chapter 2:

29
Chapter 2: Chapter 2:

Upload: renee

Post on 11-Jan-2016

54 views

Category:

Documents


1 download

DESCRIPTION

Chapter 2:. Digital Logic Design. Boolean Algebra and Logic Gates. Basic Definitions. Binary Operators AND z = x • y = x yz = 1 if x = 1 AND y = 1 OR z = x + y z = 1 if x = 1 OR y = 1 NOT z = x = x’ z = 1 if x = 0 Boolean Algebra - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chapter 2:

Chapter 2:Chapter 2:

Page 2: Chapter 2:

22 / 28 / 28

Basic DefinitionsBasic Definitions

Binary Operators

● AND

z = x • y = x y z=1 if x=1 AND y=1

● OR

z = x + y z=1 if x=1 OR y=1

● NOT

z = x = x’ z=1 if x=0

Boolean Algebra

● Binary Variables: only ‘0’ and ‘1’ values

● Algebraic Manipulation

Page 3: Chapter 2:

33 / 28 / 28

Boolean Algebra PostulatesBoolean Algebra Postulates

Commutative Law

x • y = y • x x + y = y + x

Identity Element

x • 1 = x x + 0 = x

Complement

x • x’ = 0 x + x’ = 1

Page 4: Chapter 2:

44 / 28 / 28

Boolean Algebra TheoremsBoolean Algebra Theorems

Duality

● The dual of a Boolean algebraic expression is obtained by interchanging the AND and the OR operators and replacing the 1’s by 0’s and the 0’s by 1’s.

● x • ( y + z ) = ( x • y ) + ( x • z )

● x + ( y • z ) = ( x + y ) • ( x + z )

Theorem 1

● x • x = x x + x = x

Theorem 2

● x • 0 = 0 x + 1 = 1

Applied to a valid equation produces a valid equation

Page 5: Chapter 2:

55 / 28 / 28

Boolean Algebra TheoremsBoolean Algebra Theorems

Theorem 3: Involution● ( x’ )’ = x ( x ) = x

Theorem 4: Associative & Distributive● ( x • y ) • z = x • ( y • z ) ( x + y ) + z = x + ( y + z )

● x • ( y + z ) = ( x • y ) + ( x • z )

x + ( y • z ) = ( x + y ) • ( x + z )

Theorem 5: DeMorgan● ( x • y )’ = x’ + y’ ( x + y )’ = x’ • y’

● ( x • y ) = x + y ( x + y ) = x • y

Theorem 6: Absorption● x • ( x + y ) = x x + ( x • y ) = x

Page 6: Chapter 2:

66 / 28 / 28

Operator PrecedenceOperator Precedence

Parentheses

( . . . ) • ( . . .)

NOT

x’ + y

AND

x + x • y

OR

])([ xwzyx

])([

)(

)(

)(

)(

xwzyx

xwzy

xwz

xw

xw

Page 7: Chapter 2:

77 / 28 / 28

DeMorgan’s TheoremDeMorgan’s Theorem

)]([ edcba

)]([ edcba

))(( edcba

))(( edcba

))(( edcba

)( edcba

Page 8: Chapter 2:

88 / 28 / 28

Boolean FunctionsBoolean Functions

Boolean Expression

Example: F = x + y’ z

Truth Table

All possible combinationsof input variables

Logic Circuit

x y z F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

xyz

F

Page 9: Chapter 2:

99 / 28 / 28

Algebraic ManipulationAlgebraic Manipulation

Literal:

A single variable within a term that may be complemented or not.

