chapter 6. the thermodynamics of solutionsocw.nctu.edu.tw/upload/classbfs1210113256155571.pdf ·...

21
物理化學()─應用化學系 李遠鵬老師 1 Chapter 6. The Thermodynamics of Solutions 6.1 Ideal Solutions ( , ) ( , ) R ln for component definition, entropy of mixing Note , standard state pure substance at , 1 , ( , ) ( , ) i i i i i i T P T P T x T P x T P T P 每一 (可視為 也可用 觀念導出來) 此時 即為 (1) Raoult’s Lawi i i P Px * pure substance ( ) mixture i i i i i P P P P P 先說明 蒸汽壓 課本用 蒸汽壓 ideal solution Raoult's law 遵守 g g R ln for gas (ideal gas) ( , ) R ln for solution ( solution vapor pressure ) i l i P T P T P T x P 證明 :基本知識: ☆ 但 P 未必就是 P (vapor pressure of pure liquid),不過 μ P-dependence 很小 g g ( , ) ( , ) ( ) liquid Pure liquid , = (, ) R ln Solution , , = i l i i i i i l T P T P V P P P P T P T P P 時, 蒸汽壓為 時 蒸汽壓為 l l ( , ) R ln x R ln (, ) ( ) R ln R ln R ln R ln R ln i i i i i i i i i i i i i i i i i i i i P T P T T P P T P V P P T x T P P P T T x T P P P Px (2) ideal solution mixing ideal gas 相似 可忽略 A P B P A B P x B

Upload: truongcong

Post on 09-Aug-2018

243 views

Category:

Documents


0 download

TRANSCRIPT

  • ()

    1

    Chapter 6. The Thermodynamics of Solutions 6.1 Ideal Solutions

    ( , ) ( , ) R ln for component definition, entropy of mixing

    Note , standard state pure substance at , 1 , ( , ) ( , )

    i i i

    i i i

    T P T P T x

    T Px T P T P

    ( )

    (1) Raoults Law i i iP P x

    *pure substance ( )mixture

    i i

    i i

    i

    P PP PP

    ideal solution Raoult's law

    g g R ln for gas (ideal gas)

    ( , ) R ln for solution ( solution vapor pressure )

    i

    l i

    PT P

    T P T x P

    P P (vapor pressure of pure liquid) P-dependence

    g

    g

    ( , ) ( , ) ( ) liquid

    Pure liquid , =

    ( , ) R ln

    Solution , , =

    i l

    ii i i

    i l

    T P T P V P PP

    PT P T P

    P

    ,

    l l

    ( , ) R ln x R ln

    ( , ) ( ) R ln R ln

    R ln R ln R ln

    ii i i i

    ii i i i i i

    i ii i i

    i i i

    PT P T T P

    PT P V P P T x T P

    P PT T x TP P

    P P x

    (2) ideal solution mixing ideal gas

    AP

    BP

    A B

    P

    xB

  • ()

    2

    ( ln)

    1 1

    P, n P, n

    ln , ln

    ln R ln

    R ln

    c c

    so i i i i i i i ii i

    i ii i i i i

    i i i i i i i

    G n n RT x RT x

    S S R x S xT T

    H H H T S T x

    T T

    R ln

    i i i i

    i ii i i

    T S x T S

    V V VP P

    (unmix) mix

    1

    mixmix i mix soln pure

    1P

    R (ln )

    R ln

    c

    i i i ii

    c

    ii

    G n G T n x

    GS n x S S ST

    mix 2P

    0 , H TH H G T ST T

    mix soln pureT

    0 iiV V V V VP

    mix

    (3) Phase diagram of 2-component ideal solutions Pressure-composition phase diagrams

    " " liq.

    gas

    P

    A B A B

    T (v) (v)A A B A B B A B

    A T B

    B T A

    T

    ( ) ( )

    0 ,

    0 , ,

    P P P PPP x P P P x P P

    x P Px P P

    x P

    T A B A B

    (v) TA B A B

    B (v)

    B T A B B A B T

    ( )

    ( )

    ( )

    P P P P xPP P P xP

    P P P P P P x P

    P

    B

    g

    0xA

    B

    AP

    BP

    l l +g

    xB xB = 1

    composition of vapor

    (v) BB B

    T

    Px xP

    T A A B B

    T A

    T A B A B B B A

    (v) A A AA

    T A A B B

    For gas phase

    ( ) ,

    P P x P xP PP P P P x xP P

    P P xxP P x P x

    A

    (v) B B BB B

    T A A B B

    x

    P P xx xP P x P x

    xA, xB soln. mole fraction

    ,

  • ()

