computation of entropic measure-valued solutions for euler

Computation of entropic measure-valued solutions for Euler equations Eitan Tadmor Center for Scientific Computation and Mathematical Modeling (CSCAMM) Department of Mathematics, Institute for Physical Science &Technology University of Maryland Laboratoire Jacques-Louis Lions Universite Pierre et Marie Curie, June 17 2016 Collaborators: U. Fjordholm R. K¨ appeli S. Mishra

Upload: others

Post on 04-Nov-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Computation of entropic measure-valued solutions for Euler

Computation of entropic measure-valued solutions forEuler equations

Eitan Tadmor

Center for Scientific Computation and Mathematical Modeling (CSCAMM)Department of Mathematics, Institute for Physical Science & Technology

University of Maryland

Laboratoire Jacques-Louis Lions

Universite Pierre et Marie Curie, June 17 2016

Collaborators: U. Fjordholm R. Kappeli S. Mishra

Page 2: Computation of entropic measure-valued solutions for Euler

Prologue. Perfect derivatives and conservative differences

ux︸︷︷︸↓

∫ b

a

uxdx = boundary terms of u

uν+1 − uν−1

2∆x

∑(uν+1 − uν−1

2∆x

)∆x = boundary terms

uux︸︷︷︸↓

∫ b

a

12 (u2)x︷︸︸︷uux dx = boundary terms of u

(uν+1 − uν−1

2∆x

)

telescoping sum︷ ︸︸ ︷∑(uνuν+1 − uν−1uν

2∆x

)∆x = quadratic boundary terms

• but . . . u3ux︸︷︷︸↓

∫ b

a

14 (u4)x︷︸︸︷u3ux dx = quartic boundary terms of u

u3ν

(uν+1 − uν−1

2∆x

) ∑ no perfect deriv.︷ ︸︸ ︷(

u3νuν+1 − uν−1u

2∆x

)∆x 7→ no cancellation

Page 3: Computation of entropic measure-valued solutions for Euler

Prologue. Perfect derivatives and conservative differences

(?) Set ux ≈3

4∆x

(u4ν+1 − u4

ν

u3ν+1 − u3

ν

−u4ν − u4

ν−1

u3ν − u3

ν−1

)∑ 3

4∆x

(u4ν+1 − u4

ν

u3ν+1 − u3

ν

−u4ν − u4

ν−1

u3ν − u3

ν−1

)∆x 7→ boundary terms of u

∑ 3

4∆xu3ν

(u4ν+1−u4

ν

u3ν+1 − u3

ν

−u4ν−u4

ν−1

u3ν − u3

ν−1

)∆x =

= −∑ 3

4∆x

(u3ν+1 − u3

ν

)( u4ν+1−u4

ν

u3ν+1 − u3

ν

)∆x 7→ boundary terms of u4

• How do we come up with (?) ?• Can we conserve general multipliers η′(u)ux = η(u)x• Applications — entropic solution for nonlinear conservation laws

Page 4: Computation of entropic measure-valued solutions for Euler

Strong and weak entropic solutions

• Euler equations with pressure law p := (γ − 1)(E − ρ

2 (u2 + v2)):

∂t

ρρuρvE

+∂

∂x1

ρu

ρu2 + pρuv

u(E + p)

+∂

∂x2

ρvρuv

ρv2 + pv(E + p)

= 0

• Nonlinear conservation laws: ut +∇x · f(u) = 0; u := (ρ, ρu, ρv ,E )>

balance of conservative variables u over spatial variables x = (x1, x2, ...)

• Strong solutions – pointwise values u(x, t)• Weak solutions – give up the certainty in pointvalues

Instead – observe the cell averages u(x, t) :=1

∆x

∫ x+∆x/2

x−∆x/2u(y, t)dy

d

dtu(x, t)+

1

∆x

[∫ t+∆t

τ=tf

(u(x+

∆x

2, τ)

)dτ−

∫ t+∆t

τ=tf

(u(x−∆x

2, τ)

)dτ

]=0

• Compute cell averages and numerical fluxes:d

dtuν(t) +

fν+ 12− fν− 1

2

∆x= 0

Page 5: Computation of entropic measure-valued solutions for Euler

Weak solutions and entropy stability

⟨η′(u), ut +∇x · f(u)

⟩= 0

entropy︷ ︸︸ ︷η(u)t +

perfect derivatives?︷ ︸︸ ︷⟨η′(u),∇x · f(u)

⟩= 0

• η(u) is an entropy iff⟨η′(u) , ∇x · f(u)

⟩= ∇x · F (u)

• Entropy stability: η(u)t +∇x · F (u)

= 06 0

• Euler equations – specific entropy S = ln(pρ−γ):

η(u)︷ ︸︸ ︷(−ρS)t +∇x ·

F (u)︷ ︸︸ ︷(−ρuS)

