kaeri/rr-1463/95 : 원자력 신소재 개발 : 고분자 촉매 …

352
KAERI

Upload: others

Post on 28-Nov-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

KAERI/RR-1463/95 : : ” “ l
.




:

.
MWe 0.65 Mg
1%
.
2006 l 471
. 5 22 Mg
r

.
ill.

.
I
.
.
.
Column .
.
N.
571
22 Mg . *­
I .
.

.
.
o m2/g
. .

.
kya = O.4 - 2. mJHD/rri’ Bed.sec
.
3ppm .

. 41t669 /a 30 m3
.


.
- II -‘
SUMMARY
D. Objective and Importance of e Project
Heyy water is used as moderator and coolant in Pressurized Heavy Watgr Power Plants. According to me governmental long-term plan for power supply, Korea is scheduled to consσuct additional four pressur­ ized heavy water power plants the year . A heavy water power
plant requires 0.65 Mg of heavy water per electrical MW of inslIed
capacity. The heavy water is not consumed by plant OPtration so that the demand
for heavy water is determined by the ra at which new nuclear power .stations are built A small me-up of about 1 % of the inventory per year IS need to replace losses by leakae. As the capacity of the power plant is 700 MWe, it is expected that total make-up for Ie plants including Wolsung One is estimau to be 22 Mg/a from the yr 2>6.
ill. Sco and Contents of the Project
k lis research, the authors estimatAd heavy water demand and
reviewed the history of heavy water separation technology ld the worldwide heavy water production and supply. And various heavy water separation processes were anysed. Especially the refonned hydrogen­ water exchange process and the hydrophobic catalyst technology were investigated in detail. Hydrophobic catalysts were manufactured and its perfonnance on hydrogen isotope exchange reaction has been tested in a catalyst packed column.
N. Results and Proposal for Applications
According to the construction plan for pressurized heavy water power plants, it is expected that total heavy water demand in Korea
- JIl --
will be 22 Mg/a from the year 2006. Among many heavy water separation processes, Refonned Hydrogen Process is considered best suited to Korea The merit of this process is a gh separation factor, which results in low inial investment and operation cost. Catalysts suitable for the hydrogen isotopic exchange reaction were prepared d characterized by BET surface area apparatus and
scanning elεleO-on microscopy. The mass transfer coefficient kya varied between 0.004 and 2. m3
HD/m3 Bed.sec. Furthermore, the reformed hydrogen-water exchange
Iπocesses were investigated and optimized. It is ex~ted that this research would contribute to the stable operation of pressurized heavy
water power plants in Korea.
- IV-
2-3. Synthesis of Copolymer ------------------------------ 97
2-4. Catalyst Characterization ----------------------------- 133
2-6. Synthesis of Zeolites -------------------------------- 231
2-7. Manufacture of a Catalyst Assembly ---“‘-------------- 263
2-8. Test of Catalyst Performance
3‘ Conclusion

1 --‘----------------- 3
1. -------------------------------------- 3 . ----------------------------- 3 . ----------------------------- 3
2. ------------------------------ 13
. ---‘--------•----“------- 15 . ---------------------‘------ 'z7
. -‘------------------------- 32 . GS ------------------------‘---‘-35 . “-----------------‘------------ 37 . -------…----------------‘---- 38 . ------------------------------- 38 . ------------------------------- 40
. -------‘------------------------ 40 . ------------------- 42
2 ------------------- 43
1. -------‘------------------ 43 . ---------------- 43 . --------------- 56
2. ------------------------ 70 . -------------------------------- 70
. ----------‘-------------- 72 . - --------------- 79
. --------“------------- 83
. -------------------------‘ 88
3 ---“---------- 97
1. I --------------------------- 97
2. --------------------------‘-------- 100
. -------------------------------- 102
. _..--_-‘--------‘------------------- 103
3. --~------~---------------‘-- 104 . ---------------------------- 104 . --------------------------- 117
. SEM --------------------------- 124
. ---------------- 127
4 -_.--------’-------- 133
1. ------------------------------------ 133
. ---------------- 133 . -------------------------------- 135
. -- 141
2. ---"'"---------‘--‘--------------- 143 . ------------------------- 143
. ------------- 147
. -- 149
3. ----------- 158
. ------- 158
5 ----------------------- 203
’ 1
1. ------------------------- 204 . ---------------- 204
. ------------------- 207
-Vlll-
2. ----_..--‘----‘--------------‘-- 208 . ZSM-5 ‘-------------------------- 209 . --‘-------‘------------ 210
. ----------------------‘---- 211 3. -------------------- 212
6 -----------------“---- 231 1. ------------------------------ 231 . ---------------------------- 231 . -------------------- 232
2. -------------------------- 233 . --------------------------------- 235
. --------------------------- 237
. PtlSilicalite ---------------- 238 . --------------------------- 238
7 ---------------------- 263
1. -----_ .....-‘--------------------------- 263 2. ---------------------------- 266 . -------------- 266
. ------- 268 . ------------------------- 270
3. ------’---- ....._..----’-------------- 272 . --------------------- 272 . ----------------------------- 275
4. ---------------------------- 279 . -~----------------~-- 9
. --------------------------------- 279 . ----------------------- 282 . ---------------------- 282
8 --------------- 299
1. -------------------------- 299 . --------------------- 299
. --_ .....--‘--------------------- 299
. -------------------------‘----- 307 . ------------------------ 307
3. . --------------------- 312
. ---------------------- 312
. ------‘“-‘---------- 314
3 ---------------------------------- 327
- x -
1-1 1-2
1-3 1-4 1-5 1-6 1-7 1-8
'1-9 1:-1
2-1 2-2
3-1 3-2
------------------------------ 34
-----------‘----------- 69 - -------- 98
---------------- 101
------------------------ 105
dV/dr ------ 108
--‘--------- 110
dV/dr ------ 111
(1) -------------- 114
dV/dr(l) ------------------- 115
(2) ------------- 118
dV/dr(2) ------------------ 119
and outer) -------------------------------- 125
SDBC0609 by SEM(inner surface} ------‘-------- 126
3-14 ------------- 129
3':"15 dV/dr --‘-------------130
, ‘ X 1 -
4-1-2 ------------------ 183
4-1-3 ----------------- 184
4-1-4 SEM ----------------------- 185
4-1-5 SEM ------------------‘--- 186
4-2-1 --------- 187
4 ‘ 2-2 -‘-‘---“-‘-- 188
4-.
4-2-7 ----------------------- 193
4-2-8 K0609-3 --------------------------- 194
4-2-9 K0609-9 ---------------------------- 195
4-2-10 ------------------ 196
4-2-11 ------------------- 197
4-2-12 (J06) --------------------- 198
4-2-13 (p06091lR) ----------------- 199
5-1. X-ray diffraction pattern for 25M-5 sample 1.
(after calcination) -----------’--------------‘- 214
(after crystallization) --------------------------- 215
(after calcination) --------------------------- 216
(after cryszation) --------------““------- 217
(after ion exchange with NH4CI) ---:----------;---- 218
’ 5-6. Pore size distribution of ZSM-5 --‘------------- 219
-Xll-
5-7 XRD pattern for Silicalite (51) ------------------ 220
5-8 XRD pattern for Silica1ite (52) ------------------ 221
5-9 XRD pattern for Silicalite (53) ------------------ 222
5-10 XRD pattern for Silicalite with 1 hr calcination (51-11) --- 223
5-11 XRD pattern for Silicalite with 1 hr calcination (51-12) --- 224
5-12 XRD pattern for Silicalite with 1 hr calcination (51-13) --- 225
5-13 XRD pattern for Silicalite with 1 hr calcination (31-14) --- 226
5• 4. Experiment for water vapor adsorption ------------- 2Z7
6‘ 1. ------------------ O
6-2. SWC5 (23 'C) -------------- 252
6-3.5WR5 (23 'C) -----------‘--- 253
6-4. SAR5 (23 'C) --------------- 4
6-5. SNOM5 (23·C) -----------'--- 255
6-6. SN2M5 (23t) -------------- 256
6-7. SIET (23t) ---------------- 257
6-8. Silicite Pt/Silicalite XRD Patterns --------- 258
7-1. Teflon TGA ._-------‘------------------ 273
7-2. ----“--‘---‘-------- 275
7-3. ----------------------------------- 281
7-4. --~---------------------------------- 281
7-5. Body CBerI - Sade) Sem
( : 350 "C, 5 hr., : x 35 , : x 20000 ) ‘----- 2f!7
7-6. Body (BerI - Saddle) Sem
( : 350 't, 5 hr. , : x 35 , : x 20000 ) --‘- 288
7-7. Body (Berl - Saddle) Sem
( : 350 't, 5 hr. , : x 35 , : x 20000 ) ---- 289
7-8. Body (BerI - Saddle) Sem
( : 380 'C, 8 hr. : x 35 : x 20000 ) ----- 290
-X J1l-
7-9. Body (Glass Raschig - Ring) Sem
{ : 350"(; , 5 hr. , : x 35 I : x 15000 ) ----- 291
7-10. Body (Glass Raschig - Ring) Sem
( : 40<rc , 5 hr., : x 35 , : x l Ea)() ) ----- 292
7-11. Body (Glass Raschig - Ring) Sem
( : 350"C, 5 hr., : x 35 , : x 1 ) ----- 293
7-12. Body (Stainless Steel Raschig - Ring)
Sem ( : 350t , 5 hr., . x 35, : x 15Co ) --- 294
7-13. Body ( Packing) Sem
( : 350"C. 8 hr., : x 35 , : x 21α ) ----- 295
7-14. Body ( Packing) Sem
( : 350t , 8 hr., : x 1500 , : x (oo2 --‘- 296
8-1 --‘------------------------------ 301 8-2 96 T ------------------------------- 304
8-3 1472 PPM %-T --------‘------_....._-‘-------- 305 1 8-4 ---------------------- 310
8-5 -------------------------------- 311
8-6 --------------------------- 313
8-7 ---------------------------------- 315
8-8 ------~------------------316
8-9 350PPM FTIR --------------------- 3η
8-10 --‘-------------------------------- 318 8-11 1247 PPM FTIR --------------------- 319 8-12 ----------------------------- 320
- XIV-

