· pdf filecompatibilityof(d=) with(s=) 0 foranoddweight proposition:letd= sp(n;r)= qm j=0...

119
Toroidal compactifications of discrete quotients of period domains Azniv Kasparian 1 1 Partially supported by Contract 144/ 2015 with the the Scientific Foundation of Kliment Ohridski University of Sofia. Toroidal compactifications of period domains

Upload: duongdung

Post on 14-Feb-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Toroidal compactificationsof discrete quotients of period domains

Azniv Kasparian 1

1Partially supported by Contract 144/ 2015 with the the ScientificFoundation of Kliment Ohridski University of Sofia.

Toroidal compactifications of period domains

Page 2: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Algebraic family of projective algebraic varieties

Let X ⊂ PN(C) be a smooth quasi-projective variety,

[ω] be the Kahler class of the Fubini-Study metric on PN(C) and

π : X→ S be a proper morphism onto a quasi-projective varietyS with a smooth compactification S by a divisor S \ S withnormal crossings. S is called a moduli space.

The fibres Xs := π−1(s) are mutually diffeomorphic, connectedsmooth projective varieties of dimCXs = n.

Toroidal compactifications of period domains

Page 3: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Algebraic family of projective algebraic varieties

Let X ⊂ PN(C) be a smooth quasi-projective variety,

[ω] be the Kahler class of the Fubini-Study metric on PN(C) and

π : X→ S be a proper morphism onto a quasi-projective varietyS with a smooth compactification S by a divisor S \ S withnormal crossings. S is called a moduli space.

The fibres Xs := π−1(s) are mutually diffeomorphic, connectedsmooth projective varieties of dimCXs = n.

Toroidal compactifications of period domains

Page 4: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Algebraic family of projective algebraic varieties

Let X ⊂ PN(C) be a smooth quasi-projective variety,

[ω] be the Kahler class of the Fubini-Study metric on PN(C) and

π : X→ S be a proper morphism onto a quasi-projective varietyS with a smooth compactification S by a divisor S \ S withnormal crossings. S is called a moduli space.

The fibres Xs := π−1(s) are mutually diffeomorphic, connectedsmooth projective varieties of dimCXs = n.

Toroidal compactifications of period domains

Page 5: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Algebraic family of projective algebraic varieties

Let X ⊂ PN(C) be a smooth quasi-projective variety,

[ω] be the Kahler class of the Fubini-Study metric on PN(C) and

π : X→ S be a proper morphism onto a quasi-projective varietyS with a smooth compactification S by a divisor S \ S withnormal crossings. S is called a moduli space.

The fibres Xs := π−1(s) are mutually diffeomorphic, connectedsmooth projective varieties of dimCXs = n.

Toroidal compactifications of period domains

Page 6: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Algebraic family of projective algebraic varieties

Let X ⊂ PN(C) be a smooth quasi-projective variety,

[ω] be the Kahler class of the Fubini-Study metric on PN(C) and

π : X→ S be a proper morphism onto a quasi-projective varietyS with a smooth compactification S by a divisor S \ S withnormal crossings. S is called a moduli space.

The fibres Xs := π−1(s) are mutually diffeomorphic, connectedsmooth projective varieties of dimCXs = n.

Toroidal compactifications of period domains

Page 7: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The intersection form on the primitive cohomologies

The primitive cohomologiesHn

prim(Xs,Q) := ker[∧[ω] : Hn(Xs,Q)→ Hn+2(Xs,Q)]determine a lattice Hn

Z := Hn(Xs,Z) ∩Hnprim(Xs,Q),

endowed with a non-degenerate bilinear intersection formQ : Hn

Z ×HnZ → Z, Q([ω1], [ω2]) =

√−1n(n−1) ∫

Xsω1 ∧ ω2.

For an odd weight n = 2m + 1 the form Q is skew-symmetric,while for an even n = 2m the form Q is symmetric.

Toroidal compactifications of period domains

Page 8: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The intersection form on the primitive cohomologies

The primitive cohomologiesHn

prim(Xs,Q) := ker[∧[ω] : Hn(Xs,Q)→ Hn+2(Xs,Q)]determine a lattice Hn

Z := Hn(Xs,Z) ∩Hnprim(Xs,Q),

endowed with a non-degenerate bilinear intersection formQ : Hn

Z ×HnZ → Z, Q([ω1], [ω2]) =

√−1n(n−1) ∫

Xsω1 ∧ ω2.

For an odd weight n = 2m + 1 the form Q is skew-symmetric,while for an even n = 2m the form Q is symmetric.

Toroidal compactifications of period domains

Page 9: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The intersection form on the primitive cohomologies

The primitive cohomologiesHn

prim(Xs,Q) := ker[∧[ω] : Hn(Xs,Q)→ Hn+2(Xs,Q)]determine a lattice Hn

Z := Hn(Xs,Z) ∩Hnprim(Xs,Q),

endowed with a non-degenerate bilinear intersection formQ : Hn

Z ×HnZ → Z, Q([ω1], [ω2]) =

√−1n(n−1) ∫

Xsω1 ∧ ω2.

For an odd weight n = 2m + 1 the form Q is skew-symmetric,while for an even n = 2m the form Q is symmetric.

Toroidal compactifications of period domains

Page 10: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Hodge-Riemann bilinear relations

By Dolbeault’s Theorem, HnC := Hn

Z ⊗Z C admits a Hodgedecompositions Hn

C = ⊕nj=0H

n−j,j(Xs) for all s ∈ S.

The first Hodge-Riemann bilinear relation asserts thatQ(ϕ,ψ) = 0 for ∀ϕ ∈ Hn−j,j, ∀ψ ∈ Hn−i,i with i 6= n− j.

The second Hodge-Riemann bilinear relation states that√−1n−2jQ(ϕ,ϕ) > 0 for ∀ϕ ∈ Hn

C.

Toroidal compactifications of period domains

Page 11: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Hodge-Riemann bilinear relations

By Dolbeault’s Theorem, HnC := Hn

Z ⊗Z C admits a Hodgedecompositions Hn

C = ⊕nj=0H

n−j,j(Xs) for all s ∈ S.

The first Hodge-Riemann bilinear relation asserts thatQ(ϕ,ψ) = 0 for ∀ϕ ∈ Hn−j,j, ∀ψ ∈ Hn−i,i with i 6= n− j.

The second Hodge-Riemann bilinear relation states that√−1n−2jQ(ϕ,ϕ) > 0 for ∀ϕ ∈ Hn

C.

Toroidal compactifications of period domains

Page 12: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Hodge-Riemann bilinear relations

By Dolbeault’s Theorem, HnC := Hn

Z ⊗Z C admits a Hodgedecompositions Hn

C = ⊕nj=0H

n−j,j(Xs) for all s ∈ S.

The first Hodge-Riemann bilinear relation asserts thatQ(ϕ,ψ) = 0 for ∀ϕ ∈ Hn−j,j, ∀ψ ∈ Hn−i,i with i 6= n− j.

The second Hodge-Riemann bilinear relation states that√−1n−2jQ(ϕ,ϕ) > 0 for ∀ϕ ∈ Hn

C.

Toroidal compactifications of period domains

Page 13: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The period domain D

The variation of the complex structure on the fibres Xs = π−1(s)of π : X→ S induces a variation of the Hodge decompositions

HnC = Hn

prim(Xs,C) = ⊕nj=0H

n−j,j(Xs).

The classifying space D of the Hodge decompositionsHn

C = HnZ ⊗Z C = ⊕n

j=0Hn−j,j with fixed lattice Hn

Z, polarizationQ : Hn

Z ×HnZ → Z and Hodge numbers hn−j,j = dimCHn−j,j is

called a period domain.

The linear algebraic group GR = Sp(HnR,Q) for n = 2m + 1 or

GR = SO(HnR,Q) for n = 2m acts transitively on the complex

manifold D with compact stabilizer V of the origin o ∈ D.

Toroidal compactifications of period domains

Page 14: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The period domain D

The variation of the complex structure on the fibres Xs = π−1(s)of π : X→ S induces a variation of the Hodge decompositions

HnC = Hn

prim(Xs,C) = ⊕nj=0H

n−j,j(Xs).

The classifying space D of the Hodge decompositionsHn

C = HnZ ⊗Z C = ⊕n

j=0Hn−j,j with fixed lattice Hn

Z, polarizationQ : Hn

Z ×HnZ → Z and Hodge numbers hn−j,j = dimCHn−j,j is

called a period domain.

The linear algebraic group GR = Sp(HnR,Q) for n = 2m + 1 or

GR = SO(HnR,Q) for n = 2m acts transitively on the complex

manifold D with compact stabilizer V of the origin o ∈ D.

Toroidal compactifications of period domains

Page 15: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The period domain D

The variation of the complex structure on the fibres Xs = π−1(s)of π : X→ S induces a variation of the Hodge decompositions

HnC = Hn

prim(Xs,C) = ⊕nj=0H

n−j,j(Xs).

The classifying space D of the Hodge decompositionsHn

C = HnZ ⊗Z C = ⊕n

j=0Hn−j,j with fixed lattice Hn

Z, polarizationQ : Hn

Z ×HnZ → Z and Hodge numbers hn−j,j = dimCHn−j,j is

called a period domain.

The linear algebraic group GR = Sp(HnR,Q) for n = 2m + 1 or

GR = SO(HnR,Q) for n = 2m acts transitively on the complex

manifold D with compact stabilizer V of the origin o ∈ D.

Toroidal compactifications of period domains

Page 16: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The compact dual D of D

Let D be the classifying space of the decreasing filtrationsF• = {F0 ⊃ F1 ⊃ . . . ⊃ Fn}, Fk = ⊕n

s=kHs,n−s, subject to the

first Hodge Riemann bilinear relation Q(Fk,Fn−k+1) = 0.