= 06 0

• Computation – impose the entropy stability requirement

d

dtη(uν(t)) +

Fν+ 12− Fν− 1

2

∆x

= 06 0

Page 6: Computation of entropic measure-valued solutions for Euler

2D radial shock tube problem

• Radial initial data u0(x) =

uL, |x | 6 r0

uR , |x | > r0

+ ε(δu0)(x)

• Perturbation of steady-state ε = 0:

[(δu0)(x)(δv0)(x)

]=

[sin(2πx1)sin(2πx2)

]• Convergence: Fix ε = 0.01 keep mesh refinement...ρε at t = 0.24:

(a) 1282 (b) 2562 (c) 5122

64 128 256 512

10−2

(d) ‖u∆x − u∆x/2‖L1

Figure: Approximate density of the perturbed Sod problem (ε = 0.01) computed with TeCNO2

scheme at t = 0.24

• Stability as ε ↓ 0 . . .

Page 7: Computation of entropic measure-valued solutions for Euler

Kelvin-Helmholtz instability

• Initial state of three layers u0(x) =

uL, H1 6 x2 < H2

uR , 0 6x2 6H1 or H26 x26 1

fixed uL,R ; perturbed interface Hj(x, ω) =j

2− 1

4+ εYj(x, ω), j = 1, 2

• ε = 0 : uL1(x2)[ 14, 3

4] + uR1(x2)[0, 1

2]∪[ 3

4,1] is an entropic steady state

• Perturbed state — u0(x, ω) = uL1(x2)[H1,H2] + uR1(x2)[0,H1]∪[H2,1]:

Yj(x, ω) =∑n

an(ω) cos(bn(ω) + 2nπx1)∑

an = 1 so that |εYj | 6 ε

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

density , sample 1, t = 0

x

y

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

density , sample 1, t = 0

x

y

KH initial data: amplitude perturbation (left) and phase perturbation (right) with ε = 0.01

• Lack of convergence: Fix ω, ε = 0.01 keep mesh refinement...ρε at t = 2:

(a) 1282 (b) 2562 (c) 5122 (d) 10242

Page 8: Computation of entropic measure-valued solutions for Euler

The notion of entropic weak solution is not enough (d > 1)

64 128 256 51210

−2

10−1

100

(e) L1 rates vs. number ofgridpoints with ε = 0.01

0.0005 0.001 0.0025 0.01

0.1

0.2

0.4

(f) L1 error with respect to ε,at a fixed 10242 mesh

Figure: L1 differences in density ρ at time t = 2 for the Kelvin-Helmholtz problem

• These are NOT numerical artifacts but...contemplate lack of uniqueness [De Lellis, Szekelyhidi, E. Chiodaroli, O. Kreml, et. al.]

“Just because we cannot prove that compressible flows with prescribedinitial values exist doesn’t mean that we cannot compute them” [Lax 2007]

• The question is what information is encoded in our computations?

Page 9: Computation of entropic measure-valued solutions for Euler

Answer: Young measures and measure valued solutions

• Recall weak convergence: un u∞ and f(un) f∞What is the relation f∞ and f(u∞)?

• f∞(x, t) depends linearly and positively on f:

hence f∞(x, t) = 〈νx,t , f〉 in terms of measure ν = νx,t• Complete description in terms of Young measure νx,t Luc Tartar

Certainty: strong convergence with Dirac Mass νx,t = δu∞(x,t) f∞= f(u∞)

• Entropy measure valued (EMV) solutions: u(x, t) νx,t :

ut +∇x · f(u) = 0 ∂t〈νx,t , id〉+∇x · 〈νx,t , f〉 = 0

η(u)t +∇x · F (u) 6 0 ∂t〈νx,t , η〉+∇x · 〈νx,t ,F 〉 6 0

• νx,t is the (weighted) probability of having the value 〈νx,t , id〉 at (x, t)

• Measure valued solutions –give up the certainty in a given solutionInstead – observe averages in configuration space

Back to weak solutions — νx,t = δu(x,t)

(certainty of strongly convergent averages) Ron DiPerna

Page 10: Computation of entropic measure-valued solutions for Euler

Young measures as quantifiers of uncertainty

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

300

(a) t = 0

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

300

(b) t = 0.5

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

300

(c) t = 1

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

300

(d) t = 1.5

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

300

(e) t = 2

Figure: The approximate PDF for density ρνx,t at x = (0.5, 0.7).

• More about this later . . .• how do we compute these Entropic Measure-Valued solutions (EMVs)?

Page 11: Computation of entropic measure-valued solutions for Euler

Computing Entropy Measure Valued (EMV) solutions

• (Formally) arbitrarily high-order of accuracy;

• Entropy stability — as a selection principle

• Essentially non-oscillatory in the presence of discontinuities;

• Convergence for linear systems;

• How to realize (the configuration space of) EMVs?