    3

    B B B A

    (v)A A A A A

    B

    A A

    BB A(v) (v)

    A A A A A

    A

    (1 )1 1 1

    1 1 (1 )

    1 1 1 1 1 (1 ) , , 1 1

    P x P xx P x P x

    PP x

    P P Px P x x x

    x

    (v) (v)A B Bx x x ,

    phase diagram ( T)

    (a) B A280 Torr, 100 Torr at 60 C, A 2-Me-propanol, B 2-propanolP P

    B A A B T(v) (v)A B

    0.5 , 50 Torr, 140 Torr, 190 Torr

    50/190 0.26 , 140/190 0.74

    x x P P Px x

    (b) T B160 100 60 1 160 Torr, 280 100 180 3

    P x

    l

    binary ideal solution (1) phase rule f : c p 2 4 p

    A B

    A B

    p 1 , f 3, , , ( )p 2 , f 2, ( )p 3 , f 1, ( )

    P T x xP T x xP T

    (2) (solution) liquid 1 , vaporize, B1 , ~0.74x ( B volatile) (3) , liquid 1 2 vapor 1 2 liq. vapor mole lever rule (4) liquid, 2 , vapor 2 liquid (5) vaporize

    l + g region nl mole liquid xl

    g gn mole vapor x

    x

    g g g

    g

    g

    (n n )

    l l l

    l

    l

    x n x n xx xn

    n x x

    rulelever

    l gxxl

    x

    g

    curve liquidus

    BBx 1

    composition curve

    P

    A0x B

    1

    2

    1

    2

    g100

    280

    tieline

  • ()

    4

    (v)B

    12803 0.58

    160x

    liq. vapor mole (c) solution vaporize?

    T (v)B

    (v) B TB B

    T

    280 100 28000 28000 280 180 280 90 190

    280 100 0.5 , 280 100

    Px

    x Px xP

    ,

    :

    B T

    B

    280 0.5 180 100 T

    x Px P

    B T B

    T

    100 100 560 , 560 180 380

    56000 147.4 Torr 380

    x P x

    P

    Temperature-composition phase diagrams ( Bvs. T x )

    Condensation curve (v) (v)A B

    570 0.782 0.585 , 0.415760x x

    pressure-Constant distillation:

    B pure more volatile component

    B 0.22x

    A A B A

    BA

    A B

    A

    B

    A

    Boiling point curve760 (1 )

    760

    at 100 C, 570 Torr (methyl propanol)

    1440 Torr (propanol-2)760 1440 570 1

    P x P xPx

    P PPP

    x

    680 0.782

    440 870

    T

    82.3

    condensation curve

    vapor

    liquid

    curve pt. boiling

    0.22 0.42

    Torr 760P

    A B

    T

    108.5

    100

  • ()

    5

    ( solid, liquid, vapor)3-dimensional diagram

  • ()

    6

    6.2 Henrys Law and Dilute Nonelectrolyte Solution for non-ideal solution ideally dilute solution

    1. Henrys Law Raoults law x1 0 (for 2) x2 0 (for 1), nearly pure component ideal solvent in a dilute solution obeys Raoults law Henrys law x2 0 (for 2) solute in a dilute solution obeys Henrys Law

    (m) , standard state

    as in ideal solution

    i i

    i i i

    i

    m k kP k x

    P

    oi(soln) (vap) (gas) o

    o(gas) o

    o(gas) o

    (H)

    R lnP

    R lnP

    R ln R lnP

    R ln ( ) standard state

    ii i

    i ii

    ii i

    i i

    PT

    k xT

    kT T x

    T x

    vapor pressure pure substance ideal solution

    ik

    Henrys Law ideal soln. reference state

    (H)i

  • ()

    7

    Solvent obeys Raoults law solute obeys Henrys law Gibbs-Duhem eq.

    Gibbs-Duhem 1 1 2 2 d d 0n n , 1 21 22 2T, P T, P

    0x xx x

    2 2 2 22

    2 2 2 2 2T, P T, P

    1 1 11 1 1

    2 1 1T, P T, P T, P

    11 1

    1 1T, P

    ' '1 1 1 2

    '1 1 1 1

    ln RRR = , R

    , R 0

    Rd d

    1 1

    1

    x x TTT x Tx x x x x

    x x x Tx x x

    Tx xx x

    x x x x

    x x

    '1

    1 1 1 1

    R ln ln 1

    R ln , Raoult's law

    T x

    x T x

    (1) Nernst distribution law 2 phase ()

    (II)

    d (I) i

    i

    xKx

    (I) (H) (I)

    (I)