1-1 ----------------------------- 4
1-2 --------------------~------‘---------13 1-3 ----------------------------------- 14 1-4 ---------------------------------- 24 1-5 ----------------------------------- 27 1-6 -------------------------------------- 29 1-7 ------------------------------------- 29 1-8 -------------------------------------- 31 1-9 ----------------------------------- 42
2-1 ----------------------------------- 61 2-2 () ----------------~---------------62
2-3 ’------------- 66
2-4 -------------------’--------------- 81 2-5 ------------------------ 82 2-6 50 μ m ------------ 83 2-7 ------------------------------- 88 2-8 ------------------------------ 91
3-1 ---------------------- 116
3-2 ---------------- 120
3-3 Effect of surfactant on particle size distributionO)
3-4 Effect of surfactants on particle size disibution(2)
m μm
4-1-1 --------‘------- 159
4-1-2
4-1-3 () -- 161
4-1-4 ω1~1)ι
4-1-5 -------- 163
4-1-6
4-1-7 ω
4-1-8
4-1-9 167
-xv-
(l4-dioxane ) ---------‘- 168
4-2‘ 1. Number of Surface Atoms per Unit Area of Poly
Crystalline Surface ---------------- 169
4-2-2. BET ----------- 170
4-2-3. (K0519-6) ---------------‘--‘-- 171
4-2-4. (K0519-6) -----“-‘--‘----‘-- 171
4-2-5. (JO-6) ----------------------• 172
4-2-6. (lO-6) ---------------------- 172
4-2-7. (K0609-6) --------------------- 173
4-2-8. (K0609-6) ------------------- 173
4-2-9. --------------“ 174
4-2-10. ------------•- 174
4-2-11. (K0609-3) -------------------- 175
4-2-12. (K0609-3) ------------------ 175
4-2-13. (K0609-9) -----------------‘-- 176
4-2-14. (K0609-9) ------------------ 176
4-2-15. ----------“‘-- 177
4-2-16. --------------- 177
4-2-17. (p1011-]-2H) ----------------- 178
4-2-18. (pl011-!-2H) --------------- 178
4-2‘ 19. (p101l -I-1) ---------------‘- 179
4-2-20. (pl011-1-4H) --------------- 179
4-2-21. (pl01l -1-15H) -------------- 180
4-2-22. (plOll-I-15H) ------------- 180
4-2-23. (J06) ------------------------ 181
4-2-24. (p0609TR) -------------------- 181
- XVl-
6-2. Hydrogen adsorption experimental results
for various Pt/Silicalite catalysts ------------------- 4
6-3. Pt dispersion of P t/Silicalite cays~ ----------------- 251
7-1 Teflon ( Pysical Properties ) ------------------- 274
7-2 ( Characteristics of Packings ) ---------------- 0
8-1 -----‘_ ..... _----_ ......‘------------------- 308
X Vll-

. MWe O.65Mg

1% .
2α% 1 4
.
22Mg .

.
.

.

.
.
.

.
1
1.
. 2006
1-1 .
(PHWR) ’ . PHWR MWe
0.65 Mg
1 % . 1-1 2α)6
1 4 PHWR .
PHWR 700 MWe 5
Mg . 1
H-2006 145Mg .
.
1931 Urey
. Urey Washburn 71
Lewis 20 0.3 cm3
. [1-1 - 1-3]

. (MWe)
1997.6. 2 700 l8.6. 3 700 I.6. 4 71 700 2α)6.6. 5 700
1930
. Norway Rjukan & Glomfjord Norsk
Hydro 12 Mg/a 1934
.

. .
-
.
.
. .

.
. .
. reflux
. coke
. converter
.
.
. Tr1 B.C.
Cominco ( The Consolidated Mining and Smelting Company of Canada
Limited ) . 4
countercurrent .
.
. H.S. Taylor
. Snd αI Development Co.
F.T.Barr . Du Pont
.
.
(2)
1934 - .
Norsk Hydro . Norway Rjan & Glomfjord
. 2 Mg/a +
.
() Morgantown ( U.S.A. )
District Du Pont W.Virginia
Morgantown 1943 ‘ 15 3 Mg/a .
.
() Childersburg ( U.S.A. )
Distri Du Pont
Alabama Childersburg . 13 - 1945 5 Mg/a
. .
R u
() Dana ( U.S.A. )
District Du Pont Indiana
Dana . 1943 - 1945 8 Mg/a .
.
Project 15
.
Mining and Smelting Company )
. District
14 - 1956 6 Mg/a .
(3)
2
. .
.
( du temperature )
. ].S. Spevack 1942
.
. 1949 USAEC ( Atomic Energy
Commission ) .
Hydrogen Research Corporation Girdler Corporation
- .
-6-
1950 USAEC Du Pont . Du Pont
Girdler Corporation sub-contractor Indiana Dana
Wabash River Ordance Works - .
GS ( Girdler Sulphide ) .
Dana 1952 - 1958 490 Mg/a
. 1957
Dana .
() Savannah GS ( U.S.A. )
Du Pont DOE S.c. Savannah River
480 Mg/a GS 1952
. Dana
. 1981 shut down 69 Wa
. Du Pont Dana Savannah River GS
.
-
.
.
() Hoechst ( Germany)
Linde Farbwerke 6 Mg/a .
1958
- 1)() .
Air LiQuide ONIA (Organisation Natione IndustrieUe de 1’Azo)
2 Mg/a .
1958-1)() .
() Domat ( Swit2erland )
Sulzer Emser Werke Domat Ems. 2 Mg/a
.
H - 1967 .
() Mazingarbe ( France)
Sulzer Air-LiQuide SCC ( Societe Chimique de Charbonnage
) 26 Mg/a .
.
1968 - 1972 .
(4)
.
Trail, B.C. . Project
14 - 1956 50 Mg .
1950 USAEC
Savannah River . 1960

.
. CGE(Canaan Gerneral
Electric) Port Hawkesburg, N.S. 300 Mg/a .
Lummus 1970 .
. 1976 AECL .
() Bruce A GS
Ontario Hydro ‘ Lummus .
650 Mg/a GS 1973
.
() Glace Bay GS
AECL Canatom . 1976
250 Mg/a .
.
() Bruce B GS ( Canada. 765 Mg/a )
Bruce A . 1979
.
() La Prade GS ( Canada)
1972 2α% 133α)() Mwe
. Quec La Prade Bruce
C&D . 19
-
-9-
La Prade 1978 40 % .
Bruce A .
() Bruce C GS ( Canada )
Bruce C Bruce A
.
() Bruce D GS ( Canada)
Bruce D Bruce A
70 % .
(5)
Canada . DAE
( Dept. of Atomic Energy, India) Linde .
14 Mg/a Nanga1 1962
. .
(} Baroda ( India, 67 Mg/a )
DAE GELPRA (Groument Eau Lourde
Procede Ammoniac) . 1979 67 Mg/a
. .
-10 -
Baroda . 1979
.
() Talcher (India63 Mg/a) (India,73 Mg/a)
DAE Uhde 1979 63
Mg/a . (Dual Temperature)
.
Ta1cher phase II MHAE ’90 72 Mg/a
.
() Kota GS ( Ina 100 Mg/a )
DAE 1980 100 Mg/a
. GS .
() Thalcher # 2
1990 72Mg/a .
() Thal-vaishet
(6) ( 450 M g/a )
(MHAE) 100, 150,
200 Mg/a .
-11-
30 Mg/a .
(8)
Enterprise
. -
‘ G.S.• ’76
l00Mg . 30 Mg/a .
(9)
190 Mg/a
.
7Mg/a
569 Mg/a, 2 Mg/a. 30 Mg/a 30 Mg/a
1396 Mgla .
-12 -
.
1-2 . [1-1-1 ‘ 8]
1-2. ( Physical Properties)
H:O DO ‘
% 99.985 .015
150 ppm 99.8 %
6700 .
1-3 .
-13 -
. (phases)

1-3. ( Isotope Contents )

H,D:
1 (phases)
.
.
.
(1 -1) . (phases)
.
1-1
.
.
. l
350 .
G.S. .

.
.
.
.
250"C .
.
.
1-2 .
Naphtha .
1 .
1 2
. .
1-3 2 (hot
tower) (Bitherm .
. 1
2<Cold tower) 3
. (hot tower)
(carrier gas)
-15-
, . 7
5
?‘]
H2 Disti l.-_.I
α
-16-
L OJ (\j
.
.
.
.
.
1-4 .
1-5 .
G.S.
(Bithermal) .
(}
. 2,690,379 (l4)
H.C. Urey A.V. Gross

.

.
concurrent
. [1-9]
Stevens . 2 .
-18-
D2D
-19-
(LJ
c ω OJ ..u )lf} 0 ] +j (Y) c l!l 3 ω I σ OJ
‘- : U L Z.£U τ~ f: U
> If) L C\J XL I 0.... I jι
ω u ι 3
I

-20-
Process
-21-
1-2 .
[1 -18] Naphtha
.
.

. .
. [ 1-18 ]

.