As a closed subvariety of a product of Grassmannians, D is acompact homogeneous space D = GC/PC of the algebraic groupGC := {g ∈ SL(Hn

C) |Q(gu, gv) = Q(u, v), ∀u, v ∈ HnC}.

The period domain D is an open complex submanifold of D andD is called the compact dual of D.

Toroidal compactifications of period domains

Page 17: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The compact dual D of D

Let D be the classifying space of the decreasing filtrationsF• = {F0 ⊃ F1 ⊃ . . . ⊃ Fn}, Fk = ⊕n

s=kHs,n−s, subject to the

first Hodge Riemann bilinear relation Q(Fk,Fn−k+1) = 0.

As a closed subvariety of a product of Grassmannians, D is acompact homogeneous space D = GC/PC of the algebraic groupGC := {g ∈ SL(Hn

C) |Q(gu, gv) = Q(u, v), ∀u, v ∈ HnC}.

The period domain D is an open complex submanifold of D andD is called the compact dual of D.

Toroidal compactifications of period domains

Page 18: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The compact dual D of D

Let D be the classifying space of the decreasing filtrationsF• = {F0 ⊃ F1 ⊃ . . . ⊃ Fn}, Fk = ⊕n

s=kHs,n−s, subject to the

first Hodge Riemann bilinear relation Q(Fk,Fn−k+1) = 0.

As a closed subvariety of a product of Grassmannians, D is acompact homogeneous space D = GC/PC of the algebraic groupGC := {g ∈ SL(Hn

C) |Q(gu, gv) = Q(u, v), ∀u, v ∈ HnC}.

The period domain D is an open complex submanifold of D andD is called the compact dual of D.

Toroidal compactifications of period domains

Page 19: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Period map

The correspondence, associating to Xs = π−1(s) the Hodgedecomposition Hn

C = ⊕nj=0H

n−j,jprim (Xs) provides a holomorphic

period map Φ : S→ D/Γ for a lattice Γ ≤ GZ = SLZ(HnZ,Q).

Any period map Φ : S→ D/Γ admits a holomorphic liftingΦ : S→ D to the universal covering S of S.

If so ∈ S and Φ(so) = o ∈ D then the differential(dΦ)soT

1,0so S→ T1,0

o D ⊂ g := LieGC takes values in thehorizontal subspace g−1,1 = {X ∈ g |X(Hn−j,j

o ) ⊆ Hn−j−1,j+1o }.

Toroidal compactifications of period domains

Page 20: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Period map

The correspondence, associating to Xs = π−1(s) the Hodgedecomposition Hn

C = ⊕nj=0H

n−j,jprim (Xs) provides a holomorphic

period map Φ : S→ D/Γ for a lattice Γ ≤ GZ = SLZ(HnZ,Q).

Any period map Φ : S→ D/Γ admits a holomorphic liftingΦ : S→ D to the universal covering S of S.

If so ∈ S and Φ(so) = o ∈ D then the differential(dΦ)soT

1,0so S→ T1,0

o D ⊂ g := LieGC takes values in thehorizontal subspace g−1,1 = {X ∈ g |X(Hn−j,j

o ) ⊆ Hn−j−1,j+1o }.

Toroidal compactifications of period domains

Page 21: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Period map

The correspondence, associating to Xs = π−1(s) the Hodgedecomposition Hn

C = ⊕nj=0H

n−j,jprim (Xs) provides a holomorphic

period map Φ : S→ D/Γ for a lattice Γ ≤ GZ = SLZ(HnZ,Q).

Any period map Φ : S→ D/Γ admits a holomorphic liftingΦ : S→ D to the universal covering S of S.

If so ∈ S and Φ(so) = o ∈ D then the differential(dΦ)soT

1,0so S→ T1,0

o D ⊂ g := LieGC takes values in thehorizontal subspace g−1,1 = {X ∈ g |X(Hn−j,j

o ) ⊆ Hn−j−1,j+1o }.

Toroidal compactifications of period domains

Page 22: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The aim of the talk

Problem: To construct a complex analytic compactification(D/Γ)Σ of D/Γ, such that any period map Φ : S→ D/Γ has aholomorphic extension Φ : S→ (D/Γ)Σ to a smoothcompactification S of S.

Motivation for the study of the problem: To describe thedegeneration of the Hodge structure on the primitivecohomologies Hn

prim(Xs,C) of a smooth projective variety Xs,when Xs is deformed to a singular birational model.

Toroidal compactifications of period domains

Page 23: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The aim of the talk

Problem: To construct a complex analytic compactification(D/Γ)Σ of D/Γ, such that any period map Φ : S→ D/Γ has aholomorphic extension Φ : S→ (D/Γ)Σ to a smoothcompactification S of S.

Motivation for the study of the problem: To describe thedegeneration of the Hodge structure on the primitivecohomologies Hn

prim(Xs,C) of a smooth projective variety Xs,when Xs is deformed to a singular birational model.

Toroidal compactifications of period domains

Page 24: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Γ-rational parabolic subgroups

A subgroup P of a linear algebraic group G is parabolic ifcontains a maximal connected solvable algebraic subgroup of G.

For any lattice Γ of G, a parabolic subgroup P of G is Γ-rationalif NP ∩ Γ is a lattice of the unipotent radical NP of P.

Let us denote by MParΓ the set of the Γ-rational maximalparabolic subgroups of G.

Toroidal compactifications of period domains

Page 25: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Γ-rational parabolic subgroups

A subgroup P of a linear algebraic group G is parabolic ifcontains a maximal connected solvable algebraic subgroup of G.

For any lattice Γ of G, a parabolic subgroup P of G is Γ-rationalif NP ∩ Γ is a lattice of the unipotent radical NP of P.

Let us denote by MParΓ the set of the Γ-rational maximalparabolic subgroups of G.

Toroidal compactifications of period domains

Page 26: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Γ-rational parabolic subgroups

A subgroup P of a linear algebraic group G is parabolic ifcontains a maximal connected solvable algebraic subgroup of G.

For any lattice Γ of G, a parabolic subgroup P of G is Γ-rationalif NP ∩ Γ is a lattice of the unipotent radical NP of P.

Let us denote by MParΓ the set of the Γ-rational maximalparabolic subgroups of G.

Toroidal compactifications of period domains

Page 27: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Classical toroidal compactificationsof local Hermitian symmetric spaces

If D = GR/K is a Hermitian symmetric space of non-compacttype then P ∈ MParΓ are exactly the normalizers of theΓ-rational analytic boundary components D(P) of D.

A monograph of Ash, Mumford, Rapoport and Tai from 1975builds up complex analytic toroidal compactifications (D/Γ)Σ ofthe non-compact quotients D/Γ by lattices Γ ≤ GZ.

For any P ∈ MParΓ, let us consider the latticeΥP = Γ ∩UP ' (Zm,+) of the center UP ' (Rm,+) of theunipotent radical NP of P.

Toroidal compactifications of period domains

Page 28: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Classical toroidal compactificationsof local Hermitian symmetric spaces

If D = GR/K is a Hermitian symmetric space of non-compacttype then P ∈ MParΓ are exactly the normalizers of theΓ-rational analytic boundary components D(P) of D.

A monograph of Ash, Mumford, Rapoport and Tai from 1975builds up complex analytic toroidal compactifications (D/Γ)Σ ofthe non-compact quotients D/Γ by lattices Γ ≤ GZ.

For any P ∈ MParΓ, let us consider the latticeΥP = Γ ∩UP ' (Zm,+) of the center UP ' (Rm,+) of theunipotent radical NP of P.

Toroidal compactifications of period domains

Page 29: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Classical toroidal compactificationsof local Hermitian symmetric spaces

If D = GR/K is a Hermitian symmetric space of non-compacttype then P ∈ MParΓ are exactly the normalizers of theΓ-rational analytic boundary components D(P) of D.

A monograph of Ash, Mumford, Rapoport and Tai from 1975builds up complex analytic toroidal compactifications (D/Γ)Σ ofthe non-compact quotients D/Γ by lattices Γ ≤ GZ.

For any P ∈ MParΓ, let us consider the latticeΥP = Γ ∩UP ' (Zm,+) of the center UP ' (Rm,+) of theunipotent radical NP of P.

Toroidal compactifications of period domains

Page 30: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Classical toroidal compactificationsof local Hermitian symmetric spaces

exp(2πiuj) : (Cm,+) ' UP ⊗R C→ (UP ⊗R C)/ΥP =: T(P)maps onto a complex algebraic torus T(P) ' (C∗)m.

There is a diffeomorphic Siegel domain splittingD/ΥP ' (UP + iCP)/ΥP × (NP/UP)×D(P)

for an open homogeneous cone cone CP ⊂ UP, a complex vectorspace NP/UP and a bounded symmetric domain D(P).

Let XΣ(P) ⊃ T(P) be the toric variety, associated with anappropriate family Σ(P) of polyhedral cones in UP andYΣ(P) be the interior of the closure of (UP + iCP)/ΥP in XΣ(P).

Toroidal compactifications of period domains

Page 31: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Classical toroidal compactificationsof local Hermitian symmetric spaces

exp(2πiuj) : (Cm,+) ' UP ⊗R C→ (UP ⊗R C)/ΥP =: T(P)maps onto a complex algebraic torus T(P) ' (C∗)m.

There is a diffeomorphic Siegel domain splittingD/ΥP ' (UP + iCP)/ΥP × (NP/UP)×D(P)

for an open homogeneous cone cone CP ⊂ UP, a complex vectorspace NP/UP and a bounded symmetric domain D(P).