    (II) (H) (II)i(II)

    ln

    lni i i

    i i

    RT x

    RT x

    (I) (II) (H) (H) (II) (I)(I) (II) d, R ln ln R lni i i i i iT x RT x T K

    (H) (H) (I) (I)(I) (II)

    d (II) (II)exp exp lnRi i i i

    i i

    k kKT k k

    (2) 2CO , (H) 1m 29.4 bar mk

    2

    (H)CO m=1 bar 1P k m ,

    0.034 mm

  • ()

    8

    6.3 Activity and activity coefficients Raoults law Henrys law

    1. Non-ideal solution-activity

    o R lni i iT a ia ( fugacity vs. P)

    ai mole fraction xi o o o/ P , / m , / ci i iP m c

    dimension a =1 for standard state activity , ideal ( reference state)

    (1) for a pure solid or liquida standard state pure substance at oP (1 bar) 1 for 1 bara P

    o o o

    o

    P , ( ) ( P )

    R lni i i

    i i

    P P V PT a

    o( P )exp 1

    Ri

    iV Pa

    T

    5

    2 ( )1.805 10 (2 1) 101325 2 atm, 298.15 K H O exp

    8.3145 298.15 exp(0.0007378)

    l a

    1.000738 1 100 atm, 1.074

    aa

    (2) for an ideal gasa

    o oideal gas: R ln Pi

    i iPT

    oPi

    iPa

    (3) for a non-ideal gas , i ia P f

    o(real) , = , ideal gas 1P (ideal)

    i iii i i

    i i

    a ffaa P

    o oR ln Pi i

    i iPT , fugacity

    (4) for an ideal solutiona :

    o , i i i ia x solid solid

    solute reference state supercooled (metastable) naphthalene in benzene

    activity coefficient

  • ()

    9

    og

    og

    ideal R ln R ln

    pure : R ln i i il i

    i i il

    T P T x

    T P

    og

    ig

    g

    Raoult's law R ln R ln

    R ln

    " ", R ln , pure substance

    i i i il i

    oi il

    ol

    T P x T x

    T P

    i T P

    liq. vap.

    (5) for a non-ideal solutiona (A) Convention I

    solvent solute, mole fraction std. state pure substance at the T, P of the solution.

    solution gas

    o oog

    o (I) (I)g o

    R ln R ln P ||

    R ln R ln , , P

    iil i i

    i ii i i i i i

    i

    PT a T

    P PT T a P P a aP

    (I)

    (ideal)

    Raoult's law

    compare,

    i i ii

    i i i i

    a P Px P x P

    standard P at the pressure of the solution, P

    a ref., ideal mole fraction ideal

  • ()

    10

    x 0.25 , vap pressure 60 torr for pure liquid 48 torr for solution

    48 0.8 600.80 3.2 0.25

    48 48 60 0.25 15

    a

    1

    =3.2

    (I) (H)2 2 2 2

    (I) (H)2 2 2 2

    solute , obey Henry's law, convention I, /

    /

    a k x Pk x P

    2 (H)

    2 2 2(I)1 1 1 1 1(I)1 1 1 1 1

    /

    solvent , obey Raoult's law, /

    / 1

    x k Pa P x P x

    P x P x

    (B) Convention II solvent solute, solvent 1, solute 2

    1 solvent convention I

    (II) (I) 11 1

    1 1

    PP x

    2 solute Henrys law derivation (H)

    o(II) o(H) o(g)oln P

    ii i i

    kRT

    o(II) (II)R lni i iT a ,

    (H)o(g) (II) o(g)

    o o R ln R ln R lnP Pi i

    i i ik PT T a T

    (II) Henry's law i i i i iP k a x a

    (II)

    (II)(H) 1i ii

    i i i

    a Px k x

    1 convention o(II) R lni i iT x

    solute obey Henrys law, convention

    (II) (H) (H)2 2 2 2 2/a k x k x

    (6) Express activity coefficients with other concentration expressions (A) molality: m 1000g solvent mole solutem , m (1 m)

  • ()

    11

    12 1 1

    1 1

    1 22 1 1 1 1

    2 1 1 1

    1 , , solvent 1 1

    1 , , if 1

    Mmx x Mm mM M

    M xm m x x M m M m xx x x M

    (in kg)

    (H)2 2 1 1

    (m) (m) (H)2 2 2 1 1

    Henry's law

    ,

    P k mM xk m k k M x

    (II) (II)2 2 2 2

    (II) (II) ( ) (m)2 2 1 1 2 1 2

    (II)(II) 12 1

    2 1

    o(m) (m)

    R ln

    R ln , ( 1, 1m , 1 )

