mechanical strain and process strain applied to semiconductor device...

36
Project Title Mechanical Strain and Process strain Applied to Semiconductor Device 應應應應應 應應應應應應應應應應應應 應應應 : 應應應 應應應應 : 應應應 應應

Upload: art

Post on 08-Jan-2016

88 views

Category:

Documents


0 download

DESCRIPTION

Mechanical Strain and Process strain Applied to Semiconductor Device 應用於半導體元件之機械應變及製程應變 研究生: 詹孫戎 指導教授: 劉致為 博士. Outline. Publication List Mechanically Strained-Si NMOSFETs PMOSFETs Mechanically Strained Si/SiGe HBTs Multi-Plane Reflector of RTP Wafer Bonding - PowerPoint PPT Presentation

TRANSCRIPT

Project Title

Mechanical Strain and Process strain Applied to Semiconductor Device

應用於半導體元件之機械應變及製程應變

研究生 : 詹孫戎指導教授 : 劉致為 博士

Project Title

Outline

Publication List Mechanically Strained-Si

NMOSFETs PMOSFETs

Mechanically Strained Si/SiGe HBTs Multi-Plane Reflector of RTP Wafer Bonding Process (Local) Strained-Silicon Simulation Conclusions

Project Title

Publication List

Mechanically strained strained-Si NMOSFETs S. Maikap, C.-Y. Yu, S.-R. Jan, M. H. Lee, and C. W. Liu EDL, VOL. 25, NO. 1, JANUARY 2004

Mechanically strained Si/SiGe HBTs F. Yuan, S.-R. Jan, S. Maikap, Y.-H. Liu, C.-S. Liang, and C. W. Liu To be published in IEEE EDL, July, 2004

Comprehensive study of mechanically strained strained-Si PMOSFETs To be submitted to IEEE Trans. ED

Project Title

Mechanically Strained-Si

Low cost Package strain

(a) Schematic diagram of the externally applied mechanical stress on the wafer

(b) the channel is parallel to the azimuthal direction (Θ ) on the Y axis devices and the channel is parallel to the radial direction ( r ) on the X axis devices.

Project Title

Bender design

底座立體圖01

底座立體圖02

墊片立體圖

上蓋立體圖

Project Title

ANSYS Simulation

(θ) strain lager than (r) strain (r) strain degrades more

^^

0 10 20 30 40 50-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Azimuthal direction ( ) Radial direction ( r )

Tensile strain

Compressive strain

Str

ain

(%

)

Distance from the centre, r (mm)

Project Title

Mechanically Strained-Silicon NMOSFETs

• Drain current vs. drain voltages for (a) control Si and strained-Si devices (WxL=25x25 m2) with and without mechanical strain.

0 1 2 30.0

1.0x10-4

2.0x10-4

3.0x10-4

4.0x10-4

5.0x10-4

6.0x10-4

7.0x10-4

8.0x10-4

Drain voltage (V)

Dra

in c

urr

ent

(A)

Vgs

-Vt=0 V

Vgs

-Vt=1 V

Vgs

-Vt=2 V

Vgs

-Vt=3 V

w/o stress with stress

(b) Strained-Si

Project Title

Mechanically Strained-Silicon NMOSFETs

Drain current enhancement with the distance from the centre of the wafer for the mechanically strained strained-Si and control Si devices.

0 5 10 15 20 25 30 350

1

2

3

4

5

6

7

Strained-Si

Vgs

-Vt=3.0 V

Vds

=1.0 V

Channel along Channel along r

Control Si

D

rain

cu

rren

t en

han

cem

ent

(%)

Distance from centre (mm)

^^

Project Title

Mechanically Strained-Si PMOSFETs

Drain current vs. drain voltage characteristics of (a) a control Si and (b) a strained-Si PMOSFET devices (WxL=25x0.6 m2) with and without mechanical strain of ~0.087%. The compressive and tensile strains are perpendicular to the channel using the one-end-bending method.

0 -1 -2 -30.0

-3.0x10-4

-6.0x10-4

-9.0x10-4

-1.2x10-3

-1.5x10-3

-1.8x10-3 (a) control Si w/o stress compressive strain (~0.097%) tensile strain (~0.097%)

Vgs

-Vt=-1 V

Vgs

-Vt=-2 V

Vgs

-Vt=-3 V

Dra

in c

urr

ent

(A)

Drain voltage (V)

0 -1 -2 -3

(b) strained-Si compressive strain (~0.097%) tensile strain (~0.097%) w/o stress

Vgs

-Vt=-1 V

Vgs

-Vt=-2 V

Vgs

-Vt=-3 V

Project Title

Effective Mess of Hole

Effective mass (meff) vs. uni-axial and bi-axial strain. Initially it is

assumed that the heavy hole (mhh) = 0.54mo and light hole (mlh) =

0.5mo, where mo = 9.11x10-31 kg.