Use Boolean Algebra to simplify Boolean functions to produce simpler circuits

Example: Simplify to a minimum number of literals

F = x + x’ y ( 3 Literals)

= x + ( x’ y )

= ( x + x’ ) ( x + y )

= ( 1 ) ( x + y ) = x + y ( 2 Literals)

Distributive law (+ over •)

Page 10: Chapter 2:

1010 / 28 / 28

Complement of a FunctionComplement of a Function

DeMorgan’s Theorm

Duality & Literal Complement

CBAF

CBAF

CBAF

CBAF CBAF

CBAF

Page 11: Chapter 2:

1111 / 28 / 28

Canonical FormsCanonical Forms

Minterm

● Product (AND function)

● Contains all variables

● Evaluates to ‘1’ for aspecific combination

Example

A = 0 A B C

B = 0 (0) • (0) • (0)

C = 01 • 1 • 1 = 1

A B C Minterm

0 0 0 0 m0

1 0 0 1 m1

2 0 1 0 m2

3 0 1 1 m3

4 1 0 0 m4

5 1 0 1 m5

6 1 1 0 m6

7 1 1 1 m7

CBA

CBA

CBA

CBA

CBA

CBA

CBA

CBA

Page 12: Chapter 2:

1212 / 28 / 28

Canonical FormsCanonical Forms

Maxterm

● Sum (OR function)

● Contains all variables

● Evaluates to ‘0’ for aspecific combination

Example

A = 1 A B C

B = 1 (1) + (1) + (1)

C = 10 + 0 + 0 = 0

A B C Maxterm

0 0 0 0 M0

1 0 0 1 M1

2 0 1 0 M2

3 0 1 1 M3

4 1 0 0 M4

5 1 0 1 M5

6 1 1 0 M6

7 1 1 1 M7

CBA

CBA CBA CBA CBA CBA CBA CBA

Page 13: Chapter 2:

1313 / 28 / 28

Canonical FormsCanonical Forms

Truth Table to Boolean Function

A B C F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

CBAF CBA CBA ABC

Page 14: Chapter 2:

1414 / 28 / 28

Canonical FormsCanonical Forms

Sum of Minterms

Product of Maxterms

A B C F

0 0 0 0 0

1 0 0 1 1

2 0 1 0 0

3 0 1 1 0

4 1 0 0 1

5 1 0 1 1

6 1 1 0 0

7 1 1 1 1

ABCCBACBACBAF

7541 mmmmF

)7,5,4,1(F

CABBCACBACBAF

CABBCACBACBAF

CABBCACBACBAF ))()()(( CBACBACBACBAF

6320 MMMMF (0,2,3,6)F

F

1

0

1

1

0

0

1

0

Page 15: Chapter 2:

1515 / 28 / 28

Standard FormsStandard Forms

Sum of Products (SOP)

ABCCBACBACBAF

AC

BBAC

)(

CB

AACB

)(

BA

BA

CCBA

)1(

)(

)()()( BBACCCBAAACBF

ACBACBF

Page 16: Chapter 2:

1616 / 28 / 28

Standard FormsStandard Forms

Product of Sums (POS)

)( AACB

)( BBCA

)( CCBA

)()()( AACBCCBABBCAF

CBBACAF

CABBCACBACBAF

))()(( CBBACAF

Page 17: Chapter 2:

1717 / 28 / 28

TwoTwo -- Level ImplementationsLevel Implementations

Sum of Products (SOP)

Product of Sums (POS)

ACBACBF

))()(( CBBACAF

B’C

FB’A

AC

AC

FB’A

B’C

Page 18: Chapter 2:

1818 / 28 / 28

Logic OperatorsLogic Operators

AND

NAND (Not AND) x y NAND0 0 10 1 11 0 11 1 0

x y AND0 0 00 1 01 0 01 1 1

xy

x • y

xy

x • y

Page 19: Chapter 2:

1919 / 28 / 28

Logic OperatorsLogic Operators

OR

NOR (Not OR)

x y OR0 0 00 1 11 0 11 1 1

x y NOR0 0 10 1 01 0 01 1 0

xy

x + y

xy

x + y

Page 20: Chapter 2:

2020 / 28 / 28

Logic OperatorsLogic Operators

XOR (Exclusive-OR)