• Computationally efficient;

The class of the entropy Conservative Non-Oscillatory (TeCNO) schemes1

which compute ”faithful” samples required for the ensemble of EMVs1b ,1c

1Fjordholm, Mishra, ET, Arbitrarily high-order accurate entropy stableschemes ...., SINUM 2012

1bFjordholm, Kappeli, Mishra & ET, Construction of approximate entropy measurevalued solutions for hyperbolic systems of conservation laws, FoCM (2015)

1cFMT, On the computation of measure-valued solutions, Acta Numerica (2016)

Page 12: Computation of entropic measure-valued solutions for Euler

Entropy inequality: PDEs → numerical approximations

⟨η′(u), ut + f(u)x

⟩= 0

⟨η′(u), f(u)x

⟩=F (u)x

=⇒ η(u)t + F (u)x

= 06 0

• Semi-discrete approximations:

d

dtuν(t) +

1

∆x

[fν+ 1

2− fν− 1

2

]= 0 fν+ 1

2= f(uν−p+1, . . . ,uν+p)

• Entropy conservative discretization — given η find f∗ s.t.

d

dtuν(t) +

f∗ν+ 1

2

− f∗ν− 1

2

∆x= 0

?

d

dtη(uν(t)) +

Fν+ 12− Fν− 1

2

∆x

= 06 0

Does⟨η′(uν) , f∗

ν+ 12

− f∗ν− 1

2

⟩ ? Fν+ 1

2− Fν− 1

2

so that =⇒∑ν

η(uν(t))∆x

=6

∑ν

η(uν(0))∆x

Page 13: Computation of entropic measure-valued solutions for Euler

Entropy variables and entropy conservative schemes

• Fix an entropy η(u). Set Entropy variables: v ≡ v(u) := η′(u).

Convexity of η(·) implies that u←→ v is 1-1: vν = η′(uν) . . .

• Entropy conservation:⟨η′(uν) , f∗

ν+ 12

− f∗ν− 1

2

⟩ ?= Fν+ 1

2− Fν− 1

2

perfect difference︷ ︸︸ ︷⟨vν , f

∗ν+ 1

2− f∗

ν− 12

⟩if and only if

perfect difference︷ ︸︸ ︷⟨vν+1 − vν , f

∗ν+ 1

2

⟩:

• Entropy conservative flux:⟨vν+1 − vν , f∗ν+ 1

2

⟩= ψ(vν+1)− ψ(vν)

• Entropy flux potential: ψ(v) :=⟨v , f(v)

⟩− F (u(v))

Abbreviation — entropy conservative schemes: 〈∆vν+ 12, f∗ν+ 1

2〉 = ∆ψν+ 1

2

Page 14: Computation of entropic measure-valued solutions for Euler

#1. Scalar examples: f ∗ν+ 12

=ψ(vν+1)− ψ(vν)

vν+1 − vν

• Toda flow: ut + (eu)x = 0 with Exp entropy pair: (eu)t + (e2u)x = 0

η(u) = v(u) = eu, F (u) = 12e

2u and potential ψ(v) := vf − F = 12v

2

Entropy-conservative flux:

f ∗ν+ 1

2=ψ(vν+1)− ψ(vν)

vν+1 − vν=

12v

2ν+1 − 1

2v2ν

vν+1 − vν=

1

2(vν + vν+1) =

1

2

[euν + euν+1

]Toda flow:

d

dtuν(t) = −euν+1(t) − euν−1(t)

2∆x

d

dt

∑euν(t)∆x = Const.

• Inviscid Burgers: ut + ( 12u

2)x = 0 quadratic entropy (1

2u2)t + (

1

3u3)x = 0

η(u) =u2

2, v(u) = u, F (u) =

u3

3and potential ψ(v) := vf − F = 1

6u3

Entropy conservative “ 13 -rule”:

d

dtuν(t)=−2

3

[u2ν+1 − u2

ν−1

4∆x

]− 1

3

[uν

uν+1 − uν−1

2∆x

] ∑

u2ν(t)∆x =Const.

Page 15: Computation of entropic measure-valued solutions for Euler

#2. Linear equations

• Linear transport: How to discretize ux such that ut + ux = 0conserves the balance of quartic perfect derivatives

(u4)t

+(u4)x

= 0?

