curso hidrometalurgia

95
Curso Hidrometalurgia. Extracción con disolventes (1/2) Presentación del curso Hidrometalúrgia. Extracción con disolventes (1/2), aprende de manera teórica y práctica la aplicación de una tecnología concreta como es la extracción con disolventes a un campo concreto la metalurgia o, más exactamente, la hidrometalurgia. La extracción con disolventes se emplea con tres fines fundamentales: de concentrar, purificar y separar sus elementos o metales disueltos. Normalmente estas misiones van acopladas, pero el predominio de cada una hace que la extracción con disolventes tenga una función específica y que se intercale en distinto ‹‹sitio›› de un proceso metalúrgico. Capítulo 1: Hidrometalurgia. Extracción con disolventes en la separación y recuperación de metales Los avances realizados en esta tecnología y sus enormes posibilidades presentes y futuras permiten apreciar su aplicación en la metalurgia extractiva de diversos metales, no solo de los considerados raros, sino también de los corrientes (Th, V, Mo, Ni, Co, Cs, Be, Rc, Cu, Zn, etc.). La extracción con disolventes se emplea con tres fines fundamentales: de concentrar, purificar y separar sus elementos o metales disueltos. Normalmente estas misiones van acopladas, pero el predominio de cada una hace que la extracción con disolventes tenga una función específica y que se intercale en distinto ‹‹sitio›› de un proceso metalúrgico. Por ejemplo, cuando predomina la misión de concentrar, su aplicación está íntimamente ligada con la recuperación de cationes de menas pobres. Como el metal tiene que estar disuelto, esta misión sólo se puede aplicar a metales solubilizados, metales caros, o a otros acompañantes de metales caros. Con fines de purificación se emplea en aquellos casos en que el precio de un metal crece marcadamente con la pureza, de forma que puede ser rentable una etapa de purificación por extracción con disolventes. La aplicación más inmediata está relacionada con los materiales nucleares. Con fines de separación puede ser rentable el empleo de esta técnica en el aislamiento de elementos de menas en que de todos los metales algunos son valiosos, y en este sentido es de prever su futuro uso en el tratamiento de minerales complejos. Esta aplicación se extiende a la recuperación de chatarras de materiales o aceros especiales.

Upload: camilo-castro-jimenez

Post on 12-Apr-2017

314 views

Category:

Engineering


8 download

TRANSCRIPT

Page 1: Curso hidrometalurgia

Curso Hidrometalurgia. Extracción con disolventes (1/2)

Presentación del curso

Hidrometalúrgia. Extracción con disolventes (1/2), aprende de manera teórica y práctica la aplicación de una tecnología concreta como es la extracción con disolventes a un campo concreto la metalurgia o, más exactamente, la hidrometalurgia.

La extracción con disolventes se emplea con tres fines fundamentales: de concentrar, purificar y separar sus elementos o metales disueltos. Normalmente estas misiones van acopladas, pero el predominio de cada una hace que la extracción con disolventes tenga una función específica y que se intercale en distinto ‹‹sitio›› de un proceso metalúrgico.

Capítulo 1:

Hidrometalurgia. Extracción con disolventes en la separación y recuperación de metales

Los avances realizados en esta tecnología y sus enormes posibilidades presentes y futuras permiten apreciar su aplicación en la metalurgia extractiva de diversos metales, no solo de los considerados raros, sino también de los corrientes (Th, V, Mo, Ni, Co, Cs, Be, Rc, Cu, Zn, etc.).

La extracción con disolventes se emplea con tres fines fundamentales: de concentrar, purificar y separar sus elementos o metales disueltos. Normalmente estas misiones van acopladas, pero el predominio de cada una hace que la extracción con disolventes tenga una función específica y que se intercale en distinto ‹‹sitio›› de un proceso metalúrgico.

Por ejemplo, cuando predomina la misión de concentrar, su aplicación está íntimamente ligada con la recuperación de cationes de menas pobres. Como el metal tiene que estar disuelto, esta misión sólo se puede aplicar a metales solubilizados, metales caros, o a otros acompañantes de metales caros.

Con fines de purificación se emplea en aquellos casos en que el precio de un metal crece marcadamente con la pureza, de forma que puede ser rentable una etapa de purificación por extracción con disolventes. La aplicación más inmediata está relacionada con los materiales nucleares.

Con fines de separación puede ser rentable el empleo de esta técnica en el aislamiento de elementos de menas en que de todos los metales algunos son valiosos, y en este sentido es de prever su futuro uso en el tratamiento de minerales complejos. Esta aplicación se extiende a la recuperación de chatarras de materiales o aceros especiales.

usuario
Resaltado
usuario
Resaltado
usuario
Resaltado
usuario
Nota adhesiva
Este es el planteamiento del proyecto.
Page 2: Curso hidrometalurgia

La extracción con disolventes es actualmente una herramienta o técnica, en algunos casos no suficientemente barata, que se incorpora a la metalurgia. Para que esto ocurra han existido diversos impulsos, de los que los fundamentales son: las necesidades de alta pureza (impulso nuclear), desarrollo de las técnicas hidrometalúrgicas y necesidad de tratar menas más complejas y menos ricas.

Como consecuencia de todo esto, existe un desarrollo creciente en la obtención de nuevos agentes de extracción, baratos, selectivos y específicos, y en la aplicación industrial de esta técnica, con relación a la construcción y extrapolación del equipo.

En este curso se presentan las bases que hay que considerar al enfrentarse con un posible problema de aplicación de la extracción a la separación o recuperación de un metal en función de la naturaleza del líquido a tratar (líquidos de lixiviación, aguas de mina, escombreras, etc.), la elección del reactivo orgánico, medio diluyente, aportación de agentes modificadores, acondicionamiento del medio acuoso, posibles interferencias y su eliminación, agentes de lavado y de reextracción, destino del producto final, trabajo experimental o de ensayo y su interpretación, criterios para el diseño o elección del equipo, controles fundamentales y discusión económica.

Capítulo 2:

Obtención de metales a partir de minerales

Esquema general

La mayor fuente de los metales está constituida por los minerales que se presentan en los yacimientos, aunque junto a ellos hay que considerar el reciclado de los mismos en forma de chatarra que aportan una cantidad considerable de productos.

La concentración en metal de una mena varía mucho según de qué metal se trate y se puede citar como caso extremo, los minerales de hierro con el 60 % p. ej. de Fe y los de oro con 3-5 g Au/t. La forma como se presenta el metal es variable desde el estado elemental a compuestos complejos en que intervienen varios metales en la misma fórmula.

Las etapas en la obtención del metal a partir de la zafra se indican simplificadas en la figura 1. Hay en primer lugar las etapas de trituración o liberación de los componentes valiosos y la ganga, una segunda fase es la de enriquecimiento o concentración física hasta lograr un producto comercial. Este producto puede seguir varios caminos: electrometalurgia, pirometalurgia, o hidrometalurgia.

Pureza de los productos o metales obtenidos

Las propiedades físicas (conductividad eléctrica, ductibilidad, maleabilidad, función, etc.) de los metales dependen mucho de las impurezas (As, Sb, Bi, S, P, Cd, Pb, Fe) en cantidades mínimas. Debido a esto la mayoría de los metales corrientes se obtienen con purezas superiores al 99,9 % (p. ej. 99,99 % el cinc, 99,98 % para el plomo, 99,8 % para el cobre). Si en lugar de usar el metal se usan sus óxidos o sales se presentan

usuario
Resaltado
Page 3: Curso hidrometalurgia

situaciones análogas pues la calidad del producto puede venir muy afectada por las microcantidades de elementos extraños, p. ej. en los pigmentos para pinturas. Un caso extremo es el uso de los metales de interés nuclear en que sus especificaciones admiten algunas unidades o decenas de partes por millón de impurezas en el producto acabado.

Para la mayoría de los metales la purificación se logra por procesos de refino en seco o más corrientemente con la introducción de un paso de electrolisis, para purificación del metal introducido como ánodo, o por deposición del metal a partir de una solución pura. Este líquido se ha purificado de todos los elementos de interferencia, recurriendo a su precipitación en la mayoría de los casos, y modernamente se empieza a utilizar la extracción con disolventes que tan buenos resultados dio en la obtención del uranio de pureza nuclear.

usuario
Resaltado
Page 4: Curso hidrometalurgia

Hidrometalurgia

Page 5: Curso hidrometalurgia

Dado que la extracción con disolventes es un proceso por vía húmeda, interesa dedicar una atención especial a la hidrometalurgia. En esta rama, la obtención del metal o de su producto base se hace por vía húmeda en una sucesión de pasos de: lixiviación o solubilización del metal en cuestión, separación de los líquidos fértiles y los sólidos agotados, y recuperación de metal a partir de los líquidos.

La lixiviación se realiza por medio de ácidos o bases según el proceso o metal en consideración. En los procesos ácidos, el más utilizado es el ácido es el ácido sulfúrico por su precio y disponibilidad, también se hace, a veces, uso de la oxidación de bacterias de los sulfuros que puedan existir en el mineral. El líquido resultante de la lixiviación contiene muchas impurezas, pues en la mayoría de los casos el proceso no es selectivo, además están los sólidos residuales del ataque. En gran parte de los casos se realiza una separación de estos sólidos y líquidos antes de pasar a recuperar el metal, para ello se hacen filtraciones y/o decantaciones con un líquido de lavado del sólido residual.

La concentración en metal del líquido fértil depende de la ley del producto de alimentación y puede variar desde más de 100 g/l p. ej. para cinc a varios mg/l como en el caso corriente en el oro o en el uranio. Los líquidos concentrados (Zn, Cu p. ej.) pueden pasar a un proceso de deposición electrolítica después de una purificación conveniente de las impurezas por reducción con metales más electromagnéticos o por precipitación con reactivos químicos. Con líquidos de concentración intermedia (p. ej. aguas de escombreras de cobre) se recurre a una precipitación química para tener un producto comercial.

Por último, los líquidos muy diluidos se tratan con un paso previo de concentración ya sea por reducción o precipitación del metal junto con un portador; se recurre a la adsorción en carbón activo, en resinas de cambio de ión, o a la extracción con disolventes. En estos últimos procesos se obtiene una solución concentrada y relativamente purificada de la que se precipita el metal o un compuesto de ley elevada.

Los procesos hidrometalúrgicos se han aplicado fundamentalmente a minerales o concentrados de oro, cinc, cobre, uranio, níquel, cobalto, vanadio, cromo, wolframio, aluminio, pero modernamente están tomando cada vez más incremento porque por una parte permite el aprovechamiento de minerales marginales, suministran productos de pureza elevada para la obtención del metal, óxidos o sales, y permiten una mejor recuperación de los subproductos.

Capítulo 3:

Extracción con disolventes

Generalidades

La técnica de extracción por disolventes es una operación básica conocida desde antiguo en la ingeniería química y cuya aplicación está ampliamente desarrollada en la industria del petróleo, en la industria farmacéutica y en la industria orgánica en

usuario
Resaltado
usuario
Resaltado
usuario
Resaltado
usuario
Resaltado
Page 6: Curso hidrometalurgia

general. En el campo de la química inorgánica, la extracción líquido-líquido se ha desarrollado mucho en la química analítica y en la tecnología de los materiales nucleares. Su teoría y tecnología está muy desarrollada, aunque su uso en metalurgia extractiva es relativamente reciente y su extensión a los metales corrientes está todavía en curso de realización.

En el campo de la Hidrometalurgia, el término “extracción con disolventes” se refiere a los procesos en los que una solución acuosa que contiene varios iones metálicos se pone en contacto en contra-corriente con una solución orgánica inmiscible con la fase acuosa. La fase orgánica contiene un reactivo que es capaz de extraer, al menos, un metal de la fase acuosa, que es transferido a la fase orgánica; de esta manera se consigue pasar al menos una especie metálica disuelta en la fase acuosa a la fase orgánica, conocida como disolvente, con objeto de separarla/s de los otros metales de la solución acuosa.

Este proceso es reversible, quiere decirse con ello que, dependiendo de las condiciones de la operación, el metal o metales “extraídos” presentes en la fase orgánica puede ser “re-extraídos” y pasar a la fase acuosa, regenerándose al mismo tiempo el disolvente. La “extracción” o la “re-extracción” se producen por la dispersión de una fase en la otra en forma de pequeñas gotitas que favorece la transferencia de materia y se realiza por medio de la agitación mecánica. Por medio de este proceso de “extracción” y “re-extracción” se consigue purificar las soluciones lixiviantes, pasando de una solución acuosa normalmente diluida y que contiene varios iones metálicos a una solución acuosa normalmente concentrada y conteniendo un solo ion metálico.

Terminología

Para una mejor comprensión del tema a tratar, intentaremos definir con el rigor adecuado y de forma precisa la principal terminología a emplear en este campo.

- Coeficiente de distribución

Se define como la relación de la concentración del metal en la fase orgánica y la fase acuosa después de realizado el contacto entre las fases señaladas bajo unas condiciones específicas.

Coeficiente de distribución (D) =

- Coeficiente de re-extracción

Se define como la relación de la concentración del metal en la fase acuosa y la fase orgánica después de realizado el contacto entre las dos fases señaladas en la etapa de re-extracción.

usuario
Resaltado
usuario
Resaltado
Page 7: Curso hidrometalurgia

Coeficiente de re-extracción (S) =

- Extracción en %

Se puede hablar de un coeficiente de extracción o distribución (D), para expresar las concentraciones de metal en las fases, o presentarlas bajo el % extraído, que denominaremos E%, para lo cual se ha de tener en cuenta la relación de volúmenes entre las fases.

Siendo:

- A: volumen de acuosa.

- O: volumen de orgánica.

- Morg: concentración de metal en fase orgánica.

- Maq: concentración de metal en fase acuosa.

podemos decir que:

- Contactor

Utilizaremos este calificativo para significar cualquier dispositivo capaz de, una parte, dispersar una fase en la otra en forma de pequeñas gotitas para favorecer la transferencia de materia y, de otra, separar las dos soluciones inmiscibles.

- Proceso de extracción en corrientes paralelas

Se refieren a aquellos procesos dentro de la extracción con disolventes en los cuales la fase orgánica y la fase acuosa fluyen en la misma dirección en el contactor.

- Proceso de extracción en contracorriente

Se refieren a aquellos procesos en los cuales la fase acuosa y la fase orgánica fluyen dentro del contactor en direcciones opuestas.

- Curva de equilibrio de extracción

Page 8: Curso hidrometalurgia

La curva de equilibrio se obtiene a partir de los datos de equilibrio para cada caso, dependiendo de las condiciones de operación, y representa en ordenadas el valor de la concentración del metal extraído en la fase orgánica en el equilibrio frente al valor de la concentración del metal en la fase acuosa en abscisas.

- Diluyente

Es un hidrocarburo en otra sustancia orgánica en la que se disuelve el reactivo o agente de extracción y el modificador para obtener el disolvente.

- Disolvente

Se denomina disolvente a la fase orgánica en la que está presente el agente de extracción que se pone en contacto con la fase acuosa inmiscible con ella, con objeto de separar, al menos, un metal existente en la fase acuosa de los otros metales.

- Etapa de extracción

Se refiere a un proceso unitario de contacto. Es decir, solamente existe un dispositivo para dispersión de las fases y una sola separación de las fases inmiscibles.

- Extracción con disolventes

Se define como la separación de uno o varios solutos de una mezcla mediante transferencia de materia entre dos fases inmiscibles, una de las cuales es un líquido orgánico.

- Agente de extracción

Agente orgánico activo presente en el disolvente y que es el responsable de la extracción de un soluto (metal) de la fase acuosa.

- Extracto

Se denomina extracto al disolvente cargado con el soluto o la especie metálica extraída.

- Fase acuosa

Se denomina fase acuosa a la solución acuosa de alimentación (lixiviado) que contiene la especie metálica o las especies metálicas a extraer.

- Factor de separación

Se define como la relación entre los coeficientes de distribución de dos metales.

- Lavado o “scrubbing”

Page 9: Curso hidrometalurgia

Se conoce con esta denominación a la separación selectiva de cualquier soluto contaminante del disolvente; una vez efectuada la extracción. Se realiza esta operación con anterioridad a la re-extracción. También se conoce con este nombre la separación de productos procedentes de la degradación del disolvente y los complejos metálicos no re-extraíbles, realizándose esta operación con posterioridad a la re-extracción.

- Modificadores

Son sustancias que se añaden a la fase orgánica para evitar la formación de una tercera fase, para facilitar la separación de las fases, o bien aumentar la solubilidad del extractante o de sus sales durante las operaciones de extracción y re-extracción.

- Re-extracción

Se denomina así a la operación de separación del soluto contenido en la fase orgánica cargada con el metal. El término de re-extracción selectiva se refiere a la separación específica de un metal en particular de una fase orgánica que contiene varios metales.

- Refinado

Se conoce como refinado a la fase acuosa una vez tratada y, como consecuencia, que ya no contiene el soluto extraído.

- Sinergismo

Efecto beneficioso y cooperativo que se produce cuando se emplea una mezcla de dos o más extractantes en comparación con el efecto conseguido caso de emplear cada extractante individualmente.

- Solución de re-extracción

Solución acuosa que se pone en contacto con el disolvente cargado del metal (a veces lavado) para recuperar el metal extraído.

Capítulo 4:

Evolución histórica de la extracción con disolventes orgánicos

Empezaremos por señalar que, a pesar de que el empleo de la extracción con disolventes a escala industrial es relativamente reciente, su utilización es frecuente en el campo de la química analítica desde hace más de un siglo. Así, en 1842, Péligot publicaba sus primeros trabajos a escala de laboratorio relativos a la extracción de nitrato de uranio con dietil éter. Sin embargo, el empleo de la técnica de extracción con disolventes a escala industrial no se produjo hasta la Segunda Guerra Mundial con el desarrollo de la industria nuclear.

Señalaremos brevemente y cronológicamente una serie de hitos que pueden enmarcar el desarrollo de la extracción con disolventes desde sus comienzos a escala industrial:

Page 10: Curso hidrometalurgia

1942 – Cien años después de que Péligot realizara sus ensayos, comienza a operar en Mallinckrodt Chemical Works una planta en discontinuo para la extracción del nitrato de uranio utilizando dietil éter.

1946 – Se pone en marcha la primera planta en continuo para extraer el nitrato de uranio con dietil éter.

1951 – Se pone en marcha por U.S.B.M. un nuevo proceso industrial para la separación del Hf y Zr utilizando metil isobutil cetona (MIBK).

1953 – Las plantas de obtención de uranio tanto en Estados Unidos como en Inglaterra empiezan a utilizar TBP (tributilfosfato) en sustitución del dietil éter.

1956 – Se empieza a utilizar MIBK para la separación del Ta y Nb.

1966 – Hasta esta fecha, la utilización de la técnica de extracción con disolventes estaba reducida a la Metalurgia de los metales caros, principalmente aquellos que eran necesarios para el desarrollo de los programas nucleares. Sin embargo, en esta fecha se pone en marcha por la Compañía Ranchers Corporation, en Arizona-USA, una nueva planta de extracción con disolventes (concretamente utilizando LIX64N) para extraer cobre de la soluciones poco concentradas.

1970 – Se construye para Nchanga Consolidated Mines (Zambia), una nueva planta que conlleva extracción con disolventes y electrolisis para producir de 200.000 a 275.000 Kg/día de cobre electrolítico. La planta comenzó a operar en 1974.

1971 – Dos empresas europeas deciden utilizar una amina terciaria para separar el Ni del Co de una solución en medio cloruro.

1978 –Comienza a operar en Bilbao un proceso desarrollado enteramente en España –Proceso Zincex- para recuperar el Zn contenido en las cenizas de piritas, utilizando tecnología de extracción con disolventes.

