failure mode and effect analysis ( fmea) power boiler

25
Failure Mode and Effect Analysis (FMEA) Power Boiler

Upload: pakuna

Post on 23-Feb-2016

483 views

Category:

Documents


22 download

DESCRIPTION

Failure Mode and Effect Analysis ( FMEA) Power Boiler. Agenda. Introduction to FMEA. 1. Introduction to Power Boiler Causes of failures in boiler system. 2. 3. Case Study boiler pressure part. F ailure M ode and E ffects A nalysis (FMEA). DEFINITION. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

Failure Mode and Effect Analysis (FMEA) Power

Boiler

Page 2: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

Agenda

1

2

3

Introduction to FMEA

Introduction to Power BoilerCauses of failures in boiler

systemCase Study boiler pressure part

Page 3: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

Failure Mode and Effects Analysis

(FMEA)

3

Page 4: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

• Potential Failure Mode – สภาพหรอืรูปแบบความเสยีหายของผลิตภัณฑ์ กระบวนการผลิต หรอืแมแ้ต่การบรกิาร ท่ียงัไมเ่กิดขึ้น แต่คาดวา่จะเกิดขึ้นได้ในอนาคต

• Potential Cause –สาเหตท่ีุเป็นไปได้ ท่ีก่อใหเ้กิดสภาพหรอืรูปแบบความเสยีหายกับอุปกรณ์

• Effect – ผลลัพธท่ี์เกิดขึ้นเน่ืองจากความเสยีหาย และสง่ผลโดยตรงต่อ ผลิตภัณฑ์ กระบวนการผลิต และ การบรกิารในท่ีสดุ

• Analysis – การวเิคราะหอ์ยา่งเป็นระบบ ได้แก่ การวเิคราะหก์ารออกแบบ กระบวนการ การทำางานของผลิตภัณฑ์ และรวมไปถึงการวเิคราะหข์อ้มูลท่ีเก่ียวขอ้งด้วย

DEFINITION

4

Page 5: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

• Severity(SEV) – ค่าความรุนแรงของ Effect ในเชงิปรมิาณ

• Current Control – การควบคมุหรอืการตรวจจบัความเสยีหายท่ีดำาเนินการอยูใ่นปัจจุบนั

• Detection (DET) – ค่าความสามารถในการตรวจจบัความเสยีหายท่ีเกิดขึ้นในเชงิปรมิาณ

• Recommended Action - วธิกีารสำาหรบัป้องกันหรอืลดความเสีย่งในการเกิด Potential Cause

DEFINITION

5

Page 6: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

• Risk Priority Number (RPN) – ค่าท่ีแสดงถึงความเสีย่งของแต่ละ Potential Cause

RPN = SEV x OCC x DET

DEFINITION

6

Page 7: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

• ค้นหาอุปกรณ์วกิฤต• รวบรวมขอ้มูลต่างๆของอุปกรณ์ เชน่ หน้าท่ีการทำางาน

ประวติัความเสยีหาย ประวติัการบำารุงรกัษา• วเิคราะหห์า Failure Mode ท่ีเป็นไปได้ เชน่ Leakage,

Crack, Explosion, Deformation, Electrical Short เป็นต้น

• วเิคราะหห์า Effect ของแต่ละ Failure Mode เชน่ การบาดเจบ็, หยุดการเดินเครื่อง, ประสทิธภิาพลดลง เป็นต้น

• กำาหนด Severity (SEV) ของ Effect• วเิคราะหห์า Potential Cause ของแต่ละ Failure

Mode

FMEA PROCESS

7

Page 8: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

• กำาหนด Occurrence (OCC) ของแต่ละ Potential Cause

• ระบุ Current Control ของแต่ละ Potential Cause• กำาหนดค่าความสามารถในการ Detection (DET)• คำานวณหาค่า Risk Priority Number (RPN) ของ

แต่ละ Failure Mode• หาวธิกีารสำาหรบัป้องกันหรอืลดความเสีย่งในการเกิด

Failure Mode ท่ีมค่ีา RPN มากกวา่ Criteria ท่ีกำาหนด

FMEA PROCESS

8

Page 9: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

FMEA PROCESS

RecommendedActions

PotentialCause(s)SeverityPotentialFailureEffects

PotentialFailureModesFunctionEquipment

RPNDetectionPredictiveMethodsOccurence

9

Page 10: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

FMEA PROCESS

Component

Potential

Failure Mode

Potential

Failure Effects

SEV

Potential

Causes

OCC

Current Control

s

DET

RPN

Recommended

Actions

What is the Inpu

t? What can go wrong with the

Input?