- .
1-6
. 1-7
.
1-2 .
.
.
. [
/ : m3/(mνs) ] [ / :
(moVs) / (moVs) ] .
.
-22-
m
ω

.
.
k GN yN + 2 LR XR = 2 GR yR
1 .
Ll x1t + GR yR = LR XR + Gl ylt + P xp
ml = Ll/GI
eI = xIb/xIt
r = 2 P xp / ( 2 Ll x1t + k GN yN )
= P xp / ( p xp + Gl ylt )
yIb = ml ( xlb - xlt ) + y1t
XR = xlb
L2 = G2 + P (or L2 = Ll -LH )
m2 = L2/G2
x2t = xlb
x2b = xp
y2b = xp
-25-
e2 = xp/xlν'el
18 25
7 . xp, xlζ yN, GN el , r , m1 .
2)
} 1 ::: 8.39 , HETP ::: 0.637 m
= 5.35 m, = 5.62 m2
= 30.02 m3
::: 9.04 m, ::: 0.0115 m2
::: 0.104 m3
}
)
P ::: 41,669 kg D20/a .
1-5 .
-26-
1-7 .
.
.
1-5 ( Conceptual Design Values )
LR 604.5 moIls GR 917 ” GN 37.fJl
LI 606.4 " GI 918.9 "
xlt 150 ppm xlb 6.75 %
ylt 49.1 ppm ylb 4.45 % 5.5 m 5.62 m2
L2 1.97 moVs G2 1.89 f ’
x2t 6.75 % x2b 99.8 %
y2t 2.78 % y2b 99.8 % 6Z7 m 0.012 m
m“
-28-
1-6 . [1-1]
1-6 (Input Data)

ra 0.5 νs
F 0.5 m/s
xlt 148 ppm
LI 0.001753 gmoVs
T 25 "C
P 0.1 MPa
xp
ylt 99.8 90 ;>0 10 1
147 20.65 15.15 11.96 8.95 5.60 100 21.41 15.91 12.76 9.56 6.21
60 22.91 17.41 14.17 11.09 7.68
40 26.85 21.36 18.20 15.00 11.62
39 30.11 24.60 21.36 18.30 14.88
- 29-
yl t(ppm) xp(%) (m) .
ylt = 39 ppm xp =
99.8 % 30.11 m .
(2) Rayleigh

dt

1
-30-
99.8 % Rayleigh xo
LolL
72 99.8 % ‘
. ~
. [1 -2]
HD ( g ) + NIb ( 1 ) = H2 ( g ) + NHzD ( 1 ) (7)
Frlce Mazingarbe 1968 - 1972
26M‘ .
Szer-Air Liquide .
Bara Tuticorin . Gelpra(Groupement
Eau Lourde Procede Ammoniac) . 1979
.
Baroda 67 MT/a. Tuticorin 71 MT/a .
.
reflux cracking .
reflux
.
()
1-8 Matingarbe
. COC02 1 ppm
. 85% • stripping column 19.8
ppm . 100 .
. separator Potassium
Amide Deuterium Sti>er 740 D C cracker .
n ι
.
.
KNHD + NIh = KNHz + NH2D (8)
. Potassium Amide
Stripper .
KNHD ( 1 ) + NIh ( g ) = KNH2 ( ) ) + NHill ( g ) …...... (9)
Potassium amide C02, CO
plugging . KN3
.
‘ ι........)
-2.5 deg,C DEUTE.RIUM
PPMD
χn
-34-
reflux NIb dissociation
. Talcher .

- 740 "C
- reflux
- Sσipper

. .
350 60 C 3.0 .
5.7 72.9 .

.
GS 90% .
1-2 1-19 . 1-9
Savannah River 5.78 176
. .
%
f E
-36-
:
.
.


. Nmin
.
ln(Xp(l-XF)/XF(l-Xp»
Nmin = In Q
a::1.0 (50 0 C), XF = O.α>015 Xp:: o.

Nmin :: 276
]-20 1-21 .
(2)
a = (PNlh!PND3) ** 0.33
P .
-52.2 "C (P=250 torr) a = 1.055.
.
”lηa
.
.
fouling
ortho para .
75 % ortho, 25 % ra . -250 6 C
100 % para .
.
.
.
.
Norsk Hydro . 9 15 %
. stl
. 60 0 c
.
. Laser
. fluoroform
.
7α)() .
re-deuteration . . [I-8,
1-22]
-38 -
(1) CDCta
COCh . OD
.
(HCI DCl) .
OD (NaOD) .
(3)
140 ppm COCh 50 toπ
. Ar .

CCh + CDCh = C£μ + DCl
ZnSe Window
multi-pass beam
.
.
C2Cμ DCI .
(5)
DCl DzO D2
oz Dz .
(6)
.
.
methylamine ( CHH2 ) Carrier Gas .
CI-bNlh (liq.) + HD (g) = CH3NHD + H2 (g) [CH:MfK ]
-50 deg.C 7.9
. .

. ( Electromigration )
Electromigration
. 1.0 N HCI Waste . HETP = 0.06 mm, = 2.5
. [1 -24]
-40-

-i- ‘→L. (50 Mg/a)
G.S. (200 Mg/a )
-.......‘ -F 000 Mg!a)
~-
-L- ;;Is‘- ~-
-i‘-
-λ~‘ -i-
.
{ T , K).
(1) ( - )
(2)
1.‘ ,
(1) -PTF‘E
.
.
.
. . [2-1 ~ 2-11]
() Stevens
AECL W.H. Stevens 1972
. Stevens 8

.
HDgas+H yap = fu gas + lIDO vapor … …....... (1-4)
HDO vapor + Io liquid = lIDO liquid + HZ{) vor … (1 -5)
(1 -4) (1-5) (1 -3) .
(1-4) 8
. (1-5)
L .
2 - 5 % . 0.001 - 0.1 .
.
-43-
pt., Rb, Pd Ni . 3 - 10
. 0.25 0.5 .
. white
spirit Stodrd .
. 48 agemg .
Dow Coming 773 ( ) .
5% mineral spirit hexane
. 48 150 - 200 0 C agemg .
PTF‘E . Du Pont Du Pont TFE ­
Forocarbon Resin Dispersion, Type 30 . Du
Pont 955 - 100 Line, One - Coat, Non - Stick Finishes. PTFE
350-360 ·C 10 - 60 .
olefin polymer .
Perfluorinated e1ylene - propylene copolyms (FEP - Type Teflon)
Chlorotrifluoro -
elylene .
Carbon black PTFE
. Hasng 19 Berl saddles
.
Stevens
Rolston PTFE .
.

.
hya1e .
PTFE, PE, PS, Polymethyhnethacrylate, PP
-44-
. (wetψ19 agent) (external
pressure) . t rhlum.
. 0.05 -1.0 % .
· .
Rolston .
1) .PTFE
3 nun t 25 gram fYfFE
. . PTFE
hexachloroplatinic acid .
. .
0.5 % . 3 300 °c
. 2.16 cm2 .
(118 ppm DIH) (1140 ppm)
. 1 0.22 - 0.45
cm3 HD/s.g .
3) . PE
25g 125 0 c 16 .
,1.3',% (wt.) 0.03 - 0.16 cm3 lID / s.g .PTFE
.
4) .PS.
80 - 100 mesh PS 1.66 gm hexachloro-plamc
acid . 200 0 C 8
. 0.5 wt % . 18 - 44 cm3 lID/s.g
.
1/4 ceramic sade
Dow Corning 40 C . 28 - 150 mesh
0.45 wt % .
1 100 0 C . 5g
38g 0.02 wt % .
0.08 - 0.149 cm3 lID/s.g .
6) Rhium.PTFE
8.7 g PTFE() rhium trichloride
0.09 wt % .
0.007 - 0.017 cm3 HD/s.g
.PTFE .PS
.PS 80 - 100
mesh . PTFE 3 mm
Knun
‘ PS .
PS concurrent
n ‘F‘E .
-46-
() Butler
Butler Stevens DD Rolston
.[2-8 2-11] Butler
/ /
. Rolston /
/
. Butler /
. Butler

.

. .
/ 95% . 0.64 em ceramic
saddle STP 1 IIνs 20 em . STP
20 mls 60 em .
/ .
0.37 % ..PTFE STP 1 mls
10 em .
1)
Stevens . 3.2 mm
0.5 wt % . Siloxane Polymer
Dow Coming 773 . 3 mm2
0.1 m .
(110 ppm) (1140 m) .
044 ppm) ( 250 m) .
.
kya HD
. -47-
F.A kya = ( - In(l-eta) ] (6)
A = Column m2
V= m3
eta= (n-ni)/(ne-)
= ne = n =
0.69 kg/m2.s, 0.1 rnls . 100 - 16.5
% kya .
kyapt .
kyt =kya / ( m3 kg ). kya= 0.087 - 0.194
.


3)
10 wt % 4.6 mrn ceramic
. PTFE emulsion . PTFE Du Pont 30
.
kya . (298.2 K, 0.108 MPa) (o mm2, 0.208
m) : =50:50 2.4 /s.m2°1
. l 0.324 - 0.956 m/s
kyaPt 0.71 - 0.90 m3/s.pt kg .
-48-
4)
6.1 nun ceramic Du Pont
30 .
55.5 % 1.8
.
5) Intalox
Norton ~2 mm Inta10x 0.38 wt %
. 50% 12.7 nun Intalox .
2,160 mm2 . 1.9
.
6)
3 K, 5.27 MPa, 0.1 m, 1.52m
Intalox . 2.43
kg/m2.s 5 - 17 m/s .
. 50% 25%
100 % 2.6 4.0 .
25%
. 25% HZ STP 5.14 - 16.94 mls kya
0.77 - 1.49 m3/m3.s . holdup
. 20 em 3 - 4
4 - 5 .
.
.
, Ption , BeTI Sades Intalox Saddles, SUJr Intalox Sades
Flex-gs Tellerettes, Pall Rings, Dixon Rings Sulzer Packing
. -49-

Saddle Sades

. Sulzer CY Ceramic - ‘
.
7)
x 3 x 3~ 100 mesh gauze Dixon Ring
. Dixon Ring London Grin d George Sales Limited
. Du Pont 30 water emulsion Dixon Ring .
0.41 wt % . Dixon ng
1070 K .
.
100 % kya 0.11
50% kya 0.20 .
2.0 - 2.73 kg/m.s kya . 71
0.3 - 1.2 mls ( STP ) 50% 100 %
ya 2.2 - 2.4 .
. Dixon ng
.
8)

.
Du Pont 30
2x4mrn . PTFE cured . 3.2
wt %, PTF‘E: == 1.2 : 1 .
- 50-
Dixon Ring . STP
0.101 - 0.624 mls kya = 1.64 - 2.91 m3/m3.s
.
Dixon Ring ’
. .
gauze