1987 – Se pone en marcha en Española del Zinc, S.A. un proceso de extracción con disolventes desarrollado por la compañía para la recuperación de Zn de las aguas de lavado de los fangos residuales de jarosita.

2009 –Española del Zinc, S.A. se plantea un proceso para la producción de Zn electrolítico mediante extracción con disolventes a partir de óxidos de acería, desarrollado en base a su experiencia e investigación en dicho campo tecnológico.

En la actualidad se está realizando una amplia investigación de base dirigida fundamentalmente al:

· Desarrollo de nuevos equipos.

· Desarrollo de nuevos reactivos.

Page 11: Curso hidrometalurgia

· Desarrollo de nuevos procesos.

ya que, aunque es una técnica sencilla, el coste operativo de una planta para la recuperación de metales por el método de la extracción por disolventes es más elevado que el de una planta convencional.

Por tanto, lo que se busca es abaratar de un lado los equipos, y de otro los reactivos.

Por otro lado, la complejidad de las técnicas clásicas integradas, unidas a los crecientes problemas medioambientales a que dan lugar, hace atractivo el ir a procesos integrados de éste tipo.

Es también, en el posible aprovechamiento de menas pobres o de difícil tratamiento, donde éstas técnicas son atractivas.

Por estas razones se está realizando una intensa labor de desarrollo en el campo de nuevos procesos, siendo un cierto número de estos procesos ya una realidad industrial, estando otros a nivel de planta piloto.

Siguiendo ésta técnica se han desarrollado en España, en la últimas décadas, una serie de procesos de entre los que podemos citar el COMPREX, MINEMET (para sulfuros complejos), CUPREX (para minerales de Cobre), ZINCEX y EXCINREX (para el tratamiento de residuos con contenidos en Zinc), o el ZINCEXTM, RECOX (para el aprovechamiento de óxidos de acería) y el EXCINOX para la recuperación de Zinc a partir de disoluciones impuras que lo contengan y/u óxidos de acería.

Capítulo 5:

Proceso de extracción con disolvente

Un proceso de extracción con disolventes tiene el esquema general que se indica en la figura 2, en el que hay que señalar las dos etapas fundamentales de extracción y reextracción, además de otras accesorias que se discuten luego.

En la de extracción se pone en contacto íntimo un líquido acuoso, resultante de la lixiviación y que tiene el elemento o elementos en cuya recuperación o separación estamos interesados y un líquido orgánico que generalmente tiene disuelto un reactivo orgánico adecuado. La fase orgánica se elige de forma que prácticamente sea insoluble en la acuosa con lo que se mejora la economía y se simplifica el sistema. Siendo el fin primordial en esta etapa el de alcanzar el equilibrio de distribución entre ambas fases de la especie a extraer.

El componente (p. ej. ión metálico) que nos interesa se distribuye entre las fases según un coeficiente de distribución (D = CO/CA), que es la relación de concentraciones en ambos líquidos. La mayoría de los iones presentes en la solución acuosa se suelen quedar en ella sin pasar a la fase orgánica, con lo que se logra una purificación. Sin embargo también puede ocurrir que otro componente pase a la fase orgánica con su propio coeficiente de distribución, la posibilidad de separación de estos dos metales se

Page 12: Curso hidrometalurgia

mide por el factor de separación o relación entre los dos coeficientes en el equilibrio, de manera que si esta relación es inferior a 2 es difícil que se pueda lograr la separación adecuada.

En un solo contacto entre las dos fases se puede alcanzar el equilibrio dado por el coeficiente de distribución, pero en la mayoría de los casos no se llega a una recuperación completa del ión metálico en la fase orgánica. Se tiene que realizar una operación en contracorriente en la que el líquido orgánico se va cargando hasta saturación y la solución acuosa se va agotando. Una forma de realizar la operación es mediante mezcladores-sedimentadores, que constan de una cámara de mezcla en la que se logra la transferencia de materia entre las dos fases por una dispersión adecuada para tener una

Page 13: Curso hidrometalurgia

gran superficie de interfase, y un segundo recipiente en que esa dispersión se rompe y se separan las dos fases, orgánica y acuosa, que van respectivamente al piso anterior y siguiente en el circuito. De la facilidad de separación de las dos fases depende la naturaleza (acuosa u orgánica) de medio continuo en el mezclador. En la mayoría de los casos la operación se facilita si la fase continúa es orgánica y por ello se tiene que recurrir muchas veces a reciclar solución orgánica del sedimentador a su propio mezclador, pues la relación orgánica/acuosa (O/A) en la alimentación no es lo suficientemente alta para dar esa continuidad.

Page 14: Curso hidrometalurgia

Una vez se encuentra el metal en la fase orgánica será preciso recuperarlo para darle validez económica al proceso. Desgraciadamente, el estado actual de la técnica no permite realizar ésta operación directamente sobre la fase orgánica, por lo que se deberá pasar a una nueva fase acuosa. Esto se realiza en la etapa de reextracción, que estará sujeta a las mismas restricciones que la extracción.

La operación de reextracción es la inversa de la extracción y en ella al poner en contacto las fases orgánica y acuosa pasa el metal a esta última. El sistema acuoso se elige de modo que en esta operación se logren líquidos muy concentrados. El equipo es semejante al de extracción, con varios pisos normalmente. En ocasiones cuando se tienen relaciones O/A altas puede ser necesario realizar un reciclado de la fase orgánica. La fase orgánica agotada en el elemento metálico se emplea de nuevo en extracción.

Las dos operaciones extracción y reextracción se presentan siempre en todos los procesos. En algunos casos es necesario introducir un paso de lavado de la fase orgánica para eliminar impurezas. Esta etapa se sitúa entre las dos operaciones anteriores. Otras veces la fase orgánica agotada no se puede reciclar directamente a extracción y hay que someterla a un proceso de acondicionamiento, bien por haber perdido sus propiedades de extracción o selectividad o bien por los productos de degradación.

Comparando con las operaciones de precipitación, cristalización o cambio de ión, Fletcher (Institution Mining Metallurgy, 15-33 - 1957) le atribuye las ventajas de que es adecuada para el trabajo en marcha continua, es capaz de producir productos muy puros en relativamente pocas etapas, es de control fácil y para un mismo tamaño de equipo tiene una capacidad más alta. Frente a ello cita los inconvenientes de que se necesita mucho más estudio preliminar de laboratorio, es preciso el trabajo en planta piloto, y que hay que experimentar sobre modelo de equipo el sistema en estudio; además la presencia de disolventes orgánicos puede introducir riesgos de incendio y otros.

Sin embargo se puede considerar que la limitación de un mayor empleo de la extracción en la hidrometalurgia se debe a consideraciones económicas, al comparar fundamentalmente el valor del metal con los costes de reactivos orgánicos o de preparación de la fase acuosa. A medida que se logren reactivos más específicos y baratos se irán extendiendo las aplicaciones.

siendo la constante de equilibrio:

Capítulo 6:

Desarrollo teórico del proceso

Page 15: Curso hidrometalurgia

Como en todo proceso industrial, tendremos que tener en cuenta los mecanismos químicos y físicos por los que transcurre y la cinética de estos mecanismos.

Mecanismo químico del proceso

En un proceso de extracción, el reactivo que en realidad realiza dicha operación es el denominado agente de extracción o “extractante”. Generalmente, son compuestos orgánicos de peso molecular intermedio, de tipo neutro, básico o ácido, y que van a actuar según uno de los siguientes mecanismos:

1. – Distribución molecular simple

Supone el paso de moléculas de una fase a otra sin implicar interacción química alguna entre soluto y disolvente. El valor del coeficiente de distribución es pequeño, por lo que su aplicación hidrometalúrgica es de poca importancia.

2. – Extracción por formación de compuestos

Supone el paso de uno o varios iones metálicos de una fase a otra con interacción de tipo químico, formándose un enlace entre el extractante y el ión extraído. Dentro de éstos podemos señalar dos casos:

a. Reactivos ácidos o catiónicos.

La reacción se lleva a cabo mediante el intercambio del protón del agente de extracción presente en la fase orgánica y el ión de la fase acuosa, según la siguiente reacción:

n (RH) + Mn+ (RnM) + nH+

donde la fase orgánica se especifica mediante paréntesis.

b. Reactivos formadores de quelatos.

El agente de extracción tiene una molécula que es capaz de formar quelatos o iones complejos con el catión metálico a extraer, siendo éste la especie extraída.

Generalmente, los reactivos utilizados contienen un grupo hidroxioxima (-OH, hidroxi; =N-OH, oxima), efectuándose la extracción del metal con un enlace a través del grupo hidroxi-, y liberando H+. Su mecanismo de actuación puede expresarse de la forma:

Page 16: Curso hidrometalurgia

El coeficiente de distribución del ión metálico vendrá expresado según la concentración del metal, y será:

y la constante de equilibrio de las reacciones para los reactivos catiónicos y formadores de quelatos valdrá:

Si suponemos que no existen otras que no existen otras especies del ión metálico aparte de las indicadas, y sustituimos el valor del coeficiente de distribución en la fórmula anterior, tendremos:

despejando D y aplicando logaritmos, tenemos:

Según vemos en la ecuación, podemos decir que el coeficiente de distribución está controlado por el pH de las fase acuosa y por la concentración del agente extractante en la fase orgánica, siendo la dependencia logarítmica proporcional a la valencia del ión metálico. En la figura 3, podemos ver la influencia del pH con el log. del coeficiente de distribución.

Fig. 3.- Influencia del pH con el log. del coeficiente de distribución

Page 17: Curso hidrometalurgia

3. – Extracción por solvatación (Extractantes neutros)

La extracción se produce por solvatación del ión metálico por parte del agente de extracción, realizándose la extracción simultánea del anión y el catión. Su mecanismo lo podemos expresar según:

Si generalizamos, la reacción queda:

siendo su constante de equilibrio:

El ión metálico puede formar en la fase acuosa con el ligado A- una serie de complejos, de tal manera que en dicha fase existirán iones del tipo Mn+, M A(n-1)+, M A2(n-2)+, M Am(n-m)+, formados de acuerdo con la siguiente reacción:

siendo la constante de equilibrio:

siendo la constante de equilibrio:

Page 18: Curso hidrometalurgia

siendo “m” el número máximo de ligados que forman complejos con M (número de coordinación).

En general, para la formación del complejo , según la reacción siguiente:

la constante de equilibrio será:

de donde

La concentración del metal en la fase acuosa será:

De acuerdo con estos equilibrios reseñados, el coeficiente de distribución valdrá:

como la constante de equilibrio para reacción tiene el siguiente valor:

al sustituir por su valor en la ecuación del coeficiente de distribución, tendremos:

Page 19: Curso hidrometalurgia

Para el caso del ión complejo neutro podemos escribir:

de donde

De modo que la ecuación del coeficiente de distribución puede expresarse de la siguiente forma:

Si hacemos

tendremos que el valor del coeficiente de distribución será:

Según dicha expresión, el coeficiente de distribución es directamente proporcional a la potencia “p” de la concentración del reactivo extractante en la fase orgánica, dependiendo también de la proporción de metal presente en la fase acuosa como “complejo neutro” (an), la cual es, a su vez, función de la concentración del ligando en la fase acuosa.

En realidad, el mecanismo no es tan simple como lo expuesto anteriormente, ya que, pueden existir en la fase acuosa reacciones de hidratación que hacen posible la coextracción de la moléculas hidratadas. Del mismo modo, y a pesar de lo que pueda

deducirse de la ecuación , el pH de la fase acuosa juega un papel determinante en el sistema, ya que, a pH elevado puede producirse la hidrólisis del metal, mientras que a pH bajo puede producirse la extracción conjunta del ácido `presente y de la sal metálica.

4. – Extracción por formación de pares iónicos(Agentes de extracción básicos o de intercambio aniónico)

La extracción puede producirse por asociación iónica entre el complejo aniónico presente en la fase acuosa y el compuesto orgánico o extractante. Estos agentes extractantes son normalmente sales ácidas de aminas primarias, secundarias o terciarias, que se forman según la reacción:

Page 20: Curso hidrometalurgia

Los metales a extraer se encuentran en la fase acuosa formando complejos de carácter aniónico, siendo su reacción de formación la siguiente:

La extracción puede realizarse por dos mecanismos:

- Por intercambio de tipo aniónico. Este mecanismo se rige por la reacción:

- Por adición y formación de una sal doble. Se rige por la reacción:

En este segundo caso, al ser la ecuación de extracción muy similar a la que describe la extracción por solvatación, el valor del coeficiente de distribución vendrá dado por la expresión:

por lo que las dependencias existentes serán las mismas que en la extracción por solvatación. Dicha ecuación del coeficiente de distribución presenta gran cantidad de limitaciones, por lo que no se puede considerar como general. En principio solo hace referencia a un mecanismo de extracción, existiendo además una serie de factores que la limitan y que hacen prácticamente imposible la obtención de una ecuación de equilibrio general.

A la hora de realizar la extracción hemos de tener en cuenta una serie de factores que influyen en el sistema. Estos son:

- La extracción debe realizarse en medio ácido debido a que el agente de extracción no es una amina sino su sal.

- La existencia de otros aniones en la fase acuosa, aún del propio acidificante, que pueden ser extraídos por el agente extractor, disminuirá la cantidad de sal ácida de amina disponible para extraer la especie de interés.

- Las características de la cadena carbonada de la amina afectan su capacidad de extracción.

Capítulo 7:

Transferencia de materia

Supongamos que tenemos un sistema formado por dos fases (F1 y F2). En la fase F1 se ha formado la especie extraíble a una velocidad dada. Una parte esencial del proceso extractivo tiene lugar por transferencia de materia entre las dos fases, F1 y F2, hasta que se establece un equilibrio dinámico. Desde el punto de vista del equilibrio se define la transferencia de materia por medio del coeficiente de distribución, con el que se obtiene el resultado final del reparto entre las fases.

Page 21: Curso hidrometalurgia

Esta transferencia de materia se realiza a través de una interfase que la podemos definir como una superficie irregular tridimensional.

Los mecanismos por los que transcurre la transferencia de materia son dos y tienen lugar por difusión, definiéndose ésta como un fenómeno espontáneo de migración de especies hasta que se consigue el ya mencionado equilibrio, que se logra al igualarse los potenciales químicos en ambas fases.

El primero de estos mecanismos se produce por difusión molecular debida al simple movimiento de las moléculas en un fluido. Aunque éste se mueve a muy alta velocidad, la longitud de la trayectoria en el líquido es muy corta. La difusión molecular puede aparecer por el gradiente de concentración, temperatura, presión, o un potencial externo, así como por un campo eléctrico, pero solamente la diferencia de concentraciones es la fuerza motriz que origina la transferencia de materia.

El segundo de los mecanismos está provocado artificialmente mediante agitación, que da lugar a una difusión por turbulencia, siendo su magnitud mucho mayor que la difusión molecular, y que aparece por movimientos desordenados de pequeñas porciones de fluido. Este mecanismo es muy importante, ya que la extracción se efectúa en un sistema heterogéneo, con lo que la velocidad de extracción del ión metálico depende del área superficial de la fase dispersa, es decir, la emulsión de pequeñas gotas de la fase F2 en el seno de la fase F1, con lo que se consigue una interacción constante que homogeneíza la composición con el tiempo, siendo la velocidad total de transferencia de materia la correspondiente a la superposición de ambos mecanismos.

La agitación influye variando el grado de dispersión y el tamaño de las gotas, que son, como ya se ha dicho, las que determinan el valor del área de la interfase. También afecta a la turbulencia del sistema y a la magnitud de los coeficientes de transferencia. Sin embargo, en determinados casos, esta agitación puede influir negativamente debido a la formación de emulsiones estables o pequeñas esferas de fase dispersa que impidan que el agente de extracción que se encuentra en su interior alcance la superficie, con lo que obstaculiza la extracción del metal, produciéndose también pérdidas de disolvente por arrastre en la fase continua. Para evitar este tipo de problemas se sigue el criterio de A. I. Bellingham (1961), que indica que para el diseño del agitador se ha de cumplir la siguiente expresión:

Siendo: N = revoluciones por segundo del agitador.

D = diámetro del agitador en pies.

La agitación es el factor que permite acelerar el transporte de materia, evitando que la etapa sea lenta y produciendo los siguientes efectos que incrementan la velocidad del proceso:

- Aumenta las difusiones de remolino.

Page 22: Curso hidrometalurgia

- Acelera el movimiento relativo entre las fases, por lo que la interfase reduce su espesor.

- Permite la existencia de las turbulencias interfasiales que minimizan las dificultades de la difusión de la película.

La transferencia de materia, además de producirse de una forma física, también da origen a nuevas especies químicas, que son las que realmente se extraen. Existe además una cinética de ésta reacción química, que en unión del proceso definen la cinética de extracción. El proceso de extracción se verifica según las siguientes etapas:

- Difusión de las especies transferibles hacia la interfase en ambas fases.

- Reacción química entre las especies en la interfase.

- Difusión de las especies formadas hacia otras regiones más alejadas de la interfase.

Estas etapas se verifican en un sentido u otro, hasta que se establece un equilibrio dinámico.

Según exista solubilidad parcial de una especie en la otra fase o no, la reacción química puede ser homogénea o heterogénea, según tenga lugar en la misma fase, o solo en la superficie de contacto entre las fases o interfase. Si la reacción es instantánea tiene lugar en la línea de contacto entre las especies reaccionantes (figura 4).

FIGURA 4

Page 23: Curso hidrometalurgia

Normalmente, esta reacción no suele ser instantánea y necesita un tiempo de reacción con lo que tiene lugar en una zona de reacción química (figuras 5 y 6).

FIGURA 5

FIGURA 6

Page 24: Curso hidrometalurgia

Podemos decir que el fenómeno de la difusión a través de la interfase está afectado por los siguientes factores:

a. Características de la interfase.

- Espesor de la doble capa líquida.

- Área de la interfase.

- Irregularidades en la interfase.

b. Características del soluto transferido.

- Coeficiente de difusión del material transferido en ambas fases.

- Concentración del material transferido.

c. Características de las fases.

- Propiedades físicas de las fases, tales como viscosidad, temperatura, tensión superficial.

- Tamaño de las moléculas de ambas fases en relación con el tamaño de las moléculas transferidas.

- Volumen relativo de las fases.

En las siguientes figuras podemos ver:

- Figura 7: El incremento producido en el coeficiente de distribución en función de la concentración de los iones metálicos de Níquel y Cobalto a una temperatura constante de 55 ºC.

Page 25: Curso hidrometalurgia

FIGURA 7

- Figura 8: El efecto que produce la temperatura sobre la extracción de iones de Co2+ en disoluciones sulfato por sales Sodio de DEHPA.

FIGURA 8

Capítulo 8:

Leyes de la difusión molecular: Leyes de Fick

Page 26: Curso hidrometalurgia

- Primera ley de Fick.

Deducida por Fick en 1855, por analogía con la ley de Fourier sobre la conducción de calor, pero con la importante diferencia de que la transferencia de materia, contrariamente al calor, mantiene a todo el fluido en movimiento, excepto en circunstancias especiales en las que los componentes se mueven por igual en todas direcciones.

Según Fick, la velocidad de transferencia de materia de un componente en una mezcla de dos componentes 1 y 2, estará determinada por la velocidad de difusión del componente 1 y el comportamiento del componente 2. La velocidad molar de transferencia del componente 1 por unidad de área debida al movimiento molecular viene dada por:

siendo:

J1: velocidad molar de difusión por unidad de área.

D12: difusividad del componente 1 en el componente 2.

C1: concentración molar del componente 1.

Z: distancia en la dirección de la difusión.