Let XΣ(P) ⊃ T(P) be the toric variety, associated with anappropriate family Σ(P) of polyhedral cones in UP andYΣ(P) be the interior of the closure of (UP + iCP)/ΥP in XΣ(P).

Toroidal compactifications of period domains

Page 32: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Classical toroidal compactificationsof local Hermitian symmetric spaces

exp(2πiuj) : (Cm,+) ' UP ⊗R C→ (UP ⊗R C)/ΥP =: T(P)maps onto a complex algebraic torus T(P) ' (C∗)m.

There is a diffeomorphic Siegel domain splittingD/ΥP ' (UP + iCP)/ΥP × (NP/UP)×D(P)

for an open homogeneous cone cone CP ⊂ UP, a complex vectorspace NP/UP and a bounded symmetric domain D(P).

Let XΣ(P) ⊃ T(P) be the toric variety, associated with anappropriate family Σ(P) of polyhedral cones in UP andYΣ(P) be the interior of the closure of (UP + iCP)/ΥP in XΣ(P).

Toroidal compactifications of period domains

Page 33: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Classical toroidal compactificationsof local Hermitian symmetric spaces

The partial compactification(D/ΥP)Σ(P) := YΣ(P) × (NP/UP)×D(P).

For any P1,P2 ∈ MParΓ with D(P1) ⊂ D(P2) there is aholomorphic map µP2

P1: (D/ΥP2)Σ(P2) → (D/ΥP1)Σ(P1).

The toroidal compactification (D/Γ)Σ, Σ = {Σ(P)}P∈MParΓis

obtained from∐

P∈MParΓ(D/ΥP)Σ(P) by gluing along the

holomorphic maps µP2P1

for D(P1) ⊂ D(P2) and the Γ-orbits.

Toroidal compactifications of period domains

Page 34: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Classical toroidal compactificationsof local Hermitian symmetric spaces

The partial compactification(D/ΥP)Σ(P) := YΣ(P) × (NP/UP)×D(P).

For any P1,P2 ∈ MParΓ with D(P1) ⊂ D(P2) there is aholomorphic map µP2

P1: (D/ΥP2)Σ(P2) → (D/ΥP1)Σ(P1).

The toroidal compactification (D/Γ)Σ, Σ = {Σ(P)}P∈MParΓis

obtained from∐

P∈MParΓ(D/ΥP)Σ(P) by gluing along the

holomorphic maps µP2P1

for D(P1) ⊂ D(P2) and the Γ-orbits.

Toroidal compactifications of period domains

Page 35: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Classical toroidal compactificationsof local Hermitian symmetric spaces

The partial compactification(D/ΥP)Σ(P) := YΣ(P) × (NP/UP)×D(P).

For any P1,P2 ∈ MParΓ with D(P1) ⊂ D(P2) there is aholomorphic map µP2

P1: (D/ΥP2)Σ(P2) → (D/ΥP1)Σ(P1).

The toroidal compactification (D/Γ)Σ, Σ = {Σ(P)}P∈MParΓis

obtained from∐

P∈MParΓ(D/ΥP)Σ(P) by gluing along the

holomorphic maps µP2P1

for D(P1) ⊂ D(P2) and the Γ-orbits.

Toroidal compactifications of period domains

Page 36: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Logarithmic manifolds

A monoid (M, .) is a non-empty subset of an abelian group(G, .), which is closed under the group operation and containsthe neutral element of G.

A local logarithmic structure on a local complex analytic space(U,OX(U)) is a monoid (MX(U), .) ⊃ (OX(U)∗, .) endowed witha homomorphism of monoids (MX(U), .)→ (OX(U), .).

A logarithmic manifold (X,OX,MX) is a complex analyticmanifold (X,OX) with a sheafMX of local logarithmicstructures.

Toroidal compactifications of period domains

Page 37: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Logarithmic manifolds

A monoid (M, .) is a non-empty subset of an abelian group(G, .), which is closed under the group operation and containsthe neutral element of G.

A local logarithmic structure on a local complex analytic space(U,OX(U)) is a monoid (MX(U), .) ⊃ (OX(U)∗, .) endowed witha homomorphism of monoids (MX(U), .)→ (OX(U), .).

A logarithmic manifold (X,OX,MX) is a complex analyticmanifold (X,OX) with a sheafMX of local logarithmicstructures.

Toroidal compactifications of period domains

Page 38: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Logarithmic manifolds

A monoid (M, .) is a non-empty subset of an abelian group(G, .), which is closed under the group operation and containsthe neutral element of G.

A local logarithmic structure on a local complex analytic space(U,OX(U)) is a monoid (MX(U), .) ⊃ (OX(U)∗, .) endowed witha homomorphism of monoids (MX(U), .)→ (OX(U), .).

A logarithmic manifold (X,OX,MX) is a complex analyticmanifold (X,OX) with a sheafMX of local logarithmicstructures.

Toroidal compactifications of period domains

Page 39: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Kato-Usui’s DΣ/Γ for a period domain D

Let D = GR/V be a period domain and Γ < GZ be a neatsubgroup, i.e., the subgroup of C∗, generated by the eigenvaluesof all the elements of Γ is torsion free.

In 2009 Kato and Usui construct Hausdorff spaces DΣ/Γ, whichare logarithmic manifolds.

Toroidal compactifications of period domains

Page 40: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Kato-Usui’s DΣ/Γ for a period domain D

Let D = GR/V be a period domain and Γ < GZ be a neatsubgroup, i.e., the subgroup of C∗, generated by the eigenvaluesof all the elements of Γ is torsion free.

In 2009 Kato and Usui construct Hausdorff spaces DΣ/Γ, whichare logarithmic manifolds.

Toroidal compactifications of period domains

Page 41: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Kato-Usui’s DΣ/Γ for a period domain D

DΣ depends on a Γ-invariant family Σ of nilpotent conesσ = R≥0N1 + . . .+ R≥0Nm ⊂ LieGQ with commuting elements.

The set DΣ consists of the pairs (σ,Z = exp (σC)F•) withσ ∈ Σ, Z ⊂ D, such that NFk ⊆ Fk−1 for ∀N ∈ σ, ∀k and

exp

(m∑

j=1ziNj

)F• ∈ D for all zj ∈ C with Imzj >> 0.

In particular, D ' {({0},F•) |F• ∈ D} ⊂ DΣ.

Toroidal compactifications of period domains

Page 42: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Kato-Usui’s DΣ/Γ for a period domain D

DΣ depends on a Γ-invariant family Σ of nilpotent conesσ = R≥0N1 + . . .+ R≥0Nm ⊂ LieGQ with commuting elements.

The set DΣ consists of the pairs (σ,Z = exp (σC)F•) withσ ∈ Σ, Z ⊂ D, such that NFk ⊆ Fk−1 for ∀N ∈ σ, ∀k and

exp

(m∑

j=1ziNj

)F• ∈ D for all zj ∈ C with Imzj >> 0.

In particular, D ' {({0},F•) |F• ∈ D} ⊂ DΣ.

Toroidal compactifications of period domains

Page 43: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Kato-Usui’s DΣ/Γ for a period domain D

DΣ depends on a Γ-invariant family Σ of nilpotent conesσ = R≥0N1 + . . .+ R≥0Nm ⊂ LieGQ with commuting elements.

The set DΣ consists of the pairs (σ,Z = exp (σC)F•) withσ ∈ Σ, Z ⊂ D, such that NFk ⊆ Fk−1 for ∀N ∈ σ, ∀k and

exp

(m∑

j=1ziNj

)F• ∈ D for all zj ∈ C with Imzj >> 0.

In particular, D ' {({0},F•) |F• ∈ D} ⊂ DΣ.

Toroidal compactifications of period domains

Page 44: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The boundary of a moduli space S

Let π : X→ S be an algebraic family of projective algebraicvarieties with a quasi-projective base S.

One can resolve the singularities of the projective closure S of Sin such a way that S \ S is a divisor with normal crossings.

Any point so ∈ S \ S has a neighborhood ∆d 'W(so) ⊂ S,d = dimC S in S, such that W(so) ∩ S ' (∆∗)k ×∆d−k.

The compact S = S ∪(∪so∈S\SW(so)

)has a finite sub-covering

S = S ∪W1 ∪ . . . ∪Wν .

Toroidal compactifications of period domains

Page 45: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The boundary of a moduli space S

Let π : X→ S be an algebraic family of projective algebraicvarieties with a quasi-projective base S.

One can resolve the singularities of the projective closure S of Sin such a way that S \ S is a divisor with normal crossings.

Any point so ∈ S \ S has a neighborhood ∆d 'W(so) ⊂ S,d = dimC S in S, such that W(so) ∩ S ' (∆∗)k ×∆d−k.

The compact S = S ∪(∪so∈S\SW(so)

)has a finite sub-covering

S = S ∪W1 ∪ . . . ∪Wν .

Toroidal compactifications of period domains

Page 46: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The boundary of a moduli space S

Let π : X→ S be an algebraic family of projective algebraicvarieties with a quasi-projective base S.

One can resolve the singularities of the projective closure S of Sin such a way that S \ S is a divisor with normal crossings.

Any point so ∈ S \ S has a neighborhood ∆d 'W(so) ⊂ S,d = dimC S in S, such that W(so) ∩ S ' (∆∗)k ×∆d−k.

The compact S = S ∪(∪so∈S\SW(so)

)has a finite sub-covering

S = S ∪W1 ∪ . . . ∪Wν .

Toroidal compactifications of period domains

Page 47: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The boundary of a moduli space S

Let π : X→ S be an algebraic family of projective algebraicvarieties with a quasi-projective base S.

One can resolve the singularities of the projective closure S of Sin such a way that S \ S is a divisor with normal crossings.

Any point so ∈ S \ S has a neighborhood ∆d 'W(so) ⊂ S,d = dimC S in S, such that W(so) ∩ S ' (∆∗)k ×∆d−k.