• Conservative differences of ux and 4u3ux =(u4)x:

η(u) = u4, v = 4u3, f (u) = u, F = u4 and ψ(u) = 3u4

f ∗ν+ 12

=∆ψν+ 1

2

∆vν+ 12

=3

4

u4ν+1 − u4

ν

u3ν+1 − u3

ν

, ux ≈f ∗ν+ 1

2

− f ∗ν− 1

2

∆x

(?) Indeed — set ux |x=xν ≈3

4∆x

(u4ν+1 − u4

ν

u3ν+1 − u3

ν

−u4ν − u4

ν−1

u3ν − u3

ν−1

)then

∑ 3

4∆x

(u4ν+1 − u4

ν

u3ν+1 − u3

ν

−u4ν − u4

ν−1

u3ν − u3

ν−1

)∆x 7→ boundary terms of u

∑ 3

4∆xu3ν

(u4ν+1 − u4

ν

u3ν+1 − u3

ν

−u4ν − u4

ν−1

u3ν − u3

ν−1

)∆x =

= −∑ 3

4∆x

(u3ν+1 − u3

ν

)(u4ν+1 − u4

ν

u3ν+1 − u3

ν

)∆x 7→ quartic boundary terms

Page 16: Computation of entropic measure-valued solutions for Euler

#3. Second and higher-order accuracy

• The u4 entropy conservative flux is 2nd-order accurate:

f ∗ν+ 1

2=

3

4

u4ν+1 − u4

ν

u3ν+1 − u3

ν

:f ∗ν+ 1

2

− f ∗ν− 1

2

2∆xis 2nd-order approximation of ux

f ∗ν+ 1

2=

∆ψ

∆u=

3

4

u4ν+1 − u4

ν

u3ν+1 − u3

ν

≈ 3

8u3ν+ 1

2

∆x2 ux

6u2ν+ 1

2

∆x2 ux

≈ uν+ 12

• The general case: express the flux in the “viscosity form”

“viscosity form”: f ∗ν+ 1

2

= 12 (fν + fν+1)− 1

2D∗ν+ 1

2

(uν+1 − uν)

d

dtuν(t) = −

2nd order centered differencing︷ ︸︸ ︷[ f (uν+1)− f (uν−1)

2∆x

]+

1

2∆x

∆x2(Dux )x︷ ︸︸ ︷[D∗ν+ 1

2∆uν+ 1

2− D∗

ν− 12∆uν− 1

2

]• 2nd-order: f ∗

ν+ 12 D∗

ν+ 12

:=1

8

(∫ 1

ξ=−1

(1− ξ2

)f ′′(uν+ 1

2

)dξ)·∆uν+ 1

2

The entropy-conservative flux is 2nd-order accurate

Entropy conservative fluxes to any order of accuracy (LeFloch & Rohde 2000)

Page 17: Computation of entropic measure-valued solutions for Euler

#4. Systems:⟨vν+1 − vν , f∗ν+ 1

2

⟩= ψ(vν+1)− ψ(vν)

• Choice of path: N linearly independent directionsrjNj=1

Intermediate statesvjν+ 1

2

Nj=1

: 7−→ •↑

• −→ Starting with v1

ν+ 12

= vν , and followed by (∆vν+ 12≡ vν+1 − vν)

vj+1

ν+ 12

= vjν+ 1

2

+⟨`j ,∆vν+ 1

2

⟩rj , j = 1, 2, . . . ,N (vN+1

ν+ 12

= vν+1)

• [ET 2003] The conservative schemed

dtuν(t) = − 1

∆x

[f∗ν+ 1

2− f∗

ν− 12

]

f∗ν+ 1

2=

N∑j=1

ψ(vj+1

ν+ 12

)− ψ

(vjν+ 1

2

)⟨`j ,∆vν+ 1

2

⟩ `j

is entropy conservative:⟨vν+1 − vν , f∗ν+ 1

2

⟩= ψ(vν+1)− ψ(vν)

Page 18: Computation of entropic measure-valued solutions for Euler

#5. Entropy conservative Euler scheme (with W.-G. Zhong)

f∗ν+ 1

2=

N∑j=1

ψ(vj+1

ν+ 12

)− ψ

(vjν+ 1

2

)⟨`j ,∆vν+ 1

2

⟩ `j

I Entropy function: η(u) = −ρS

I Euler entropy variables: v(u)=ηu(u)=

−E/e − S + γ + 1q/θ−1/θ

I Euler entropy flux potential ψ(v) = 〈v , f〉 − F (u) = (γ − 1)mI path in phase-space:

v0 = vν , vj+1 = vj + 〈`j ,∆vν+ 12〉rj , v4 = vν+1I

rj3

j=1: three linearly independent directions in v-space (Riemann path)

`j3

j=1: the corresponding orthogonal system

mj3

j=1: intermediate values of the momentum along the path

I f∗ν+ 1

2= (γ − 1)

3∑j=1

mj+1 −mj

〈`j , ∆vν+ 12〉`j

Page 19: Computation of entropic measure-valued solutions for Euler

#6. Affordable entropy conservative fluxes for Euler eqs

• [Ismail & Roe & (2009)] 2D Euler eqs ut + fx + gy = 0:

Express an entropy conservative flux f∗ν+ 1

2

:= (f1, f2, f3, f4)>

in terms of z :=

√ρ

p

1uvp

and the averages

zν+ 1

2:= 1

2 (zν + zν+1)

z lnν+ 1

2

:=∆z

ν+ 12

∆ log(z)ν+ 1

2

f1ν+ 1

2

= (z2)ν+ 12(z4)ln

ν+ 12

f2ν+ 1

2

=(z4)

ν+ 12

(z1)ν+ 1

2

+(z2)

ν+ 12

(z1)ν+ 1

2

f1ν+ 1

2

f3ν+ 1

2

=(z3)

ν+ 12

(z1)ν+ 1

2

f1ν+ 1

2

f4ν+ 1

2

= 12(z1)

ν+ 12

(γ+1γ−1

1(z1)ln

ν+ 12

f1ν+ 1

2

+ (z2)ν+ 12f2ν+ 1

2

+ (z3)ν+ 12f3ν+ 1

2

)satisfies the compatibility relation 〈vν+1 − vν , f

∗ν+ 1

2〉 = ψ(vν+1)− ψ(vν)

Page 20: Computation of entropic measure-valued solutions for Euler

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11−D Euler,density,γ=1.4,Cv=716,κ=0,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.001,Tmax=0.1

x

ρ

t=0.0t=0.05t=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.61−D Euler,velocity,γ=1.4,Cv=716,κ=0,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.001,Tmax=0.1

x

u

t=0.0t=0.05t=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11−D Euler,pressure,γ=1.4,Cv=716,κ=0,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.001,Tmax=0.1

x

p

t=0.0t=0.05t=0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1−0.038

−0.038

−0.038

−0.038

−0.038

−0.038

−0.038

−0.038

−0.038

−0.0381−D Euler, entropy−conservative scheme w/ 3rd R−K mtd, entropy vs time,entropy = −ρ ln(pρ−γ)

t

∫ x U (

tota

l ent

ropy

)

Entropy conservative results for Euler’s Sod problem:

density, velocity, pressure & entropy. 1000 spatial grids, η(u) = −ρ ln(pρ−γ

)

Page 21: Computation of entropic measure-valued solutions for Euler

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11−D Euler,density,γ=1.4,Cv=716,κ=0,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.00025,Tmax=0.1

x

ρ

t=0.0t=0.05t=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.61−D Euler,velocity,γ=1.4,Cv=716,κ=0,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.00025,Tmax=0.1

x

u

t=0.0t=0.05t=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11−D Euler,pressure,γ=1.4,Cv=716,κ=0,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.00025,Tmax=0.1

x

p

t=0.0t=0.05t=0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1−0.0382

−0.0382

−0.0381

−0.0381

−0.0381

−0.0381

−0.0381

−0.038

−0.0381−D Euler, entropy−conservative scheme w/ 3rd R−K mtd, entropy vs time,entropy = −ρ ln(pρ−γ)

t

∫ x U (

tota

l ent

ropy

)

Entropy conservative density, velocity, pressure & entropy w/4000 spatial grids, η(u) = −ρ ln(pρ−γ

)• Does not “enforce” physical solution with numerical viscosity

Page 22: Computation of entropic measure-valued solutions for Euler

The question of entropy stability – dissipation

I Entropy conservation: η(u)t +∇x · F (u) = 0

I Entropy decay due to shock discontinuities (Lax):

η(u)t +∇x · F (u) 6 0

I Entropy decay is balanced by perfect derivatives:∫η(u(x, t2))dx 6

∫η(u(x, t1))dx, t2 > t1

I Q. How much entropy decay ”6” is enough?

I Entropic measure-valued solutions:

d

dtuν(t)+

f∗ν+ 1

2

− f∗ν− 1

2

∆x= 0“ε(Dvx)′′x ;

d

dtη(uν(t))+

Fν+ 12− Fν− 1

2

∆x=6 0.

I ε dictates the small scale of dissipation . . .

Page 23: Computation of entropic measure-valued solutions for Euler

#7. Entropy balance in Navier-Stokes (NS) eq’s

• A semi-discrete scheme of NS equations ut + f(u)x = ε∆x(D(·)vx)x

⟨ vν︷ ︸︸ ︷η′(uν) ,

d

dtuν(t) +

1

∆x

(f∗ν+ 1

2− f∗

ν− 12

)= ε(Dν+ 1

2

∆vν+ 12

∆x−Dν− 1

2

∆vν− 12

∆x

)⟩• Recall — f∗

ν+ 12

is entropy-conservative:⟨

∆vν+ 12, f∗ν+ 1

2

⟩=∆ψν+ 1

2

• Euler fluxes conserve entropy:d

dt

∑ν

η(uν(t)) ∆x = −∑

∆ψν+ 12

= 0

• NS dissipate:d

dt

∑ν

η(uν(t)) ∆x =• NS dissipate:d

dt

∑ν

η(uν(t)) ∆x = −ε∑ν

⟨∆vν+ 1

2, Dν+ 1

2∆vν+ 1

2

⟩6 0

?d

dt

∑ν

(−ρνSν)∆x =

viscosity︷ ︸︸ ︷−(λ+ 2µ)