    R ln m R ln , m 1 mol kgm

    i i

    T xT mx M m x

    x mT M T

    a

    (m) (m) (m) (II)2 1 R ln ( ) m

    molality activity coefficient

    mT x

    (B) molarity(concentration)description, M

    2 1

    o(c)o(c) 12

    2 2

    o(II) (II) (II) o(c)2 2 2 2 1 2

    (II) (II)o(II) o(II)2 22 1 2 1

    1

    ( in liter)1

    R ln , c 1 mol Lc

    R ln , ( 1, =1c , )

    R ln c R ln c R lnc

    cx cV Vc

    VcT

    T cV c V V

    cVT V T V TV

    1 cV c

    V

    (II)o(c) o(II) (c) 22 2 1 2

    1

    R ln c , VT VV

    o(c)2 (c)

    2

  • ()

    12

    6.4 The activity of Nonvolatile Solutes nonvolatile , (1) Gibbs-Duhem, (2) Debye-Hckel, (3)

    (1) isopiestic method KCl(aq.) reference solution (A), solution (B) ,

    solvent 1, solute 2, (A) (B) (A) (B)1 1 1 1 1g a a

    (B) (A) (A) (A)

    (B) (A)1 1 1 11 1(B) (B) (B)

    1 1 1

    , a a xx x x

    1 1 2 2d ln d ln 0x a x a (Gibbs-Duhem, 1 1 2 2d d 0x x )

    Convention II, 1 1 1 2 2 2, ( "(II)")a x a x d ln di i ix x x

    1 1 1 2 2 2

    1 1 2 2

    1 12 1 1

    2 1

    R d ln R d R d ln R d 0 d ln d ln 0

    d ln d ln d ln1

    x T T x x T T xx x

    x xx x

    11

    1 1 1 1

    ' 12 1 1"

    1

    " 1, '

    ln ' d ln1

    x

    x

    x x x xxx

    x

    , (2) Debye-Hckel Theory

    KCl(aq.) soln.

    A B

  • ()

    13

    6.5 Thermodynamic Functions of Nonideal Solutions 1. Partial molar quantities

    (I)

    (I)(I)

    P, n P, n P, n

    (I)(I)

    P, n

    (I)(ideal) (I)

    P, n

    R ln R ln

    lnR ln R

    ln R ln R ln R

    ln R ln R

    i i i i i i

    i i i ii i i

    ii i i

    ii i

    i i

    T a T x

    xS x TT T T

    S x TT

    S TT

    H

    (I)

    2

    P, n

    (I)

    T, n

    ln R

    ln R

    i

    ii i

    ii i

    TS

    H H TT

    V V TP

    2. Thermodynamic Function of Nonideal Solution

    osoln

    1

    mix1

    1

    idealmix

    1E

    (actual) (ideal)

    R ln

    R ln

    R ( ln ln )

    R ln

    c

    i i ii

    c

    i iic

    i i i ii

    c

    i ii

    G n T a

    G T n a

    T n x n

    G T n

    G G G

    excess Gibbs energy

    E

    P, n

    E 2mix

    P, n

    Emix

    T, n

    ln R ln R

    ln R

    ln R

    ii i i

    ii

    ii

    S n T nT

    H H T nT

    V V T nP

    3. Enthalpy change of solution

    (1) integral heat of solution

    mix mixint, 1 int, 2

    1 2

    , H HH Hn n

    (2) differential heat of solution for solute

  • ()

    14

    mixdiff, 2 2 2

    2 T, P, n'

    HH H Hn

    4. Tabulated thermodynamics properties for solutes

    o

    o

    , soln. (elements)

    m G , soln. (elements)

    f i

    f i

    H i H H

    i G

    Table A8 ao aqueous solute, not ionized ai aqueous electrolyte solute, ionized

  • ()

    15

    6.6 Phase Diagrams of Non-ideal mixtures

    1. Liq.-vap. Phase diagram distillation-theoretical plate

    Fig. 6.11 Fig. 6.12 Fig. 6.13 ethanol-diethyl ether, 20 positive deviationRaoults law (curve)

    ethanol-diethyl ether, 1.84 atm boiling point ideal ( curve)

    ethanol-benzene positive deviation azeotropes () , , phase

    Fig. 6.14 Fig. 6.15 Fig. 6.16 acetone-CHCl3 negative deviation azeotropes distill excess G negative A-B negative deviation dioxane/water positive A-B HCl/H2O

    liq. phase Tcupper critical soln. pt. upper consolute pt. Tc 1-phase upper lower Tc, nicotine, Tc=61.5 233.0 upper thermal motion lower complex, triethylamine