De la misma manera, la velocidad de difusión en el componente 2 viene dada por:

Si la presión total, y por tanto, la concentración molar total es constante, los términos dC1/dz y dC2/dz, tienen que ser iguales y de signo contrario, por lo que los componentes 1 y 2 se difunden en sentidos contrarios.

En muchos casos, el componente 2 no permanecerá estacionario ni difundirá con una velocidad molar igual y de sentido contrario a la del componente 1, siendo el cálculo, en este caso, difícil.

En general, el flujo total N1 se diferencia del flujo difusional J1 a causa de la superposición por convección del flujo, y por estar directamente relacionado con el movimiento de la estructura de referencia.

La elección de la estructura de referencia se hace en base a coordenadas estacionarias o en volumen medio, masa media o velocidad media.

Estas velocidades se definen como sigue:

Page 27: Curso hidrometalurgia

vr = a1v1 + a2v2

en donde ai es la correspondiente función de desplazamiento, definida por los siguientes caminos:

- Velocidad media de volumen ai = ci vi, donde ci es la concentración del componente i en masa o unidades molares, y vi es el correspondiente volumen específico parcial o volumen molar parcial.

- Velocidad media de masa, ai = wi, función de masa.

- Velocidad media molar, ai = xi, fracción molar.

Las diversas velocidades de referencia son vectores cuantitativos que se diferencian en dirección y magnitud en la mayoría de los casos.

El flujo dimensional Ji del componente i está relacionado con estas velocidades por la expresión:

Ji = ci (vi - vr)

donde vi es su velocidad, relativa a las coordenadas estacionarias, y Ji y Ci, vienen expresadas en unidades molares o de masa. La definición de flujo no es completa, a menos que estén determinadas las unidades y la estructura de referencia. La estructura de referencia más comúnmente usada para cálculos difusionales, actualmente no considera los caudales de volumen de líquido. Si se da por supuesto que la densidad de la masa para sistemas líquidos es constante, entonces:

tal que el volumen especifico parcial sea igual a:

Consecuentemente, la velocidad media de masa es igual a la velocidad media de volumen, y se puede utilizar como base de referencia. Similarmente, la velocidad molar media puede usarse si la densidad molar es constante.

En el caso unidimensional, los vectores cuantitativos de la ecuación Ji = ci (vi - vr) pueden sustituirse por escalares. Si la combinamos con la ecuación

, dará, por tanto, para cada componente:

Page 28: Curso hidrometalurgia

Las ecuaciones de continuidad para los componentes individuales, expresadas con referencia a coordenadas estacionarias, quedan reducidas a:

Si integramos la expresión anterior nos dará:

N1 = constante.

N2 = constante.

La combinación de estos resultados con las ecuaciones últimas de J1 y J2, si ci vi = Ni, y teniendo en cuenta la ecuación de vr, ci vr = xi Ʃ Ni. Finalmente nos dará:

donde ctx es la concentración total, que es la masa o densidad molar.

- Segunda ley de Fick.

La difusión en régimen permanente es un caso especial de uno de los más generales de la difusión transitoria, en la cual los flujos y la concentración varían con el tiempo. La difusión en régimen no permanente se aplica a muchos métodos experimentales en donde se determina el coeficiente de difusión, y en las teorías de transferencia de masa, así como en la teoría de penetración.

La ecuación diferencial de difusión transitoria se obtiene combinando la expresión de la primera ley de Fick con la que ahora veremos.

Para un caso unidimensional, la segunda ley de Fick se obtiene igualando la acumulación del componente 1 en una porción de líquido de espesor dz en una dirección normal a la dirección de la difusión, al correspondiente cambio en el flujo, dada por la expresión:

Page 29: Curso hidrometalurgia

siendo la integral de N1 = constante.

Esta ecuación, en combinación con la relativa a la primera ley de Fick, expresada por la

ecuación , nos da la segunda ley de Fick, que viene dada por:

La solución de esta ecuación para distintas formas geométricas y condiciones límite son dadas por Crankc, y por Carslaw y Jaeger (1947), recientemente en problemas relativos a conducción de calor.

Existen algunas teorías que explican el mecanismo de la transferencia de materia. Entre éstas tenemos la teoría de la penetración, enunciada por Higbie en 1935, y la que vamos a estudiar en este apartado, la teoría de la doble película, propuesta por Witman en 1923. Se han desarrollado otras teorías, como la teoría de la película-penetración, o la desarrollada por Rishimevskij, o la de Bakowski.

La teoría de la doble película fue el primer intento serio para representar las condiciones que tienen lugar cuando se transfiere materia desde una corriente de un fluido hacia otra. Aunque esta teoría no reproduce exactamente las condiciones en la mayor parte del equipo real, nos conduce a ecuaciones que se pueden aplicar a los datos experimentales generalmente disponibles, por lo que aún se utiliza.

Esta teoría se basa en dos postulados:

1.-La resistencia a la transferencia reside en la existencia de dos películas muy delgadas a ambos lados de la interfase, una por cada fase. Este proceso es lento, ya que la difusión a través de las películas tiene lugar por difusión molecular. En el resto de la masa existe agitación, que produce un movimiento, lo que provoca difusión por turbulencia, originándose un flujo de materia mayor o menor. El gradiente de concentración es lineal a cada una de las películas y nulo fuera de ellas.

2.-Las fases se encuentran en equilibrio con la interfase. Esto lo podemos ver en las figuras 9 y 10, en la cual la concentración en la fase Y la expresamos como Cy / K, donde el coeficiente de distribución K se considera constante. El primer postulado exige que la concentración baje rápidamente en la película de la fase X, desde el valor de la constante Cxb en la masa, al valor interfasial Cxi, y en la película de fase Y desde el valor Cyi / K con la interfase, al valor Cyb / K, en la masa. Conforme al segundo postulado, los puntos Cxi y Cyi / K, son coincidentes con la interfase, como se ve en la figura 10. Sin embargo, en la práctica, el perfil de la concentración tiene una pequeña diferencia desde la masa de la fase a la interfase, como se indica por la línea discontinua de la gráfica anterior.

Este es el perfil de la concentración, según la teoría de la doble película, con equilibrio en la interfase (figura 9), y con ligera reacción heterogénea (figura 10).

Page 30: Curso hidrometalurgia

La cantidad de transferencia a través de la película de la fase X, se obtiene por la

ecuación , la cual se expresa considerando

una película de espesor δx, y poniendo η = ;con lo que obtenemos la siguiente expresión:

donde:

FIGURA 9

Page 31: Curso hidrometalurgia

FIGURA 10

Puesto que no hay acumulación en la película, N1 y N2 son constantes, como ya vimos en la primera ley de Fick, y la ecuación anterior puede ser integrada entre los límites x = xb (composición de la masa), con η = 0; y x = xi (composición de la interfase), con η = 1, quedando:

Esta expresión la podemos poner de la forma:

donde:

siendo zx la cantidad relativa de transporte del componente a través de la película. La ecuación de N1 puede expresarse más convenientemente como:

Page 32: Curso hidrometalurgia

donde:

y

estando referido a la media logarítmica de y .

El término xD se suele llamar “factor de desplazamiento” (drift factor), utilizándose para los desplazamientos en la película y la masa del flujo. En la extracción líquido-líquido zx normalmente tiene como valor la unidad con disolventes inmiscibles, donde el soluto se difunde a través del disolvente estacionario.

El factor de desplazamiento es igual a la media logarítmica de la concentración de disolvente en la masa y la interfase, que es (1 – x) 1m.

La transferencia en la fase Y, tomada desde la interfase a la masa, se puede tratar de idéntica manera, dando:

donde:

y

En general, zy = 1, para la extracción líquido-líquido. Se debe hacer énfasis en que el flujo N1 es el mismo en ambos lados de la interfase, en donde no hay acumulación en la película.

El coeficiente de transferencia de masa es un valor práctico, siendo igual a la relación del flujo total y la fuerza de arrastre, como se demuestra por las ecuaciones

y . El coeficiente Fj, fue usado primeramente por Colburn y Drew, correspondiente al valor obtenido en ausencia de volumen de flujo, como queda demostrado por

, en la ecuación . A esto se le denomina “coeficiente de equimasa o equimolar a contracorriente”, o más sencillamente, coeficiente de transporte cero. Esto es importante cuando se comparan valores del coeficiente de transferencia de masa para diferentes condiciones, o cuando usando la correlación para el calor o el momento de transporte, se convierte el valor de Kj a la Fj, formada multiplicando por el factor de desplazamiento, como se indica en las

ecuaciones y , en el orden expresado por estas respecto a la estructura estacionaria de referencia.

Page 33: Curso hidrometalurgia

La anterior relación se aplica indiferentemente de si la concentración viene expresada en unidades de masa o unidades molares, siempre que sean estables.

El uso de las unidades de masa, generalmente se suele preferir, aún cuando las unidades molares se acostumbraban a usar en el pasado.

Una interpretación física del coeficiente de película lo podemos ver en la figura 11, donde A, B, y C, representan la relación de equilibrio, no necesariamente lineal, correspondiendo el punto E a las concentraciones Cxb y Cyb de la masa en la fase.

Según las ecuaciones y

, donde N1 es el mismo para ambas películas. Esto se puede expresar como sigue:

para que

Fig. 11.- Relación entre las fuerzas impulsoras para la transferencia de masa con equilibrio en la interfase

Page 34: Curso hidrometalurgia

La línea de pendiente , que pasa por E, intersecciona a la curva de equilibrio en el punto I, teniendo por coordenadas (cxi, cyi), y las fuerzas impulsoras en las fases X e Y se representan por IJ e IG respectivamente.

En la figura 12 se representa la relación entre las fuerzas impulsoras para la transferencia de masa con ligeras reacciones heterogéneas.

FIGURA 12

Conviene además definir los coeficientes globales de transferencia de masa Kox y Koy como sigue:

siendo y , las composiciones en equilibrio con y respectivamente. La

fuerza impulsora en la ecuación ,

puede expresarse como , donde es la pendiente de IB, quedando la ecuación como sigue:

Page 35: Curso hidrometalurgia

La fuerza impulsora global sobre la fase X según la figura 12 será:

Con las dos ecuaciones últimas obtenemos:

De la misma manera, sobre la fase Y, la fuerza impulsora global será:

de donde, por analogía con la ecuación de la fase X, obtenemos:

siendo la pendiente de la cuerda IC. Los valores de y de en estas expresiones pueden reemplazarse por K, coeficiente de distribución, cuando estos sean constantes.

El término independiente en las ecuaciones y

corresponde a la resistencia a la transferencia de masa, siendo la resistencia global igual a la suma de la resistencia a la separación de fases. Parece

evidente que el término , en la primera ecuación, disminuirá en importancia

con el aumento del coeficiente de distribución, tal que , y si se encuentra que menos del diez por ciento de la resistencia global reside en la fase Y, el sistema se dice está con la fase X controlada.

Similarmente, el término , en la ecuación de la fase Y, disminuye en importancia

con la disminución del coeficiente de distribución, tal que , y el sistema se considera con la fase y controlada si más del noventa por ciento de la resistencia global reside en esta fase.

Capítulo 10:

Cinética de la extracción

Page 36: Curso hidrometalurgia

Hasta ahora no se había hecho mención a la mayor o menor rapidez con que se alcanzaba el equilibrio en el proceso de extracción, es decir, la cinética de la extracción, ya que, generalmente, transcurren tan rápidamente que hacen que esta variable carezca de importancia práctica. El equilibrio de distribución se alcanza rápidamente, siempre que éste se realice con una agitación adecuada. No obstante, existen algunos sistemas extractivos, en los que el proceso es lento, y las consideraciones cinéticas constituyen una importante contribución al estudio y aplicación de la extracción líquido-líquido. Para estos casos, el estudio de la cinética del proceso desempeña un papel importante en la dilucidación de los mecanismos físico-químicos del proceso en sí, así como para el diseño de los equipos de extracción, donde se determina el tiempo de retención de las fases en las diferentes etapas. Este será tanto mayor cuanto más lenta sea la cinética del proceso, y viceversa.

El objetivo de la cinética química es el estudio de la evolución en el tiempo de los sistemas que reaccionan químicamente, es decir, de la medida e interpretación de las velocidades de reacción.

La cinética de extracción líquido-líquido depende de las etapas físico-químicas que ocurren durante esta técnica de separación. Al existir una interacción química entre especies se presenta una cinética de reacción que puede influir en la cinética total del proceso, siendo la etapa más lenta la que controla el proceso.

En determinados sistemas de extracción se ha comprobado que al aumentar el tiempo y la fortaleza de la agitación, también aumenta la velocidad de extracción, hasta un determinado momento en el que el sistema se hace independiente de esta variable y pasa a depender de otras variables, como son la concentración de especies que intervienen en el proceso de distribución y el pH. Podemos ver la figura 13 a tal efecto, en la que tenemos la velocidad de extracción en función del tiempo de agitación, y donde podemos observar que hasta llegar a un tiempo T1 sucede el fenómeno de transferencia de materia, visto ya anteriormente. A partir de T1, la velocidad de extracción permanece constante, por lo que la extracción ya no es solamente un problema de difusión o transporte entre fases, sino que, además, hemos de tener en cuenta que el soluto se encuentre de distintas formas y ocurran varias interacciones químicas inherentes al sistema extractivo, que dé lugar a etapas previas o posteriores al proceso de separación.

Page 37: Curso hidrometalurgia

FIGURA 13

Si estas etapas transcurren con lentitud, nos determinan la velocidad global de extracción.

Pueden presentarse dos tipos de procesos anteriores o posteriores al fenómeno de transferencia de materia.

- Proceso de deshidratación y solvatación (interacción soluto-disolvente).

- Reacciones químicas ácido-base, formación de complejos, reacciones de oxidación-reducción, reacciones de polimerización, provocadas, o bien por la naturaleza de las fases, o por la presencia de agentes químicos, como ligandos, oxidantes, reductores, buffers, etc.

Según el comportamiento del soluto en el sistema, caben dos posibilidades:

- Que el soluto se encuentre en las dos fases en la misma forma química, con lo que solo pueden afectar a la velocidad de extracción procesos de solvatación y deshidratación.

Page 38: Curso hidrometalurgia

- Que el soluto se encuentre en cada fase con una forma diferente. Suceden, además de los procesos de solvatación y deshidratación diversas reacciones químicas durante el proceso. Si cualquiera de estas es lenta, controlará la cinética de la extracción.

Para el estudio de la extracción resulta importante saber si estas reacciones químicas ocurren en la interfase o en el resto de la disolución. Si ocurren en la interfase será difícil conocer si la cinética del proceso de extracción está controlada por la difusión o por la velocidad interfasial, ya que la agitación afecta igualmente a ambos fenómenos.

Ahora vamos a ver algunos puntos relacionados con la velocidad de formación de especies extraíbles:

- La extracción de especies por formación de pares iónicos suele ser rápida. Sólo la solvatación lenta de ciertos iones puede ser un proceso lento e influenciado por un gran número de variables. En estos casos suele ser aconsejable calentar las disoluciones antes de realizar la extracción.

- En pocos casos la velocidad es lenta. Esto suele ocurrir en la extracción de quelatos metálicos. Como ejemplo tenemos el uso de agentes formadores de quelatos, tipo LIX, donde la velocidad de disociación de estos quelatos es el factor controlante.

- La concentración del catión metálico y del ligando en la fase orgánica influyen en la velocidad de extracción.

- La existencia de agentes enmascarantes, como el AEDT, CN-, hidroxiácidos, que originan especies cargadas no extraíbles, pueden disminuir la velocidad de extracción de los quelatos metálicos, sobre todo si su concentración en la disolución acuosa es elevada. Actúan como inhibidores del proceso extractivo.

- La presencia de ciertos ligandos puede favorecer la cinética de extracción en ciertos casos.

- El disolvente orgánico también desempeña su papel en la cinética del proceso, ya que, en función del disolvente empleado, se consiguen ciertas diferencias de velocidad de extracción.

- El pH de la disolución afecta a la velocidad de extracción en reducidos casos. Según el sistema, un aumento del pH puede producir una variación en un sentido u otro de la velocidad del proceso, como podemos ver en las figuras 14, 15 y 16.

Page 39: Curso hidrometalurgia

FIGURA 14

FIGURA 15

Page 40: Curso hidrometalurgia

FIGURA 16

- La temperatura suele favorecer la velocidad de extracción.

Como ya mencionábamos, la forma en que se encuentre el soluto en la fase acuosa influye en la cinética de extracción, dependiendo también de la mayor o menor facilidad con que el metal en solución sea captado por el agente de extracción. Así, el orden de extracción de distintos metales existentes en una determinada disolución sería:

Precisamente, y basándose en fenómenos cinéticos, es posible la separación de distintos metales en solución. Por ejemplo, con la utilización de LIX o KELEX es posible

la separación de iones de iones .

Capítulo 11:

Mecanismos de reextracción

Una vez que el metal deseado ha sido extraído y se encuentra en la fase orgánica, se hace necesario recuperarlo de dicha fase. Esta recuperación la podemos hacer mediante diferentes operaciones como son:

- Precipitación por reducción.

Page 41: Curso hidrometalurgia

- Precipitación por formación de compuestos insolubles en otra fase acuosa.

- Reextracción del metal por paso a otra fase acuosa, de donde se puede recuperar.

Las dos primeras mencionadas no suelen utilizarse, realizándose generalmente la reextracción por la última de las operaciones mencionadas.

De la misma manera que en la extracción se hacía uso de un coeficiente denominado de extracción, en la reextracción se hará uso del coeficiente de reextracción. Cuanto mayor sea éste mejores condiciones tendremos para llevar a cabo el proceso de reextracción, y mayor concentración de metal de interés obtendremos en la nueva fase acuosa.

Vamos a ver ahora sobre que parámetros podemos actuar en cada sistema de extracción para que el equilibrio se desplace para conseguir la reextracción del metal.

1. – Reextracción para reactivos catiónicos y reactivos que forman quelatos

Aquí la reacción de reextracción será:

El coeficiente de reextracción vendrá dado por:

Según la ecuación anterior, para aumentar , y consecuentemente favorecer la reextracción, bastará con disminuir el valor del pH. Esto quiere decir, que poniendo en contacto la fase orgánica cargada con una fase acuosa ácida, se variará adecuadamente el pH.

2. – Reextracción para reactivos de extracción por solvatación y reactivos aniónicos

Las reacciones de reextracción serán:

siendo el coeficiente de extracción:

Page 42: Curso hidrometalurgia

Según la expresión anterior, para aumentar el coeficiente de reextracción , bastará

con disminuir la proporción de metal presente como complejo neutro . Esto se consigue disminuyendo la concentración del ligando A.

Resumiendo, para efectuar la reacción de reextracción bastará con contactar la solución orgánica con una solución acuosa cuya concentración del ligando A sea nula.

A veces es aconsejable realizar la reextracción utilizando agua ligeramente acidulada con el fin de evitar la hidrólisis del metal en la fase acuosa.

Capítulo 12:

Problema de extracción. Forma de abordarlo

En primer lugar tenemos que fijar la meta a alcanzar, ya que la operación nos proporciona una solución más o menos concentrada y purificada. La concentración, pureza y naturaleza de este líquido resultante se puede elegir de acuerdo con las exigencias de los procesos que sigan o las posibilidades del mercado, sin más que jugar adecuadamente con las variables de la extracción. del líquido resultante se puede recuperar el metal por precipitación de un compuesto, p. ej. concentrado de uranato, por cristalización de una sal (sulfato de cobre por ej.), por depósito electrólito (cobre, zinc), por reducción o polvo metálico (cobre, níquel), por evaporación y calcinación (UO3), etc.