PTFE

. .
.
.
9)
cerarmc Du Pont 30
. (D = 118 ppm, T. = 2E - 16) (5.70 uCi!g , T.
= 1.76E - 9) counter current . (D = 1043 ppm) T D .
0.3 mCν'rn3 (T/H = 1.2E - 10)
75 %
.
3 . HT
298 K 7.00 .
- . STP 0.273 -1.260 mls kya (m3
STP/m3.s) 1.17 - 1.46, 0.733 -1.016
.
71 .[2-1α2-11]
) Stevens
Stevens .Carbon Black P'fFE Colloid
slurry . Stevens
. Butler
=
. PTFE:
.
) Engelhard
otto ]. Aht Sa G. Hinder (Engelhard Mineral 'sand
Chemicals Corp.) 1975 5 16 25 21 4
. 1975 12 4 .
. .
. I (Calcined spheres) PTFE
. 4 g 25% .
6ml PTFE emulsion(P1‘FE 150 mg/ml ) 0.3 wt
% 20 ml methylcellulose . 2 PTFE
0.0225 - 0.225 : 1 . °1
.
-52-
. PTFE .
PTFE .
Butler .
gauze ring~ gauze . Butler
/ /
. Stevens R
/
.
.
0.6 cm . PTFE (7.5 - 15.0 %
) . PTFE Du Pont Teflon 30 . 653K
PI'FE . pre-coa19
.
)
Du Pont Teflon 42 emulsion .
J.T. Backer Chemical Co. Triton X - 100 . NH40H
pH 10 . PTFE emulsion
. pre-coating .
473 K oven 633K
muffle furnace . 473 K 3K
. emulsier .
ω
PTF‘E Du Pont Teflon 30 ρl
: . ‘ ι ‘Teflon 30 6 %
Triton X - 100 . 4.6 rom ’Cmic
PTFE 6 wt % . ~3 % pre-coa19 3%

cerarmc PTFE 1 .
Teflon 30, Teflon 20% 17 % .
.373 K 1 . 473 K 1
. PTFE 3K muffle 30 cured .
100 ml 1.0 m1 58 wt % 30 ml Teflon 42
. . 1
. Canadian Tire Corporation
aerosol .
110°C .
.
muffle 3 K curing . .
.
) 2
0.1 wt % 4.6 rom cerme
100 g . Rotary 10 wt % 1.0 g
5ml . 5.0 g PTFE PTFE
3:1 . 96 g 4.6
rnm cerannc .
-54-
PTFE .
. 3
. 423 K . PTFE curing 3K muffle
. Triton X - 100 Teflon 30 πing
. .
.
gauze . . xon
Rings (100 mesh gauze, x = 0.32 x 0.32 cm) . aceton
1070 K . Rings
.
50 mI, Du Pont 30 ( 60 wt % solids ) Teflon 18 ml
. pt 10 wt % .
PTFE: 3:1 . Dixon Ring 71 30
. . 373 K 1
. 633 K cutin . curing
. wrre gauze .
Fnt ku
Shiml
I . [2-1]
(styrene divinyl benzene copolymer, SDBC)
.
- SDBC
. SDBC
1 mm .

SDOC SDBC
.
SDBC ‘

.
"
. SDBC -
.
-56-
SDBC 3(
) . SDBC
.


.
I 0-, m-, p-
. -p-
-m-
3 . -0-
.
56% .
SDBC .

. SDBC
SDBC
.
SDBC
.
-57-
SDBC
SDBC 2-} 2-1 .
1) - 6) 7), 8) 2
.
1)
.
.
2)
.
5)

SORe
.

. SDBC
)()'C.
7)
.
.
Q
υ
F
U
-60-

snBC

.
.
-1)()A
.
()

.
.



.

.

.
-61-
(V) (SN) (k’) . S!V
k'

.
i

.
SDBC
.
SDBC .
SDBC
kya 35.9 sec- 1
. - 5cm
l m.mAq Om/sec H2 gas) . (30't}
2-2 (
3.3-4.7 48 4 4.0-.7 21 1
1.3*3L 80 62 3*5L 40 8
4*5L z1 5 2T*6W*5L 31 26 6 *112*5L 14 3 3O*50H 36 <1*
SDBC
.

.
-62-

2-2 .
()


SDBC
.
(Kya)
. .
. kya
. 0.2.3% l
.
. 0.3%
. kya I 24 sec-1 .
()
SDBC

.
.

. SDBC A
.
.
-63-
. [2-16] - 70
2OO'C 20 . SDB 3OO'C
. Shoko

I(> () 71
.
(PS)
. PS

. [ 2- 1 ]

PS-DVB ( -
(divinyl-benzene» Copolymer .
PS
.
PS .
(DVB)
copolymer DVB
71 (macroreellr type) PS

.
(gar type)

.
. 2-3 .
-64-

.


.
PS .
(monomer)/
. (solva19
agent)1 (non-solvating agent or precitator)
.
Miller (toluene) I (bne)
(cyclohexane) regn

.
(crosslkage) 20
0.6 40
0.8 .


.

- - ’I'



( )
I 7}



‘ .
(ch1)
(nuclei) 1](1ngle) .


(intemudr chn) . DVB


.
. (network chn)
.
- 66-

j. copolymer

copolymer .
solvang
power .
-(cyclohexlOl)
DVB
solvating power .
SDB
copolymer
.
2-elylhexyl phthate(DOP)
DOP
DVB 200-500A
.
-67-
‘ ‘

- 3 .
@ dichloroethane -
3
‘ ’
() .
S 71
.
.
Miller 3
. microgel
- .

entangle . Sederel Dejong .
entanglement .
.
3 2-2 .

. arnomc .
-68-
2 nuclei 50 ,- 200 A (esnation)

2-2
%

. [2-1 - 2-11 ]
. F
-
.
process
.[2-12]

HD (g) + Hz 0 (g) = H2 (g) + lIDO (g) ------------ (1)
(1)
lIDO (g) + H2 0 (.e) = H2 0 (g) + lIDO (.e) ----------- (2)
(2)

1
2 1


flooding .
.
-70 -
(J. T. Enright, Can. Chern. Eng., vol. 56, 246, 1978)
(1)

.

(1) (2)
(1) (2)

flomg
.


P~
(1)
(2)
floong .
-
.
. r---
r- .
. IDem tp ,
20cm 5
1 em . r-
-- - r--
.
Kya
2-3
1.4
. 0.5 m/sec H. E. T. P.( 1
) O.57m,
O.n .
H. E. T.P.
. ~
'-
O.5rn/sec
1/2.5 1/1.75
.


.


.

.


.
( H2O ) ( D ), ( T ),
( D20 ) ( T )
- .
(1)- (3) .
(4)-(6)
.
H20 ( f)
+ H 2 (g) -------- (5)
+ D 2 (g) -------- (6)
(g) : ( e) :

.


200t
.



. X Microanalyzer
( 70 - 90%) ; 0.1
I (l(A)-lpm cluster .

duster
.

.


-73-
( )
· (56-155645) (
) loot



.






}

.


r

.
-74 -
7.5g 90cc (
360) 3.3g 150cc 30
. 3g l00cc
stirrer
. 40
. 10 .
30A .
50% ( 6mm rp , 8mm
ψ 7mm)
10 . 120'C l
.
2O-l(A cluster
2000A cluster .
1 - 13.5 .
[( -
)/( )]
7


.
4 90t
2
lOOt: 1 .
.
cluster (
) .
-75-

.
10
.
10 JOOA.
• ‘ 2
3Owt% .
50% .

20 - l00A
cluster
.
• 3
1 .
20 - 60
.
. 50A
.
1/5
.
.
1 5g
2g .
· 5 - 20 . 1
. 30A.
1 .
(1) lID
.
. ’
I ( SDB )

.
SDB
.
2-3
.
SDB hold
. SDB
.
SDB

.
-77-
(
) ( 230-250t )
( 240 "C ) t l

• 2

.
.
1. 2-3 .
2. ·cluster
pH . 2
.

.
-78 -
·[2-14]

71 .
. -
H2 0 ( Q) + HD (g) = HDO (t) + H2 (g) ----“-‘-- ( 1 )
K
. (1)
.


. (1)
.
.

.
.
. -

A - l00A
.
.

.
-79 -
0.1 - 100,um
1 2
0.01 - 10 % ‘ l
.
( II ) !

l 2 .
.
• 1.
0.05, 0.1, 50, 100, OJLl1l 5mm lmm '
2OO'C
. l 0.5 %
. 30 9> IOem
10% D20 4cc/mm, H2 32/mm
. HD
. 50L;, 1071 . η
.
Xo - Xe
Xo HD Xt HD Xe
HD . 1 η .
.- 80-
n No. (μm)

l 0.05 0.40 2 0.10 0.72 3 1 0.82 4 50 0.75 5 100 0.65 6 200 0.50
1
. 1 0.1
100 η . 0.1 ­
100j.llJ1 .
• 2
1JQ1l l ’
1 2 -
200'C . 2 .
- 81-
No. ( % ) η
1 pt 0.5 0.82 2 Pd 0.5 0.72 3 Rh 0.5 0.75. 4 Ru 0.5 0.78 5 pt 0.2 0.76
Pd 0.3 6 Pt 0.25 0.70
Rh 0.25 7 Pt 0.25 0.80
Ru 0.25
2
.
• 3‘
5OJ.lIll 1
0.005, 0.01 , 1, 5, 10, 15% I
. 71 3 .
-82-
No. (μm) ( % ) n
1 50 pt O.αE , 0.30 2 g pt 0.01 0.55 3 50 pt 0.10 0.70 4 50 pt 1 0.80 5 50 pt 5 0.88 6 50 pt 10 0.91 7 50 pt 15 0.91
3 . 10%
0.01 - 10% .
0.1 - 100
0.1-10% ~
.
. [2-1
()
.

. 12
. L
;
-83-
.
.



(1) . (DTO)
.

.

.

. channelling .
.
D2
DT
.



.
channelling
y d1 ,
d 2
-84 -
d2 /d1 <1 r < 2 - 2 (d2 /d1 - 1 )2
d2 /d1 1 r < 2 ’- ~(d2 Id1 ‘ 1 )2 ------- (2)
.
7 channelling
r

.

K .
K 2.3 x
h: (em)
-85-
(3) F , h, x a
K y1 .
F , X , Y h K
.
K .
.
- compact
..
-
.
α015%
(99.7% )


.
(
) (
) [ recycle ] )
.
[]
2 recycle
.
-86 -
1 ( 95% )
( 1) .


.
2 ( 95% )
. ( ll) .
.

[] pilot
.
R []
.
recycle . [ 2-17 ~ 2-29]
.
[] cycle .
l OOt
99.7% .

.
1)
2) sampling.
3)
t 1)
.
recycle ·
I
II ‘
- 87--
2-7 I n .
2-7


5 t / 10 rn3 /
• 8000 h / 7000 h / • 95wt% 30 wt % 12 Ci/l 4 Ci /1

99.8 wt % 99.8 wt %
5 μ S/cm 5 μ S/cm
- 1 μ Ci/l
‘ ( 100
()
() ( I] ) ()
.
.
I-hO + o + 2e- • H2 + 20D- (1)
H20 + D + 2e- • D2 + 20H- (2)
(H) (D) D
HZ{) H2
.
( [ ] )
.
.
()

.
.
()

(K£O:VKOH = 9515 = 8.4%) .