What is the Effect

on the

Outputs?

How

bad? What

are the Causes

?

How Often?

How can this be

found? Ho

w Well?

What can be

done?

10

Page 11: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

SEVERITY

11

Effect Severity of Effect Ranking

Hazardous – W/O

Warning

Very high severity ranking – Affects operator, plant or maintenance personnel, safety and or affects non-compliance with government regulations, without warning.

10

Hazardous – With

Warning

High severity ranking – Affects operator, plant or maintenance personnel, safety and/or affects non-compliance with government regulations with warning.

9

Very High

Downtime of more than 8 hours or the production of defective parts for more than 4 hours.

8

High Downtime of between 4 and 8 hours or the production of defective parts for between 2 & 4 hours.

7

Moderate

Downtime of between 1 and 4 hours or the production of defective parts for between 1 and 2 hours.

6

Page 12: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

SEVERITY

12

Effect

Severity of Effect Ranking

Low Downtime of between 30 minutes and 1 hour or the production of defective parts for up to 1 hour.

5

Very Low

Downtime of between 10 and 30 minutes but no production of defective parts.

4

Minor Downtime of up to 10 minutes but no production of defective parts

3

Very Minor

Process parameter variability not within specification limits. Adjustment or other process controls need to be taken during production. No downtime and no production of defective parts.

2

None Process parameter variability within specification limits. Adjustment or other process controls can be taken or during normal maintenance

1

Page 13: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

OCCURENCE

13

Probabilityof

Failure

Criteria: No. of

failures within Hrs of

operation.

Criteria: The reliability based

on the users required time.

Ranking

Failure Occurs every Hour

1 in 1 R(t) <1 %: MTBF is about 10% of the User’s required time.

10

Failure occurs every shift

1 in 8 R(t) = 5%: MTBF is about 30% of User’s required time

9

Failure occurs every day

1 in 24 R(t) = 20%: MTBF is about 60% of the User’s required time.

8

Failure occurs every week

1 in 80 R(t) = 37%: MTBF is equal to the User’s required time.

7

Failure occurs every month

1 in 350 R(t) = 60%: MTBF is 2 times greater than the User’s required time.

6

Page 14: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

OCCURENCE

14

Probability

of Failure

Criteria: No. of

failures within Hrs of

operation.

Criteria: The reliability based

on the users required time.

Ranking

Failure occurs every 3 months

1 in 1000 R(t) = 78%: MTBF is 4 times greater than the User’s required time.

5

Failure occurs every 6 months

1 in 2500 R(t) = 85%: MTBF is 6 times greater than the User’s required time

4

Failure occurs every year

1 in 5000 R(t) = 90%: MTBF is 10 times greater than the User’s required time.

3

Failure occurs every 2 years

1 in 10,000

R(t) = 95%: MTBF is 20 times greater than the User’s required time.

2

Failure occurs

> 5 years

1 in 25,000

R(t) = 98%: MTBF is 50 times greater than the User’s required time.

1

Page 15: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

DETECTION

15

Detection

Criteria Ranking

Very Low

Design or Machinery Controls cannot detect a potential cause and subsequent failure, or there are no design or machinery controls.

10

Low Design or Machinery controls do not prevent the failure from occurring. Machinery controls will isolate the cause and subsequent failure mode after the failure has occurred.

7

Medium

Design controls may detect a potential cause and subsequent failure mode. Machinery controls will provide an indicator of imminent failure.

5

High Design controls may detect a potential cause and subsequent failure mode. Machinery controls will prevent an imminent failure and isolate the cause.

3

Very High

Design controls almost certainly detect a potential cause and subsequent failure mode, machinery controls not required.