El material a tratar también fija unas condiciones o permite seguir diferentes alternativas. El problema es diferente de tratar aguas de mina, de escombreras, líquidos de lixiviación sulfúrica de minerales o del ataque nítrico de concentrados, o de chatarras. En los casos en que se puede elegir la forma de obtener el líquido se debe considerar el proceso de ataque teniendo en cuenta las posibilidades de la extracción.

En el estudio de un problema de extracción aplicada se pueden considerar las fases de: análisis y estudio de la naturaleza del líquido a tratar y posibles modificaciones por variación del pH, oxidación-reducción o adición de agentes complejantes, elección de agentes de extracción, realización de ensayos discontinuos para valorar las posibilidades de estos reactivos, ensayos continuos con vistas a la obtención de datos químicos o incluso de comportamiento físico, y más adelante pasar a ensayos en planta piloto para obtención de datos económicos definitivos e información para el diseño de equipo.

Naturaleza del medio acuoso

El proceso de lixiviación utilizado (reactivos, etc.) junto con la naturaleza del producto sólido tratado nos determinan unas características de la solución problema.

Desde el punto de vista de la extracción hay que tener en cuenta:

- El anión predominante. Este puede ser

Page 43: Curso hidrometalurgia

- El estado de oxidación del ión metálico que interesa extraer, al igual que el de otros cationes que estén como impurezas.

- La acidez o pH del medio.

Además, la presencia en la fase acuosa de sílice o de materia sólida suspendida dará origen a emulsiones estables, por lo que la clarificación hasta conseguir una gran nitidez en el líquido es una condición esencial en la mayoría de los procesos. Esta ha de ser inferior a 10 p.p.m. de sólidos en suspensión.

La presencia de determinados aniones y el valor de la acidez determinan la forma iónica (catiónica o aniónica) en la que se encuentra el metal en cuestión y por consiguiente el reactivo que se tiene que utilizar. En función de dicho reactivo nos dará una determinada cinética de extracción. También condicionan a veces el orden de extracción con un tipo de reactivo en particular, así por ejemplo la extracción con ácidos carboxílicos se realiza en el sentido de

de pH bajo a alto, con un valor óptimo en las proximidades del valor del pH en que empieza la hidrólisis del metal.

El control del potencial redox de la solución evita la extracción de impurezas y la

posible degradación del reactivo orgánico. Por ejemplo, el no se extrae con el

D2EHPA mientras que el si se extrae.

Capítulo 13:

Elección del agente de extracción. Propiedades

Teniendo en cuenta la naturaleza del líquido a tratar y sus posibilidades de modificación. Una primera selección se puede hacer acudiendo a la bibliografía sobre los metales en particular o a algunas revisiones. Para problemas más específicos o no considerados hasta ahora será de gran valor consultar la información sobre separaciones analíticas, ya que hay mucho material con posibilidad de convertirse en una técnica de tratamiento si se logra obtener un proceso económico de obtención del reactivo. Hay que tender a que sea barato, tenga pocas pérdidas por solubilidad, sea específico y pueda trabajar lo más próximo posible a las condiciones del líquido resultante del ataque.

Como norma general, la elección de un agente de extracción determinado para su uso en un proceso de extracción con disolventes lleva consigo el conocimiento de una serie de características de dicho agente. Estas son las siguientes:

- 1.- Solubilidad.

- 2.- Estabilidad química y degradación.

Page 44: Curso hidrometalurgia

- 3.- Capacidad de carga y viscosidad.

- 4.- Toxicidad e inflamabilidad.

- 5.- Precio de costo.

En la tabla 1, se presentan algunos de los agentes de extracción utilizados en la extracción por disolventes orgánicos. En dicha tabla, se incluye, junto al tipo de reactivo, fabricante y empleo más frecuente.

TABLA 1

REACTIVO FABRICANTE EMPLEO

CATIÓNICOS

- Ácido naftánico Shell Chemical Co Cationes

- Ácido versético 911 Shell Chemical Co Cationes

Derivados órganos fosforados ácidos:

- Ácidos alquilfosfóricos

DEHPA Unión Carbide U, V, Tierras raras, Be, Zn, Fe+3,

Mn, Cu, Co, Mo, Re, Ni.

- Ácidos alquilfosfóricos

PC 88 A Daihachi Análogos

SMA 418 Chemical Industry Co al

RD 577 Shell Chemical Co DEHPA

- Ácidos alquilfosfóricos

Cyanex - CNX Cyanamid Co Análogo al

DEHPA

FORMADORES DE QUELATOS

LIX 63 General Mills Cu

LIX 64 General Mills Cu

LIX 64N General Mills Cu

LIX 65N General Mills Cu

LIX 70 General Mills Cu

LIX 71 General Mills Cu

LIX 73 General Mills Cu

KELEX 100 Ashland Chemicals Cu

KELEX 120 Ashland Chemicals Cu

SME 529 Shell Chemical Co Cu

P - 50 Acorga, Ltd Cu

P - 17 Acorga, Ltd Cu

Page 45: Curso hidrometalurgia

TIPOS NEUTROS

Tributil Fosfato (TBP) Unión Carbide U, V

Óxido de trioctlifosfina (TOPO) Unión Carbide U, V, Mo, Re

Metil Isobutil cetona (MIBK) Unión Carbide Ta, Hf, Zr

Dibutil carbitol (Butex) Unión Carbide Au

BÁSICOS

Aminas primarias:

Primena JMT Rohn & Hass

Primena 81-R Rohn & Hass

Aminas secundarias:

- Amberlita

LA-1 Rohn & Hass U

LA-2 Rohn & Hass Zn, Fe

Aminas terciarias:

- Alamine 336

- Adogen 368 Ashland Chemicals

- Adogen 381 Ashland Chemicals

Sales de amonio cuaternarias:

- Aliquat 336 General Mills

- Adogen 464 Ashland Chemicals

Capítulo 14:

Solubilidad

Los agentes de extracción deberán tener una muy baja solubilidad en la disolución acuosa a extraer, mientras que, tanto él como su correspondiente compuesto metálico deberán tener una alta solubilidad en el disolvente orgánico empleado.

La razón de que tanto el agente de extracción como su correspondiente compuesto metálico sean altamente solubles en la fase orgánica es obvia, ya que el coeficiente de extracción es la razón de la solubilidad en ambos medios. Cuanto mayor sea la solubilidad en la fase orgánica, mayor será el correspondiente coeficiente de extracción.

En cambio, la solubilidad del agente de extracción en la fase acuosa deberá ser mínima, tanto por lógicas consideraciones económicas, como de tipo medioambiental. Es decir, el paso de sustancia orgánica a la fase acuosa, además de ser una pérdida de reactivo, y por tanto, una carga económica, es una causa contaminante que habrá que eliminar posteriormente con el también consiguiente desembolso económico, lo que encarecería el proceso.

Estabilidad química y degradación

Page 46: Curso hidrometalurgia

Las pérdidas por degradación implican la reposición del extractante antes de producirse un nuevo ciclo del proceso. Esto lleva consigo un coste adicional. Además, el producto resultante de la degradación puede interferir en el proceso de extracción haciendo éste inviable. No obstante, este proceso de degradación es inevitable, ya que, el proceso de extracción es cíclico. Esto supone una recirculación del agente de extracción con el consiguiente deterioro y degradación progresiva, lo cual exige su reposición parcial.

El proceso de degradación se debe a fenómenos de oxidación e hidrólisis, y su cuantía depende de la naturaleza del proceso de extracción. Además, de las pérdidas por degradación surgen otros problemas como consecuencia de dicha degradación. Tal es el caso del T.B.P. cuando se utiliza en medio nítrico, donde se origina un producto de degradación muy soluble en la fase acuosa, lo que, como se ha visto, produce una pérdida de reactivo.

El agente de extracción debe ser estable, tanto en la etapa de extracción como en la de reextracción, donde se le pone en contacto con soluciones acuosas ácidas o alcalinas que pueden interferir su estabilidad.

Los fenómenos de degradación y modificación química limitan el empleo de posibles agentes de extracción.

Capacidad de carga y viscosidad

Aunque aparentemente no existe una razón para unir ambos conceptos, creemos que existe una consideración que los liga, y es el peso molecular. La viscosidad de un compuesto orgánico aumenta con éste, llegando, por encima de 600 poises a ser sólido, con lo que su presencia en el medio de extracción puede llegar a proporcionar una alta viscosidad, de tal manera que, en su mezcla con disoluciones acuosas, dé lugar a emulsiones muy estables que impidan la separación de fases e inviabilicen técnicamente el proceso. En la figura 17, podemos ver la relación directa que existe entre la viscosidad y la concentración del extractante.

Por otra parte, cuando mayor es el peso molecular, menor es la relación de carga (relación entre el peso de metal y el peso de reactivo), con lo que se llegaría a unas relaciones que inviabilizarían económicamente el proceso, por el gran capital circulante necesario.

Page 47: Curso hidrometalurgia

FIGURA 17

Capítulo 15:

Toxicidad e inflamabilidad

Es evidente que una planta de extracción con disolventes orgánicos, al igual que cualquier planta industrial, debe tener los mínimos riesgos contaminantes y posibles incidentes. Por tanto, las medidas de seguridad, tanto en el desarrollo del proceso industrial como de seguridad e higiene del personal de mantenimiento y producción han de ser máximas.

Por estas razones, los reactivos y disolventes utilizados deben ser altamente inocuos y con un flash point o temperatura de inflamabilidad muy elevado, para que no sean tóxicos (bajos riesgos higiénicos), y no sean inflamables (bajos riesgos de seguridad).

Ha de tenerse en cuenta que una planta media de extracción por disolventes orgánicos se van a mover del orden de 3.000 a 5.000 m3 por día, y pueden existir unas 350 a 600 Tm de disolvente, con una superficie libre al aire entre 400 a 600 m2, con lo que los riesgos de accidentes son elevados.

Por ello, además de otros condicionantes, se debe de exigir a un agente de extracción, así como a su correspondiente diluyente las características de atoxicidad, baja volatilidad y alta temperatura de inflamabilidad.

Page 48: Curso hidrometalurgia

Como también hemos visto, la solubilidad de los agentes de extracción en la fase acuosa ha de ser mínima. No obstante, se producen pérdidas de dicho agente durante el refinado, con lo que las aguas utilizadas en el proceso quedan contaminadas. De producirse este hecho, deberán arbitrarse medidas encaminadas al tratamiento de estas aguas, lo que elevaría los costes de la planta.

Precio de costo

Está claro que el precio de un agente de extracción está directamente relacionado con la economía del proceso, y que se debe tender a conseguir utilizar aquellos de menor precio. Pero, es que, además, el precio está íntimamente ligado con el “consumo unidad” de metal recuperado, y éste está totalmente ligado a los tres primeros conceptos expuestos en este capítulo.

En efecto, el consumo de reactivo es función de:

- Su solubilidad en la fase acuosa.

- La relación Peso metal/Peso reactivo.

- Su estabilidad química.

Por tanto, de la interrelación entre los tres conceptos y el precio del reactivo nos saldrá el precio real del reactivo que será el que se debe minimizar, obteniendo así la máxima economía para el proceso.

Por lo visto, a la hora de tomar una decisión práctica deben ponderarse todos los parámetros y seleccionar el reactivo “menos malo”, aunque no sea perfecto.

Curso Hidrometalurgia. Extracción con disolventes (2/2)

Hidrometalúrgia. Extracción con disolventes en esta segunda parte de este curso

podrás aprende de manera teórica y práctica la aplicación de una tecnología como es la

extracción con disolventes a un campo concreto la metalurgia o, más exactamente, la

hidrometalurgia.

Los avances realizados en esta tecnología y sus enormes posibilidades presentes y

futuras permiten apreciar su aplicación en la metalurgia extractiva de diversos

metales, no solo de los considerados raros, sino también de los corrientes. Aprende la

mejor forma de extraer con disolventes metales tanto en su recuperación como en su

separación.

Capítulo 1:

Diluyentes

Junto al reactivo orgánico es importante la elección del diluyente, ya que, además de

actuar de portador, puede aumentar la selectividad de la operación.

Page 49: Curso hidrometalurgia

El diluyente actúa como medio de dilución, teniendo como finalidad disminuir la

viscosidad de la fase orgánica y facilitar el contacto entre fases. La elección del

disolvente adecuado se hace según sus propiedades y su repercusión en un proceso de

extracción. Vamos a verla de acuerdo a la propia técnica de separación y a los solutos

que se distribuyen en el proceso de extracción.

Las propiedades y su influencia sobre las técnicas de separación son:

- Disolver el agente de extracción, tanto en estado libre como en forma de complejo

metálico.

- Tener baja solubilidad en la fase acuosa para evitar, en lo posible, o disminuir las

posibles pérdidas por disolución en dicha fase. Esta solubilidad puede venir

influenciada por otra variable como es la fuerza iónica de la propia disolución acuosa.

Como ejemplo tenemos la acetona, que se hace inmiscible en agua cuando la fuerza

iónica es aproximadamente 5M.

- Mezclarse bien con el agente de extracción, tanto en su estado libre como en su

forma de complejo metálico, al objeto de disminuir la viscosidad que influye

considerablemente sobre dos factores del proceso de distribución líquido-líquido, como

son la agitación y la separación de fases.

- Estabilidad química en un amplio margen para las condiciones de la operación.

- Alto punto de inflamación (flash point), para evitar riesgos de incendios. Este ha

de estar sobre los 60 ºC. Para ello la presión de vapor del disolvente ha de ser elevada a

temperatura ambiente.

- Baja velocidad de evaporación con el fin de evitar pérdidas por ésta causa.

- Densidad del orden de 0,8. Esta, a ser posible, ha de ser inferior a la del agua. Con

esto favorecemos la separación de fases, disminuyendo la humedad de la fase orgánica

tras el proceso de extracción, y se reduce la complejidad de la técnica experimental en

un proceso de extracción múltiple.

- No tener toxicidad para evitar riesgos durante la operación.

En resumen, se tiende a componentes con baja viscosidad, densidad baja, alto punto de

inflamación, no toxicidad, alta solubilidad del compuesto órgano-metálico, fácil

separación de fases y de bajo coste.

Atendiendo a los solutos que se distribuyen en el proceso de extracción, tenemos que la

constante dieléctrica del disolvente condiciona los tipos de soluto a extraer. Cuando se

trata de distribuir pares iónicos, es apropiado un disolvente que posea una alta constante

dieléctrica, y cuando el disolvente se utiliza como diluyente de agentes de extracción,

como compuestos órgano-fosforados, ha de poseer una baja constante dieléctrica.

Generalmente, los disolventes utilizados en la extracción no presentan absorción en la

zona visible del espectro, pero si lo hacen en la ultravioleta. Por tanto, cuando se desea

determinar un soluto en una fase orgánica por la técnica espectrofotométrica, se debe

Page 50: Curso hidrometalurgia

evitar el solapamiento de las bandas de absorción del propio disolvente con las del

soluto en cuestión, especialmente en la ultravioleta. Como ejemplo, podemos citar el

hexano como uno de los disolventes más transparentes que se conocen, y las cetonas,

que presentan una fuerte absorción, por lo que son inadecuadas en la región ultravioleta.

Además de lo expuesto, a la hora de elegir el diluyente adecuado, interesa prestar

especial atención a la relación olifático/aromático, pues afecta a la mayor o menor

solubilidad del complejo metálico, lo que a su vez influye en la posición de equilibrio,

además de poder afectar a la cinética de extracción.

Contrariamente a lo que se pensaba, los diluyentes no son químicamente inertes, e

influyen directamente sobre la actividad de los agentes de extracción presentes en la

fase orgánica, con lo que se puede variar el coeficiente de distribución. Así pues,

además de influir sobre las propiedades físicas de la fase orgánica que afectan a todo el

proceso de transferencia, como son la viscosidad, punto de inflamación y

contacto/separación de fases, tenemos su influencia sobre las propiedades químicas,

tales como la solubilidad, cinética de extracción y punto de equilibrio de extracción.

Tanto los aspectos físicos como los químicos pueden influir en la economía del proceso.

Por ejemplo, la mayor o menor facilidad de separación de fases afecta al área del

decantador, lo que influye sobre los costes de construcción del mismo. Por otro lado, la

energía requerida está directamente relacionada con la cinética de extracción y

reextracción.

El diluyente o disolvente es normalmente un hidrocarburo o sustancia inmiscible con el

agua. Para hacer una clasificación de los disolventes empleados podemos hacerlo en

base a diferentes criterios, como veremos en el siguiente apartado.

En la tabla 2, se presentan algunos diluyentes empleados en la extracción con

disolventes, junto con algunas de sus características.

TABLA 2

DILUYENTE DENSIDAD

20o gr/cc

Ta (OF.)

EBULLIC.

Ta (OF.)

INFLAMAC.

AROMATIC.

%

ALTOS EN

AROMATICOS

SOLVESSO 100 0,876 315 112 99

SOLVESSO 150 0,985 370 151 97

HAN 0,933 357 105 89

CHEVRON 3 0,888 360 145 98

CHEVRON 25 0,875 316 115 99

CHEVRON 40 L 0,886 360 141 78

CHEVRON 44 L 0,893 366 154 70

MEDIOS A BAJOS

EN AROMATICOS

ESCAID 100 0,790 376 168 20

NAPOLEUM 470 0,811 410 175 12

Page 51: Curso hidrometalurgia

BAJOS EN

AROMATICOS

ISOPAR L 0,767 373 144 7

ISOPAR E 0,723 240 45 0,1

ISOPAR M 0,782 405 172 20

NORPAR 12 0,751 384 156 2

SHELL 140 0,785 364 141 45*

DX 3641 0,793 361 135 45*

ESCAID 200 0,796 383 152 52*

(*) Contienen aprox. el 50% de naftenos.

Capítulo 2:

Disolventes. Clasificación

Aunque podemos realizar una clasificación de los disolventes empleados en base a

diversos criterios, vamos a hacerla atendiendo a su carácter polar o no polar y a su poder

de solvatación.

Atendiendo a su carácter polar o apolar comenzaremos diciendo que el término polar

está directamente relacionado con la constante dieléctrica del propio disolvente, aunque

diferencias significativas en este parámetro para diversos disolventes no implican un

comportamiento diferente de los mismos en un proceso de extracción líquido-líquido.

Dentro de éste grupo de disolventes polares se encuentran los alcoholes, que, debido al

grupo –OH que poseen, se comportan de forma similar al agua. Cuanto más ramificadas

son las cadenas, más solubles son en agua, dato éste importante a tener en cuenta a la

hora de su elección. Son adecuados para la extracción de extracción de pares iónicos, tal

es el caso de los compuestos nitrogenados como el nitrobenceno y nitrometano, dada su

baja solubilidad en agua y su alta constante dieléctrica. Los esteres de ácidos grasos y

alcoholes alifáticos son, en algunos casos, más efectivos para la extracción de quelatos

metálicos que otros disolventes polares, aunque, presentan el inconveniente de su gran

tendencia a la hidrólisis en disolución ácida.

De entre los disolventes apolares, los hidrocarburos son los más característicos, y, como

ya mencionábamos, se emplean como diluyentes de agentes extractantes, siendo su

interacción con los solutos extraídos mínima. Los más empleados son el n-hexano y el

ciclohexano, o bien, mezclas denominadas éter de petróleo, ligroína y queroseno, siendo

éste último muy empleado para presentar buenas características y ser relativamente

barato, aunque se debe tener especial cuidado en su empleo, ya que, desprende vapores

combustibles capaces de provocar un incendio con facilidad. Los aromáticos más

utilizados son el benceno, tolueno y xileno.