The compact S = S ∪(∪so∈S\SW(so)

)has a finite sub-covering

S = S ∪W1 ∪ . . . ∪Wν .

Toroidal compactifications of period domains

Page 48: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The upper half plane H is an SL(2,R)-orbit

The upper half planeH := {ζ ∈ C | Imζ > 0} = SL(2,R)/SO(2)

is an orbit of the linear algebraic groupSL(2,R) := {A ∈ M2×2(R) | detA = 1}

with a compact isotropy groupSO(2) := {A ∈ SL(2,R) |AtA = I2}.

For any lattice Γ ≤ SL(2,Z), the Γ-rational parabolic subgroupsof SL(2,R) are the stabilizers of the Γ-rational boundary points

Q ∪ {i∞} = ∂ΓH.

Toroidal compactifications of period domains

Page 49: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The upper half plane H is an SL(2,R)-orbit

The upper half planeH := {ζ ∈ C | Imζ > 0} = SL(2,R)/SO(2)

is an orbit of the linear algebraic groupSL(2,R) := {A ∈ M2×2(R) | detA = 1}

with a compact isotropy groupSO(2) := {A ∈ SL(2,R) |AtA = I2}.

For any lattice Γ ≤ SL(2,Z), the Γ-rational parabolic subgroupsof SL(2,R) are the stabilizers of the Γ-rational boundary points

Q ∪ {i∞} = ∂ΓH.

Toroidal compactifications of period domains

Page 50: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The standard parabolic subgroup of SL(2,R)

All the Γ-rational parabolic subgroups of SL(2,R) are conjugateto the stabilizer Po of i∞ ∈ ∂ΓH in SL(2,R), which is called thestandard parabolic subgroup of SL(2,R).

There is Langlands decomposition Po ' NoAoZowith unipotent radical No = exp(RN) ' (R,+) of Po,

tangent to N =

(0 10 0

), split abelian component

Ao = exp(RY) ' (R>0, .) for Y =

(1 00 −1

)and centralizer

Zo = {±I2} of Ao in SO(2).

Toroidal compactifications of period domains

Page 51: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The standard parabolic subgroup of SL(2,R)

All the Γ-rational parabolic subgroups of SL(2,R) are conjugateto the stabilizer Po of i∞ ∈ ∂ΓH in SL(2,R), which is called thestandard parabolic subgroup of SL(2,R).

There is Langlands decomposition Po ' NoAoZowith unipotent radical No = exp(RN) ' (R,+) of Po,

tangent to N =

(0 10 0

), split abelian component

Ao = exp(RY) ' (R>0, .) for Y =

(1 00 −1

)and centralizer

Zo = {±I2} of Ao in SO(2).

Toroidal compactifications of period domains

Page 52: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The standard parabolic subgroup of SL(2,R)

All the Γ-rational parabolic subgroups of SL(2,R) are conjugateto the stabilizer Po of i∞ ∈ ∂ΓH in SL(2,R), which is called thestandard parabolic subgroup of SL(2,R).

There is Langlands decomposition Po ' NoAoZowith unipotent radical No = exp(RN) ' (R,+) of Po,

tangent to N =

(0 10 0

), split abelian component

Ao = exp(RY) ' (R>0, .) for Y =

(1 00 −1

)and centralizer

Zo = {±I2} of Ao in SO(2).

Toroidal compactifications of period domains

Page 53: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The standard parabolic subgroup of SL(2,R)

All the Γ-rational parabolic subgroups of SL(2,R) are conjugateto the stabilizer Po of i∞ ∈ ∂ΓH in SL(2,R), which is called thestandard parabolic subgroup of SL(2,R).

There is Langlands decomposition Po ' NoAoZowith unipotent radical No = exp(RN) ' (R,+) of Po,

tangent to N =

(0 10 0

), split abelian component

Ao = exp(RY) ' (R>0, .) for Y =

(1 00 −1

)and centralizer

Zo = {±I2} of Ao in SO(2).

Toroidal compactifications of period domains

Page 54: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The standard parabolic subgroup of SL(2,R)

All the Γ-rational parabolic subgroups of SL(2,R) are conjugateto the stabilizer Po of i∞ ∈ ∂ΓH in SL(2,R), which is called thestandard parabolic subgroup of SL(2,R).

There is Langlands decomposition Po ' NoAoZowith unipotent radical No = exp(RN) ' (R,+) of Po,

tangent to N =

(0 10 0

), split abelian component

Ao = exp(RY) ' (R>0, .) for Y =

(1 00 −1

)and centralizer

Zo = {±I2} of Ao in SO(2).

Toroidal compactifications of period domains

Page 55: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Partial compactification of a unipotent quotient of H

For an arbitrary m ∈ Z \ {0}, the covering mapexp

(2πiζm

): H → H/NZ

o has deck transformation group

NZo =

{(1 ν0 1

) ∣∣∣ ν ∈ mZ}' (Z,+).

Due to H = PoSO(2)/SO(2) ' Po/Zo = No ×Ao, the imageH/NZ

o ' (No/NZo )×Ao ' S1×(0, 1) = ∆∗ := {t ∈ C | 0 < |t| < 1}

is the punctured disc in the complex plane.

The partial compactification H/NZo ' ∆ of H/NZ

o ' ∆∗ isobtained by replacing H/NZ

o with the interior of its closure in C.

Toroidal compactifications of period domains

Page 56: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Partial compactification of a unipotent quotient of H

For an arbitrary m ∈ Z \ {0}, the covering mapexp

(2πiζm

): H → H/NZ

o has deck transformation group

NZo =

{(1 ν0 1

) ∣∣∣ ν ∈ mZ}' (Z,+).

Due to H = PoSO(2)/SO(2) ' Po/Zo = No ×Ao, the imageH/NZ

o ' (No/NZo )×Ao ' S1×(0, 1) = ∆∗ := {t ∈ C | 0 < |t| < 1}

is the punctured disc in the complex plane.

The partial compactification H/NZo ' ∆ of H/NZ

o ' ∆∗ isobtained by replacing H/NZ

o with the interior of its closure in C.

Toroidal compactifications of period domains

Page 57: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Partial compactification of a unipotent quotient of H

For an arbitrary m ∈ Z \ {0}, the covering mapexp

(2πiζm

): H → H/NZ

o has deck transformation group

NZo =

{(1 ν0 1

) ∣∣∣ ν ∈ mZ}' (Z,+).

Due to H = PoSO(2)/SO(2) ' Po/Zo = No ×Ao, the imageH/NZ

o ' (No/NZo )×Ao ' S1×(0, 1) = ∆∗ := {t ∈ C | 0 < |t| < 1}

is the punctured disc in the complex plane.

The partial compactification H/NZo ' ∆ of H/NZ

o ' ∆∗ isobtained by replacing H/NZ

o with the interior of its closure in C.

Toroidal compactifications of period domains

Page 58: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Holomorphic equivariant SL(2,R)-orbits

Let D = GR/V be a period domain and H ⊂ D be a subspace ofD through the origin o ∈ D. We say that H is an equivariantSL(2,R)-orbit of D if there exists a subgroup S ' SL(2,R) ofGR with orbit S/S ∩V = S(o) = H.

An equivariant SL(2,R)-orbit H ⊂ D is holomorphic if H is acomplex submanifold of D.

Toroidal compactifications of period domains

Page 59: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Holomorphic equivariant SL(2,R)-orbits

Let D = GR/V be a period domain and H ⊂ D be a subspace ofD through the origin o ∈ D. We say that H is an equivariantSL(2,R)-orbit of D if there exists a subgroup S ' SL(2,R) ofGR with orbit S/S ∩V = S(o) = H.

An equivariant SL(2,R)-orbit H ⊂ D is holomorphic if H is acomplex submanifold of D.

Toroidal compactifications of period domains

Page 60: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Holomorphic horizontal SL(2,R)-orbits

Let us suppose that S is defined over Z, the lattice Γ ≤ GZcontains an image NZ < S of an integral translation group ofthe upper half plane and denote by Ψ : D/NZ → D/Γ thecorresponding covering map.

Then any open neighborhood W∗1 ⊂ D/NZ of the puncture 0 of∆∗ ' H/NZ ⊂ D/NZ is mapped onto an open neighborhoodΨ(W∗1) ⊂ D/Γ of a boundary point of D/Γ.

A holomorphic equivariant SL(2,R)-orbit H ⊂ D is horizontal iftangent to the horizontal left-invariant distribution on D.

Toroidal compactifications of period domains

Page 61: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Holomorphic horizontal SL(2,R)-orbits

Let us suppose that S is defined over Z, the lattice Γ ≤ GZcontains an image NZ < S of an integral translation group ofthe upper half plane and denote by Ψ : D/NZ → D/Γ thecorresponding covering map.

Then any open neighborhood W∗1 ⊂ D/NZ of the puncture 0 of∆∗ ' H/NZ ⊂ D/NZ is mapped onto an open neighborhoodΨ(W∗1) ⊂ D/Γ of a boundary point of D/Γ.

A holomorphic equivariant SL(2,R)-orbit H ⊂ D is horizontal iftangent to the horizontal left-invariant distribution on D.

Toroidal compactifications of period domains

Page 62: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Holomorphic horizontal SL(2,R)-orbits

Let us suppose that S is defined over Z, the lattice Γ ≤ GZcontains an image NZ < S of an integral translation group ofthe upper half plane and denote by Ψ : D/NZ → D/Γ thecorresponding covering map.

Then any open neighborhood W∗1 ⊂ D/NZ of the puncture 0 of∆∗ ' H/NZ ⊂ D/NZ is mapped onto an open neighborhoodΨ(W∗1) ⊂ D/Γ of a boundary point of D/Γ.