.

.
.
( 60-80%)
.
()
I 5t (95%) 4.4t
(99.8%) . 1979 4 []
-89-
. 56tOOO% )
44t (lOO%) .
I 1
.
-’ .
.
.
.
.

. (l) (2)
(3) . (2)
. I (3)
! . .
ξ~ .
i.

. 1970
.
.

19
. 2-8
.
-90- '‘

( )
( )
( )
( )

1984 - ()
14 - 1986 ()
.
.
[]
· .
.
[]
II . .


( ) .
.
.
.
.


.
.
( 15%)
99.8% 5μS / em .

10 m3 (30%) 2.4 m3 (99.8%
) .
n 1975 1 } 1976 8

1976 12 .
[] 3 (45%. 76%, 84%)
‘ 1989 3
16.4t 11.1t .
-92-
f]

.
I () .
n (.) .

.
n
.
.
.
[2-1] Shimizu, M. et " “ (982)
[2-2] Gley M. et_al., "Heavy Water and Tritium Managment", The Third Candu Technology Course, KAERI-NTC (1985)
[2-3] Rae, H.K.. et:. ai., uSeation of Hydrogen Isotopes", ACS symposium Series (1977)
[2‘ 4] Stevens, W.H., Canadian patent No. 900, 292, Aug. 15 (1972) [2-5] Stevens, W.H. "Process for Hydrogen Isotope Exchange and
Cncentration between Liquid Water and Hydrogen Gas and Catalyst Assembly Therefor", U.S. Patent NO.3, 974, June 10 (l5)
[2-6 ] Rolston, J.H., W.H. Stevens, 1. den Hartog and J.P. Buter, "Process for the Es1ge of Hydrogen Isotopes between Swns of Gaseous Hydrogen and Liquid Water" , U.S. Patent 4, 0: )0 May 24 (1977)
[2-7] ivid, Canaan patent 941, 134, Feb. 5 (l4)
[2-8 ] Butler, J.P., J. d1 Hartog and Fred W.R.Molson, "Process for the Exchange of Hydrogen Isoto]s Using a Catalyst Packed Bed Assembly", U.S.P. 4, 126, 007, Nov. 21 (1980)
.£2-9] ibid," “
80-741 ( 77-1333) 8 2 (l0)
[2-10] Butler, J.P. Rolston, J. den Hartog, Fred W.R. Molson,and j.W. Ga(ale"Process for the Exchange of Hydrogen Isotos Between Streams of Gaseous Hydrogen and Liquid War'’ U.S.P. 4,143, 123,
Mar. 6(1979) [2-11] ibid," 71
“ f!I)-7f!l ( 77- 14) 8 11
(1980)
(1981)
[2-13] (A)
59-177140, 106 (l4)
[2-14] (A) 56-136 2
2 (1981)
[2-15] (A)
55-41 , 110 (1980) -95-
[2-16] (Noguchi Hirohouri), “
” p41-50 (983)
[2-17] : [ () 10 ]
Vol.34 No. 8 (1988)
(1983)
[2 ‘ 19] : ( ]
VoL 19 (1984) [2-20] : [ () .
] No. 68 (1988)
[2-21] [( ] No.69 (B)
[2-22] : [ ]
NO.53 (1985)
[2-24] : [ ]
26 B-22 (1991)
[2-25] : [ ] 18,
283-4 (13)
[2-26] : [ (ll)] ,
58 (1983)
[2-27] : [() ] V. 22, Nol (1980)
[2-28] : [ ] Vol.23, No7
(1981)
(989)
-96--
1.

.

71
.

*



[3-1 3-21 3-1
- .


. network

(good solvent)! (poor solvent) . /
97-
- 98-

[3-3].


[3-4]. (mechanism)
Miller [3-5. 3-6]
(chain)
(nuclei) (entangle) .



(internuclear chain) . DVB


.
.
(network chain)
.

.


-99-
Kun [3-7]
3 .
microgel -
.

entangle . Sederel Dejong
[3-8] .
.
.
.

.

.
bead
100 -
(estImation) (electron (micrometer)
-101-




. perl polymerization
bead polymerization .
~ <initiator)
. benzoyl
peroxide [3-9].


. 0.01 - 0.5 em


.


.
poly(methyl
methacrylate), poly(vinyl chloride) polyacrylonitrile
-102-

.
.
(suspension polymerization)[3-10]
.

[3-11]. NaOH 10% 3
3 .

'l
.

()

(} .

.
-103-
. 01
/ ( I
). 85°C 12
. 3-3
.
.
Soxhlet 4
.
Bot 12 .
1 mm
.
BET (Autosorb-6, Quantachrome) BET
[3-12] B]H [3-13]
.
.
(1)
-105 -
.
(crosslinked point)
.

[3-14].
-


.


.
100
[3-15]


.
20 %
.
3-4 3-5
106-
• ‘--&
1000
100 Pore Radius(angstrαns)
JSD80530
:"'1 3-5. · 71 dV/dr
-108 -
dV/dr
. (40 %) (20 %)


.
.
(2)


.

Poinescu [3-16] solubility parameter

. 3-6 3-7
dV/dr
(40 %)
l .
toluene/ 2-ethyl hexanol
SDBC0609 .
-109 -
•‘ --

•‘ • A @
.010
008
.004
‘ 002
Soxhlet methanol
ethanol
80°C
. Soxhlet

[3-17] .
Hradil [3-18] glicidil methacrylate-ethylene
dimethacrylate styrene- DVB
(macroporous polymer) good solvent
(swelling)
­



.
(good solvent)

.
40 %
1,4-dioxane 24
-112-
Soxhlet
80 DC
.
3-8 3-9
. SDBC0609 Soxhlet
80 DC SD0609TR l ,4-dioxane
24 methanol diethyl ether
.


. Poinescu
[3-16] 40% crosslinke
(divinylbenzene)
porous network
(solvation effect)
.

.


. 3-1

. Soxhlet
- 113-
300
100
-114-
-115 -
Sample I.D. BET Principal
(m2/g) Pore Radius(A) (cc/g)
S0609-27SV SoxhleνVacuum Drγing 432
S0609-27WN Washing/N2 purge 433
230"C 10
purge (S0609-27SN).
3 .
230°C 5
. Soxhlet
80 a
5 5
230°C
10 purge .
S0609-27SN (S0609-27WN).
.
-116-
3

.
3-10 3-11
.
3

.
/

. /

.


.
- 117-
-119 -

3-2 .
PS0531 PS0615
. PS0531
( ) 117 PS0615 76

.
3-2.
mple Stirring Cross- it. of Volume it. of % polymer on mesh sieve size
# sd Iiage Monor of Aq. Product
rpm % g Phase , me g 85lIII< 850-20 2-4 l1li 41111< lump
PS0531 117
0615 76
.
PS0730 PS0804 PS0802




.

3-3.
5.54 X 10-7 M jSDBIOI0
10-5 M . ‘ 100 5.54 x


sample Surfactant &
lump
JSDBl010 SDS 5.54 x1- ;) 20
”hu
11.0 3.6 74.3
29.3 9.1 '51.2
* sodium dodecyl sulfate
. 3-4
PS0610 PS0609 PS0611 sodium
dodecyl sulfate
PSI014 PSI013 PSI019 sodium
dodecyl benzene sulfonic acid
.
3-3


3-3
3-4
-122-
sample
PS0610 SDS* 55tt x10-6
PS0609 SDS 1.11x10 5
PS0611 SDS 5.54 x10'5
m ω
m ω

.

.
-123 -


SEM .
electronic probe microanalyzer, ]EOL
JXA8600<]apan) . 3-12

3-13 .
3-12
<nucleD


. 3-13
3-12


μm
porous
.



.
‘ 124-
k{
∞ a ω
surface between inner and outer).
-125 -
Microphotograph of macroporous copoymer SDBC069
surface).
-126-
BET

.
HzPtCl6
evaporator HzPtC16
Pt 230°C
12
.

Pt


.
.
-

3-5 .
BET


.
- 127 _.
Sample I'.D. , BET Principal Pore
(m2/g) (cc/g) Radius(A)

. 3-14 3-15
.

.
-128-
300
50609-19--0--
S0609-191R........•.......
←←--~ •• , .••::: ••••••‘ ......-- ~ .n
n
200
-130-
[3-2] J.e.Moore, J.Polym.Sci.Part A2 (1964)
[3-3] T.Balcrishnan and W.T.Ford, J.Appl.Poly.Sci.,27, pl33
-138 (1982)
Soc., 304(1)
T.R.E., J.Chem.Soc., 218(1963)
(1980)
[3-8] W.L.Sederel and G.j.DeJong, J,Appl.Polym.Sci., 17,
35(1973)
in press in Herman F. Mark
[3-10] M. Munger and E. Trommsdorff, in Polymerization
Process, C. E. Schildknecht and LSkeist Eds., Wiley­
Interscience, New York, p106-142 (1977)
[3-11] D.D ‘Perrin and W.L.F.Annarego, "Purification of
Laboratory Chemicals" 3rd ed., Pergamon Press (1988)
-131-
60, 309(938)
j.Amer.Chem.Soc., 73, 373(1951)
McGraw-Hill, Ig
[3-17] "Polystyrene
'I KAERIII'R-3193
(1993)
[3-18] j. Hradil, F. Svec, E. Votavova, M. Bleha, Z. Pelzbauer,
]. Brych, Polymer, vol.33, 8, p1731 -1738(1992).
‘ 132-
1.

.

. 4. 1. 1
.

mixture
. .
.

.

.


hot spot runaway .
n < UJ
polystyrene polyviny!chloride
.

.
transfer
.
polyvinyl acetate polyvinyl alcohol
.
polymer precipitation
bulk polymerization suspensIOn
polymerization emulsion polymerization . suspensIon
polyerization
.
kinetic emulsion polymeri­
zation .
0.1 mm
suspension polymerization 10 100
-134-
. polymer
processIng compression molding , injection ffiding
rotational molding molding.

.

(casting).
thennosetting reSIn
mold .
2)

4. 1. 1 . die
4 mm ψ rod hole . die
die
hole
water bath .
rod
-135 -
Quantachrome Autosorb
.
3)
)

.


