[๐‘›๐‘› โˆ’ ๐‘˜๐‘˜]๐‘€๐‘€

๐‘˜๐‘˜=0

โ€ข By linearity and time shifting property

๏ฟฝ๐‘Ž๐‘Ž๐‘˜๐‘˜๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘˜๐‘˜๐‘Œ๐‘Œ(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—) =๐‘๐‘

๐‘˜๐‘˜=0

๏ฟฝ๐‘๐‘๐‘˜๐‘˜๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘˜๐‘˜๐‘‹๐‘‹(๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—)๐‘€๐‘€

๐‘˜๐‘˜=0

๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =โˆ‘ ๐‘๐‘๐‘˜๐‘˜๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘˜๐‘˜๐‘€๐‘€๐‘˜๐‘˜=0

โˆ‘ ๐‘Ž๐‘Ž๐‘˜๐‘˜๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘˜๐‘˜๐‘๐‘๐‘˜๐‘˜=0

โ€ข ๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— is a rational function of ๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—, i.e., ratio of polynomials

59

Example

๐‘ฆ๐‘ฆ ๐‘›๐‘› โˆ’34๐‘ฆ๐‘ฆ ๐‘›๐‘› โˆ’ 1 +

18๐‘ฆ๐‘ฆ[๐‘›๐‘› โˆ’ 2] = 2๐‘ฅ๐‘ฅ[๐‘›๐‘›]

โ€ข Frequency response

๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =2

1 โˆ’ 34 ๐‘’๐‘’

โˆ’๐‘—๐‘—๐‘—๐‘— + 18 ๐‘’๐‘’

โˆ’๐‘—๐‘—2๐‘—๐‘—

โ–ซ Using partial fraction expansion

๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =2

(1 โˆ’ 12 ๐‘’๐‘’

โˆ’๐‘—๐‘—๐‘—๐‘—)(1 โˆ’ 14 ๐‘’๐‘’

โˆ’๐‘—๐‘—๐‘—๐‘—)=

4

1 โˆ’ 12 ๐‘’๐‘’

โˆ’๐‘—๐‘—๐‘—๐‘—โˆ’

2

1 โˆ’ 14 ๐‘’๐‘’

โˆ’๐‘—๐‘—๐‘—๐‘—

โ–ซ Taking inverse Fourier transform to find impulse response

โ„Ž ๐‘›๐‘› = 412

๐‘›๐‘›

๐‘ข๐‘ข ๐‘›๐‘› โˆ’ 214

๐‘›๐‘›

๐‘ข๐‘ข[๐‘›๐‘›]

60

Example

๐‘ฆ๐‘ฆ ๐‘›๐‘› โˆ’34๐‘ฆ๐‘ฆ ๐‘›๐‘› โˆ’ 1 +

18๐‘ฆ๐‘ฆ[๐‘›๐‘› โˆ’ 2] = 2๐‘ฅ๐‘ฅ[๐‘›๐‘›]

โ€ข Determine zero-state response to ๐‘ฅ๐‘ฅ ๐‘›๐‘› = 14

๐‘›๐‘›๐‘ข๐‘ข[๐‘›๐‘›]

๐‘Œ๐‘Œ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = ๐ป๐ป ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— ๐‘‹๐‘‹ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— =2

(1 โˆ’ 12 ๐‘’๐‘’

โˆ’๐‘—๐‘—๐‘—๐‘—)(1 โˆ’ 14 ๐‘’๐‘’

โˆ’๐‘—๐‘—๐‘—๐‘—)โ‹…

1

1 โˆ’ 14 ๐‘’๐‘’

โˆ’๐‘—๐‘—๐‘—๐‘—

โ–ซ Using partial fraction expansion ๐‘Œ๐‘Œ ๐‘’๐‘’๐‘—๐‘—๐‘—๐‘— = โˆ’

4

1 โˆ’ 14 ๐‘’๐‘’

โˆ’๐‘—๐‘—๐‘—๐‘—โˆ’

2

1 โˆ’ 14 ๐‘’๐‘’

โˆ’๐‘—๐‘—๐‘—๐‘—2 +

8

1 โˆ’ 12 ๐‘’๐‘’

โˆ’๐‘—๐‘—๐‘—๐‘—

โ–ซ Taking inverse Fourier transform to find output

๐‘ฆ๐‘ฆ ๐‘›๐‘› = โˆ’414

๐‘›๐‘›

โˆ’ 2 ๐‘›๐‘› + 114

๐‘›๐‘›

+ 812

๐‘›๐‘›

๐‘ข๐‘ข[๐‘›๐‘›]

61

62

Many Thanks

Q & A

top related