A holomorphic equivariant SL(2,R)-orbit H ⊂ D is horizontal iftangent to the horizontal left-invariant distribution on D.

Toroidal compactifications of period domains

Page 63: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Schmid’s SL2-Orbit Theorem

Theorem (Schmid - 1973): For any local period mapΦ : S ' (∆∗)k → D/Γ there exist holomorphic horizontalSL(2,R)-orbits Hj ⊂ D, 1 ≤ j ≤ k with standard unipotentlattices NZ

j ≤ Γ, such that for a sufficiently small neighborhood

W1 ⊂ D/k∏

i=1NZ

i of 0k ∈ (∆∗)k 'k∏

j=1(Hj/NZ

j ) there is a

sufficiently small neighborhood W2 ⊂ S of 0k ∈ S ' ∆k with

Φ(W2) ⊂ Ψ(W1)

for Ψ : D/k∏

i=1NZ

i → D/Γ.

Toroidal compactifications of period domains

Page 64: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Kato and Usui’s Theorem

Theorem (Kato and Usui - 2009): For any local period mapΦ : S ' (∆∗)k ×∆d−k → D/Γ in a quotient of a period domainD = GR/V by a neat subgroup Γ < GZ there is a logarithmicmanifold

Slog '(

∆∗∐

(0× S1))k×∆d−k ⊃ S

with a continuous map

Φ : Slog −→ DΣ/Γ.

Toroidal compactifications of period domains

Page 65: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Maximal parabolic subgroups of GR

The maximal parabolic subgroups P of GR = SL(HnR,Q) are the

normalizers of the Q-isotropic subspaces LP ⊂ HnR.

Any such LP is associated with a uniquely determinedQ-conjugate, Q-isotropic subspace L′P ⊂ Hn

R, such thatLP ∩ L′P = 0 and LP ⊕ L′P is a sub-Hodge structure of Hn

R.

The Q-orthogonal complement MP := (LP ⊕ L′P)⊥

of LP⊕L′P is also a sub-Hodge structure of HnR = LP⊕L′P⊕MP.

Toroidal compactifications of period domains

Page 66: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Maximal parabolic subgroups of GR

The maximal parabolic subgroups P of GR = SL(HnR,Q) are the

normalizers of the Q-isotropic subspaces LP ⊂ HnR.

Any such LP is associated with a uniquely determinedQ-conjugate, Q-isotropic subspace L′P ⊂ Hn

R, such thatLP ∩ L′P = 0 and LP ⊕ L′P is a sub-Hodge structure of Hn

R.

The Q-orthogonal complement MP := (LP ⊕ L′P)⊥

of LP⊕L′P is also a sub-Hodge structure of HnR = LP⊕L′P⊕MP.

Toroidal compactifications of period domains

Page 67: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Maximal parabolic subgroups of GR

The maximal parabolic subgroups P of GR = SL(HnR,Q) are the

normalizers of the Q-isotropic subspaces LP ⊂ HnR.

Any such LP is associated with a uniquely determinedQ-conjugate, Q-isotropic subspace L′P ⊂ Hn

R, such thatLP ∩ L′P = 0 and LP ⊕ L′P is a sub-Hodge structure of Hn

R.

The Q-orthogonal complement MP := (LP ⊕ L′P)⊥

of LP⊕L′P is also a sub-Hodge structure of HnR = LP⊕L′P⊕MP.

Toroidal compactifications of period domains

Page 68: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Langlands decomposition

Any maximal parabolic subgroup P of GR has Langlandsdecomposition

P = (NP oAP) o [SL(LP)× SL(MP,Q)],where NP is the unipotent radical of P andAP is a split abelian component.

Note that SL(LP) is realized as a subgroup of P by a naturalembedding in SL(LP ⊕ L′P,Q).

Let us fix an isotropy subgroup V of D = GR/V and a maximalcompact subgroup K of GR, containing V.

Toroidal compactifications of period domains

Page 69: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Langlands decomposition

Any maximal parabolic subgroup P of GR has Langlandsdecomposition

P = (NP oAP) o [SL(LP)× SL(MP,Q)],where NP is the unipotent radical of P andAP is a split abelian component.

Note that SL(LP) is realized as a subgroup of P by a naturalembedding in SL(LP ⊕ L′P,Q).

Let us fix an isotropy subgroup V of D = GR/V and a maximalcompact subgroup K of GR, containing V.

Toroidal compactifications of period domains

Page 70: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Langlands decomposition

Any maximal parabolic subgroup P of GR has Langlandsdecomposition

P = (NP oAP) o [SL(LP)× SL(MP,Q)],where NP is the unipotent radical of P andAP is a split abelian component.

Note that SL(LP) is realized as a subgroup of P by a naturalembedding in SL(LP ⊕ L′P,Q).

Let us fix an isotropy subgroup V of D = GR/V and a maximalcompact subgroup K of GR, containing V.

Toroidal compactifications of period domains

Page 71: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Horospherical decomposition of a period domain

Due to GR = PK, the period domain D = GR/V has a realanalytic horospherical decomposition

D ' NP ×AP × [∪k∈KD(kLP)]× [∪k∈KD(kMP)]with homogeneous spaces D(kLP) ' SL(kLP)/SL(kLP) ∩V,D(kMP) ' SL(k′MP,Q)/SL(k′MP,Q) ∩V.

Here D(k′MP) is the period domain of the sub-Hodge structurek′MP ⊂ Hn

R, while D(kLP) is a closed real analytic submanifoldof the period domain of k(LP ⊕ L′P) ⊆ Hn

R.

Toroidal compactifications of period domains

Page 72: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Horospherical decomposition of a period domain

Due to GR = PK, the period domain D = GR/V has a realanalytic horospherical decomposition

D ' NP ×AP × [∪k∈KD(kLP)]× [∪k∈KD(kMP)]with homogeneous spaces D(kLP) ' SL(kLP)/SL(kLP) ∩V,D(kMP) ' SL(k′MP,Q)/SL(k′MP,Q) ∩V.

Here D(k′MP) is the period domain of the sub-Hodge structurek′MP ⊂ Hn

R, while D(kLP) is a closed real analytic submanifoldof the period domain of k(LP ⊕ L′P) ⊆ Hn

R.

Toroidal compactifications of period domains

Page 73: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Robles’ Theorem

Note that kLP = LkPk−1 ⊂ HnR is the isotropic subspace,

associated with the maximal parabolic subgroup kPk−1 andk′MP = Mk′P(k′)−1 .

Theorem (Robles - 2014): For any holomorphic horizontalequivariant SL(2,R)-orbit H = S/S ∩V ⊂ D, defined over Z,there exist P ∈ MParΓ and k, k′ ∈ K with

H ⊂ D(kLP)×D(k′MP).

Toroidal compactifications of period domains

Page 74: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Robles’ Theorem

Note that kLP = LkPk−1 ⊂ HnR is the isotropic subspace,

associated with the maximal parabolic subgroup kPk−1 andk′MP = Mk′P(k′)−1 .

Theorem (Robles - 2014): For any holomorphic horizontalequivariant SL(2,R)-orbit H = S/S ∩V ⊂ D, defined over Z,there exist P ∈ MParΓ and k, k′ ∈ K with

H ⊂ D(kLP)×D(k′MP).

Toroidal compactifications of period domains

Page 75: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Reduction to a split partial compactification

Note that if H ⊂ D(kLP)×D(k′MP) then pr1(H) ⊂ D(kLP)and pr2(H) ⊂ D(k′MP) are points or equivariant SL(2,R)-orbitsand H ⊆ pr1(H)× pr2(H).

It suffices to compactify D(kLP)Γ/Γ and D(k′MP)Γ/Γ bycomplex analytic varieties, containing HΓ/Γ for all holomorphicequivariant SL(2,R)-orbits H ⊂ D(kLP) and H ⊂ D(k′MP).

Toroidal compactifications of period domains

Page 76: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Reduction to a split partial compactification

Note that if H ⊂ D(kLP)×D(k′MP) then pr1(H) ⊂ D(kLP)and pr2(H) ⊂ D(k′MP) are points or equivariant SL(2,R)-orbitsand H ⊆ pr1(H)× pr2(H).

It suffices to compactify D(kLP)Γ/Γ and D(k′MP)Γ/Γ bycomplex analytic varieties, containing HΓ/Γ for all holomorphicequivariant SL(2,R)-orbits H ⊂ D(kLP) and H ⊂ D(k′MP).

Toroidal compactifications of period domains

Page 77: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

A unipotent discrete group

If Γ ≤ GZ is a lattice of GR and P ∈ MParΓ then the associatedQ-isotropic space LP is defined over Z, i.e., admits basise1, . . . , es ∈ LP ∩Hn

Z over R.

For any k ∈ K let NZ(kLP) be the unipotent subgroup ofSL(kLP) ∩ Γ, which consists of the upper triangular integralmatrices with 1’s on the diagonal, with respect to a basiske1, . . . , kes ∈ kLP ∩ kHn

Z of kLP.

Toroidal compactifications of period domains

Page 78: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

A unipotent discrete group

If Γ ≤ GZ is a lattice of GR and P ∈ MParΓ then the associatedQ-isotropic space LP is defined over Z, i.e., admits basise1, . . . , es ∈ LP ∩Hn

Z over R.

For any k ∈ K let NZ(kLP) be the unipotent subgroup ofSL(kLP) ∩ Γ, which consists of the upper triangular integralmatrices with 1’s on the diagonal, with respect to a basiske1, . . . , kes ∈ kLP ∩ kHn

Z of kLP.