∑ν

(∆qν+ 12

∆x

)2(1

θ

)ν+ 1

2

∆x

heat conduction︷ ︸︸ ︷−κ∑ν

(∆θν+ 12

∆x

)2(1

θ

)2

ν+ 12

∆x 60

Page 24: Computation of entropic measure-valued solutions for Euler

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11−D N−S,density,λ+2µ=2.28e−005,γ=1.4,Cv=716,κ=0,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.00025

x

ρ

t=0.0t=0.05t=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.2

0

0.2

0.4

0.6

0.8

1

1.21−D N−S,velocity,λ+2µ=2.28e−005,γ=1.4,Cv=716,κ=0,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.00025

x

u

t=0.0t=0.05t=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11−D N−S,pressure,λ+2µ=2.28e−005,γ=1.4,Cv=716,κ=0,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.00025

x

p

t=0.0t=0.05t=0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1−0.0394

−0.0392

−0.039

−0.0388

−0.0386

−0.0384

−0.0382

−0.0381−D N−S, entropy−conservative scheme w/ 3rd R−K mtd,entropy vs time,entropy = −ρ ln(pρ−γ)

t

∫ x U (

tota

l ent

ropy

)

Navier-Stokes equations for Sod’s problem:

viscosity but no heat conduction; 4000 spatial grids. η(u) = −ρ ln(pρ−γ

)

Page 25: Computation of entropic measure-valued solutions for Euler

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11−D Euler,density,γ=1.4,Cv=716,κ=0.03,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.00025,Tmax=0.1

x

ρ

t=0.0t=0.05t=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.41−D Euler,velocity,γ=1.4,Cv=716,κ=0.03,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.00025,Tmax=0.1

x

u

t=0.0t=0.05t=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11−D Euler,pressure,γ=1.4,Cv=716,κ=0.03,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.00025,Tmax=0.1

x

p

t=0.0t=0.05t=0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1−0.0394

−0.0392

−0.039

−0.0388

−0.0386

−0.0384

−0.0382

−0.0381−D Euler, entropy−conservative scheme w/ 3rd R−K mtd, entropy vs time,entropy = −ρ ln(pρ−γ)

t

∫ x U (

tota

l ent

ropy

)

Entropy conservative results for Sod’s problem:

heat conduction but no viscosity; 4000 spatial grids. η(u) = −ρ ln(pρ−γ

)

Page 26: Computation of entropic measure-valued solutions for Euler

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11−D N−S,density,λ+2µ=2.28e−005,γ=1.4,Cv=716,κ=0.03,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.001

x

ρ

t=0.0t=0.05t=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.41−D N−S,velocity,λ+2µ=2.28e−005,γ=1.4,Cv=716,κ=0.03,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.001

x

u

t=0.0t=0.05t=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11−D N−S,pressure,λ+2µ=2.28e−005,γ=1.4,Cv=716,κ=0.03,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.001

x

p

t=0.0t=0.05t=0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1−0.0394

−0.0392

−0.039

−0.0388

−0.0386

−0.0384

−0.0382

−0.0381−D N−S, entropy−conservative scheme w/ 3rd R−K mtd,entropy vs time,entropy = −ρ ln(pρ−γ)

t

∫ x U (

tota

l ent

ropy

)

Navier-Stokes equations Sod problem:

both viscosity and heat conduction; 1000 spatial grids, η(u) = −ρ ln(pρ−γ

)

Page 27: Computation of entropic measure-valued solutions for Euler

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11−D N−S,density,λ+2µ=2.28e−005,γ=1.4,Cv=716,κ=0.03,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.00025

x

ρ

t=0.0t=0.05t=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.2

0

0.2

0.4

0.6

0.8

1

1.21−D N−S,velocity,λ+2µ=2.28e−005,γ=1.4,Cv=716,κ=0.03,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.00025

x

u

t=0.0t=0.05t=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11−D N−S,pressure,λ+2µ=2.28e−005,γ=1.4,Cv=716,κ=0.03,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.00025

x

p

t=0.0t=0.05t=0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1−0.0396

−0.0394

−0.0392

−0.039

−0.0388

−0.0386

−0.0384

−0.0382

−0.0381−D N−S, entropy−conservative scheme w/ 3rd R−K mtd,entropy vs time,entropy = −ρ ln(pρ−γ)

t

∫ x U (

tota

l ent

ropy

)

