equilibrium restricted solid-on-solid models with constraints on the distribution of surface heights...

12
Equilibrium Restricted Solid-on-Solid Models with Constraints on the Distribution of Surface Heights 허허허 , 허허허 , 허허 허허허허허

Upload: gianna-peters

Post on 15-Dec-2015

221 views

Category:

Documents


6 download

TRANSCRIPT

Equilibrium Restricted Solid-on-Solid Models with Constraints on the Distribution of Surface Heights

허희범 , 윤수연 , 김엽

경희대학교

Physical Backgrounds for This Study

Steady state or Saturation regime,

1. Simple RSOS2

1

2. Two-site correlated growth (Yup Kim, T. Kim and H. Park, 2002) Dimer growth (J. D. Noh, H. Park, D. Kim and M. den Nijs, PRE, 2001,

J. D. Noh, H. Park and M. den Nijs, PRL, 2000)

RSOSrh

RSOSr ZZ

hP}{

1,1

)}({

Normal Random Walk(1d)

2

11

RWz

)1(}{

21

max

min

h

RSOSr

n

h

h

h

Z ,zLt

1

3

1

=-1, nh=even number,

Even-Visiting Random Walk (1d)

0)}({ RSOSrhP

ZhP

h

h

n

RSOSr

h

max

min

)1(

)}({21

=1

3. Extremal Growth

2

RSOSr

hzZ

}{)0(

0;)01(max

min

21 h

h

hn

0;1max

min

h

h

hn

)(

}{21 cH

h RSOSr

)1)(( minmax hhcH

3

1

= 0

= 1 =-1Normal

Random WalkEven-Visiting Random Walk

2

13

1

= 1/2 = -1/2

3

1

??

4. Generalized Model for 1,1,0

Phase diagram

= 0

(1d)

Model

1. 크기가 L 인 1 차원 기판의 height distribution 중 , 최대높이 hmax 와 최소높이 hmin 를 찾는다 .

2. 기판의 한 site 를 임의로 선택한다 .

)}({ ixh

rx

3. 확률 (1-) 로 deposition (evaporation) 을 결정한다 .

4.

라 하고 , 만일 에서 deposition (evaporation) 이 일어났다고 가정했을 때 , 새로운 configuration 에 대하여 을 구한다 . 이때 , 이 과정을 허용할 확률을 다음과 같이 정의한다 .

3

,1)()( rr xhxh

1)()( rr xhxh

)1(2

1max

min

h

h

nh

hn

w

rx

'w

w

wP

'

)1,1,0(

5. 만약 확률 , P 가 일 경우 , deposition (evaporation) 의 과정을 허용한다 . 반대로 이면 , 임의의 random number Pr 을 발생시켜 Pr<P 일 경우에만 이 과정을 허용한다 .

•모든과정은 restricted solid-on-solid constraint 를 만족하여야 한다 .

( 여기서 는 d-dimensional hypercubic lattice 에서의 nearest-neighbor bond vectors 중의 한 site 를 말한다 .)

1)()( axhxh rr

a

4

1P1P

0)( ixh

n+2 =1n+1 =3n 0 =L-8n-1 =2n-2 =2

n´ +2 =2

n´ +1 =2

n´ 0 =L-8

n´ -1 =2

n´ -2 =2

w w´hmin

hmax

9259.0)5.01()5.01(

)5.01()5.01('

213

21

2212

21

w

wP

=1/2L= 10= 0.5

Pr<P

Simulation Results

1d , =1/2

LL

tLWtLWLeff ln)2ln(

),(ln),2(ln)(

zL

tfLW

z

z

Ltt

LtL

,

,

5

eff

0.5 0.33

-0.5 0.34

0.0 0.34

L = 16, 32, 64, 128, 256, 512, 1024

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.0350.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44 =0.5

=0

=-0.5

eff

1/L

zLt

L = 1024 = 0.22

5.1

z

6

0 1 2 3 4 5 6-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

=0.22

=0.5

=0

=-0.5

ln W

ln t

Scaling Collapse to in 1d. ( = 1/3 , z = 1.5)

zL

tfLW

7

1d , >0 , = 1 (growing phase) Normal RSOS Model

8

3.5 4.0 4.5 5.0 5.50.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

=0.5

=0.5ln W

ln L

0 1 2 3 4 5-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

=0.3

L=256

=0.5

ln W

ln t

zL

tfLW

z

z

Ltt

LtL

,

,

,5.0 ,3.0 67.1z

Normal RSOS Model

1d , <0 , = 1 (growing phase) (???)

9

0 1 2 3 4 5 6

-0.5

0.0

0.5

1.0

1.5

2.0

2.5 =-0.5

=0.86

ln W

ln t

3.5 4.0 4.5 5.0 5.50.5

1.0

1.5

2.0

2.5

3.0

=-0.5

=0.97

ln W

ln L

L=32,64,128,256

1d , <0 , = 0.6 (growing phase) (???)

10

1 2 3 4 5 6-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

=-0.5

=0.24

ln W

ln t

L=32,64,128,256

3.5 4.0 4.5 5.0 5.50.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0=-0.5

=0.84

ln W

ln L

Conclusion

1d , =1/2

11

= 0

= 1 =-1Normal

Random WalkEven-Visiting Random Walk

2

13

1

= 1/2 = -1/2

3

1

1d , >0 ,=1 Normal RSOS Model

1d , <0 ,=1 ?

1d , <0 ,=0.6 ?

growing(>1/2) or eroding (<1/2) phase Phase transition at =0(?)