Según el segundo criterio para su clasificación, la capacidad de solvatación de un

disolvente se fundamenta en la facilidad de interacción del mismo con moléculas de

soluto ácidas o básicas. Estos disolventes suelen denominarse anfiprótidos, es decir, que

se pueden comportar como ácidos o como básicos, incrementándose la capacidad de

solvatación con la basicidad del mismo. Las cetonas, por ejemplo, presentan una gran

capacidad de solvatación, generada por el carácter básico de su átomo de oxígeno,

Page 52: Curso hidrometalurgia

poseyendo además, una gran estabilidad química y baja solubilidad en agua. La más

utilizada en los procesos de extracción líquido-líquido es la metilisobutilcetona (MIBK),

empleándose para la extracción de haluros, nitratos y otras sales metálicas, y como

diluyente, para extractantes de especies metálicas por formación de quelatos. En

ocasiones, originan la formación de aductos con los quelatos extraídos en la fase

orgánica o favorecen considerablemente el proceso de distribución mediante un efecto

sinérgico.

Con el empleo de diluyentes alifáticos se nos puede presentar un fenómeno que está

relacionado con el tipo de disolvente empleado. Éste es el llamado fenómeno de la

“tercera fase”.

Capítulo 3:

Disolventes. Fenómeno de la tercera fase

Como ya hemos dicho, el fenómeno de la tercera fase está relacionado con el tipo de

disolvente empleado en el proceso. Ocurre en algunos sistemas de extracción en los que

el agente de extracción cargado con el metal a extraer, o complejo metálico, se separa

en una segunda fase orgánica perfectamente diferenciada de la correspondiente a la fase

diluyente-agente de extracción, por lo que se puede decir que se forman tres fases:

- Acuosa estéril.

- Diluyente y agente de extracción-ión metálico.

- Diluyente-agente de extracción.

Este fenómeno se puede explicar por la baja solubilidad del complejo metálico en la

fase orgánica, y se suele presentar frecuentemente cuando empleamos aminas con

diluyentes alifáticos, y en menor proporción, cuando se emplean agentes de extracción

por solvatación con los diluyentes alifáticos.

Este fenómeno puede evitarse añadiendo al sistema una pequeña cantidad en volumen

de un tercer componente, denominado “modificador” que se verá a continuación.

Modificadores

Cuando en sistemas de extracción que utilizan aminas, como las comerciales

PRIMENE, LA-1, LA-2, se emplean diluyentes alifáticos, o también, cuando se utilizan

estos diluyentes alifáticos con agentes de extracción por solvatación, puede surgir el ya

mencionado “fenómeno de la tercera fase”. Para evitar éste se utilizan unas sustancias

denominadas modificadores, siendo utilizadas estas en un dos o un tres por ciento en

volumen de la disolución… Estos, aparte de impedir la formación de tercera fase,

facilitan también la separación de fases y aumentan la selectividad.

Las sustancias que actúan como modificadores permanecen como reactivos invariables

en el sistema. En ciertos casos, su adición trae consigo un gran incremento del poder de

extracción debido a un “efecto sinérgico”. Este se define como un aumento anormal de

Page 53: Curso hidrometalurgia

la extracción cuando se utilizan conjuntamente dos reactivos extractantes, lo que quiere

decir que el factor de recuperación de la extracción conjunta es mucho mayor que la

suma de los factores de recuperación si se hiciese la extracción por separado.

Los modificadores, generalmente, son alcoholes de cadena larga de ocho a diez

carbonos, como es el caso del isodecanol. Sin embargo, estas pueden presentar ciertos

inconvenientes ya que poseen una cierta solubilidad en la fase acuosa. Esto origina

pérdidas, lo que redunda en la economía del proceso. Aunque éste problema sea un

inconveniente, a la hora de seleccionar un modificador, los beneficios que originan en lo

referente a la separación de fases, cinética y equilibrio de extracción, hacen aconsejable

su utilización. Precisamente, muchos de los datos sobre la solubilidad de los

modificadores son relativos al PROCESO DAPEX, en el cual, el Uranio es extraído de

una solución ácida de sulfato con ácido 2-dietilhexilfosfórico, utilizando como

modificador fosfato de tributilo, más comúnmente conocido como TBP, en una

proporción de 10 a 15 p.p.m.

Además de los alcoholes de cadena larga, podemos utilizar, como hemos visto, el TBP

como modificador. Su utilización es aconsejable en algunos casos, porque puede

presentar también propiedades sinérgicas sobre ácidos alquilfosfóricos. Probablemente,

el mejor ejemplo de sinergismo es el sistema: .

Capítulo 4:

Sinergismo. Fenómeno

Cuando en un sistema de extracción utilizamos conjuntamente dos reactivos

extractantes puede suceder que aumente excepcionalmente la extracción. Este fenómeno

se define como sinergismo.

Supongamos un sistema en el que tenemos dos extractantes a los que vamos a designar

por d1 y d2. Podemos establecer la siguiente relación:

siendo : factor de recuperación global del proceso.

: magnitud que determina el aumento sinergético de la extracción.

Podemos definir el factor sinérgico como el número por el cual se multiplica el

rendimiento de la extracción normal para obtener el rendimiento práctico.

Aunque los mecanismos por los que transcurre el fenómeno del sinergismo no siempre

son los mismos, se sabe que el fenómeno ocurre esencialmente en la fase orgánica,

debido principalmente a dos factores:

- La capacidad de extracción de los agentes extractantes se modifica por la

presencia mutua de los mismos.

Page 54: Curso hidrometalurgia

- La composición de las especies extraídas en la fase orgánica no es la misma

cuando se utiliza uno solo de los extractantes.

Podemos establecer cuatro diferentes tipos de combinaciones sinérgicas: dos de éstas

hacen uso de un extractante ácido y otro neutro, estando las otras dos formadas por dos

extractantes que pueden ser neutros o quelatantes.

En el primer caso, se hace uso de un agente quelatante ácido y un disolvente solvatante

neutro. Estos sistemas se comportan generalmente como ideales, pudiéndose interpretar

los datos experimentales mediante una ecuación de acción de masas.

En el segundo caso, se utilizan generalmente ácidos alquilfosfóricos, o también ácidos

carboxílicos y sulfónicos, teniendo estos últimos un efecto sinérgico menor. La

principal diferencia con el caso anterior estriba en la composición y estabilidad del

aducto formado.

En los demás casos, el aumento de extracción debido al fenómeno de sinergismo es

menor.

apítulo 5:

Hidrometalurgia. Ensayos

Una vez que el reactivo o reactivos se han seleccionados, se pasará a realizar ensayos

discontinuos bien sobre soluciones sintéticas que tiendan al líquido real, o bien

directamente con éste. Para continuar con posteridad con ensayos continuos, y

finalmente se puede seguir con pruebas a nivel semiindustrial en planta piloto.

Ensayos discontinuos

Con ellos se pretende determinar el coeficiente de

distribución, la capacidad de saturación, el diagrama de equilibrio, la cinética

aproximada de extracción, facilitad de separación de fases y a veces las pérdidas de

disolventes por solubilidad. Los ensayos se realizan simplemente agitando cantidades

determinadas de las dos fases, bien manualmente o mecánicamente (figura 18) y

dejando separar las fases a continuación, analizando los dos líquidos.

Page 55: Curso hidrometalurgia

Ensayos discontinuos de extracción

La comparación de los coeficientes de distribución entre dos o varios disolventes es

muy útil cuando se trata de soluciones diluidas. Sin embargo, el valor del mismo puede

depender de la concentración de metal en la fase acuosa, como es corriente en el caso de

la extracción por cambio de ión. En este último caso también es muy importante saber

cuánto es el máximo de metal que puede recibir la fase orgánica o sea la capacidad de

saturación, que depende fundamentalmente de la concentración de la misma en reactivo

orgánico y de las características de la alimentación acuosa, la capacidad de saturación es

decisiva en el establecimiento de los flujos de fase orgánica y acuosa que entran en el

sistema con el fin de lograr una buena recuperación y selectividad.

Normalmente, la operación de extracción se realiza en varias etapas con contracorriente.

Para obtener información sobre la misma, se determina en el laboratorio un ensayo que

permite obtener el diagrama de equilibrio entre distintas fases, desde las más

concentradas a las más diluidas. El ensayo consiste en repetir los ensayos de

determinación del coeficiente de distribución con cantidades variables de ambas fases.

Analizadas ambas se representan los resultados de acuosa en abscisas y orgánica en

ordenadas (figura 19). Un buen agente de extracción debe tener un diagrama que

generalmente tiene tres partes, una muy próxima al eje de las Y con una subida brusca

de la concentración en orgánica para pequeña variación de la concentración de acuosa,

una media en que el coeficiente de distribución cambia mucho con el aumento de la

concentración de acuosa y una tercera plana en la que el disolvente está completamente

cargado (saturado) y no admite más metal, indicándonos cuál es la cantidad mínima de

fase orgánica a emplear. A partir del diagrama de equilibrio y para una determinada

relación de flujos orgánicos y acuosos se determina el número de pisos teóricos

necesarios.

Fig. 19.- Determinación del diagrama de equilibrio

Con ensayos discontinuos se puede tener también una idea del tiempo de mezcla

necesario en los sistemas en que estos tiempos son largos, haciendo ensayos con

diferente duración.

Page 56: Curso hidrometalurgia

También se puede lograr, por ensayos discontinuos, una idea de la facilidad de

separación de las fases mezcladas y por consiguiente obtener información sobre las

necesidades del decantador. La separación de las fases tiene lugar en dos tiempos: uno

primero de rotura de la emulsión (rotura primaria) y otro en que las gotitas finas que

quedan se van agrupando en otras mayores y en la masa total. Los ensayos de

laboratorio pueden dar una idea de las dificultades que se pueden encontrar sobre todo si

se comparan con el comportamiento de otros sistemas conocidos. No obstante hay que

señalar que la validez es limitada, pues hay factores como continuidad de la fase

orgánica y otros cuya influencia se debe considerar en el diagrama real. Las pruebas

para esta magnitud se hacen por ensayos estáticos, considerando distintos tiempos de

agitación y sedimentación, o dinámicos mediante un dispositivo que tenga un mezclador

y un sedimentador a los cuales se alimentan flujos variables y se mide la anchura de la

banda de dispersión en función del área unitaria disponible (figura 20).

Fig. 20.- Mezclador y sedimentador

Las pérdidas por solubilidad del agente de extracción se miden de forma aproximada

determinando su concentración en la fase acuosa, o en la fase orgánica después de haber

pasado, en este último caso, unas 100 ó 200 veces su volumen de líquido acuoso.

Mediante los ensayos discontinuos se puede hacer una elección de los disolventes, tener

idea de las posibilidades de operación, condiciones en que se debe trabajar y resultados

a esperar, especialmente si se hacen ensayos en contracorriente que semejen la marcha

continua.

En reextracción se pueden determinar discontinuamente los diagramas de equilibrio

para diferentes sistemas de reextracción.

Ensayos continuos

Un paso ulterior en la experimentación es la realización de ensayos continuos, en

pequeño equipo con 50-100 ml/min. de alimentación, semejando el diagrama de

extracción-reextracción, y lavado o acondicionamiento. Aquí se pueden probar

Page 57: Curso hidrometalurgia

condiciones próximas a las óptimas de los ensayos discontinuos. Los resultados pueden

ser definitivos desde el punto de vista químico (consumo de reactivos, rendimientos,

calidad de los productos) y también se ponen de manifiesto los efectos debidos al

reciclado del disolvente y acumulación de pequeños efectos.

Con este equipo pequeño de vasos de poca altura se suele quedar falto de información

por lo que respecta al comportamiento físico. Puede ocurrir que un sistema que

experimentalmente no funcione por crecimiento de la emulsión estable de la interfase e

inundación del equipo completo, pudiera ser realizable en la práctica en que se tienen

mayores alturas de decantadores, por ello conviene hacer también ensayos continuos a

pequeña escala pero teniendo alturas industriales.

Ensayos en planta piloto semiindustrial

Con las pruebas indicadas anteriormente se tiene un conocimiento casi completo del

problema, y si los resultados son prometedores se puede iniciar los contactos con una

casa especializada o seguir la propia investigación con el fin de determinar las pérdidas

por arrastre (de gran repercusión económica) e incluso probar un modelo del equipo

cuyo empleo se considere. Esto conviene hacerlo a una escala bastante grande 25-50

m3/d pues las pérdidas son pequeñas 0,2-1 l/m3, dependen del líquido en tratamiento,

del equipo empleado y de la habilidad del personal. Esta instalación puede servir

además para el entrenamiento de personal que sea necesario en la futura instalación

comercial. A la vista de la experiencia obtenida se puede asegurar que es una inversión

rentable.

Capítulo 6:

Hidrometalurgia. Elección y diseño del

equipo

En extracción se utilizan fundamentalmente columnas, extractores centrífugos y

mezcladores sedimentadores. Estos últimos son los más utilizados en metalurgia

extractiva, pues parece que son los más adecuados para el trabajo con líquidos algo

turbios, requieren menos coste de capital, son fáciles de manejar, tienen gran capacidad

sin riesgos de inundación, se pueden observar, controlar y desmuestrar fácilmente todos

los flujos sin dificultades ni control especial y el paso de escala es sencillo. Tienen el

inconveniente de que necesitan más espacio que las columnas, sobre todo en sistemas

con muchas etapas teóricas.

Como para conseguir la extracción completa de un soluto en una sola etapa, es preciso

emplear gran cantidad de disolvente, a la hora de realizar esta operación a nivel

industrial se hace necesario el empleo de varias etapas que trabajen de forma continua.

La extracción con disolvente en varias etapas la podemos realizar empleado los flujos

en contracorriente o en con-corriente, aunque es la primera de ellas la que generalmente

se suele emplear.

Page 58: Curso hidrometalurgia

Los diferentes tipos de equipos existentes para la aplicación de estas técnicas en la

industria se congregan en dos grandes grupos:

- Contactores diferenciales, donde se incluyen las columnas de extracción de

contacto continuo.

- Contactores por etapas, formadas por los mezcladores-sedimentadores.

Aunque de menor importancia, entre los contactores diferenciales se encuentran los

extractores centrífugos, que se utilizan en casos en que los tiempos de contacto son muy

cortos.

Los del primer grupo se caracterizan por ser más compactos y de menor volumen que

los del segundo grupo, ocupan menos espacio horizontal, y retener menor volumen de

líquidos. Generalmente se suelen utilizar cuando se necesitan muchos pisos o etapas

teóricas. En las columnas de extracción (figura 21) el movimiento de las fases tiene

lugar por diferencia de densidades, por lo que el modo de realizar la operación es

introduciendo la fase ligera por la parte inferior y la fase pesada por la parte superior de

la columna, produciéndose un flujo en contracorriente de las dos fases a través de la

columna de extracción, ya que, mientras que la fase ligera tiende a ascender, la fase

pesada desciende, dando lugar a un contacto continuo entre estas.

Page 59: Curso hidrometalurgia

Fig. 21.- Columna de extracción

Con el fin de facilitar la separación de fases tras el contacto, las columnas poseen unas

extensiones en las zonas superior e inferior. La zona de la interfase podrá situarse en la

parte superior o en la inferior de la columna, según los casos.

Como ya decíamos, el contacto de las fases es continuo, teniendo lugar el fenómeno de

transferencia de materia a lo largo de toda la columna, debido a un gradiente continuo

de diferencia de concentraciones, siendo la altura de columna el parámetro a considerar

a la hora de diseñarla.

En definitiva, una vez fijado el problema a estudio, definido el flujo o caudal de los

componentes, la relación de caudales entre las fases, y elegido el tipo de columna a

utilizar, se debe dimensionar ésta.

Para dimensionar una columna de extracción se han de tener en cuenta:

- Altura de la columna.

Page 60: Curso hidrometalurgia

- Diámetro de la columna.

La altura vendrá definida por el número de contactos necesarios para producir una

determinada extracción, purificación, o separación de especies, lo cual, viene definido

por el número de pisos teóricos o de unidades de transferencia, y la altura equivalente a

un piso teórico o HETP, o la altura de una unidad de transferencia o HTU, según el

esquema de cálculo que se adopte.

En cuanto al diámetro, vendrá definido por el caudal de las fases, previamente fijado por

las necesidades del proyecto y por características propias del sistema y tipo de columna

empleado.

Desde el punto de vista de la operación, lo ideal es que los fluidos se muevan a lo largo

de la columna según un esquema de flujos de émbolo, o dicho de otra manera, con un

frente plano en toda la sección de la columna.

Sin embargo, en la práctica esto no sucede así y se presentan dificultades en la

operación, tales como el llamado fenómeno de “mezcla axial”, que ocurre cuando unas

partes de fluido van más deprisa o más despacio que el resto de la masa, e inclusive

moverse en sentido contrario a la dirección del flujo del líquido. En este fenómeno se

podrían incluir los arrastres de una fase por otra. También se pueden presentar los

llamados “efectos de pared” y variaciones en la distribuciones del tamaño de gota. Esto

hace que para este tipo de equipos se deba tener especial cuidado a la hora de

diseñarlos, teniendo en consideración estas variables, ya que, provocan variaciones

entre los resultados de laboratorio y los de planta industrial. Además existen factores de

operación adicionales que dificultan aún más su aplicación industrial, como son la

presencia de impurezas en la alimentación, aparición de insolubles en la interfase, y

composición y caudal de alimentación variables.

Pese a que los fenómenos mencionados anteriormente también se presentan en los

equipos del segundo grupo (contactores por etapas), estos son más asimilables, como lo

demuestra el caso de la fácil eliminación de insolubles en las fases, lo que hace que

estos equipos presenten una ventaja sobre los demás, que consiste en que los resultados

obtenidos en laboratorio y planta piloto suelen ser muy parecidos a los de planta

industrial, lo que facilita los cálculos para su diseño. Esto hace que los mezcladores-

sedimentadores (figura 22) sean actualmente el equipo que presenta mejores garantías

de funcionamiento dentro de una planta industrial de extracción con disolventes.

Page 61: Curso hidrometalurgia

Fig. 22.- Mezclador-sedimentador

En este tipo de equipos la operación se realiza por etapas discontinuas en las que las

fases se mezclan y separan en unidades independientes.

Los mezcladores consisten generalmente en tanques con dispositivos apropiados de

agitación, debiendo producir suficiente superficie de contacto durante un tiempo

adecuado para que se produzca la transferencia de materia. Dicha superficie se consigue

por medio de la dispersión de una fase en la otra, dependiendo, por tanto, del número de

gotas formadas por unidad de volumen de fase continua y del tamaño de dichas gotas, y

requiere la aplicación de trabajo mecánico por medio de la agitación.

La separación de fases se efectúa por sedimentación en equipos denominados

sedimentadores, debiendo tener un tamaño adecuado para que el tiempo de residencia

en ellos de la masa sea el mínimo necesario para que las fases se separen. Debe

procurarse que tengan una sección recta adecuada, al objeto de evitar turbulencias que

impidan u obstaculicen la separación.

Hay varios tipos de mezcladores sedimentadores, siendo lo más corrientes los internos

(tipo Winchester) y los externos en que las cámaras de mezcla y sedimentación están

separadas. El diseño de los mezcladores sedimentadores externos ha sufrido una amplia

evolución, desde los primeros en que todos los flujos (orgánica y acuosa) entre etapas, o

en cada etapa (reciclado de orgánica) se hacían con bombas, a los últimos tipos en que

todos los flujos se manejan con el mismo agitador, estando todos los pisos al mismo

nivel; un tipo intermedio tenía las distintas etapas a diferente nivel y una de las fases

fluía por gravedad mientras que la otra se manejaba con bomba.