Navier-Stokes equations Sod problem:

viscosity and heat conduction; 4000 spatial grids, η(u) = −ρ ln(pρ−γ

)

Page 28: Computation of entropic measure-valued solutions for Euler

#8. TeCNO: Arbitrarily high-order entropy stable schemes

• Set numerical viscosity fν+ 12

= f∗ν+ 1

2− Dν+ 1

2(vν+1 − vν) such that

f∗ν+ 1

2

is high order and fν+ 12

entropy stable:⟨

∆vν+ 12,Dν+ 1

2∆vν+ 1

2

⟩< 0

• Any Dν+ 12> 0 will do for entropy dissipation; but ...

To overcome first order accuracy: Dν+ 12∼∣∣∣∆vν+ 1

2

∣∣∣p−1; non-oscillatory?

• A class of arbitrarily high-order entropy-stable schemes:

(?) fν+ 12

:= f∗(v)ν+ 12− Dν+ 1

2〈〈v〉〉ν+ 1

2, 〈〈v〉〉ν+ 1

2:= v−ν+1 − v+

ν

Entropy stability requires⟨

∆vν+ 12,Dν+ 1

2〈〈v〉〉ν+ 1

2

⟩< 0...?

• Interface values v±: reconstructed by ENO (Harten, Engquist, Osher, Shu,..)

(i) ENO reconstruction is highly accurate: Dν+ 12〈〈v〉〉ν+ 1

2∼∣∣∣∆vν+ 1

2

∣∣∣p(ii) It is Essentially Non-Oscillatory (hence the acronym...) ; and...

(iii) [FMT 2012] The sign property: sign〈〈v〉〉ν+ 12

= sign ∆vν+ 12 (?)!

Page 29: Computation of entropic measure-valued solutions for Euler

Back to computation of entropy measure valued solutions

• EMV solutions νx,t : ∂t〈νx,t , id〉+∇x · 〈νx,t , f〉 = 0• How to compute a realization of the Young measure νx,t?

Every Young measure can be realized as a law of random variable:

∃(Ω,Σ,P) : νx,t(E ) = P(u(x, t, ω) ∈ E )

• Initial data: Realize the law of σx = ν(x,t=0) by a random field u0(x, ω)“Classical” case – atomic initial delta: σx = δu0(x)

Beyond classical case – uncertainty in initial measurement

• Compute the entropy measure valued solutions:To be well-defined, we need to make sure u(·, t, ω) forma measurable ensemble in the right space (Ω,Σ,P) 7→ (X ,B(X )) Scalar case – X = L1 (Risebro, Schwab, Weber, ...) Systems – ?

Example Back to 2D Euler — realize steady KH as MC average:

δu0(x) = Eu0(x, ω) ≈ 1

M

M∑k=1

uk0(x, ω), u0(x, ω) =∑

an cos(bn + 2nπx1)

Page 30: Computation of entropic measure-valued solutions for Euler

#9. Computation of EMV solutions cont’d

• Evolution: compute the ensemble of entropic solutions

u∆x ,k0 (·, ω) 7→ u∆x ,k(·, t, ω)

• Realize the EMVs by propagating the law of MC simulation

ν∆xx,t =

1

M

M∑k=1

δu∆x,k (x,t,ω), 〈ν∆xx,t , g(λ)〉 =

1

M

∑k

g(u∆x ,k(x, t, ω))

• This is an approximate entropic MV solution: for all φ(x, t) ∈ C∞0∑xν ,tn

φt 〈ν∆xx,t , id〉+∇xφ 〈ν∆x

x,t , f〉∆x∆t +∑xν

φ(xν , 0)〈σx, id〉∆x = 0 ∫R+×Rd

φt 〈νx,t , id〉+∇xφ 〈νx,t , f〉 dxdt +

∫Rd

φ(x, 0)〈σx, id〉dx = 0

and for all convex entropy pairs (η,F ) with 0 6 φ ∈ C∞0∑xν ,tn

φt 〈ν∆xx,t , η〉+∇xφ 〈ν∆x

x,t ,F 〉∆x∆t +∑xν

φ(xν , 0)〈σx, id〉∆x 6 0 ∫R+×Rd

φt 〈νx,t , η〉+∇xφ 〈νx,t ,F 〉 dxdt +

∫Rd

φ(x, 0)〈σx, id〉dx 6 0

• Entropic ν∆xx,t with weak BV-bound weak∗–lim ν∆x

x,t = νx,t is an EMV

Page 31: Computation of entropic measure-valued solutions for Euler

On entropic measure-valued solutions ...