    Positive deviation 2-phase liq.-vap. 97.92 liq. phase, 1 gas phase f232=1 (P or T ) steam distillationfurfural b.p.~160 , 97.9 boil, , 20, x0.78

  • ()

    16

    4% , C78 OH 80% , C108.6 2 2. Solid-liq. phase diagram

    Au-Cu zone refining ,zone clear

    Fig. 6.17

    Fig. 6.18 Fig. 6.19 Au-Cu solid solution and eutectic point

    cooling curve phase transition of pure substance eutectic point DSCdifferential scanning calorimetry, Cp

    xylene-bromobenzene solid insoluble solder: 67% tin 33% Pb, 183 C /: 223% NaCl 77% H O, 21.1 C

    Fig. 6.20

  • ()

    17

    3. Solid-liq. phase diagram with compounds

    aniline (A) and phenol (P) AP (11 of AP) , A(s) P(s) AP , solution (congruent melting),

    Fig. 6.21

    LaCu6, LaCu4, LaCu2 LaCu congruent meltingLaCu2 LaCu6 incongruent meltingLaCu LaCu4 (, ) A, B peritectic point, (f=1) 735 C 4 LaCu 551 C LaCu

    Fig. 6.22

    4. 3-component phase diagram

    Fig. 6.23 Fig. 6.24 Fig. 6.25 (x1, x2, x3) x1+x2+x3

    H2O, acetone, ethyl acetate , 30 1atm. Tie line

    compound

    A

    B

  • ()

    18

  • ()

    19

    6.7 Colligative (tied together) Properties () , identity , (1) FP depression (2) BP elevation (3) vapor pressure lowering (4) osmotic pressure (1) FP depression solvent A, A

    A(l) A(s)

    A(l) A A(s)

    at FP

    R ln for solutionT a

    A( ) A A(s)

    A( ) A A(s) 2

    A( ) A(s)2 2

    A( ) (s)

    1 ideal solution , R ln

    R ln ,

    d ln R d

    d ln d R

    l

    l

    l A

    l AA

    T x

    HTT x TT T

    H HxT T T

    H HxT

    fus2 2R

    HT T

    A

    fus

    fusA 1

    fusA

    2

    1 ln R

    1 1 ln R

    Tx

    T

    H T

    HxT

    HxT T

    A

    fus

    1 11 0 ,

    0 FP depression

    x T TT T

    H

    BP elevation, Clausius-Clapeyron Eq. 21 2 1

    1 1ln R

    P HP T T

    1 1 1, P P T T

    2 1 2 , P P x

    (s) (soln) AA A , R ln R ln G T K T x

    solubility xA=1 equation curve A solubility ( component B)

    solvent fusH solute

    T

    AT

    A B

    ideal solution solute non-ideal solution

    T normal FP

  • ()

    20

    A A B B 3 1 , 1 , x x x x A B Bln ln (1 )x x x

    fus B , RH T T x T T T

    TT

    fus BB B B A2

    BA

    22

    B A B fA Bfus fus

    2A

    fAfus

    2

    ff

    1R

    RR

    R ( SI unit)

    R ( 1000 g solvent )

    H mT x x m MT m

    MTTT x M m K m

    H HM TK

    HT H

    2

    f 3

    1.987 (273.15): 1g 80 cal 1.8680 10

    H

    (2) BP Elevation FP depression

    A(l) A A(g)

    2 2A b b

    bA B B Bvap vap

    R ln at BP

    R ln 1 at BPR R

    T xT P P

    M T TT K m m mH

    (3) Vapor Pressure lowering

    total solvent solute solvent

    A A

    if solute non-volatile

    if ideal solution

    P P P Px P

    A A A B AP P x P x P

    (4) Osmotic Pressure

    A A A

    =

    ( , ) ( , ) R ln

    T P T P T a

    A A A A( , ) ( , ) dP

    PT P T P V P V

    A A BR ln RV T x Tx

    BA

    Rx TV

  • ()

    21

    B BB A A B B A AA B A

    , n nx V n V n V n Vn n n

    B BR R van't Hoff Eq.n T c TV

    A B A

    B A A

    ideal i R Note: R R ln

    R ( )

    : Cl 0.55 , Na 0.47 , 1

    1 0

    c T V x T T a

    V n T V n V

    M M c M

    .082 300 24.6 atm

    Reverse Osmosis 1 membrane 200 psi

    200 13.6 atm 0.082 30014.7 0.55

    c

    c M

    2 RO work V

    3 18.31413.6 18 10 25 J mol0.082

    1v 539 18 4.184 40600 J molH

    catridge , efficiency,

    soln diluted 2 soln ideal 1

    aA , a of solvent

    ( solute)