Los puntos clave del diseño del equipo de extracción se refieren al sistema de agitación

del mezclador y al dimensionado del sedimentador. En el mezclador se tiene que lograr

una dispersión conveniente de las dos fases orgánica y acuosa, para tener una buena

transferencia de materia, sin embargo no interesa pasarse con el fin de evitar los

problemas de separación de fases. En función del sistema de agitación se determina la

potencia a instalar; para uranio y vanadio se ha visto que el paso de escala se puede

realizar manteniendo la potencia por unidad de volumen, medida en recipientes

pequeños (100 l.) que dé mezclas semejantes y que tengan semejanza geométrica con el

equipo que se vaya a emplear industrialmente, sin embargo esto no es general y para un

sistema desconocido hay que estudiar el paso de escala.

En el dimensionado del sedimentador las magnitudes a definir son: el área unitaria y el

tiempo de residencia. El área unitaria se puede determinar en el laboratorio por el

ensayo hidrometalúrgico dinámico realizado considerando diferentes escalas, tomando

el valor del flujo máximo para anchuras de interfases de 10-15 cm. Para el uranio y

vanadio los valores corrientes son de 1 galón/min. pie cuadrado en otros sistemas

pueden ser muy diferentes.

La profundidad del sedimentador depende de consideraciones de hidráulica y de

inventarios de fases. Debe ser suficiente para que en los cambios de nivel de la

interfase no pase una de las fases en las conducciones de la otra. También se tiende a

tener poca profundidad de fase orgánica y reducir la inversión debida a la misma, en

sistemas en que el metal en cuestión es caro se tiende por el contrario a tener poca fase

Page 62: Curso hidrometalurgia

acuosa y reducir el inventario debido al retenido de metal. Las alturas que se encuentran

en aplicaciones hidrometalúrgicas están comprendidas entre 10 y 60 cm. para orgánica y

entre 60 cm. y 2 m. para acuosa.

En las necesidades de área y volumen del sedimentador influyen mucho la temperatura,

naturaleza de las fases líquidas, intensidad de mezcla y dispersión, y sobre todo la

continuidad de esta. Las dispersiones de líquido acuoso en un medio orgánico continuo

son las más fácilmente separables; para lograr esta continuidad se recicla a veces

orgánica del sedimentador al mezclador del propio piso.

En casos en los que los tiempos de contacto son muy cortos, se utilizan los menos

conocidos “extractores centrífugos” (figura 23), pertenecientes al grupo de los

contactores diferenciales. Este tipo de equipos son muy poco utilizados, y su uso se

reduce a la industria farmacéutica para la producción de antibióticos, en el que el

producto se puede descomponer y es preciso realizar una operación rápida. Otro caso lo

tenemos en la extracción del Uranio en las soluciones de ácido fosfórico procedentes de

la descomposición de los fosfatos minerales con ácido sulfúrico para la producción de

fertilizantes. La causa por la que se recurrió a estos equipos se debía al uso del ácido

octilpirofosfórico (OPPA) con un gran poder de extracción para el Uranio en muy

pequeñas concentraciones, pero con el inconveniente de que se descomponía en

presencia de ácidos, por lo que los tiempos de contacto debían ser muy cortos.

Figura 23.- Extractor centrífugo

El diseño de estos aparatos es muy especializado y no existe mucha información

publicada sobre ellos, siendo, además, de un precio muy elevado.

En la tabla 3, podemos ver diferentes tipos de equipos utilizados industrialmente en la

extracción con disolventes.

Page 63: Curso hidrometalurgia

Dada la gran amplitud de material disponible, se hace difícil poder realizar una elección

clara del equipo sin realizar previamente una evaluación comparativa entre sus

características y las deseables en la operación a realizar. Se deben tener en cuenta una

serie de factores, de entre los cuales podemos destacar:

- Número de etapas.

- Capacidad de flujo.

- Tiempo de residencia.

- Relación de flujo de fases.

- Propiedades físicas.

- Sentido de la transferencia de materia.

- Dispersión de las fases y volumen de retención.

- Cinética de extracción.

- Presencia de sólidos.

Como conclusión, se debe conocer la eficiencia de los equipos para poder evaluarlos,

dimensionarlos y fijar sus condiciones de operación. Existe un índice de efectividad

definido por la relación de caudal de flujo máximo y el volumen de una etapa teórica.

En el caso de columnas, la relación usada es entre el caudal de inundación y la altura de

una unidad de transferencia (HTU), que representa la eficiencia de transferencia por

unidad de contactor. De esta forma, se pueden comparar los diferentes contactores.

Cuando mayor es este índice, mejor es su funcionamiento, siempre y cuando, para

realizar la comparación, se utilicen los mismos sistemas de extracción.

Page 64: Curso hidrometalurgia

Además de los criterios técnicos descritos, han de tenerse en consideración los factores

económicos, que son los que en última instancia van a decidir el problema.

Como resumen de lo dicho, podemos emplear en el estudio primario del problema de la

selección del equipo, el siguiente diagrama de la figura 24.

Page 65: Curso hidrometalurgia
Page 66: Curso hidrometalurgia

Capítulo 7:

Extracción. Aspectos económicos

Introducción

Aunque los aspectos económicos sean los argumentos más persuasivos para la elección

de cualquier proceso, no se ha prestado excesiva atención a dichos temas en la literatura

técnica de la extracción con disolventes.

La extracción como casi todas las operaciones unitarias integradas en un proceso

dependen de los pasos anteriores y de los que le siguen: la consideración económica que

define la viabilidad del tratamiento no se debe hacer de forma aislada sino en el

conjunto total y a la vista de los fines buscados.

El costo total de tratamiento para el caso de la extracción con disolventes se puede basar

principalmente en dos costos:

a. Capital – costo de equipo y de inventario de fase orgánica inicial.

b. Operación – coste de energía empleada en los contactos, coste de recuperación de

disolvente, coste de reposición de fase orgánica, coste de otras materias primas

auxiliares y servicios, coste de mano de obra, coste de materia prima, etc.

Alguno de estos componentes tiene una escasa contribución desde el punto de vista

económico. Normalmente el factor de mayor influencia es el costo de capital.

Existen otros aspectos que pueden hacer cambiar totalmente la economía del proceso. El

primero es la capacidad de tratamiento; existe una capacidad mínima de tratamiento por

debajo de la cual el proceso no presenta ningún atractivo económico. El segundo factor

es el precio del metal que sin duda puede afectar a la viabilidad económica del proceso.

Y el tercer aspecto es la concentración del metal en la alimentación; por ejemplo un

proceso de extracción con disolventes de zinc puede ser viable para una concentración

de alimentación de 30 g/l y no serlo para 10 g/l.

Por otra parte esta técnica, que en los últimos años ha presentado un notable desarrollo

en el campo hidrometalúrgico; en algunos casos no es una alternativa de proceso, sino la

única posibilidad de tratamiento viable técnica y económicamente.

Haciendo un poco de historia, la extracción con disolventes era una técnica de especial

aplicación en la química analítica y la industria del petróleo. La segunda guerra mundial

produjo un desarrollo importante de esta operación, aplicándola al campo de la

hidrometalurgia. El enfoque principal fue la obtención de productos nucleares de alta

pureza. Posteriormente se intensifica la investigación y desarrollo en este campo,

produciéndose nuevos agentes de extracción, más inmiscibles, más selectivos y con

mejores propiedades de extracción, lo que amplió el campo de aplicación a una gran

cantidad de metales. Paralelamente se perfeccionaron los equipos de extracción, lo cual

produjo una serie de ventajas económicas en las posibles aplicaciones de esta técnica.

Sin duda alguna, la extracción con disolventes será en un futuro cercano, una de las

Page 67: Curso hidrometalurgia

técnicas de mayor aplicación en el tratamiento secundario de los procesos

hidrometalúrgicos.

En el actual estado de desarrollo de la extracción con disolventes para la recuperación

de metales, existen cuatro campos principales de aplicación:

a. Recuperación de metales de disoluciones diluidas, especialmente en el caso de

líquidos de bajo precio de costo, p.e. efluentes de plantas, aguas de mina, disoluciones

de lixiviación en montones, etc.

b. Separación de metales de disoluciones concentradas, obtenidas en procesos

hidrometalúrgicos de tratamiento de minerales complejos, concentrados, matas y

chatarras.

c. Purificación de electrolitos que contengan una gran variedad de metales, los cuales

se recuperan parcialmente por procesos convencionales.

d. Separación y purificación de disoluciones que contengan lantánidos y actínidos.

Capítulo 8:

Planta de extracción. Costo de capital

Los principales factores que afectan al costo de inversión de una planta de extracción

con disolventes son los siguientes:

a. Número de etapas necesarias y tipo de equipo. Este factor afecta notablemente

al valor final de la inversión de la planta; el número de etapas viene determinado por las

isotermas de extracción, lavado (si es necesario) y reextracción, y por sus rectas de

operación (diagrama de McCabe-Thiele). Dentro de la selección del tipo de equipo, y

teniendo en cuenta el aspecto económico, existen otros factores para la selección, que

son los siguientes:

- Equipo estable y de fácil manejo.

- Gran capacidad y escaso riesgo de inundación.

- Grado de dispersión óptimo en la zona de mezcla.

- Alta eficiencia por piso.

- Empleo del menor volumen posible de disolvente.

- Bajo consumo energético.

- Mínimo espacio de implantación.

- Baja altura.

Page 68: Curso hidrometalurgia

- Construcción simple.

- Salto de escala fiable a partir de otros datos.

- Posibilidad de incorporar pisos adicionales.

Casi todos los factores están a favor del empleo de mezcladores-sedimentadores. Las

columnas tienen ventaja solo en cuanto a ocupación de espacio, empleo de menor

volumen de disolvente y consumo energético más pequeño.

b. Tamaño del equipo de mezcla. Este factor está íntimamente relacionado con la

cinética del proceso. En general, los tiempos de residencia en estos procesos presentan

unos valores bastantes bajos, por lo que se pueden utilizar grandes caudales de

alimentación a los equipos.

c. Necesidades de sedimentación. Este último factor está fundamentado en las

velocidades de coalescencia de los disolventes empleados. En base a dichas necesidades

se requiere un área de sedimentación mínima y un inventario de fase orgánica en la

instalación.

d. Arrastre de fase orgánica. Este factor afecta a la inversión, en mayor o menor

grado, dependiendo de las necesidades de recuperación de fase orgánica (sección de

recuperación de disolvente).

e. Caudales y relaciones de flujos. Este aspecto afecta desde el punto de vista de

tamaño de los equipos.

f. Necesidades de obra civil. El tipo y tamaño de los equipos influye notoriamente

en las necesidades de obra civil. Sin embargo, dependiendo del área donde vaya a

ubicarse la planta, dichas necesidades pueden minimizarse en gran manera.

g. Necesidades de equipo auxiliar. Este factor es dependiente del número de etapas

que componen el proceso y de la complejidad del esquema de tratamiento.

Si se necesitan etapas previas de preparación y ajuste, o de recuperación de disolvente,

sin duda implica la existencia de mayor número de bombas, agitadores, tuberías, etc.

h. Vertidos de acuerdo con la legislación vigente. Es posible que este aspecto

introduzca un aumento de equipo principal y auxiliar con el fin de conseguir un efluente

que se encuadre dentro de las normas de vertido en el área de ubicación de la planta.

i. Ingeniería de diseño. Este factor tiene un grado de incidencia muy notable,

debido principalmente al criterio que se emplea en el diseño de la planta. Dependiendo

del tipo de equipo que se emplee, del grado de automatización, de la distribución de los

equipos, etc., se pueden obtener variaciones en la inversión de la planta muy

importantes.

j. Localización de la planta. Este último aspecto también presenta un cierto peso

específico en el valor del capital final. La ubicación de la planta en zonas más o menos

desarrolladas afecta notablemente al coste de la construcción.

Page 69: Curso hidrometalurgia

Warner realizó una revisión de costos de distintos procesos de extracción con

disolventes existentes en Gran Bretaña, obteniendo unos rangos de magnitud de los

costos de capital, reflejados en función de la tonelada de metal procesado (las cifras

precisas dependen de la escala de la planta, de la concentración de metal en la

eliminación a tratar, del metal recuperado, del grado de complejidad del proceso

empleado, y del tipo de equipo). El rango obtenido y actualizado oscila entre 65 a 1.560

€ por tonelada de metal procesado.

Capítulo 9:

Planta de extracción. Costos de

operación

Los factores que afectan a los costos operativos de un proceso de extracción con

disolventes se pueden agrupar en los siguientes apartados:

a. Concentración y caudal de la alimentación (lejía). Sin duda es uno de los

factores de mayor importancia en el global de los costes operativos. En la figura 25 se

puede apreciar el efecto de la concentración de la alimentación en los costes operativos.

En todos los casos, el aumento de la concentración en alimentación, a igualdad de

caudal, alcanza un valor óptimo a partir del cual aunque aumenten las concentraciones

de metales en la lejía no se produce una disminución de costo operativo. El efecto del

caudal queda recogido en la figura 26, en la que también se puede ver el efecto de la

capacidad de producción en los costes operativos.

a.

Fig. 25.- Influencia de la concentración de alimentación en los costes operativos

Page 70: Curso hidrometalurgia

Fig. 26.- Efecto del caudal de alimentación y la capacidad de producción en los

costes operativos

b. Preparación de la alimentación (lejía).Existen muchos casos en los que es

necesario realizar una preparación y ajuste de la lejía que hay que alimentar a la planta.

Entre estos ajustes está la neutralización hasta un determinado pH, la adición de

acomplejantes para formar con el metal un compuesto aniónico, la precipitación previa

de ciertos metales y su posterior filtración, etc.

c. Preequilibración del disolvente. En algunos sistemas el costo de preequilibración

es mínimo o puede ser nulo, p.e. en la extracción del uranio de disoluciones en medio

sulfato, empleando aminas terciarias, el costo del ácido sulfúrico que se emplea para la

preequilibración del disolvente, antes de la extracción, es del orden de 0,10 € por Kg de

U3O8 producido. Sin embargo, en el sistema TBP-HNO3 para la recuperación de

zirconio, los costos de preequilibración, usando ácido nítrico, son del orden de 2,07 €

por Kg de zirconio producido.

d. Lavado de fase orgánica. En algunos sistemas es necesario lavar el extracto

orgánico de las etapas de extracción (orgánica cargada), con el fin de eliminar

elementos coextraidos no deseables. Este es el caso de las etapas de lavado existentes en

el segundo ciclo del proceso Zincex, en el que se emplea una disolución con ligera

acidez sulfúrica para eliminar de la fase orgánica el calcio coextraido en las etapas de

extracción.

e. Reextracción de la fase orgánica. Los costes de reextracción varían

considerablemente de unos procesos a otros. La elección del medio de reextracción

representa a menudo el mayor coste diferencial, siendo la definición final del producto a

obtener. El agente de reextracción en el sistema TBP-HNO3 es el agua, por lo que el

coste es muy bajo. Es el mismo caso que la reextracción del primer ciclo del proceso

Zincex. Sin embargo el costo es más alto en el caso de la recuperación de uranio

mediante aminas, en el que se emplea una disolución de carbono sódico que puede

costar de 0,10 a 0,20 € por Kg de U3O8 producido. En el caso de emplear electrolitos

agotados para reextraer, las pérdidas de ácido constituyen otro coste de operación.

Page 71: Curso hidrometalurgia

f. Regeneración de la fase orgánica. En ciertos sistemas, la fase orgánica reextraída

mantiene un nivel de contaminación de un determinado elemento que no se elimina del

sistema en ninguna de las etapas existentes, tendiendo a crecer a medida que va

circulando la fase orgánica. Es el caso del catión férrico en el segundo ciclo del proceso

Zincex; dicho catión se extrae parcialmente en las condiciones de operación de la

extracción y no se elimina ni en las etapas de lavado ni en la reextracción; para evitar

que aumente su concentración en la fase orgánica se trata parte del flujo orgánico con

una disolución de ácido clorhídrico.

g. Pérdidas de disolvente. Este factor es de gran importancia en todos los procesos

de extracción con disolventes. Las pérdidas de disolvente pueden tener cuatro

procedencias:

- Pérdidas por solubilidad del agente de extracción.

- Pérdidas por degradación debidas a una alta acidez o alcalinidad.

- Pérdidas en sólidos que se formen en las etapas.

- Pérdidas por arrastre físico del disolvente.

h. Mano de obra y mantenimiento. Este factor debe tener poco peso en el global de

los costos operativos. Sin embargo, si el circuito está mal diseñado y se requieren

operaciones manuales adicionales, el coste de mano de obra asciende notablemente.

i. Energía.Este concepto es totalmente dependiente del tipo de equipo y diseño

empleados.

j. Tratamiento de efluentes. Si el refinado de la extracción contiene cantidades

apreciables del metal a recuperar, además de producir una disminución del rendimiento

de recuperación, puede requerir el ser tratado con el fin de que el efluente cumpla la

reglamentación de vertidos en el área donde esté instalada la planta. Dicho tratamiento

produce un costo adicional de operación.

Capítulo 10:

Comparación de costos de varios

sistemas

En la tabla 4 se pueden ver los costes de producción de distintos sistemas de extracción,

para la recuperación de un metal o para la separación de varios metales de una

disolución compleja. El caudal considerado en todos los casos es de 24 m3/h. Los datos

demuestran las grandes variaciones de costes que se producen de un caso a otro. En

general, se ha considerado que una alimentación con mayor concentración de metal

produce unos costos operativos menores. Esto es verdad si se comparan los casos 4 y 6,

y los casos 2 y 3, sin embargo no parece cierto en los casos 5 y 6. También es verdad

que no se está comparando en igualdad de condiciones ya que el caso 6 tiene

preparación y ajuste de alimentación (2,59 €/Kg), mientras que el caso 5 no presenta

Page 72: Curso hidrometalurgia

dicho tratamiento; por otra parte el caso 6 tiene un costo de tratamiento de disolvente

muy alto (3,22 €/Kg).

(1) Separación de tierras raras e itrio.

(2) 10 años de depreciación lineal.

(3) Coste de extractante, diluyente y modificador.

En general, se pueden sacar las siguientes conclusiones:

a. La preparación y ajuste de alimentación presenta un gran peso económico en los

sistemas que lo necesitan.

b. El coste de amortización de equipo e instalación no pasa en ningún caso de ser el

26 % de los costes totales.

c. El tratamiento del disolvente de algunos sistemas, representa uno de los costes de

mayor peso específico.

d. El lavado y la reextracción, a excepción de un caso (el nº 4), no tienen excesiva

trascendencia económica.

e. Las pérdidas de disolvente es un costo con una transcendencia similar al de

amortización de equipo e instalaciones, nunca suele sobrepasar el 31 % del costo

operativo total.

f. La mano de obra y mantenimiento tiene un peso económico muy variable, ya que

en el caso 5 no llega al 0,5 % del costo operativo total y sin embargo en el caso 2

representa más de un 50 %.

La inversión de la planta está íntimamente ligada al tipo de contactor a emplear en el

tratamiento. En la tabla 5 se pueden comparar los costes de construcción de una planta

que emplee mezcladores-sedimentadores, columnas pulsantes o contactores centrífugos,

Page 73: Curso hidrometalurgia

para procesar uranio con una capacidad de 5 Tm U/día, en el ciclo final de

procesamiento de combustibles irradiados. Los costes de inversión están actualizados y

el emplazamiento de la planta es en Francia.

Los mezcladores-sedimentadores son más económicos desde el punto de vista de equipo

de proceso. En el caso de la obra civil lo más económico son los contactores

centrífugos. En tubería, instrumentación y electricidad son también más económicos los

contactores centrífugos. En cuanto a protecciones y recubrimientos (radioactividad) los

más económicos son las columnas pulsantes. En ingeniería el coste menor está a favor

de los mezcladores-sedimentadores. En cuanto al total la instalación más barata, aunque

con escasas diferencias, es la de contactores centrífugos. Si se tratara de otro tipo de

instalación (no radiactiva), y se eliminara en su mayor parte los costes de

protecciones y recubrimientos, sin duda la instalación más barata sería la de los

mezcladores-sedimentadores.