.


4. 1.2
.
rod .

. pl010-X
.

/ 2
.
’ 136 -
4. 1.3 .
4. 1.2 =M =M 4. 1.2
75.1 m2/g, 4. 1.3 110 m2/g,
=10/7.5*M 4. 1.2 77.3, 4. 1.3 113,
=15/7.5*M 4.1.2 75.1 , 4.1.3
64.2, =20/7.5*M 4.12
103, 4. 1.3 113 rn2/g .
(= M, 10/7.5) 4. 1.2 4. 1.3
4.1.2 4. 1.3
. rod


.

.

rod
.

4. 1.4 .

- 137 --
· .
)

.


. 4.1.5
.
300 ID2
33%
. 4. 1.2 .

4.1.3




.

.
)

50C
.
.


4. 1.6 .

. 80aC
30
.

80°C 30
.
4.1.7

-139 -
.

homogeneous
.

.


.


heterogeneous .



.


heterogeneity
.
.
-140 -
l4-dioxane sewlling
. 20%
1 4-dioxane
powder
. 4. 1.8
1 4-dioxane .
1 4-dioxane
.

.
.


.
SEM
4.1.4 4. 1.5
. 4. 1.4 4. 1.5
. 4. 1.5
(shell)
.
-141-
.


. 4. 1.9
.

. 302/447 = 0.68
68% .
) l 4-dioxane

4. 1.10 lA-dioxane
.

. 291/:4=85%

.
14‘dioxane
.
-142-
[4-1] Sorption
Sorption (Adsorption),
(absorption) , (Capillary Condensation)
.
.


.


.
.
[4-2].
1.. .
2. (Multilayer).
3. .
4. .
5. .
.
2)
/­ T .

.
.

.
. Chemisorption Stoichiometry




Stoichiometlγ
.

.
-144- ‘ I


.

. NaH,
C-12 .

.
.
.




[4-3,4-4].
Stoichiometry 2 . 1
1 -


.

. Langmuir
-145 -
. ‘ .
= ( ) * b * ()1/2
1 + b * ( ν2
extrapolation
.
[4-5].
[4-6],
[4-7]. [4-8] .

[4‘9]
- [4-1 .
.

.
.
.
-146-

.
4.2.2 .
.
4.2.3
. rotary
10-2 torr
10-8 torr .

. cold cathod
ionization gauge 0.1 torr 1α)() torr
MKS Baratron Meter . 4.2.2
.
manifold
reference . reference
84.4 ml .
reference
manifold
73.3 rnl . 1995 3 21
manifold volume .
-147 -



. Gas Bulb l

Molecular Sieve Trap


%) (99.995
10-5 80 C
t!l :x torr 12 .
.
230 C


150 C
100 C .

.
7}

-148-

.
Langmuir
10 toπ
.
[4-1 14-12].


.





.
-
.
1)

.-149-

.

.
0) 121 m2
18.9 A . 0.6%
. 4.2.3
4.2.4
.
4.2.4.
.
.
323 m2
19.0 A . 0.6%
. 4.2.5
4.2.6
.
-150-
) K0609-6
458 m2
15.4 A . 0.6%
. 4.2.7
4.2.8
.
4.2.6.
4.2.6 0.266 0.017 .
.
4.2.9 i 4.2.7
.
K0609 J06b
K0519
.
4.2.9
.
.
-151-

[4-13].

4.2.10 .
BET Quantachrome
.
4.2.7
.

1
1 .
[3J. }
276
m2/g .
d
21.45 g/cm3
[4-14].
0.6%
.
.
-152-
0.3% .
4.2.11 4.2.12 .
4.2.8 . 0.124
0.013 .
) K0609-9
0.9% .
4.2.13 4.2.14 .
4.2.9 . 0.316
0.034 .
4.2.15 K0609 4.2.10
.

. K0609-6 k0609-6

. K0609-9
K0609-3 3
3 .

4.2.16 .
4.2.16
. 0.9%‘


[3]. 4.2.16

. 0.5%

.

.
3)
) plOll-!-2H(O.6 Wt% Pt)

2 .
4.2.17 4.2.18
.

- ]54-
4 .
4.2.19 4.2.20
..

15 .
4.2.21 4.2.22
.
p1011-1 404 m2/g
. 0.6 wt%
.

( ).
4.2.1 1 2 4
. 15
f ‘2 ‘

.

.
-155 -


.
.
4)
E ι4 -

.
106 323
m2/g 4.2.23 .
80 C·
10-5 torr 600 700
torr 30
10-5 torr
.
4.2.12. .
0.1536 0.1536 mνg .
j06 0.29
0.29/0.1536==1.89 2
.
-t ι


.
0.1536 mVg .
g 0.6%
0.006 g . 195 3.077e 5
mole . 0.1536ml
0.1536/22400=6.857e-6 mole
2 .
D = 6.857e-6*2/3.077e-5 = 0.446
4.6% .


4.2.24 4.2.13 .
p0609TR 458 m2/g
0.27 mνg.
0.2181 mνg 0.27 mνg
. 0.27/0.2181
=1.24 j06 .

.
D = (0.2181*2/22400)/(0.006/195) = 0.633
-157 -
.
1)
. 4

. 4-vinylpyriIe
AIBN suspensiOn
.
.
40 C 30
80 C 15 .

.
paladium dichloride PdC12
rotaty evaporator 70 C 10 .
PVP 90 C 10
.

-158 -
Type
better heat control and narrower
molecular weight distribution
i
Ready control of heat of polymeri­ zation. Solution may be directly
usable.
Ready control of heat of polymeri­ zation. Suspen­ sion or resulting granular polymer may be directly
usable.
molecular weight and narrow distri­ bution , with ready
heat control. Emulsion may be directly usable.
-159 -

Requires agitation , material transfer , separation. and
recycling.
culty of complete solvent removal
Continuous agitation required. Contamination
possibly compacting required ‘
Contamination with emulcifier , etc. , almost inevitable , leading to poor color , and color stability. Washing.
drying. and compacting may be required.
4. 1.2
10
(m2/g)
p1010- S 5 g 75.1 17% DVB 2.6 g
HOH 7 ‘ 6g
ODCB 7.5 g = (M)
BPO 0.1 g = (M)
plOIO-III S 5 g 77.3 17% OVB 2.5 g pl010- HOH 10 g = 10/7.5*M
OOCB 10.2 g I= 10/7.5*M BPa 0.09 g
plOl0-II S 5 g 75.1 17% DVB 2.5 g pl0l0- III HOH 15 g
aDCB 15.1 g = 15/7 .5*M BPa 0.11 g = 15/7.5*M
p1010-X S 5 g 103 17% DVB 2.6 g pl0l0- II HOR 22 g
onCB 22 g
BPO 0.07 g soft
4 ‘1.3 ()
ID
(m2/g)
pl019-III S 5 g 110 17% DVB 2.5 g
HOH 7.5 g
DeB 7.5 g = (M)
BPO 0.075 g = (M)
p1019-II S 5 g 113 17% DVB 2.51 g p1019-III HOH 10 g = 10/7.5"'M
ODCB 10.0 g 1= 10/7.5"'M BPO 0.076 g
p1019-0 S 5 g 64.2 17% DVB 2.5 g p1019- II HOH 15 g
ODCB 15.0 g = 15/7.5*M BPO 0.075 g = 15/7.5"'M
pl019-I S 5 g 113 17% DVB 2.5 g plOl9- 0 HOH 20 g -tjfEi
ODCB 20 g
BPO 0.075 g soft
-161-
4.1 .4
ID
(m2/g)
pl012-III S 5.14 g 323 33% DVB 9.9 g =1/2*M
HOH 7.53 g = 1/2*M ODCB 7.52 g BPO 0.15 g
pl012-X S 5 g 330 33% DVB 10.01 g p1012-III
HOH 7 55 g
ODCB 7.54 g BPO 0.157 g
pl012-II S 5.01 g 159 25% DVB 5.01 g =8/10*M
HOH 7.99 g = 12/10*M ODCB 12.00 g BPO 0.151 g
pl012-1 S 4.99 g 2.5 25% DVB 5 ‘ 00 g = 1/2*M HOH 5.01 g =15/10*M
DCB 15 g BPO 0.1 g
p1012- S 5.0 g 0 25% DVB 5.00 g =O*M
I=20/10*M
-162-
ID
(m2/g)
p1010- S 5 g 75.1 17% DVB 2.6 g HOH 7.6 g
ODCB 7.5 g BPO 0.1 g
pl011- SSg 182 25% DVB 5 g
HOH 10 g ODCB 10.0 g BPO 0.11 g
plOl1-X S 5 g 344 33% DVB 10 g HOH 15 g
ODCB 15.0 g BPO 0.15 g
pl010-X S 5 g 404 40%
DVB 20 g HOH 25 g
ODCB 25 g BPO 0.26 g
-163 -
4. 1.6
ID
DVB Mixing 2-E thylhexane
Mixing
Mixing
4. 1.7
10
(m2/g)
pl019-X SSg 436 CL 44% DVB 20 g
HOH 25 g 1% ODCB 25 g
BPO 0.25 g
p0206 S 10.01 g 493 CL 44% DVB 40.08 g
HOH 50 g 0.1%
ODCB 50 g BPO 0.077 g
p0207 S 14.08 g 447 CL 40.7% DVB 39.98 g
HOH 50.03 g 0.1% ODCB 50.01 g BPO 0.050 g
-165 -
4.1 ‘ 8
ID
(m2/g)
p0207 S 14.08 g 447 CL 40.7% DVB 39.98 g
HOH 50.03 g 0.1%
DeB 50.01 g
BPO 0.050 g
0.1%
4 ‘ 1 ‘ 9
ID
(m2/g)
p0207 S 14.08 g 447 CL 40.7% DVB 39.98 g
HOH 50.03 g 0.1% DCB 50.01 g
BPO 0.050 g
0.1% (0.6%)
-167 -
4. 1. 10
<l4-dioxane )
(m2/g)
p0208 S 14.08 g ’ 344 CL 40.7% DVB 39.98 g
HOH 50.03 g 0.1% ODCB 50.01 g
BPO 0.050 g
p0208 ‘ lT p0208 291 CL 40 ‘ 7%
0.1%
-168 -
Table 4.2.1. Number of Surface Atoms per Unit Area of Poly Crystalline Surface
Metal
Concentration of Surface AtomsOO19 m-2 )
1.63 1.47 1 ‘ 63 1.54 1.27 1 25 1.33 1.63
-169 -