Toroidal compactifications of period domains

Page 79: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Local homogeneous spaces

Denote Γ(kLP, k′MP) := NZ(kLP)× (SL(k′MP,Q) ∩ Γ),D/N(kLP) := D(kLP)/NZ(kLP),D/Γ(k′MP) := D(k′MP)/SL(k′MP,Q) ∩ Γand consider the local homogeneous space

D/Γ(kLP, k′MP) '' NP ×AP × (D/N(kLP))× (D/Γ(k′MP)).

By an induction on the Hodge numbers, assume that there is atoroidal compactification (D/Γ(k′MP))Σ(k′MP) of D/Γ(k′MP).

Toroidal compactifications of period domains

Page 80: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Local homogeneous spaces

Denote Γ(kLP, k′MP) := NZ(kLP)× (SL(k′MP,Q) ∩ Γ),D/N(kLP) := D(kLP)/NZ(kLP),D/Γ(k′MP) := D(k′MP)/SL(k′MP,Q) ∩ Γand consider the local homogeneous space

D/Γ(kLP, k′MP) '' NP ×AP × (D/N(kLP))× (D/Γ(k′MP)).

By an induction on the Hodge numbers, assume that there is atoroidal compactification (D/Γ(k′MP))Σ(k′MP) of D/Γ(k′MP).

Toroidal compactifications of period domains

Page 81: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Inductive reduction to partial compactifications

It suffices to construct (D/N(kLP))Σ(kLP) and to put

(D/Γ)Σ(kLP,k′MP) :=

Np ×AP × (D/N(kLP))Σ(kLP) × (D/Γ(k′MP))Σ(k′MP),

in order to provide an inductive procedure for obtaining thetoroidal compactification (D/Γ)Σ = (D/Γ(Hn

R))Σ(HnR).

Toroidal compactifications of period domains

Page 82: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Inductive reduction to partial compactifications

It suffices to construct (D/N(kLP))Σ(kLP) and to put

(D/Γ)Σ(kLP,k′MP) :=

Np ×AP × (D/N(kLP))Σ(kLP) × (D/Γ(k′MP))Σ(k′MP),

in order to provide an inductive procedure for obtaining thetoroidal compactification (D/Γ)Σ = (D/Γ(Hn

R))Σ(HnR).

Toroidal compactifications of period domains

Page 83: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Passing to a space of non-positive curvature

Note that R(kLP) := SL(kLP)/SL(kLP) ∩K has non-positivesectional curvatures and admits a projection

D(kLP) = SL(kLP)/SL(kLP) ∩V→ R(kLP)with compact fibers.

For any lattice Γ ≤ GZ there is a proper surjective real analyticmap fkLP : D/N(kLP)→ R/N(kLP) := R(kLP)/NZ(kLP).

Toroidal compactifications of period domains

Page 84: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Passing to a space of non-positive curvature

Note that R(kLP) := SL(kLP)/SL(kLP) ∩K has non-positivesectional curvatures and admits a projection

D(kLP) = SL(kLP)/SL(kLP) ∩V→ R(kLP)with compact fibers.

For any lattice Γ ≤ GZ there is a proper surjective real analyticmap fkLP : D/N(kLP)→ R/N(kLP) := R(kLP)/NZ(kLP).

Toroidal compactifications of period domains

Page 85: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Passing to a space of non-positive curvature

We construct (R/N(kLP))Σ(kLP) and define

(D/N(kLP))Σ(kLP) := f−1kLP(R/N(kLP))Σ(kLP)

as the real analytic manifold, which admits a proper surjectivereal analytic extension

fkLP : (D/N(kLP))Σ(kLP) → (R/N(kLP))Σ(kLP)

of fkLP : D/N(kLP)→ R/N(kLP).

Toroidal compactifications of period domains

Page 86: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The set N il(kLP) of nilpotent elements

Let N il(kLP) be the set of the strictly upper triangular matricesN =

∑1≤i<j≤k

zijEij with exp(N) ∈ SL(kLP) ∩ Γ, such that

Y(N) := [N,Nt] = NNt −NtN =k∑

i=1ζiEii is a diagonal

matrix of trace TrY(N) =k∑

i=1ζi = 0;

[Y(N),N] = 2N;S(N) := exp(RN + RNt + RY(N)) ' SL(2,R) has1-dimensional intersection with V andH(N) := S(N)/S(N) ∩V ⊂ D is a holomorphic equivariantSL(2,R)-orbit.

Toroidal compactifications of period domains

Page 87: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The set N il(kLP) of nilpotent elements

Let N il(kLP) be the set of the strictly upper triangular matricesN =

∑1≤i<j≤k

zijEij with exp(N) ∈ SL(kLP) ∩ Γ, such that

Y(N) := [N,Nt] = NNt −NtN =k∑

i=1ζiEii is a diagonal

matrix of trace TrY(N) =k∑

i=1ζi = 0;

[Y(N),N] = 2N;S(N) := exp(RN + RNt + RY(N)) ' SL(2,R) has1-dimensional intersection with V andH(N) := S(N)/S(N) ∩V ⊂ D is a holomorphic equivariantSL(2,R)-orbit.

Toroidal compactifications of period domains

Page 88: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The set N il(kLP) of nilpotent elements

Let N il(kLP) be the set of the strictly upper triangular matricesN =

∑1≤i<j≤k

zijEij with exp(N) ∈ SL(kLP) ∩ Γ, such that

Y(N) := [N,Nt] = NNt −NtN =k∑

i=1ζiEii is a diagonal

matrix of trace TrY(N) =k∑

i=1ζi = 0;

[Y(N),N] = 2N;S(N) := exp(RN + RNt + RY(N)) ' SL(2,R) has1-dimensional intersection with V andH(N) := S(N)/S(N) ∩V ⊂ D is a holomorphic equivariantSL(2,R)-orbit.

Toroidal compactifications of period domains

Page 89: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The set N il(kLP) of nilpotent elements

Let N il(kLP) be the set of the strictly upper triangular matricesN =

∑1≤i<j≤k

zijEij with exp(N) ∈ SL(kLP) ∩ Γ, such that

Y(N) := [N,Nt] = NNt −NtN =k∑

i=1ζiEii is a diagonal

matrix of trace TrY(N) =k∑

i=1ζi = 0;

[Y(N),N] = 2N;S(N) := exp(RN + RNt + RY(N)) ' SL(2,R) has1-dimensional intersection with V andH(N) := S(N)/S(N) ∩V ⊂ D is a holomorphic equivariantSL(2,R)-orbit.

Toroidal compactifications of period domains

Page 90: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The set N il(kLP) of nilpotent elements

Let N il(kLP) be the set of the strictly upper triangular matricesN =

∑1≤i<j≤k

zijEij with exp(N) ∈ SL(kLP) ∩ Γ, such that

Y(N) := [N,Nt] = NNt −NtN =k∑

i=1ζiEii is a diagonal

matrix of trace TrY(N) =k∑

i=1ζi = 0;

[Y(N),N] = 2N;S(N) := exp(RN + RNt + RY(N)) ' SL(2,R) has1-dimensional intersection with V andH(N) := S(N)/S(N) ∩V ⊂ D is a holomorphic equivariantSL(2,R)-orbit.

Toroidal compactifications of period domains

Page 91: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Admissible fans Σ(kLP) of nilpotent cones

The closed polyhedral cone, generated by N1, . . . ,Nm is the setσ = R≤0N1 + . . .+ R≤0Nm.

The cone σ is strongly convex if σ ∩ (−σ) = {0}.

A collection Σ of closed strongly convex polyhedral cones is afan, if any face of σ ∈ Σ belongs to Σ and any σ, τ ∈ Σ withσ ∩ τ 6= ∅ intersect in a common face.

An admissible fan Σ(kLP) consists of σ = R≤0N1 + . . .+R≤0Nm,generated by mutually commuting N1, . . . ,Nm ∈ N il(kLP).

Toroidal compactifications of period domains

Page 92: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Admissible fans Σ(kLP) of nilpotent cones

The closed polyhedral cone, generated by N1, . . . ,Nm is the setσ = R≤0N1 + . . .+ R≤0Nm.

The cone σ is strongly convex if σ ∩ (−σ) = {0}.

A collection Σ of closed strongly convex polyhedral cones is afan, if any face of σ ∈ Σ belongs to Σ and any σ, τ ∈ Σ withσ ∩ τ 6= ∅ intersect in a common face.

An admissible fan Σ(kLP) consists of σ = R≤0N1 + . . .+R≤0Nm,generated by mutually commuting N1, . . . ,Nm ∈ N il(kLP).

Toroidal compactifications of period domains

Page 93: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Admissible fans Σ(kLP) of nilpotent cones

The closed polyhedral cone, generated by N1, . . . ,Nm is the setσ = R≤0N1 + . . .+ R≤0Nm.

The cone σ is strongly convex if σ ∩ (−σ) = {0}.

A collection Σ of closed strongly convex polyhedral cones is afan, if any face of σ ∈ Σ belongs to Σ and any σ, τ ∈ Σ withσ ∩ τ 6= ∅ intersect in a common face.

An admissible fan Σ(kLP) consists of σ = R≤0N1 + . . .+R≤0Nm,generated by mutually commuting N1, . . . ,Nm ∈ N il(kLP).

Toroidal compactifications of period domains

Page 94: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Admissible fans Σ(kLP) of nilpotent cones

The closed polyhedral cone, generated by N1, . . . ,Nm is the setσ = R≤0N1 + . . .+ R≤0Nm.

The cone σ is strongly convex if σ ∩ (−σ) = {0}.

A collection Σ of closed strongly convex polyhedral cones is afan, if any face of σ ∈ Σ belongs to Σ and any σ, τ ∈ Σ withσ ∩ τ 6= ∅ intersect in a common face.

An admissible fan Σ(kLP) consists of σ = R≤0N1 + . . .+R≤0Nm,generated by mutually commuting N1, . . . ,Nm ∈ N il(kLP).