Capítulo 11:

Optimización de procesos de extracción

con disolventes

En una gran mayoría de casos la optimización de las plantas de extracción con

disolventes se realiza en pruebas de planta piloto. Los aspectos que reciben mayor

atención en la investigación son la dependencia de la dispersión y las características de

coalescencia, y sus efectos en la extracción y en la separación de fases. Otras variables

que se suelen estudiar son la concentración de metal, el pH de equilibrio, la

concentración salina, la concentración del disolvente (extractante, diluyente y

modificador) y la temperatura; estas últimas variables se suelen estudiar con el fin de

determinar sus efectos en la transferencia de materia de la extracción. Aunque muchas

de estas variables se pueden probar en planta piloto, algunos circuitos pueden no quedar

optimizados hasta la operación de la planta industrial.

Page 74: Curso hidrometalurgia

Robinson desarrolló un procedimiento de optimización aplicado a la recuperación de

cobre, con LIX 64N, empleando unos términos suma de costes de operación y costes de

capital.

Los costes de operación se obtienen a partir de las pérdidas de cobre y disolvente:

donde,

A= caudal de alimentación acuosa.

Cc= precio del cobre.

Xc= concentración de cobre en el refinado.

S1= pérdidas de disolvente por litro.

X1= concentración en volumen de LIX 64N.

Cx1= precio del LIX 64N.

Cso1= precio del diluyente.

Los costos de capital dependen del número de etapas de extracción y reextracción, de la

concentración de LIX 64 N, del tamaño de las etapas y de la relación de flujos. La

expresión que a continuación se indica está basada en el número y tamaño de las etapas

y en el inventario de fase orgánica.

siendo,

N= número de etapas.

Sex= velocidad de sedimentación de diseño.

V= volumen de fase orgánica en cada tanque.

K= factor que relaciona velocidad de sedimentación a costo.

b= otro factor de costo.

Esta expresión es aplicable tanto al proceso de extracción como a los procesos de lavado

y reextracción.

Por tanto, el coste total (T) viene dado por la expresión:

Page 75: Curso hidrometalurgia

siendo,

R= factor de amortización del capital.

En la figura 27 se muestra el efecto de la variación de la concentración de LIX 64N en

la fase orgánica, resultando un óptimo de concentración del 14 %. El uso de una

concentración del 10 % incurre en el mínimo costo. En la misma figura 27 se puede ver

el efecto de la variación de relación de fases, donde el óptimo es 1.

Fig. 27.- Influencia de la concentración de LIX 64N y relación de fases en los costes

Aunque parece deseable el uso de una concentración de disolvente lo más alta posible,

esto en la realidad es prácticamente imposible. Por otra parte, la relación de carga de la

fase orgánica con respecto a la concentración del extractante no es lineal.

Además, en algunos sistemas, el aumento de la concentración del disolvente incrementa

las pérdidas por arrastre en fase acuosa, al aumentar la viscosidad de la fase orgánica

(incluso a temperaturas elevadas). Por último, cuando aumenta la viscosidad de la fase

orgánica, una agitación excesiva puede producir emulsiones estables, que hacen al

proceso inoperable. Por tanto hay que llegar a un compromiso entre una concentración

de disolvente razonable y una buena operación con el equipo que se ha seleccionado.

El número óptimo de etapas de extracción es función de la concentración del agente de

extracción, de la relación de flujos, del valor del metal que queda sin extraer en el

refinado y del pH; el interés del capital invertido es otro factor a tener en cuenta.

Otras variables que pueden afectar a las eficacias de extracción y por tanto a los costos

son: la viscosidad de la fase orgánica en función del diluyente empleado, el efecto de la

velocidad de agitación en las etapas de extracción y reextracción, y el efecto de la

continuidad de la fase orgánica.

Page 76: Curso hidrometalurgia

Por último, las necesidades de mano de obra pueden variar notablemente de una planta a

otra. Esta variación se puede atribuir a un pobre o impropio sistema de automatización.

Normalmente se requieren uno a tres hombres por turno para operar una planta de

extracción con disolventes, adecuadamente diseñada y automatizada.

Capítulo 12:

Extracción con disolventes. Aplicación

Aplicación a la separación y recuperación de metales

El mayor empleo de la extracción con disolventes en la hidrometalurgia ha sido en el

tratamiento, separación y purificación de los materiales de interés nuclear.

Operaciones hidrometalúrgicas con extracción por disolventes de gran interés son las

referentes a:

a. Uranio,hay varias fábricas que lo recuperan por extracción a partir de líquidos

diluidos utilizando aminas o ácidos alquilfosfóricos.

b. Vanadio,tiene una trayectoria semejante a la del uranio.

c. Molibdeno,extraído con aminas en circuitos de uranio.

d. Torio,además de la recuperación y separación de soluciones ricas obtenidas a

partir de concentrados, se recupera de los líquidos estériles de algunas fábricas de

uranio.

e. Tierras raras y escandio, a partir de soluciones nítricas y clorhídricas utilizando

TBP y D2EHPA.

f. Cobre,mediante oxinas, ácidos nafténicos o α-halogenados. Es uno de los metales

que más interés está ofreciendo. Y aparte de los ensayos piloto, existen varias

experiencias a nivel industrial.

g. Cinc,con TBP o D2EHPA para separación del cadmio, cobre, cobalto, níquel,

cloro, flúor, etc., y tener soluciones puras de este metal.

h. Cobre-níquel-cobalto, mediante aminas terciarias, sales de amonio cuaternario,

jabones grasos, sulfonatos o TBP.

i. Niobio-Tántalo,con metilisobutil acetona, TBP o metil.

j. Zirconio-hafnio,con TBP, aminas terciarias o metilisobutil cetona.

k. Berilio,a partir de minerales pobres, utilizando fosfatos orgánicos o metilisobutil

cetona.

Page 77: Curso hidrometalurgia

l. Wolframio,a partir de concentrados de wolframita, con sales de amonio

cuaternario.

m. Renio,a partir de concentrados de molibdenita con sales de amonio cuaternario.

n. Cesio,a partir de pollucita con el 4-sec-butil-2 (-metil-bencil) fenol.

o. Boro,a partir de salmueras de baja ley, con polialcoholes aromáticos o alifáticos

disueltos en queroseno, esta última aplicación es digna de notar, pues se refiere a un

producto final tan barato como el ácido bórico.

Por ser el cobre un metal básico de gran importancia, cuya recuperación por extracción

con disolventes orgánicos está muy desarrollada, vamos a ampliar más su estudio en el

siguiente apartado.

Aplicación a la recuperación y purificación del cobre

La recuperación del cobre por extracción con disolventes ha constituido un notable

avance en las aplicaciones de esta técnica a la Hidrometalurgia y ha sido, después de la

recuperación del uranio, donde mayores realizaciones se han conseguido. Actualmente,

existen varias plantas industriales de recuperación de cobre, que utilizan la extracción

con disolventes de soluciones de lixiviación en montón o lixiviación estática, seguido de

electrolisis para la recuperación del metal. Este método va sustituyendo

progresivamente a la cementación del cobre por chatarras y fusión posterior. Debido al

bajo coste de operación, el sistema de lixiviación en montón puede competir como

alternativa con el clásico proceso de flotación, que hace necesaria una molienda previa

muy fina, además del uso que puede darse a minerales oxidados que no se pueden flotar.

El complemento de la lixiviación en montón es la extracción por disolventes, que

también se caracteriza por el bajo coste de la operación.

Una de las causas fundamentales que han contribuido a este avance ha sido la

introducción del grupo de reactivos denominados LIX, manufacturados por General

Mills, y que presentan la característica de extraer selectivamente el cobre frente a otros

metales, principalmente el hierro en su forma férrica, y permiten concentrar el cobre de

las soluciones diluidas de lixiviación hasta un valor que, después de la reextracción,

produce un electrolito apto para efectuar la electrolisis del cobre directamente. En la

figura

28, se representa esquemáticamente un circuito de extracción por disolventes y

electrolisis del cobre aplicado a un proceso de lixiviación en montón de minerales y

Page 78: Curso hidrometalurgia

supone la existencia de circuitos cerrados en tres ciclos que permiten la recuperación de

reactivos.

El cobre se extrae con la mayor parte de los reactivos usados para extraer otros metales,

los cuales presentan el inconveniente de su falta de selectividad, siendo además

imposible aplicarlos a las soluciones de lixiviación de minerales de cobre que tienen un

pH más ácido que el requerido para la extracción. En cambio, los reactivos derivados de

las oximas son específicos para el cobre y lo extraen en soluciones ácidas. Existen

varios de estos reactivos, conocidos por el nombre comercial de reactivos LIX,

habiendo sido el primero de ellos el LIX 63, que es una α-hidroxioxima alifática y

aunque extrae el cobre, su selectividad no es todavía muy grande y su rango de

aplicación queda limitado a soluciones con un pH poco ácido. Posteriormente se

introdujeron otros reactivos derivados de una β-hidroxibenzofenonaoxima, que mejora

el pH de extracción y la selectividad de extracción del cobre frente al hierro. Estos

reactivos son el LIX 64, LIX 65N y LIX 64N, siendo el último el mismo LIX

65N adicionando una pequeña proporción del LIX 63 (1-2 %), que favorece la cinética

de extracción y es también el LIX 64N el agente de extracción que más se utilizó.

Posteriormente se han propuesto otros reactivos de esta serie, como el LIX 70, el LIX

71 y el LIX 73, cuyas estructuras se dan en la tabla 6. La figura 29 muestra una

comparación del comportamiento de estos reactivos.

Fig. 29.- Extracción del cobre por diversos agentes de extracción: LIX 63, LIX 64,

LIX 64N, LIX 70 y Kelex 100 en xileno.

TABLA 6.- Reactivos de extracción del cobre

Page 79: Curso hidrometalurgia

En 1977 Henkel KGaA compra General Mills y en 1999 anuncia una nueva compañía

independiente “Cognis”, desarrollando a lo largo de este tiempo las series LIX 600

sobre la base de aldoximas, la LIX 860 basados en mezclas de reactivos aldoxima y

ketoxima (evitan el uso de modificadores) y en 1994 introduce su línea de reactivos de

mayor éxito, la LIX Serie 900.

Page 80: Curso hidrometalurgia

Existen otras compañías que han propuesto otros reactivos parecidos para la extracción

del cobre. Una de estas compañías es la Ashland Chemical Co., que han introducido los

reactivos conocidos con el nombre de Kelex, cuya base es una 8-hidroxiquinolina. Se

conocen dos de estos reactivos con los nombres de Kelex 100 y Kelex 120, cuyas

propiedades y aplicaciones son análogas a las de los reactivos LIX. El reactivo Kelex

120 es realmente el Kelex 100 diluido en nonilfenol, que actúa como inhibidor en la

formación de una tercera fase. Según se ha publicado, los reactivos Kelex compiten

favorablemente con los LIX y aún les mejoran en la recuperación de cobre de

soluciones con contenidos altos en cobre. Se han propuesto aún algunos otros reactivos

con propiedades comparables a los anteriores. La Shell Chemicals Co., ha propuesto el

reactivo SME-529 y también se ha propuesto otro reactivo llamado Acorga P-50 y

posteriormente otros que llevan las denominaciones P-5100 y P-5300. Sus estructuras

también se muestran en la tabla 6.

Los modernos reactivos extractantes de cobre son predominantemente hidroxioximas,

las que funcionan como agentes quelantes de los cationes de cobre de la solución,

formando un compuesto de cobre orgánico soluble en parafina.

Tienen una amplia utilización en la extracción de cobre desde soluciones de lixiviación

con ácido sulfúrico.

Este tipo de extractantes realiza una quelación, es decir forman estructura de anillos que

envuelven a la molécula de extractante como una ligazón selectiva para el ión metálico,

dejando los restantes cationes en solución. Por tanto, los extractantes tipo quelantes son

capaces de formar un compuesto orgánico con el metal de interés.

Corresponden a esta clase los siguientes reactivos: LIX, ZENECA, ACORGA M5640,

SME de Shell Chemicals y MOC, en el último tiempo.

De la reacción de extracción-reextracción con este tipo de extractantes, puede deducirse

que se produce un intercambio de iones en los que la molécula extractora orgánica

entrega dos protones a cambio de un catión de cobre. Así, la reacción de extracción

genera ácido, por lo que el refino queda lo suficientemente ácido para ser devuelto a la

etapa de lixiviación.

En la tabla 7, se presenta una lista de los reactivos que actualmente están en uso

industrial

Page 81: Curso hidrometalurgia

La cinética de extracción de estos reactivos es más lenta que la de las aminas o la de los

ácidos alquilfosfóricos. Son necesarios 2 ó 3 minutos para realizarse. Existe una

diferencia de cinética entre el cobre y el hierro (III) con estos reactivos, que es la base

de su selectividad para el cobre, el cual se extrae más rápidamente que el hierro, como

se muestra en la figura 30. Con un tiempo de contacto de unos dos minutos en un

proceso en contracorriente existe muy poca contaminación por hierro. Sin embargo, si

se deja al hierro suficiente tiempo para alcanzar el equilibrio, las cantidades extraídas

serían mucho mayores.

Fig. 30.- Extracción del cobre y del hierro (III) por Kelex 100: ensayo cinético –

Fase orgánica: 10 % de Kelex 100 en Shell Sol R/isodecanol. Fase acuosa: Sulfato

de cobre o alumbre férrico conteniendo 2 g/l de metal

Capítulo 13:

Aplicaciones industriales

Normalmente los reactivos mencionados, LIX o análogos, se aplican a soluciones de

lixiviación con ácido sulfúrico de minerales oxidados pobres de cobre, existiendo

construidas varias plantas industriales que procesan el cobre de esta forma. Las primeras

plantas comerciales que utilizaron los reactivos LIX fueron las de Ranchers Bluebird

Mine (1968) y Bagdad Copper Mine, ambas en Arizona (EE.UU), que utilizaron el LIX

64N. En la década de los 70 se construyó una planta mayor en Zambia (Nchanga

Consolidated Corporation, 1974), que también utilizaba el LIX 64N, aunque en uno de

sus circuitos se ha usado el agente SME 529. Se utilizan distintos diluyentes para el

reactivo LIX 64N, entre ellos Napoleum 470, Escaid 100, Cnevron Diluent, etc., todos

ellos son mezclas de hidrocarburos, siendo los equipos utilizados en estas plantas

baterías de mezcladores decantadores.

En estas plantas se utiliza el sistema de lixiviación en montón, en el que grandes

tonelajes de minerales pobres se dejan durante cierto tiempo a la acción de soluciones

muy diluidas de ácido sulfúrico, que percolan a través de montones de mineral y se

colecta en el fondo el líquido de lixiviación. El tiempo de lixiviación es de varios días y,

Page 82: Curso hidrometalurgia

por ejemplo, en la planta de Ranchers Bluebird, antes citada, la duración de la

lixiviación es de quince días. El líquido fértil se recoge en tanques de donde se filtra a

través de lechos de tierra de diatomeas para eliminar los sólidos en suspensión. La

concentración del cobre suele ser de unos 2 a 3 g/l. Esta solución a unos 25 ºC se trata

por extracción con disolventes a una relación de caudales aproximada Vor/Vaq = 1/2,5

en la alimentación, siendo el disolvente utilizado en sus primeros años el LIX 64N,

aproximadamente al 9,5 % en Napoleum 470, en una batería de tres mezcladores

decantadores para la etapa de extracción y de dos para la de reextracción. Esta última se

realiza por ácido sulfúrico procedente del electrolito agotado de la electrolisis del cobre

(aproximadamente 140 g/l de H2SO4 y 30 g/l de Cu). La relación de caudales es

Vor/Vaq = 1/4. La solución reextraída de cobre, de 34 g/l, pasa a través de unas células

de flotación, que utiliza Dowfroth 250, para separar el disolvente arrastrado, que se

recicla luego y el electrolito se envía a la fase de electrolisis del cobre. El refinado de la

extracción contiene aproximadamente 0,4 g/l de Cu. La figura 31 muestra el diagrama

de flujo de esta planta.

La planta de Bagdad usa un proceso similar al descrito, utilizando una solución de

alimentación con 1,5 g/l de Cu y 4 etapas de extracción con LIX 64N en Napoleum 470,

se reextrae en tres etapas, originando un electrolito con 50 g/l de cobre. El capital

invertido fue de cinco millones de dólares y se dice que fue amortizado en un solo año

de operación. El coste de operación final es de 40 centavos/libra de cobre producido, de

los cuales sólo 15 cents/lb corresponden a los gastos de extracción con disolventes.

La mayor planta de la década de los 70 es la Nchanga Consolidated Copper Mines en

Zambia, construida por Davy Powergas, cuya capacidad fue diez veces mayor que la de

Bagdad Copper Mines. La solución de alimentación tiene 2-3 g/l de Cu y tiene tres

etapas de extracción utilizando LIX 64N al 20 % en Escaid 100. La reextracción se

verifica en dos etapas utilizando electrolito gastado (180 g/l de H2SO4 y 30 g/l de Cu) y

se obtiene un electrolito de 50 g/l de Cu. El proceso se realiza en cuatro circuitos en

paralelo y la capacidad de la planta en sus inicios fue de 60.000 t/año de cobre

electrolítico. En uno de estos cuatro circuitos se utilizó el reactivo SME 529 de la Shell.

Page 83: Curso hidrometalurgia

Otra de las grandes plantas de recuperación de cobre por extracción con disolventes es

la de Anamax Co., también en Arizona (EE. UU), que fue construida inicialmente para

una producción de 30.000 toneladas/año de cobre. Se usa una solución entre 2 y 3 g/l de

cobre, con cuatro etapas de extracción y dos de reextracción en dos circuitos paralelos,

siendo el disolvente empleado en sus comienzos el LIX 64N al 12-14 % en Chevron

Diluent, que contiene un 15 % de aromáticos. El refinado deja 0,4 g/l de cobre.

Page 84: Curso hidrometalurgia

En la tabla 8 se presentan algunas plantas de extracción por solventes de cobre y en la

tabla 9 las plantas de cobre Chilenas.

Tabla 8. Plantas de extracción por solventes de cobre fuera de Chile

Compañía Localización Produc. Tpo

Cu

Características

(Mineral+lixiv)

Extractante

Ranchers Bluebird

Bagdad Copper

Mine

Cyprus Mine

Nchanga

Consolidated

Nchanga

Consolidated

Minero Perú

Duval Corp.