• Entropic ν∆xx,t with weak BV-bound weak∗–lim ν∆x

x,t = νx,t is an EMV

• The scalar case — Wasserstein W1-stability: for all ξ’s in R:∫Rd

〈νx,t , |u(x, t)− ξ|〉dx 6∫Rd

〈σx, |u0(x)− ξ|〉dx.

In particular, if σ = δu0 at t = 0 then νx,t = δu(x,t)

• No uniqueness for non-atomic initial data

• Systems — weak-strong W2-stability: if u ∈W 1,∞ classical solution∫Rd

〈νx,t , |u(x, t)− ξ|2〉dx 6∫Rd

〈σx, |u0(x)− ξ|2〉dx.

• There is no uniqueness but compute the observables —

the mean: 〈νx,t , λ〉 7→ Eu∆x(x, t, ω)

the variance: 〈νx,t , λ2〉 7→ E(u∆x(x, t, ω)− Eu∆x

), etc.,

Page 32: Computation of entropic measure-valued solutions for Euler

#10. The computed observables

0 0.5 10

0.2

0.4

0.6

0.8

1

1

1.2

1.4

1.6

1.8

2

(a) 1282

0 0.5 10

0.2

0.4

0.6

0.8

1

1

1.2

1.4

1.6

1.8

2

(b) 2562

0 0.5 10

0.2

0.4

0.6

0.8

1

1

1.2

1.4

1.6

1.8

2

(c) 5122

0 0.5 10

0.2

0.4

0.6

0.8

1

1

1.2

1.4

1.6

1.8

2

(d) 10242

Figure: Approximate sample means of the density for the Kelvin-Helmholtz problem at t = 2 and

different mesh resolutions. All results are with 400 Monte Carlo samples.

0 0.5 10

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

(a) 1282

0 0.5 10

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

(b) 2562

0 0.5 10

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

(c) 5122

0 0.5 10

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

(d) 10242

Figure: Approximate sample variances of the density for the Kelvin-Helmholtz problem at t = 2

and different mesh resolutions. All results are with 400 Monte Carlo samples.

Page 33: Computation of entropic measure-valued solutions for Euler

Comments on the computation of EMVs

• MC slow convergence ‖Eu∆x(·, t, ω)− Eu∆x ,M(·, t, ω)‖ <∼ M−1/2

Key point: Each ensemble was computed with M = 400 samples...!

128 256 512 1024

10−0.5

10−0.3

10−0.1

(a) ”Pointwise”

128 256 512 1024

10−1

(b) Mean

128 256 512 1024

10−1.9

10−1.6

10−1.3

(c) Variance

64 128 256 51210

−2

10−1

100

(d) W1-rate

Figure: Kelvin-Helmholtz. (a) The Cauchy rates at t = 2 for the density (y-axis) for a single

sample of the Kelvin-Helmholtz problem, vs. (b)+(c) different mesh resolutions (x-axis) (d)

Cauchy rates in the W1 distance at t = 2 for the density (y -axis) with respect to different mesh

resolutions (x-axis)

• Richtmeyer-Meshkov instability: similar computations; other methods ...

Page 34: Computation of entropic measure-valued solutions for Euler

Computing EMVs: Young measures quantify uncertainty

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

300

(a) t = 0

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

300

(b) t = 0.5

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

300

(c) t = 1

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

300

(d) t = 1.5

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

300

(e) t = 2

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

300

(f) t = 0

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

300

(g) t = 0.5

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

300

(h) t = 1

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

300

(i) t = 1.5

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

300

(j) t = 2

Figure: The approximate PDF for density ρ at x = (0.5, 0.7) (first row) and x = (0.5, 0.8)

(second row) on a grid of 10242 mesh points.

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

(a) nx = 128

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

(b) nx = 256

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

(c) nx = 512

1 1.2 1.4 1.6 1.8 20

50

100

150

200

250

(d) nx = 1024Figure: The approximate PDF for density ρ at the points x = (0.5, 0.7) (first row) and

x = (0.5, 0.8) (second row) a series of meshes.

Page 35: Computation of entropic measure-valued solutions for Euler

• ”Entropy stability theory for difference approximations of nonlinear conservationlaws ...”, Acta Numerica 2003

• FMT2, ”ENO reconstruction and ENO interpolation are stable”, FoCM 2012

• FMT ”Arbitrarily high order accurate entropy stable ENO schemes for systems ofconservation laws”, SINUM 2012

• FM(K2b)T, ”Construction of approximate entropy measure valued solutionsfor hyperbolic systems of conservation laws”, J. FoCM (2015)

• FMT, “Computation of measure-valued solutions” Acta Numerica (2016)

• Fjordholm, Lanthaler, Mishra, “Statistical solutions of hyperbolic conservation

laws I: Foundations”, ArXiv.2Fjordholm, Mishra Tadmor; 2bR. Kappli

Page 36: Computation of entropic measure-valued solutions for Euler

THANK YOU