Toroidal compactifications of period domains

Page 95: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

SL(2,R)m-orbits on R(kLP)

Let H(Nj) ⊂ D be the holomorphic equivariant SL(2,R)-orbitsfor Nj ∈ N il(kLP) and Hm(σ) := H(N1)× . . .×H(Nm) ⊂ D forσ = R≤0N1 + . . .+ R≤0Nm ∈ Σ(kLP).

According to S(Nj)∩K = S(Nj)∩V, Hm(σ) can be viewed as areal analytic submanifold of the homogeneous space

R(kLP) ' SL(kLP)/SL(kLP) ∩Kwith non-positive sectional curvatures.

The exponential map expo : TRoR(kLP)→ R(kLP) at the origin

o ∈ R(kLP) is a global diffeomorphism.

Toroidal compactifications of period domains

Page 96: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

SL(2,R)m-orbits on R(kLP)

Let H(Nj) ⊂ D be the holomorphic equivariant SL(2,R)-orbitsfor Nj ∈ N il(kLP) and Hm(σ) := H(N1)× . . .×H(Nm) ⊂ D forσ = R≤0N1 + . . .+ R≤0Nm ∈ Σ(kLP).

According to S(Nj)∩K = S(Nj)∩V, Hm(σ) can be viewed as areal analytic submanifold of the homogeneous space

R(kLP) ' SL(kLP)/SL(kLP) ∩Kwith non-positive sectional curvatures.

The exponential map expo : TRoR(kLP)→ R(kLP) at the origin

o ∈ R(kLP) is a global diffeomorphism.

Toroidal compactifications of period domains

Page 97: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

SL(2,R)m-orbits on R(kLP)

Let H(Nj) ⊂ D be the holomorphic equivariant SL(2,R)-orbitsfor Nj ∈ N il(kLP) and Hm(σ) := H(N1)× . . .×H(Nm) ⊂ D forσ = R≤0N1 + . . .+ R≤0Nm ∈ Σ(kLP).

According to S(Nj)∩K = S(Nj)∩V, Hm(σ) can be viewed as areal analytic submanifold of the homogeneous space

R(kLP) ' SL(kLP)/SL(kLP) ∩Kwith non-positive sectional curvatures.

The exponential map expo : TRoR(kLP)→ R(kLP) at the origin

o ∈ R(kLP) is a global diffeomorphism.

Toroidal compactifications of period domains

Page 98: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Splitting the SL(2,R)m-orbits on R(kLP)

The Killing form B of the adjoint representation of sl(kLP) onitself is non-degenerate on the non-compact B-orthogonalcomplement p(sl(kLP)) of sl(kLP) ∩ LieK to sl(kLP).

If [TRoHm(σ)]⊥ is the B-orthogonal complement of the real

tangent space TRoHm(σ) to TR

oR(kLP) = p(sl(kLP)), thenTR

oR(kLP) = TRoHm(σ)⊕ [TR

oHm(σ)]⊥.

That induces a real analytic diffeomorphism of manifoldsR(kLP) ' Hm(σ)×Hm(σ)⊥ with Hm(σ)⊥ := expo[TR

oHm(σ)]⊥.

Toroidal compactifications of period domains

Page 99: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Splitting the SL(2,R)m-orbits on R(kLP)

The Killing form B of the adjoint representation of sl(kLP) onitself is non-degenerate on the non-compact B-orthogonalcomplement p(sl(kLP)) of sl(kLP) ∩ LieK to sl(kLP).

If [TRoHm(σ)]⊥ is the B-orthogonal complement of the real

tangent space TRoHm(σ) to TR

oR(kLP) = p(sl(kLP)), thenTR

oR(kLP) = TRoHm(σ)⊕ [TR

oHm(σ)]⊥.

That induces a real analytic diffeomorphism of manifoldsR(kLP) ' Hm(σ)×Hm(σ)⊥ with Hm(σ)⊥ := expo[TR

oHm(σ)]⊥.

Toroidal compactifications of period domains

Page 100: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Splitting the SL(2,R)m-orbits on R(kLP)

The Killing form B of the adjoint representation of sl(kLP) onitself is non-degenerate on the non-compact B-orthogonalcomplement p(sl(kLP)) of sl(kLP) ∩ LieK to sl(kLP).

If [TRoHm(σ)]⊥ is the B-orthogonal complement of the real

tangent space TRoHm(σ) to TR

oR(kLP) = p(sl(kLP)), thenTR

oR(kLP) = TRoHm(σ)⊕ [TR

oHm(σ)]⊥.

That induces a real analytic diffeomorphism of manifoldsR(kLP) ' Hm(σ)×Hm(σ)⊥ with Hm(σ)⊥ := expo[TR

oHm(σ)]⊥.

Toroidal compactifications of period domains

Page 101: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The partial compactification at σ ∈ Σ(kLP)

The discrete quotient R/N(kLP) := R(kLP)/NZ(kLP) is smoothand has a real analytic decomposition

R/N(kLP) ' (Hm(σ)/σZ)×M(σ) ' (∆∗)m ×M(σ)for σZ := ZN1 + . . .+ ZNm and the real analytic manifoldM(σ) := Hm(σ)⊥NZ(LP)/NZ(LP).

Let us fix an isometric embedding R/N(kLP) ⊂ Rr(P) in aEuclidean space Rr(P) and define (R/N(kLP))σ ' ∆m ×M(σ) asthe interior of the closure R/N(kLP) of R/N(kLP) in Rr(P).

Toroidal compactifications of period domains

Page 102: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The partial compactification at σ ∈ Σ(kLP)

The discrete quotient R/N(kLP) := R(kLP)/NZ(kLP) is smoothand has a real analytic decomposition

R/N(kLP) ' (Hm(σ)/σZ)×M(σ) ' (∆∗)m ×M(σ)for σZ := ZN1 + . . .+ ZNm and the real analytic manifoldM(σ) := Hm(σ)⊥NZ(LP)/NZ(LP).

Let us fix an isometric embedding R/N(kLP) ⊂ Rr(P) in aEuclidean space Rr(P) and define (R/N(kLP))σ ' ∆m ×M(σ) asthe interior of the closure R/N(kLP) of R/N(kLP) in Rr(P).

Toroidal compactifications of period domains

Page 103: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The partial compactification at Σ(kLP, k′MP)

Set (R/N(kLP))Σ(kLP) := ∪σ∈Σ(kLP)(R/N(kLP))σ ⊂ Rr(P) and(D/N(kLP))Σ(kLP) := f−1

kLP(R/N(kLP))Σ(kLP).

By an induction on the Hodge numbers of the arising perioddomains, one obtains complex analytic spaces

(D/Γ)Σ(kLP,k′MP) :=

NP ×AP × (D/N(kLP))Σ(kLP) ×(D/Γ(k′MP)

)Σ(k′MP)

for all Γ-rational maximal parabolic subgroups P of GR.

Toroidal compactifications of period domains

Page 104: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The partial compactification at Σ(kLP, k′MP)

Set (R/N(kLP))Σ(kLP) := ∪σ∈Σ(kLP)(R/N(kLP))σ ⊂ Rr(P) and(D/N(kLP))Σ(kLP) := f−1

kLP(R/N(kLP))Σ(kLP).

By an induction on the Hodge numbers of the arising perioddomains, one obtains complex analytic spaces

(D/Γ)Σ(kLP,k′MP) :=

NP ×AP × (D/N(kLP))Σ(kLP) ×(D/Γ(k′MP)

)Σ(k′MP)

for all Γ-rational maximal parabolic subgroups P of GR.

Toroidal compactifications of period domains

Page 105: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Relating the partial compactifications for LP′ ⊂ LP

Proposition: If the maximal parabolic subgroups P,P′ of GRare associated with Q-isotropic subspaces LP′ ⊂ LP of Hn

R then:

D(LP′) ⊂ D(LP), N il(LP′) ⊂ N il(LP);one can arrange Σ(LP′) ⊂ Σ(LP);the map D/N(LP′)→ D/N(LP), which is a covering ontoits image extends to (D/N(LP′))Σ(LP′ )

→ (D/N(LP))Σ(LP);MP′ ⊃MP;D(MP) is contained in the boundary ∂D(MP′) of D(MP′)in its compact dual D(MP);there is a holomorphic map

(D/Γ(MP′))Σ(MP′ )→ (D/Γ(MP))Σ(MP).

Toroidal compactifications of period domains

Page 106: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Relating the partial compactifications for LP′ ⊂ LP

Proposition: If the maximal parabolic subgroups P,P′ of GRare associated with Q-isotropic subspaces LP′ ⊂ LP of Hn

R then:

D(LP′) ⊂ D(LP), N il(LP′) ⊂ N il(LP);one can arrange Σ(LP′) ⊂ Σ(LP);the map D/N(LP′)→ D/N(LP), which is a covering ontoits image extends to (D/N(LP′))Σ(LP′ )

→ (D/N(LP))Σ(LP);MP′ ⊃MP;D(MP) is contained in the boundary ∂D(MP′) of D(MP′)in its compact dual D(MP);there is a holomorphic map

(D/Γ(MP′))Σ(MP′ )→ (D/Γ(MP))Σ(MP).

Toroidal compactifications of period domains

Page 107: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Relating the partial compactifications for LP′ ⊂ LP

Proposition: If the maximal parabolic subgroups P,P′ of GRare associated with Q-isotropic subspaces LP′ ⊂ LP of Hn

R then:

D(LP′) ⊂ D(LP), N il(LP′) ⊂ N il(LP);one can arrange Σ(LP′) ⊂ Σ(LP);the map D/N(LP′)→ D/N(LP), which is a covering ontoits image extends to (D/N(LP′))Σ(LP′ )

→ (D/N(LP))Σ(LP);MP′ ⊃MP;D(MP) is contained in the boundary ∂D(MP′) of D(MP′)in its compact dual D(MP);there is a holomorphic map

(D/Γ(MP′))Σ(MP′ )→ (D/Γ(MP))Σ(MP).