-0.10 -0.05 0.00 0.05 0.10-40

-30

-20

-10

0

10

20

30

40assume the initial m

eff of

heavy hole (mhh

)=0.54mo

light hole (mlh)=0.5m

o

mt

mt

ml

tensile compressive

ml

bi-axial

bi-axial

effe

ctiv

e m

ass,

mef

f (%

)

strain(%)

Project Title

Mechanically Strained Si/SiGe HBTs

The Gummel plot of the SiGe HBT device without and with mechanical stress (strain ~0.028%). The base-collector bias is zero volts. (a) is the collector current and (b) is the base current.

(V)

(A) IC-V

BE

0.751x10-4

3x10-4

4x10-4

5x10-4

w/o stress compressive tensile

0.8

2x10-4

(A)

(V)

1x10-6

0.75

2x10-6

w/o stress compressive tensile

0.8

3x10-6

5x10-7

IB-V

BE

13mm from the center(θ) strain ~0.033%( r ) strain ~0.028%Average biaxial strain 0.028%

Project Title

Experiment

The common emitter output characteristics with the constant base current. The SiGe HBT device with compressive mechanical stress has larger output IC than that without mechanical stress.

0.0 0.5 1.0 1.50.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

IB = 2, 4 A

SiGe HBT w/o stress compressive strain (~0.028%) tensile strain (~0.028%)

VCE

(V)

I C (

mA

)

Project Title

Multi-Plane Reflector of RTP

Arrangement of multi-plane reflector, lamp, and wafer. High reflection on the side of reflector to compensate the radiation

loss at the edge.180mm

60mm (ll2)

2mm

4" wafer

lamp

multi-plane reflector

h

h_low_reflectorh_high_reflector

Project Title

Multi-Plane Reflector Simulation

Increase the bonder temperature uniformity for 4 in full wafer bonding

 32.542828

1.948212

tot x( )

dir x( )

ref x( )

tot1x( )

32020 x50 0 50 100 150 200 250 300 350

0

5

10

15

20

25

30

35

ψdir(x)

ψtot(x)

ψref(x)

ψdir(x) is the irradiation intensity from the lamps.ψref(x) is the irradiation intensity from the reflector.ψtot(x) is total irradiation intensity [ =ψdir(x) + ψref(x) ]

Project Title

Multi-Plane Reflector design

factors in simulation

2-dimension drafting of multi-plane reflector

Factorsreflector length

ll2 h w h_low_reflector h_high_reflector

Unit (mm) 180 60 40 20 6 8

Project Title

Multi-Plane Reflector design

3-dimension drafting of multi-plane reflector

Project Title

Wafer Bonding design

Spacer

Pressure device

Alignment device

3-dimension drafting of bonder

Project Title

Wafer Bonding Process

(a) Wafer alignment.

(b) Set pressure device.

(c) Apply pressure.

(d) Remove spacer.

•To have one initial contact and have only one bonding wave

•Bonding on full wafer without defects are possible

Project Title

IR-Viwer

IR-viewer Home made: 0.2 M NT Commercial: 1M NT

IR-Viwer IR-bulb

Project Title

Experiment

SOI, GOI applications

Wafer 1

Wafer 2

Defects due to clean room particle

Project Title

Experiment

No defect on 4” wafers

Project Title

Process (Local) Strained-Silicon Simulation

Introduction Why use strained-Si

because of physical size shrinking limitation Need higher mobility μ

Strained-Si Substrate (global) strained-Si Process (Local) strained-Si

oxt T / )V-(V

charge mobility I

Project Title

Substrate (global) strained-Si

Due to different lattice constant Ge (SiGe) > Si

Effect Tensile strain

Biaxial

%8.02.004.0

04.0

2.08.0

1

GeSi

xGeSi xx

Project Title

Process (Local) strained-Si

Strain effect

Schematic view of 3D process-induced strain components.

εx is strain in the x directionεy is strain in the y directionεz is strain in the z direction

Direction of Strain Change

CMOS Performance Impact

NMOS PMOS

X Improve Degrade

Y Improve Improve

Z Degrade Improve

•Impact of 3D Strain Effects on CMOS Performance.•Strain change = Increased tensile or decreased compressive strain

Project Title

Process (Local) strained-Si ( Intel’s prescot CPU)

Cap-Layer: Ni4Si3 cap

STI: shallow trench insulator Source/Drain: silicide ; CoSi2 ; TiSi2 ; SiGe

Intel 2003 IEDM Intel 2003 IEDMTSMC 2003 IEDM

Project Title

Simulation

Model Thermal expansion ?