Soc. Min. Tenke

Fungamare

Anaconda

Anamax

SEC Corp.El paso

Cities Service

Capital Wire &

Cable

Johnson Mathay

Mathey Refiners

Arizona, U.S.A

Arizona, U.S.A

Arizona, U.S.A

Zambia

Zambia

Cerro Verde,

Perú

Nevada, U.S.A

Zaire

Nevada, U.S.A

Arizona, U.S.A

Texas, U.S.A

Arizona, U.S.A

Arizona, U.S.A

Londres, G

Bretaña

Rustenberg,

18-19

18-19

13-14

182

75

90

140

250

82

98

18-20

13-14

13-14

-

-

Ox.Cu, H2SO4

Ox.Cu, H2SO4

Ox.Cu, H2SO4

Ox.Cu, H2SO4

Ox.Cu, H2SO4

Ox.Cu, H2SO4

Ox.Cu, H2SO4

Ox.Cu, H2SO4

Sulfuros Cu,

Amoniacal

Ox.Cu, H2SO4

Eletrólitos

agota-

dos (Cu, Ni, H+)

Aguas de mina

Cobre

secundário

Sulfatos Cu, Ni

Lix 64 N

Lix 64 N

Lix 64 N

Lix 64 N/SME

529

Lix 64 N

Lix 64 N

Lix 64 N

Lix 64 N

Lix 65 N

Lix 64 N

Lix 64 N

Lix 64 N

Lix 64 N

Lix 64 N

Acorga P-5100

La construcción de esas plantas es una indicación de que el proceso es rentable y se

puede decir que, en general, el proceso de extracción con disolventes y electrolisis del

cobre (SX-EW) va desplazando al clásico de cementación y fusión para la recuperación

del cobre. Al considera la construcción de la planta de Nchanga se hicieron estudios

económicos de la viabilidad del proceso de extracción con disolventes frente a otros

Page 85: Curso hidrometalurgia

procesos, entre ellos el de cementación y cuyos resultados han sido publicados. Entre

las conclusiones que se han alcanzado se indica que los gastos de operación estimados

para el caso de la extracción con disolventes son tan sólo el 55 % de los estimados para

la cementación, ya que se consigue un gran ahorro en el consumo de reactivos al

reciclar el disolvente, con sólo unas pérdidas mínimas, mientras que en el proceso de

cementación existe un gran consumo de chatarra de hierro, y en cuanto al consumo de

ácido también es inferior en un 30 %. Sin embargo la inversión necesaria es inferior en

un 20 % para el proceso de cementación. En la tabla 10 se muestra una indicación

comparativa de estos datos.

Capítulo 14:

Procesos de extracción con disolventes y

cementación

Proceso Gastos de operación Inversión

SX-EW(1) 12,30 cents($)/lb Cu refinado 48,070 x 106 $

Cementación(1) 22,65 cents($)/lb Cu refinado 39,371 x 106 $

SX-EW(2) 53,15 cents($)/lb Cu refinado 207,755 x 106 $

Cementación(2) 97,89 cents($)/lb Cu refinado 170,159 x 106 $

TABLA 10

(1) Precios estimados y referidos al año 1971 y para una planta de producción de 4.500 t

Cu/mes a partir de minerales pobres.

(2) Precios estimados y referidos al año 2009 y para una planta de producción de 4.500 t

Cu/mes a partir de minerales pobres.

En la tabla 11 se presentan una serie de gráficos y tablas en las que se observa la

producción total de Cu y la parte correspondiente a la producción mundial obtenida por

medio del proceso SX-EW.

TABLA 11

Page 86: Curso hidrometalurgia
Page 87: Curso hidrometalurgia

Hoy en día alrededor del 25% de cobre del mundo se recupera mediante la extracción

por solvente y la extracción por solvente se considera la ruta de más bajos costos de

operación para la producción de cátodo de calidad.

Page 88: Curso hidrometalurgia

El alcance de la extracción por solvente de cobre sólo está limitado por la disponibilidad

de mineral lixiviable en ácido y no es de extrañar que una considerable atención esté

dirigida hacia el desarrollo de adecuadas técnicas de lixiviación de calcopirita, el más

numeroso de todos los minerales de cobre.

Existen además otros procesos en los que se aplica la extracción con disolventes a las

soluciones de lixiviación, en medios distintos al ácido sulfúrico. Así en el proceso

Minimet se lixivian minerales del tipo calcopirita, calcocita y covelita, utilizando como

lixiviante el cloruro cúprico a pH ≈ 1, formándose cloruro cuproso, cloruro ferroso y

azufre elemental durante la lixiviación. Esta solución se divide en dos partes, una en la

que se precipita y se elimina el hierro como goetita, reciclándose la solución de cloruro

cúprico, y otra parte que se trata por extracción con disolventes con el reactivo LIX 65N

al 30 % en Escaid 100 en una sola etapa a 50 ºC, con tiempos de residencia de 10 a 15

minutos y concentraciones altas en cobre. El cobre se extrae como ión cúprico,

oxidándose el ión cuproso durante la extracción por inyección de aire y separándose del

hierro, que queda como ión ferroso en el refinado. Este se recicla para aprovechar el ión

cúprico sin extraer y se vuelve a utilizar en la lixiviación, no existiendo por tanto

prácticamente consumo de reactivos. Para evitar la acumulación de otros metales se

hace un drenaje del refinado, en el que se retira una parte del mismo y donde se

eliminan Zn, Pb, Cu y Ag. En la figura 32 se presenta un diagrama de flujo de este

proceso.

Page 89: Curso hidrometalurgia

Si la extracción con disolventes del cobre se aplica a sistemas en medios ligeramente

alcalinos con mezclas amoniacales, la cinética es mucho más rápida y puede alcanzarse

el 95 % de la extracción en sólo 5 segundos. En el proceso Anaconda Arbiter se utiliza

el LIX 65N y se aplica en una planta con una capacidad inicial de producción de 100

t/día de cobre electrolítico. Se realiza una lixiviación en medio amoniacal con inyección

de oxígeno a baja presión y técnicas especiales de agitación. Después de extraer el cobre

con el LIX 65N se recupera el amoniaco del refino con caliza y destilando con corriente

de vapor. En la figura 33 se muestra un diagrama de esta planta.

En la planta de Capital Wire para la recuperación del cobre de chatarra de latón,

radiadores de coches, cobre de cementación, etc., se utiliza también la lixiviación

amoniacal y la solución obtenida de unos 30 g/l de cobre se diluye con el propio

Page 90: Curso hidrometalurgia

refinado de la extracción del cobre, a un valor aproximado de 15 g/l. Se usa LIX 64N,

que en dos etapas extrae totalmente el cobre y también en dos etapas se reextrae con el

electrolito agotado, seguido de electrolisis del cobre.

“Con la viabilidad ya probada industrialmente para diversos materiales primarios y

secundarios, el proceso de extracción con disolventes se presenta como una vía

alternativa en la hidrometalurgia para la obtención de gran cantidad de metales y ser

aplicado de una forma rentable, eficiente y respetuoso con el medioambiente,

logrando productos de alta calidad y subproductos reciclables con ausencia de los

principales tóxicos y peligrosos de los residuos.”

Capítulo 15:

Hidrometalurgia. Bibliografía

La biografía de este curso también hace referencia a la primera parte titulada

Hidrometalurgia. Extracción con disolventes (1/2)

- BONILLA: La utilización de la extracción con disolventes en la metalurgia

extractiva; Madrid, junio de 1983.

- E. HANDLOS and T. BARON: A.I.Ch.E.J., 3, 127 (1957).

- J. MONHEMIUS: An introduction to Metallurgical Solvert Extraction;

Coppe/Ufrj, Brasil 1975.

- L. REDONDO: Diseño de mezcladores-sedimentadores; Técnicas Reunidas, S. A.,

1987.

- MORAL: "La extracción con disolventes"; Curso de Operaciones y Procesos en

Hidrometalurgia, A.N.Q.U.E., Mayo 1983.

- S. KERTES: "The chemistry of formation of a third phase in organiphosphorus

and amines extraction sistems"; Solvent Extraction Chem. of Metals. Proc. of 1965

Internat. Conf. sponsored by U. K. A. E. A., pp 277-440.

- SKELLAND and R. WELLEK: A.I.Ch.E.J., 10, 491 (1964).

- W. ASHBROOK: Theory and Practice in Solvent Extraction Studies; Mines

Branch Information, circular IC 308 Dep. of Ener., Min. and Ren., Ottawa-Canada.

- W. FLETCHER y D. S. FLETT: Carboxilic acids as Reagents for the Solvent

Extraction of Metals; Comunicación al International Conference on the Chemistry of

the Solvent Extraction of Metals, A. E. R. E. (Harwell: 27-29 Septiembre 1965).

- Yu. ZOLOTOV: Extraction of chelate compounds; Isr. pr. for Sc. trans. Ann

Arbor, London 1970.

Page 91: Curso hidrometalurgia

- AGERS, D.W., J.E. HOUSE, R.R. SWANSON and J.L. DROBNICK, 1965, “A

New Reagent for the Liquid Ion Exchange of Copper”, Mining Engineering, December,

pp. 76 - 80.

- ASHLAND Chemical Company, 1968, Preliminary Technical Data Sheet,

“Copper Solvent Extraction Reagents”.

- BIRCH, C.P., 1974, “The Evaluation of the New Copper Extractant P-1",

Proceedings of the International Solvent Extraction Conference, ISEC 74, Lyon,

September.

- A. BLAKE, C. F. BAES, H. B. BROWN, C. F. COLEMAN, J. C. WHITE: Solvent

extraction of uranium and other metals by acidic and neutral organophosphorus

compounds; Segunda Conferencia de Energía Atómica 1958, P/1550.

- GOLDMAN, P. ORREGO, J. SIMPSON, P. NAVARRO, “Aplicación de un

Modelo Químico en el Sistema Cobre/H2SO4 - M5640/Escaid 103". VIII Congreso

Nacional de Metalurgia y III Congreso de la Asociación Latinoamericana de

Metalurgia de Materiales, 1994, Antofagasta, Chile.

- HANSON: Solvent Extraction, Equipment and Economics, Int. To Hydr.; Hatfield

Polytechmic, Septiembre 1976.

- W. AGERS & E. R. de MENT: "The evaluation of new LIX reagents for the

extraction of copper and suggestions for the design of comercial mixer-settler plants";

TMS Paper Selection, nº A72-87.

- D. W. AGERS y J. E. HOUSE: Basic Economic and Technical Considerations in

Extraction of Metals Using Amine Solvents, en ‹‹Unit Processes in Hydrometallurgy››

836-850, Gordon and Breach SC. Pub. (Nueva York, 1964).

- D. W. AGERS, J. E. HOUSE, R. R. SWANSON y J. L. DROBNICK: & New

Reagent for Liquid Ion Exchange Recovery of Copper Mining Engng, 17, (12), 76-80

(Diciembre 1965).

- DALTON, R.F., K.J. SEVERS and G. STEPHENS, 1986, “Advances in Solvent

Extraction of Copper by Optimized Use of Modifiers”, Proceedings for IMM’s Mining

Latin America Conference, Chile, November.

- DEMENT, E.R., and C.R. MERIGOLD, 1970, “A Progress Report on the Liquid

Ion Exchange of Copper”, AIME Annual Meeting, Denver, February.

- Y. KUNG and R. B. BECKMAN: A.I.Ch.E.J., 7, 319 (1961).

- LINTON and K. SUTHERLAND: Chem. Eng. Sci., 12, 214 (1960).

- F. MORRISON and H. FREISER: Solvent Extraction in Analytical Chemistry;

Wiley, New York 1957.

- G. THORSEN: Tesis Doctoral (Ph. D.), Trondheim University, Noruega.

Page 92: Curso hidrometalurgia

- GAHONA OSCAR, " Comparación y evaluación de diferentes modelos químicos

para el proceso de extracción por solventes de cobre.”. Trabajo de Titulación para

optar al Título de Ingeniero de Ejecución en Metalurgia. Universidad de Santiago de

Chile. 1995.

- HARTLAGE, J.A., and A.D. CRONBERG, 1973, “Chemical and Physical Factors

to be Evaluated Upon Designing a Kelex Extraction System”, KIM Conference of

Metallurgists, Quebec City, August.

- HOH and BAUTISTA, "Chemically based model to predict distribution

coefficients in the Cu-Lix 65 N and Cu-kelex 100 sistems", Metallurgical transactions B,

Vol 9B, Marzo 1978, pp. 69-75.

- HOMG J. and MAA J.. "Semi-empirical Equilibrium Model for Copper(II)

Extraction from Sulphuric Acid Solutions by Lix 64N-Esicaid 100", Hydrometallurgy

16.

- HURTUBIA A., " Determinación del Coeficiente de Distribución de Cobre (II) en

Extracción por Solventes Mediante Modelos Químicos". Trabajo de Titulación para

optar al Título de Ingeniero civil en Metalurgia. Universidad de Santiago de Chile.

1994.

- B. LOTT & OTROS: "The desing of large scale mixer-settlers"; AIME. Centennial

Annual Meeting, New York, February 26- March, 1971.

- HADAMARK: Comptes Rendus, 152, 1735 (1911).

- M. FLETCHER: Purification by Solvent Extraction; en ‹‹Extraction and Refining

of the Raver Metals››, Institution Mining Metallurgy, 15-33 (Londres, 1957).

- J. M. JOSA y J. M. REGIFE: La Extracción con Disolventes en la Separación y

Recuperación de Metales; Junta de Energía Nuclear, Dirección de Plantas Piloto e

Industriales.

- J. M. REGIFE y G. CORDERO: Instalación transportable para extracción con

aminas; Energía Nuclear, Madrid, 9, 410-418 (1965).

- J. PATEL and R. WELLEX: A.I.Ch.E.J., 13, 284 (1967).

- J. SIMPSON A., P. NAVARRO D., "Análisis de Modelos Químicos para el

Proceso de Extracción por Solventes de Cobre", VIII Simposium de Ingeniería de

Minas, Departamento de Ingeniería en Minas, Universidad de Santiago de Chile, 1993,

Santiago, Chile.

- J. SIMPSON, P. NAVARRO, F. J. ALGUACIL, "Iron (III) Extraction by LIX 860

and its Influence on Copper (II) Extraction from Sulphuric Solutions" Revista

Hydrometallurgy.

- J. STARY: "The Solvent Extraction of Metal Cheaters"; Pergamum, Oxford 1964.

Page 93: Curso hidrometalurgia

- J.E. HOUSE, "The Development of the LIX Reagents", 1981 Gaudin Lecture,

AIME Annual Meeting, Chicago, February, 1981.

- J. SIMPSON: Curso de capacitación en plantas de extracción por solventes,

Universidad de Sº de Chile 2006.

- KORDOSKY, G.A., J.M. SIERAKOSKI, and J.E. HOUSE, 1983, “The LIX 860

Series: Unmodified Copper Extraction Reagents”, Proceeding of the International

Solvent Extraction Conference, ISEC 83, (Denver CO, American Institute of Chemical

Engineers), pp. 191-192.

- LEE and TAVLARIDES, "Chemical equilibrium studies on the copper - sulfuric -

acid - Kelex 100 - xylene system", Metallurgical transactions B, Vol. 14B, Junio 1983,

pp. 153-158.

- LOFERENEL: Proceeding of the Intern Solvent Extraction; The Haque 1971,

Lyon 1974, Toronto 1977, Pub. by Soc. Chem. Ind. London.

- COX: Introduction to Hydrometallurgy; Hatfield Polytechmic, Septiembre 1976.

- GAETE, P. NAVARRO, J. SIMPSON A., F.J. AlGUACIL P., "Determinación de

Coeficientes de Actividad de Iones para el Sistema Cu-H2O-H2SO4 y su uso en

Extracción por Solventes de Cobre". XVI Encuentro Nacional de Tratamientos Mineros

e Hidrometalúrgicos, 1995, Río de Janeiro, Brasil.

- GAETE,., "Modelación Química de Extracción por Solvente de Cobre con

Extractantes del Tipo Quelante". Tesis Presentada para obtener el grado de Magister

en Ciencias de la Ingeniería. Universidad de Santiago de Chile. 1995.

- M. J. CAHALAN: Solvent Extraction for Metal Recovery Some Process

Economics, Paper 30 al Simposium ‹‹Advances in Extractive Metallurgy››, (Londres,

17-30 Abril, 1967).

- M. J. ZAKARIOS, M. J. CAHALAN: Solvent Extraction for Metal Recovery;

Trans, Inst. Min. Met. 75, c-245.c259 (1966).

- MAL JANSEN and ALAN TAYLOR: Desing of Copper SX Plants to Minimize

Static and other Fire Risks in the Light of Recent Industry Fires; International Project

Development Services, Sydney, Australia, ALTA Cu 2005.

- FROSSLING: Beitage Zur Geophysik von Gerland, 52, 170 (1938).

- CALDERBANK and I. KORCHINSKI: Chem. Eng. Sci., 6, 65 (1956).

- H. CALDERBANK and M. MOO-YUNG: Chem. Eng. Sci., 16, 39 (1961).

- P. HEERTJES, W. HOLVE and H. TALSMA: Chem. Eng. Sci., 3, 122 (1954).

- P. J. BAILES, C. HANSON and M. A. HUGHES: Chem. Eng. Angust 3 - 1976, pp

87-94.

Page 94: Curso hidrometalurgia

- P. J. BAILES, C. HANSON and M. A. HUGHES: Chem. Eng. Jan 19 - 1976, pp

86-100.

- P. M. ROSE and R. C. KINTNER: A.I.Ch.E.J., 12, 530 (1966)

- POWER, K.L., 1970, “Operation of the First Commercial Liquid Ion Exchange

and Electrowinning Plant”, AIME Annual Meeting, Denver, February.

- BLUMBERG y P. MELZER: Recovery of Common Metals by a Solvent Process;

VII International Mineral Processing Congress, 139-145, Gordon and Breach Se. Publ.

(Nueva York, 1964).

- WELLEK and H. S. KELLAND: A.I.Ch.E.J., 11, 557 (1965).

- R.J. BRIMSON, R. WELLEK and J. CAN: Chem. Eng., 48, 267 (1970).

- RUDOLF M. BUITELAAR: Aglomeraciones minerales y desarrollo local en

América Latina, CEPAL 2009.

- AMER: Aplicaciones de la extracción con disolventes a la hidrometalurgia; I.

Porte. Rev. Met. CENIM, vol. 16 (1980), nº 5.

- SWANSON, R.R., and D.W. AGERS, 1964, “A New Reagent for the Extraction of

Copper”, AIME Annual Meeting, New York, February.

- MISEK: "RDC and their Calculation"; Nº 13 Metody a Pockody Chemicke

Tecnologie, Editorial del Estado de Literatura Técnica, Praga (1964).

- T. VERMEULEN: Ind. Eng. Chem., 45, 1664 (1953).

- TUMILTY, J.A., G.W. SEWARD and J.P. MASSAM, 1979, “The Acorga P-5000

Series in the Solvent Extraction of Copper: Performance Characteristics and

Implications for Plant Performance” Proc. of the International Solvent Extraction

Conference, ISEC 77, CIM Special Volume 21.

- TUMILTY, J.A., R.F. DALTON and J.P. MASSAM, “The Acorga P-5000 Series: A

Novel Range of Solvent Extraction Reagents for Copper”, The Institution of Mining and

Metallurgy, London, Advances in Extractive Metallurgy, 1977.

- S. SCHMIDT: Amine Extraction; Isr. pr. for Sc. trans. Jerusalem 1971.

- VAN der ZEEUW, A.J., 1975, Symposium on Hydrometallurgy of the Institution of

Chemical Engineers, Manchester, Institution of Chemical Engineers, Symposium Series

No. 42, p. 161.

- C. HAZEN: Solvent Extraction Techniques; Bulletin No T4-B.32, Deco-Trefoit, 7-

18 (Agosto-Septiembre-Octubre 1963), Denver Equipment Comp. (Denver).

- H. DENNIS: Extractive Metallurgy; Isaac Pitman & Sous Ltd. (Londres, 1965).

Page 95: Curso hidrometalurgia

- MARCUS and A. S. KERTES: Ion Exchange and Solvent Extraction of Metal

Complexes; Wiley-Interscience, New York 1969.

- YI-GUI LI, JIU-FANG LU, ZONG-CHENG LI, TIE-ZHU BAO, JI-DING LI and

TENG TENG. "Determination of thermodynamic equilibrium constants and activity

coefficients for metal solvent extraction systems", Separation Processes in

Hydrometallurgy.

- YOSHIZUKA K., ARITA H., BABA Y. And INONE K. . "Equilibrium of Solvent

Extraction of Copper (II) with 5-dodecylsalicylaldoxima", Hydrometallurgy 23.