1

Page 16: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

คือ การกระทำา หรอื วธิกีารใดๆ ท่ีชว่ยลดค่า Risk Priority Number ของ Potential Cause ซึ่งสามารถทำาได้โดยการลด Severity, Occurrence, Detection อยา่งใดอยา่งหน่ึง หรอื ทัง้ 3 อยา่งพรอ้มกัน

RECOMMENDED ACTION

16

Page 17: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

Boiler pressure part

Component Potential Failure Mode

Potential Effect(s) of

FailureSev

Potential Cause(s)/ Mechanism(s) of

FailureOcc

tube          Preheater Fire side corrosion Tube leak,gas side p.

drop, low eff. acid dew pointECO. FAC tube leak 5 parameter model

Evap/Wall FAC tube leak 5 parameter model  Underdeposit Corrosion tube leak high heat flux, low flow,

high debris water  Short Term Overheat tube burst low water flow

SH/RH tube Graphitization Tube burst mis mat'l, high temp.  High Temp. Corrosion tube burst   mat'L, corrosive

media.,temp.   Long Term Overheat tube burst   low flow, inside oxide

thk., high heat flux  Type IV Crack tube burst   service condition, weld

mat'l  Dissimilar Weld tube burst   shaffer diagram.

Pipe         MSP Weld Defect pipe leak   poor joint fitup & weld

control RH Weld Defect, Type IV Crack pipe leak   poor joint fitup & weld

control Bypass Thermal Fatigue pipe leak   poor design, operation

high cycle,mat'L susceptHdr        

ECO T Way FAC leak   5 parameter model Final SH Crack dissimiilar weld leak    

Page 18: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

Introduction to Power Boiler &Causes of failures in boiler system

Combine Cycle Power Plant

Thermal Power Plant Hoz. flow

Ver. flow

Sub. Cri Pressure

Sup. Cri Pressure18

Page 19: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

Causes of failures in boiler systemCorrosion Crack Degradation- Water Side - Weld Defect - Graphitization FAC Lack of

Fusion - Creep

Under deposit

Undercut Weld Creep -> IV Crack

- Fire Side Base Metal Creep High Temp. - Spherodisation Low temp. Erosion SCCReference Nalco Guide

Page 20: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

Weld Defect

Page 21: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

DISCONTINUITY POSSIBLE CAUSES

Excessive Convexity Slow travel speed  that allows weld metal to build up Welding currents too low

Insufficient Throat A combination of Travel speed to fast and current too highImproper placement of weld beads when multiple pass welding

Undercut 

Amperage too high Arc length too long increasing the force of the arc so that it cuts into cornersImproper weld technique causing the corners to be left unfilled or cut intoGroove joint not completely filled and overlapped

Insufficient Leg Size Using the wrong electrode angle causing the weld to be deposited to heavily on one sideUsing the wrong angle on multiple pas welds Causing the welds to overlap incorrectly

Poor Penetration Amperage too low Travel speeds too fast Using too large an electrode for the root of the jointImproper electrode angle at the root of the jointImproper weave techniqueUsing the wrong electrode for the desired joint penetration: (using E-6013 instead of E-6010)

Poor Fusion Amperage too low Travel speeds too fast Improper electrode angle at the sides of the jointImproper weave technique that does not allow enough time at the sides of the jointUsing the wrong electrode for the application

Overlap Amperage too low and /or travel speed too slowElectrode too large with low currents

Porosity Dirty base metal  painted or galvanized surfaces Arc length too long especially with E-7018 ElectrodesMoisture in low hydrogen electrodesWind or fans strong enough to break down the shielding gas

Slag Inclusions Improper manipulation of the electrode especially with E-6013Improper cleaning and slag removal between multiple pass welds

Cracks Using the wrong Electrode for the applicationUsing Excessively high amperage on some metals

Excessive Spatter Amperage too highElectrode angle too extremeArc length too long

Page 22: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

Boiler tube Failure

Page 23: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

Case Study boiler pressure partFACThermal FatigueErosionGraphitization

Page 24: Failure  Mode and Effect Analysis ( FMEA) Power Boiler

Conclusions

Page 25: Failure  Mode and Effect Analysis ( FMEA) Power Boiler