Ni4Si3 Si SiO2

thermal expansion coefficient 4E -6 2.6E -6 0.55E -6Young's modulus ( Pa ; Nt/m2 ) 310G 150G 73GPoisson ratio 0.27 0.28 0.17

MOS structure simulated by ANSY

x

Project Title

ANSYS Simulation

stress is too small εx 0.04%≒ Process strain → 0.4%

Enlarged figure of Fig. 5-2 .The origin of x axis is at the right edge of oxide.

x 0

0 10 20 30 40 50-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

stra

in in

the

x d

ire

ctio

n (

%)

X (nm)

y=0.1 nm (below gate oxide) nitride

Project Title

Initial Stress

P-SiN: Plasma-CVD Silicon Nitride

=> compress stress T-SiN: Thermal-CVD Silicon Nitride

=> tensile stress

Project Title

ISE Simulation

Model .25μm MOS Initial stress: 1G

Intel 2003 IEDM

Source Drain

Gate

Nitride

•MOS structure simulated by ISE. •Channel length = 0.25 μm.

Project Title

Nitride Thickness

Thickness ↗

=> stress ↗ not achieve our expectation

G

E

si 150

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

the

stra

in in

the

x d

irec

tion

(%)

X (micrometer)

initial stress = 1G0.008 micrometernitride thickness (nm)

30 70 110 150 190 230 270 310 350

The result of ISE simulation.The effect of the nitride thickness on the strain.

Project Title

Nitride Thickness

250nm→0.1% 70nm→0.038%

0 50 100 150 200 250 300 350 400

0.04

0.05

0.06

0.07

0.08

0.09

0.10

the

str

ain

in th

e m

iddl

e o

f th

e ch

an

nel(

%)

the thickness of nitride (nm)

initial stress = 1G

•The result of ISE simulation.•The effect of the nitride thickness on the strain in the middle of channel.

Project Title

Spacer

Intel spacer : sandwich

Enlarged figure of Fig. 5-5.The nitride spacer no sandwich structure.Channel length = 0.25 μm.

Source Drain

Gate

Nitride

(μ m)

Spacer with sandwich structure.Channel length = 0.25 μm.

Source Drain

Gate

Nitride

Oxide

(μ m)

Project Title

The result of ISE simulation.The effect of the sandwich spacer structure on the strain. s channel : the stress of sandwich spacer in the channel.s nitride : the stress of sandwich spacer in the nitride cap.c channel : the stress of control spacer in the channel.c nitride : the stress of control spacer in the nitride cap.

Spacer

Lager stress Sandwich:0.046% Control:0.038%

-0.4 -0.2 0.0 0.2 0.4

-8.00E+007

-6.00E+007

-4.00E+007

-2.00E+007

0.00E+000

2.00E+007

4.00E+007

6.00E+007

8.00E+007

1.00E+008

1.20E+008

1.40E+008

1.60E+008

1.80E+008

stre

ss in

the

x d

ire

ctio

n (

Pa

)

X Axis (micrometer)

s channel s nitride c channel c nitride

Project Title

shrink

.25μm → 50nm Larger stress

50nm ε 0.08%≒

50nm sandwich ε 0.17%≒

MOS structure simulated by ISE.Spacer with sandwich structure.Channel length = 50 nm.

Source Drain

Gate

Nitride

(μ m)

Oxide

Project Title

The result of ISE simulation.The effect of the shrinking dimension on the strain.

shrink

Larger stress 50nm

ε 0.08%≒

50nm sandwich ε 0.17%≒

-0.4 -0.2 0.0 0.2 0.4-1.00E+008

-5.00E+007

0.00E+000

5.00E+007

1.00E+008

1.50E+008

2.00E+008

2.50E+008

stre

ss in

the

x d

ire

ctio

n (

Pa

)

X (micrometer)

channel length 50nm stress in the channel sandwich spacer 50nm stress in the nitride sandwich spacer .25 micrometer stress in the channel .25 micrometer stress in the nitride 50nm stress in the channel 50nm stress in the nitride

Project Title

Conclusions

Mechanically Strained-Si

Multi-Plane Reflector designed and experiment Wafer Bonding : No defect on 4” wafers Process (Local) strained-Si

Initial stress P-SiN: Plasma-CVD Silicon Nitride => compress stress T-SiN: Thermal-CVD Silicon Nitride => tensile stress

Nitride thickness ; sandwich spacer ; size shrink Result lager stress

Tensile strain NMOS PMOS

Parallel Improve Degrade

Perpendicular Improve Improve