XNOR (Exclusive-NOR) (Equivalence)

x y XOR0 0 00 1 11 0 11 1 0

x y XNOR0 0 10 1 01 0 01 1 1

xy

x Å yx � y

x y + x y

xy

x Å yx y + x y

Page 21: Chapter 2:

2121 / 28 / 28

Logic OperatorsLogic Operators

NOT (Inverter)

Buffer

x NOT

0 1

1 0

x Buffer

0 0

1 1

x x

x x

Page 22: Chapter 2:

2222 / 28 / 28

Multiple Input GatesMultiple Input Gates

Page 23: Chapter 2:

2323 / 28 / 28

DeMorgan’s Theorem on GatesDeMorgan’s Theorem on Gates

AND Gate

● F = x • y F = (x • y) F = x + y

OR Gate

● F = x + y F = (x + y) F = x • y

Change the “Shape” and “bubble” all lines

Page 24: Chapter 2:

2424 / 28 / 28

HomeworkHomework

Mano

● Chapter 2

♦ 2-4

♦ 2-5

♦ 2-6

♦ 2-8

♦ 2-9

♦ 2-10

♦ 2-12

♦ 2-15

♦ 2-18

♦ 2-19

Page 25: Chapter 2:

2525 / 28 / 28

HomeworkHomework

Mano2-4 Reduce the following Boolean expressions to the indicated

number of literals:

(a) A’C’ + ABC + AC’ to three literals

(b) (x’y’ + z)’ + z + xy + wz to three literals

(c) A’B (D’ + C’D) + B (A + A’CD) to one literal

(d) (A’ + C) (A’ + C’) (A + B + C’D) to four literals

2-5 Find the complement of F = x + yz; then show thatFF’ = 0 and F + F’ = 1

Page 26: Chapter 2:

2626 / 28 / 28

HomeworkHomework

2-6 Find the complement of the following expressions:

(a) xy’ + x’y (b) (AB’ + C)D’ + E

(c) (x + y’ + z) (x’ + z’) (x + y)

2-8 List the truth table of the function:F = xy + xy’ + y’z

2-9 Logical operations can be performed on strings of bits by considering each pair of corresponding bits separately (this is called bitwise operation). Given two 8-bit stringsA = 10101101 and B = 10001110, evaluate the 8-bit result after the following logical operations: (a) AND, (b) OR, (c) XOR, (d) NOT A, (e) NOT B.

Page 27: Chapter 2:

2727 / 28 / 28

HomeworkHomework

2-10 Draw the logic diagrams for the following Boolean expressions:

(a) Y = A’B’ + B (A + C) (b) Y = BC + AC’

(c) Y = A + CD (d) Y = (A + B) (C’ + D)

2-12 Simplify the Boolean function T1 and T2 to a minimum number of literals.

A B C T1 T2

0 0 0 1 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 0 11 0 1 0 11 1 0 0 11 1 1 0 1

Page 28: Chapter 2:

2828 / 28 / 28

HomeworkHomework

2-15 Given the Boolean functionF = xy’z + x’y’z + w’xy + wx’y + wxy

(a) Obtain the truth table of the function.(b) Draw the logic diagram using the original Boolean expression.(c) Simplify the function to a minimum number of literals using Boolean algebra.(d) Obtain the truth table of the function from the simplified expression and show that it is the same as the one in part (a)(e) Draw the logic diagram from the simplified expression and compare the total number of gates with the diagram of part (b).

Page 29: Chapter 2:

2929 / 28 / 28

HomeworkHomework

2-18 Convert the following to the other canonical form:

(a) F (x, y, z) = ∑ (1, 3, 7)

(b) F (A, B, C, D) = ∏ (0, 1, 2, 3, 4, 6, 12)

2-19 Convert the following expressions into sum of products and product of sums:

(a) (AB + C) (B + C’D)

(b) x’ + x (x + y’) (y + z’)