MKS PDR-D-l
Oil Rotary Vacuum Pump
4.2.3. (K0519-6)
Pm (torr) Ps(torr) Pe(torr) V(m])
10 .4 o 9.1 10 .471 20.1 9.1 18.6 11.574 29.9 18.6 28.3 12.091 40.0 28.3 38.4 11 ‘ 612 49.9 38 ‘ 4 48.3 11.847
avg. 11. 591
4.2 .4. (K0519-6)
Pm Ps Pe del n sum n V(STP) (torr) (torr) (torr) (mole) (mole) (mI/g)
1.0 0 0.5 1.662e-6 1.662e-6 0.0597 2.0 0.5 1.6 8.95ge-7 2.558e-6 0.0918 2.9 1.6 2.7 1.070e-7 2.665e-6 0.0957 4.2 2.7 3.8 8.95ge-7 3.561e-6 0.128 5.0 3.8 4.7 6 ‘ 255e-7 4.187e-6 0.150 7.1 4.7 6.7 3.381e-7 4.525e-6 0.162
10.1 6.7 9.4 1.088e-6 5.612e-6 0.201
-171-
Pm(torr) Ps(torr) Pe(torr) V(m})
6 4 4 6
avg.
12.533
4.2.6. (JO-6)
Pm Ps Pe del n sum n V(STP) (torr) (torr) (torr) (mole) (mole) (mI/g)
1.0 o 0.2 3.031e-6 3.031e-6 0.227 2.0 0.2 1.5 1.09ge-6 4.130e-6 0.309 3.0 1.5 2.7 3.753e7 4.505e-6 0.338 4 .4 2.7 4.1 2.39ge-7 4.745e-6 0.355 5.1 4.1 4.9 2.502e-7 4.995e-6 0.374 7.3 4.9 6.9 2.297e-7 5.225e-6 0.391
13.0 6.9 12.0 5.066e-7 5.732e-6 0 .429
-172-
Pm(torr) Ps(torr) Pe(torr)
10.0 0 8.7 20.2 8.7 18.6 30.1 18.6 28.7 40.2 28.7 38 .4 50.2 38 .4 48 .4
avg.
11.951
4.2.8. (K0609-6)
Pm Ps Pe del n sum n V(STP) (torr) (torr) (torr) (mole) (mole) (ml/g)
1.0 0 0.2 3.027e-6 3.027e-6 0.188 2.1 0.2 1.5 1.531e-6 4.558e-6 0.283 3.0 1.5 2.7 4.116e-7 4.96ge-6 0.308 3.9 2.7 3.6 6.045e-7 5.574e-6 0.346 5.0 3.6 4.8 1. 716e-8 5.591e-6 0.347 6.8 4.8 6.4 5.488e-7 6.140e-6 0.381 8.2 6 .4 7.9 2.187e-7 6.358e-6 0.395
10.0 7.9 9.8 -4.330e-7 5.925e-6 0.368
-173 -
sample
sample BET H2 No. of Surface Pt
Surface Adsorbed H2 Atom Area of Crystal
Area Amount per Pt Size (m2/g) (m l/g) Pt Atom (m2/g Pt) (A)
K0519-6 121 0.062 0.18 50.0 47 JO-6 323 0.293 0.85 235 10
K0609-6 458 0.266 0.77 213 11
-174-
Pm(torr) Ps(torr) Pe(torr) V(m})
avg.
11 .497
4.2.12. (K0609-3)
Pm Ps Pe del n sum n V(STP) (torr) (torr) (torr) (mole) (mole) (ml/g)
1.2 o 0.7 1.552e-6 1.552e-6 0.0882 2.1 0.7 1.7 9.672e-7 2.51ge-6 0.143 3.2 1.7 2.9 4 .447e-7 2.964e-6 0.169 4.0 2.9 3.8 2.340e-7 3.198e-6 0.182 5.1 3.8 4.9 1 ‘ 093e-7 3.307e-6 0.188 7.0 4.9 6.6 5.305e-7 3.838e-6 0.218
10.2 6.6 9.6 5.150e-7 4.353e-6 0.247
-175 -
Pm(tofr) Ps(torr) Pe (torr)
10.1 0 8.8 19.9 8.8 18.3 30.2 18.3 28 .4 40.4 28 .4 38.7 50.0 38.7 48 .4
avg.
12.085
4.2.14. (K0609-9)
Pm Ps Pe del n sum n V(STP) (torr) (torr) (torr) (mole) (mole) (ml/g)
1.2 0 0.3 3.366e-6 3.366e-6 0.212 2.1 0.3 1.4 2.053e-6 5A1ge-6 0.341 3.0 1.4 2.5 1.261e-6 6.680e-6 0 .420 4.1 2.5 3.8 3.391e-7 7.01ge-6 0 .442 5.1 3.8 4.8 5.348e-7 7.554e-6 0 ‘ 475 7.1 4.8 6.5 1.265e6 8.81ge-6 0.555
10.0 6.5 9.3 9 .434e-7 9.763e-6 0.614
-176 ‘
sample Pt Loading
0.124 0 ‘ 266 0.316
sample BET HZ No. of Surface Pt
Surface Adsorbed H2 Atom Area of Crystal
Area Amount per Pt Size (m2/g) (m l/g) Pt Atom (m2/g Pt) (A)
K0609-3 458 0.124 0.72 199 12 K0609-6 458 0.266 0.77 213 11 K0609-9 458 0.316 0.61 168 14
177 -
Prn(torr) Ps(torr) Pe(torr) V(rn})
‘ 10.0 0 8.5 12.935 20.1 8.5 18 .4 12.587 30.3 18 .4 28.7 11.386 40 ‘ 1 28.7 38.3 13.744 50.1 38.3 48.3 13.194
avg. 12.769
4.2.18 ‘ (p1011-1-2H)
Pm Ps Pe del n sum n V(STP) (torr) (torr) (torr) (mole) (mole) (ml/g)
1.1 0 0.6 1.581e-6 1.581e-6 0.126 2.1 0.6 1.7 8.331e-7 2 .414e-6 0.193 2.9 1. 7 2.7 1.031e-7 2.517e-6 0.201 4.0 2.7 3.7 5.030e-7 3.020e-6 0.242 5.0 3.7 4.7 5.030e ‘ 7 3.523e-6 0.282 7.1 4.7 6.8 -2.632e-7 3.260e-6 0.261
10.0 6.8 9.6 -3.50ge-7 2.90ge-6 0.233
-178 -
Pm (torr) Ps (torr) Pe(torr) V(rn})
10.2 20.1 30.2 40.0 50.3
7 4 4 5
0 8 m mmg
12.638 12 ‘ 846 13.194 10.886 12.338
avg. 12.380
4.2.20. (p101'l-I-4H)
Pm Ps Pe del n sum n V(STP) (torr) (torr) (torr) (mole) (mole) (ml/g)
0.9 o 0.5 1.275e-6 1.275e-6 0.100 2.0 0.5 1.8 -7.902e-8 1.196e-6 0.094 3.0 1.8 2.7 5.978e-7 1.794e-6 0.141 4.1 2.7 3.9 -1.080e-8 1.783e-6 0.140 5.1 3.9 5.1 -8.187e-7 9.643e-7 0.076 7.2 5.1 6.9 -1.620e-8 9 .481e-7 0 ‘ 075
10.1 6.9 9.7 -2.945e-7 6.536e-7 0.051
-179-
Pm(torr) Ps(torr) Pe(torr) V(m!)
10.2 0 8.8 11.661 20.1 8.8 18.5 12.091 30.2 18.5 28.6 11.612 40.0 28.6 38 .4 11.967 50.3 384 48.5 13.063
avg. 12.079
4.2.22. (p1011-I-15H)
Pm Ps Pe del n sum n V(STP) (torr) (torr) (torr) (mole) (mole) (m l/g)
1.0 0 0.6 1.221e-6 1.221e-6 0.087 2.2 0.6 1.8 8.198e-7 2.040e-6 0.145 3.1 1.8 2.8 5 .481e-7 2.588e-6 0.184 3.9 2.8 3.8 -2.626e-7 2.326e-6 0.165 5.0 3.8 4.7 6.148e-7 2.941e-6 0.209 7.1 4.7 6.6 7.576e-7 3.698e‘ 6 0 ‘ 263
10.1 6.6 9.5 4.950e-7 4.193e-6 0.298
-180 -
Pe
Adsorbea amount(ml/g)
3.5 8.72
Pe
-181-
Polymer Solution
t:l o~
-182 ’
400
300
200
100
45
Fig. 4.1.2 The effect of Crosslinkage on Surface Area of Polymer Support.
-183 -
403530
Crosslinkage (%)
252015
0.008
SEM
R ι
- 187--
-188 -
Gas Bulb
Manifold Volume
-189-
0.30
0.25
0.20
0.15
0.10
0.05
-190 -

K N
-191-
4
0.0 o 6
-192-
4
‘ -‘-
.-.•
-- -
- - -
-
- -
_ =.=;:...... ---
0.15
0.10
8
-194-
6
0.0 o g
‘ 195-
86
-196-
k1::0.023
0.5
864
-197 -
0.15
3025
4030
2, Pt. 1, Colloid and Surface Chemistry. Pure Appl.
Chern. 31 , 578(972).
[4-2] S. Lowell and]. E. Shields, " Powder Surface Area and
Porosity," 3rd ed., Chapman & Hall, 1991.
(4-3] J,R. Anderson, " StrucLure of Metallic Catalysts,"
Academic Press, 1975.
on Supported Catalysts." ]. Phys. Chern., 64, 204(960).
[4-5] S. Brunauer, " The Adsorption of Gases and Vapours,"
Princeton Univ. Press. Princeton(943).
[4-7] S.P. Wolsky and E.]. Zudanuk ed.. " Ultrarmcro Weight
Determination in Controlled Environments,"
Interscience,New York( 1969).
[4-8] D.W. Aylmore and W ‘ B. Jepson, ]. of Sci. Inst., 38,
156(961).
Pulse Adsorption System for the Measurement of
Hydrogen Chemisorption on SuPPOrted Platinum
Catalysts," Chalk River Nuclear Laboratories,
- 201-
AECL-5250(1975).
589(1963).
Adsorption on Platinum/Silica Catalysts," ]. Ca. 12,
207(968).
Meisenheimer, '’ Particle Size Determinarion of
Supported Catalytic Metals; Platinum on Silica Gel," j.
Catal., 1, 336(962).
Structure and Activity of Supported Metal Catalysts:
V. Variables in the Preparation of Platinum/Silica
Catalysts," ]. Catal., 20, 190(971).
Handbook," 5th ed., McGraw-Hill (1973).
-202-
-

PTFE(Polytetra- fluoroethylene) PTFE
SDBC(Styrene divinyl benzene)
.