Toroidal compactifications of period domains

Page 108: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Relating the partial compactifications for LP′ ⊂ LP

Proposition: If the maximal parabolic subgroups P,P′ of GRare associated with Q-isotropic subspaces LP′ ⊂ LP of Hn

R then:

D(LP′) ⊂ D(LP), N il(LP′) ⊂ N il(LP);one can arrange Σ(LP′) ⊂ Σ(LP);the map D/N(LP′)→ D/N(LP), which is a covering ontoits image extends to (D/N(LP′))Σ(LP′ )

→ (D/N(LP))Σ(LP);MP′ ⊃MP;D(MP) is contained in the boundary ∂D(MP′) of D(MP′)in its compact dual D(MP);there is a holomorphic map

(D/Γ(MP′))Σ(MP′ )→ (D/Γ(MP))Σ(MP).

Toroidal compactifications of period domains

Page 109: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Relating the partial compactifications for LP′ ⊂ LP

Proposition: If the maximal parabolic subgroups P,P′ of GRare associated with Q-isotropic subspaces LP′ ⊂ LP of Hn

R then:

D(LP′) ⊂ D(LP), N il(LP′) ⊂ N il(LP);one can arrange Σ(LP′) ⊂ Σ(LP);the map D/N(LP′)→ D/N(LP), which is a covering ontoits image extends to (D/N(LP′))Σ(LP′ )

→ (D/N(LP))Σ(LP);MP′ ⊃MP;D(MP) is contained in the boundary ∂D(MP′) of D(MP′)in its compact dual D(MP);there is a holomorphic map

(D/Γ(MP′))Σ(MP′ )→ (D/Γ(MP))Σ(MP).

Toroidal compactifications of period domains

Page 110: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Relating the partial compactifications for LP′ ⊂ LP

Proposition: If the maximal parabolic subgroups P,P′ of GRare associated with Q-isotropic subspaces LP′ ⊂ LP of Hn

R then:

D(LP′) ⊂ D(LP), N il(LP′) ⊂ N il(LP);one can arrange Σ(LP′) ⊂ Σ(LP);the map D/N(LP′)→ D/N(LP), which is a covering ontoits image extends to (D/N(LP′))Σ(LP′ )

→ (D/N(LP))Σ(LP);MP′ ⊃MP;D(MP) is contained in the boundary ∂D(MP′) of D(MP′)in its compact dual D(MP);there is a holomorphic map

(D/Γ(MP′))Σ(MP′ )→ (D/Γ(MP))Σ(MP).

Toroidal compactifications of period domains

Page 111: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Relating the partial compactifications for LP′ ⊂ LP

Proposition: If the maximal parabolic subgroups P,P′ of GRare associated with Q-isotropic subspaces LP′ ⊂ LP of Hn

R then:

D(LP′) ⊂ D(LP), N il(LP′) ⊂ N il(LP);one can arrange Σ(LP′) ⊂ Σ(LP);the map D/N(LP′)→ D/N(LP), which is a covering ontoits image extends to (D/N(LP′))Σ(LP′ )

→ (D/N(LP))Σ(LP);MP′ ⊃MP;D(MP) is contained in the boundary ∂D(MP′) of D(MP′)in its compact dual D(MP);there is a holomorphic map

(D/Γ(MP′))Σ(MP′ )→ (D/Γ(MP))Σ(MP).

Toroidal compactifications of period domains

Page 112: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Gluing maps and Γ-invariant families of pairs of fans

Corollary: For any P1,P2 ∈ MParΓ with associated Q-isotropicsubspaces LP1 ⊆ LP2 and any k, k′ ∈ K there is a holomorphicmap

µP1P2

(k, k′) : (D/Γ)Σ(kLP1 ,k′MP1 ) → (D/Γ)Σ(kLP2 ,k

′MP2 ).

The lattice Γ ≤ GZ acts on the sets N il(kLP) by the ruleN il(kLP) 7→ γN il(kLP) = N il(γkLP) and allows to considerΓ-invariant families Σ := {Σ(kLP, k′MP) |P ∈ MParΓ, k, k′ ∈ K}family of pairs of fans, i.e., ones with γΣ(kLP) = Σ(γkLP),γΣ(k′MP) = Σ(γk′MP) for ∀γ ∈ Γ, ∀Σ(kLP, k′MP).

Toroidal compactifications of period domains

Page 113: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Gluing maps and Γ-invariant families of pairs of fans

Corollary: For any P1,P2 ∈ MParΓ with associated Q-isotropicsubspaces LP1 ⊆ LP2 and any k, k′ ∈ K there is a holomorphicmap

µP1P2

(k, k′) : (D/Γ)Σ(kLP1 ,k′MP1 ) → (D/Γ)Σ(kLP2 ,k

′MP2 ).

The lattice Γ ≤ GZ acts on the sets N il(kLP) by the ruleN il(kLP) 7→ γN il(kLP) = N il(γkLP) and allows to considerΓ-invariant families Σ := {Σ(kLP, k′MP) |P ∈ MParΓ, k, k′ ∈ K}family of pairs of fans, i.e., ones with γΣ(kLP) = Σ(γkLP),γΣ(k′MP) = Σ(γk′MP) for ∀γ ∈ Γ, ∀Σ(kLP, k′MP).

Toroidal compactifications of period domains

Page 114: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

The toroidal compactification (D/Γ)Σ

For an arbitrary Γ-invariant family Σ of pairs of fans define

(D/Γ)Σ :=∐

k,k′∈K,P∈MParΓ

(D/Γ)Σ(kLP,k′MP)/ ∼ Γ,

where

z1 ∼ z2 for zj ∈ (D/Γ)Σ(kjLPj ,k′jMPj )

, j = 1, 2

if there exist γ ∈ Γ, P ∈ MParΓ, k, k ∈ K andz ∈ (D/Γ)Σ(kLP,k′MP) with

kLP ⊆ k1LP1 , k MP ⊇ k′1MP1 ,

kLP ⊆ γk2LP2 , k′MP ⊇ γk′2MP2 ,

µP(k,k′)P1(k1,k′1)

(z) = z1, µP(k,k′)P2(γk2,γk′2)

(z) = γz2.

Toroidal compactifications of period domains

Page 115: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

(D/Γ)Σ is a compact complex analytic space

Theorem: For an arbitrary period domain D = GR/V, anarbitrary arithmetic lattice Γ ≤ GZ of GR and an arbitraryΓ-invariant family Σ of admissible pairs of fans(Σ(kLP),Σ(k′MP)) with P ∈ MParΓ, k, k′ ∈ K, the toroidalcompactification (D/Γ)Σ is a compact complex analytic space.

Toroidal compactifications of period domains

Page 116: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Extension of local period maps

Proposition: For an an arbitrary local period mapΦ : S ' (∆∗)m ×∆d−m → D/Γ in a quotient of a period domainD = GR/V by a lattice Γ ≤ GZ, there exist a finite coveringSo ' (∆∗)m ×∆d−m → S, a Γ-rational maximal parabolicsubgroup P of GR, k, k′ ∈ K, an admissible pair of fans(Σ(kLP),Σ(k′MP)) and a lifting

Φo : So −→ D/Γ(kLP, k′MP)

of Φ, which admits a holomorphic extension

Φo : So ' ∆d −→ (D/Γ)Σ(kLP,k′MP).

Toroidal compactifications of period domains

Page 117: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Extension of global period maps

Theorem: Let Φ : S→ D/Γ be a global period map in aquotient of a period domain D = GR/V by a lattice Γ ≤ GZ.Then there exist a finite covering Mo → S with a smoothprojective compactification M by a divisor M \Mo with normalcrossings and unipotent local monodromies, a Γ-invariant familyΣ of admissible pairs of fans (Σ(kLP),Σ(k′MP)) withP ∈ MParΓ, k, k′ ∈ K and a lifting

Φo : Mo −→ D/Γ

of Φ, which admits a holomorphic extension

Φo : M −→ (D/Γ)Σ

in the toroidal compactification (D/Γ)Σ of D/Γ.

Toroidal compactifications of period domains

Page 118: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Compatibility of (D/Γ)Σ with (S/Γ)Σ′ for an odd weight

Proposition: Let D = Sp(N,R)/m∏

j=0U(h2m+1−2j,2j) with

N =m∑

j=0h2m+1−2j,2j be a period domain of weight 2m + 1,

Γ ≤ Sp(N,Z) be an arithmetic lattice and Ψ : D/Γ→ S/Γ be thenatural proper surjective holomorphic map onto the Γ-quotientof the Siegel upper half space S = Sp(N,R)/U(N). Then for anyΓ-invariant family Σ of admissible pairs of fans(Σ(kLP),Σ(k′MP)) there is a Γ-compatible familyΣ′ = {Σ′(P)}P∈MParΓ

of fans Σ′(P) of the centers UP of theunipotent radicals NP of P, such that Ψ admits a holomorphicextension

Ψ : (D/Γ)Σ −→ (S/Γ)Σ′

to the corresponding toroidal compactifications.

Toroidal compactifications of period domains

Page 119: · PDF fileCompatibilityof(D=) with(S=) 0 foranoddweight Proposition:LetD= Sp(N;R)= Qm j=0 U(h2m+1 2j;2j) with N= Pm j=0 h2m+1 2j;2j beaperioddomainofweight2m+ 1, Sp(N;Z

Thank you for your attention!

Toroidal compactifications of period domains