. Butler[5-1J
ceramic wet-proofed PtlCbon
.
pH
we:ability
. wettability
Pt/Carbon .
.

(zeolite, molecular sieve)

. Si!Al
.


- 203-
1.
1930

1940 mordenite

.
1950 A, X, Y
.
sνAl Si!Al
1970 Mobil Oil

ZSM-5 .
Al0 4 Si04
Al04- Si04 tetrIea 3
. tetrIea

I, n .
tetr;1ra
T site (Si.Al)
Mx/o [(Al02)x(Si02)y]zH20
-204-
. n x,y z
(x+y) tetr1ra y/x
l A
y/x=l, X l<y/x<l ‘5, Y 1.3<y/x<3 ZSM ‘ 5
5<y/x< ∞ .
sodalite(uncated octaheal) (double
4‘ ring) X Y
(double' 6-ring hexagonal prism)
. A 8
.
Y 12
.

.



.
(NIL+) .
.
(calcinaon)


-205 -
ZSM-5 faaSl
Linde type A chmmel
[5-2]. ZSM-5
. ZSM-5
tetrahedra 8 5-membered 19
. ZSM-5 edge
chn . chain sheet sheet
3 . ZSM-5
channel [001] sinusoidal
channel [010] i straight channel
. straight channel free diameter 5.6x5.3 A
sinusoidal channel free dineter 5.1 x 5.5 A .
a::::20.1, b=19.9, c:::13.4 A orthorhombic
nlOnoclinic .
2SM-5 r
.
ZSM-5 .
0.9+ O.2My'nO:W203:5-100Y02:zH20
- 206-
silicalite [5-3] . silicalite ’ ZSM-5
10-19S
intersecting channels 3 6 A
.
.
Chen [5-4] mordenite

. mordenite

silica

SiOν203>80 dealuminated mordete

.
aluminum tr;1ra cation centers
Si-O-Si
. dealumination

.
Olson [5-5] ZSM-5
. ZSM-5 I Si()y'Ah03

X-ray diffraction pattern, refractive
index
. 2SM-5
- 207-
r
SiOV'Al2OJ . ZSM-5
[5-6] Siα/Alz03>400
()(benzene cyc1ohexane)
.
.
silicite 6A
O.19cm3/gr .
( kinetic diameter 5.85A) 6A
(kinetic neter 6.2A) .

silicalite
.
silicalite
silicalite . silicalite
precusor
hydroxyl .
hydroxyl
intracrystalline void space tetrahedral framework
silicon field gradients
. silicalite .
2.
templa19 agent
(hydrothenn) [5-7).
.
1) silica source colloidal silica(Ludox HS-30)
.
2) NaAlOz
.
3) TPABr(TetraPropylAmmonium Bromide)
templating agent .
4) Autoclave 150-170 0C
.
5) 1100 C
.
6) 0 0 c 12
NaZSM-5 .
7) NazSM-5 70 0C 1M NH4Cl
Na+ H+ . (3)
8) 550 0
C
HZSM-5 .
9) ZSM-5
Pt-2SM-5 .
ZSM-5 .
. TPABr(Tetrapropylarrunonium bromide) : 31.21 gr,
-209-
NaOH : 1.3 gr, NaAl02: 1.6 gr, H20 : 200 n LUDOX HS-30 :
38.17 gr.
autoclave
(5-1).

( 5-2,5-3).

. x-ray
5-4 5-2 . calcination
X-ray ( 5-5) ZSM-5
.
type BET 414
m2jgr 17A 90A
( 5-6).
. Silicalite
. .
.
1) Silica source colloidal silica CLudox HS-30) TPABr
(Tetra Propyl Ammonium Bromide) templating agent
.
2) NaOH
.
-210-
3) Autoclave zoot 72 .
4) .
5) l00 "C oven .
6) 600''C l
silicalite .
ZSM-5 silicalite .
Ludox HS-30 44 gr, TPABr 2.4 gr, NaOH 1.4 gr H20
25 gr Aluminum source .
silicalite XRD . silicalite
XRD silicite
silicite . silicalite
BET 450m2/gr .
silicalite .
silicalite
XRD 5-7(S1), 5-8(52), 5-9(53)
Sl 51
silicite . silicalite 1
2 3 4 XRD
5-10(Sl-11), 5-11(S-12), 5-12 (S1-13), 5-13(Sl-14)
. silicalite
.
.
ZSM-5 silicite pellet

- 211-
·. ZSM-5, .silicalite

. 5-14 . gr
(Activated Cabon)
ZSM-5 silicite
. silicalite

.
3.
Stevens bithermal system
. (Pt) 1 mole
15000-20000 mole
NH3, CO, H2S
. Nickel-chrorrria
[5-91 .
Nickel-chromia
. Ni-Cr

. Ni-Cr nickel carbonate
chromium carbonate
(615K) nickel-chromium
phenyl ethyl triethoxy silane(PETES}, phenyl trimethoxy
silane(PTMS), phenyl ethyl trimethoxy silane<PMS) nyl
σiethoxy silane(VTES) alkoxy silane slurry
- 212-
Ni-Cr
.
. chromia
15 mole% phenyl trimethoxy
silane ckel oxide-chromium oxide
. hydrophobic layer
multilayer monolayer
l H-D exchange
. 106 Pa, 373K
. nickel-chromia


.
-213 -
=;:
-i
(aer leinaon)
‘ N * { g ; : υ
(ter crystazation)
,‘* ι‘.‘.
(aft1π calcination)
(ter crystallization)
(after ion exchange with NH4Cn
-218 -
-219-
-220-
5-7
”i a-
-221-
5-8
i ~ @
=‘ ζ~.

!j
m l“
-222-
5-9
-223-
5-10
<gsg
.gn
-224-
5-11
-225-
5-12
-226-
5-13
·4
.2
-- 227-
[5-1] Butler, J.P., ].H. Rolston, and W.H. Stevens) ''Novel catalysts
for isotopic exchange between hydrogen and liquid water",
ACS Symp. Series, 68, 91-109 (1978)
[5-2J Kokotailo G.T. et al, "Structure of Synthetic Zeolite ZSM-5 ",
Nature, Vol272, 437-438 (1978)
[5-3] Flanigen E.M. et aI., "Silicalite, a New Hydrophobic Crystalline
Silica Molecular Sieve ", Nature, VoL271, 512-516 (1978)
[5-4] Chen N.Y., "Hydrophobic ProIXes of Zeolites", ]. Physical
Chemistry, Vo18(l), 60-63 (l~6)
[5-5] Olson D.H. et al, rIChni1 and Physic Properties of the
ZSM-5 Substitutional Ses" j. Catalysis, Vol61, :K)-
(l~)
zeolite ZSM-5",zEOUTES, Vo12, 67-68 (1982)
[5-7] AI'auer R.I. and Lldolt G.R., "Crystalline Zeolite ZSM-5
and Me10d of Prlring the Same ", US Pa'lt 3702β86
(1972)
[5-8J R W.Grose and E.M. F1gI "Crysne Sca ", US PaIt
40614 (lgη)
New York{l)
[5-10] Bhachya K, et al, " IsotoC :change between hyagen
-229-
calysts" J. Catal.) Vol.l34, 339-408 (1992)
-230-
1.


.
. (Loading)

.
(ion exchange), (impregnation) (precipitation)
.[6-1 - 6-6]

(
)
(Na+ ) .
100%

7t .
PtJZeolite .[6-2]
pH
.
-231-

. l
pH
(coprecipitation)
.
‘ .
Ni/Alumina .[6-3]
(
)
.

.
.
pH PtJSilica .[6-4 6-5, 6-6J
.

01

(calcinaon)
(reducon) .
100 - 120t l .

(calcinaon)
- 232-
( )

. NaYl

Fe,
co Ni
‘’
.
.

.

.
2.

Pt-Silicalite-Teflon
PtlSilicalite
Teflon (Berl saddle,
Raschig ring, Pall ring )
.[6-7]
- 233-

Pt(N1-Ll)4Cb
silicalite
. pH
· 10.5 7 wt%
80% . w+-nmonia
complex
Pt-ammonia-silicalite surface complex
. TEM
. .
HlPt hydrogen spillover TEM
(I silicalite )
.
(700l: ) silicalite

silicalite
.
ceramic sphere -
.

. -
Pt-tef1on-carbon
.
Silicalite
-234-
[6-9] silicalite
silicite NaOH NI-~OH Pt(N1tJ)C
8wt%
60% . silicalite
Pt(N!-h)4(N03h [6-10]
.
Pt/SiIicalite

.
.
SνAl AI O

[6-11] ZSM-5 AI SiO-
.[6-1


.
) α01M
HzPt;C16 Pt(N)4Ck 2
.
-235-
5%)
sot: 2M NaOI-I 1 2
() .
)
rotary evaporator

aspirator 70t 10
70t 6.
)
loot oven 24 .
2)
) 0.06 M Pt(NI)-aCh 53 m1 1 g
magnetic stirrer
.
.
) 2 100
oven 24 .


.
-236-

.
.
1)
) 0.5 - 1.0 g flow
reactor .
19 1 litlmin .
} 71 0'C
W.5 't /min) 3OO"C 3 .
) 3OO"C 1 literIrnin
2
.
) flow reactor
19 100 mVmin .
) 300't
(1 t/min) )()'C 3 .
) 3OO'C 1 litεr/min
2
.
2)
- 237-
0.5 - 1.0 g flow reactor
.
. Pt/Silicite

pνSilicalite .
2) SWR5: (HzPtC ) •
3) SAC5: (HzPtCLi ) • •
4) SAR5: (HzPtC1t> ) •
5