mlt35

Upload: sanda-ruxandra

Post on 07-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 Mlt35

    1/9

  • 8/6/2019 Mlt35

    2/9

    Page 2

    Autocorrelation Function:

    Because the Maple and Mathematica scriptsused are too large for this paper, we present the stepswe followed for computing the autocorrelationfunction (R[n]) and the power spectral density (PSD)of the MLT 3 5 code. The Moore state transitiondiagram of MLT 3 5 is symmetrical and contains 40states, so let N=20.

    1. First at all, we denote that the state matrix T canbe written using the matrixes T 1 and T 2 :

    =12

    21

    T T

    T T

    T M

    LL

    M

    =

    p

    p p

    p p

    p p

    p p

    p p p

    p p

    p p

    p p

    p

    p p

    p p

    p p

    p p p

    p

    p

    p

    p

    T

    10000000000000000000

    0100000000000000000

    0010000000000000000

    0001000000000000000

    0000100000000000000

    100000000000000000000100000000000000000

    0010000000000000000

    0001000000000000000

    0000100000000000000

    0000000000000000000

    0000000000000010000

    0000000000000001000

    0000000000000000100

    00000000000000000100000000000000000000

    00000000000000010000

    00000000000000001000

    00000000000000000100

    00000000000000000010

    1

    0 0 0 0

    0 0 0 0

    1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1

    1 11 1

    0

    0 1

    0 0 0 0 0 0 0 00 0

    00000rds = -1rds = -2 rds = 0 rds = 1 rds = 2 rds = 3

    Transmit +1in these states

    Transmit 0in these states

    Transmit -1in these states

    Mealy state transition diagram for MLT3 5 code

  • 8/6/2019 Mlt35

    3/9

    Page 3

    R[0]

    R[1]R[2]

    R[3]

    R[4]

    R[5]

    R[6]

    R[7]

    R[8]

    R[9]

    R[10]

    =

    0000000000000000000

    00000000000000000000

    00000000000000000000

    00000000000000000000

    00000000000000000000

    0000000000000000000

    00000000000000000000

    00000000000000000000

    00000000000000000000

    00000000000000000000

    00000000000000000001

    00000000000000000000

    00000000000000000000

    0000000000000000000000000000000000000000

    00000000000000000001

    0000000000000000000

    0000000000000000000

    0000000000000000000

    0000000000000000000

    2

    p

    p

    p

    p

    p

    p

    p

    p

    T

    [ ]000000000011111111111 = A

    = 101

    101

    101

    101

    101

    10101010101010101010101

    101

    101

    101

    101

    1p p p p p p p p p p p p p p p p p p p p

    w

    2. The output matrix is:[ ]11 A A A = M

    1=3. The vector w contains the stationary probabilities

    p1, p2, , p 2N and matrix d= diag(w). We can use

    the fact that: [ ]1121

    www M=4. The stationary probabilities was found solving the

    following equations system:

    ==+1

    )(

    1

    1211t

    N I w

    wT T w,

    where I N is a line matrix of ones.5. Now we can calculate the autocorrelation

    function (AKF), using the formula:t n AT d An R = )(][

    And using Maple, we get:

  • 8/6/2019 Mlt35

    4/9

    Page 4

    21

    ]0[ = R

    p R =103

    103

    ]1[

    32

    54

    52

    51

    101

    ]2[ p p p R +=

    5432

    58

    29

    527

    1033

    56

    103

    ]4[ p p p p p R +++=

    65432

    57

    65

    535

    535

    3325

    21

    ]5[ p p p p p p R +++=

    65432

    513

    544

    566

    556

    529

    59

    103

    ]6[ p p p p p p R +++=

    8765432

    516

    546

    554

    526

    58

    1037

    1023

    107

    101

    ]7[ p p p p p p p p R ++++=

    98765432 85

    1545

    2845

    3185

    23410241

    549

    1033

    54

    101

    ]8[ p p p p p p p p p R ++++=

    1098765432

    572

    5318

    5701

    5986

    5959

    5686

    5384

    5174

    121027

    103

    ]9[ p p p p p p p p p p R +++++=111098765432

    5109

    5521

    51283

    104151

    52374

    52012

    51348

    101511

    5348

    5118

    521

    ]10[ p p p p p p p p p p p R +++++=

    Power Spectral Density:Because of the big computing volume for

    PSD, we have two ways: to use the Bennett formula(1) or to try some methods [Pet] to reduce thisvolume and use the formula (2).

    (1)

    += =1 ))1(2cos(][]0[1),( k n k f k R RT p f W

    (2)

    =++=

    nn C zC T T

    n f C

    T p f W )]Re(2[

    1)(

    1),( 21

    2

    02

    where we considered: G1 = a vector containing the Fourier transformsof the input wave forms. This means that, if for apulse wave form

    =otherwise

    T T t t s,0

    ]2

    ,2

    [,1)( , f

    T f f S

    = )sin(

    )(

    or for a Dirac wave form)()( t t s = , 1)( = f S ,

    we can write 11 ASG = .In the followings we shall consider S(f)=1.

    )( 111 wdiagGG =

    .

    *1G = hermitic transpose of 1G .

    )2sin()2cos(2 T f jT f e z T f j +== == T f f n normalized frequency with respect

    to the input bit rate.

    = N 1 a vector of N ones,= N I a N x N identity matrix. 110 GwC =

    *1111 )( Gw I GC N

    t N +=

    *1

    121112 )1( GT T w I zGC N

    t N +=

    )1(21

    += .In our case 1= , which denotes 0= . So weget:

    00 =C *111 GGC =

    *1

    12112 )( GT T I zGC N =

    .

  • 8/6/2019 Mlt35

    5/9

    Page 5

    In case of using Bennetts formula (1), the PSDexpression obtained with Waterloo Maple is given in[Appendix 2] and the results are illustrated below:

    We observe that in case we use formula (2), itmight be useful to find a way to simplify thecomputing of matrix 121 )(

    T T I z N .

    Let us note that: [ ]10101 OSG M=

    and =t O

    SG

    10

    *10

    *1

    L ,

    where:[ ]SSSSSSSSSSS =10 and[ ]000000000010 =O .

    Let = DDCC

    BB AA

    T T I z N M

    LL

    M1

    21 )( and

    =WW ZZ

    YY XX

    T T I z N M

    LL

    M

    )( 21 .

    Using all this, it denotes:

    [ ] =t O

    S

    DDCC

    BB AA

    OSC

    10

    *10

    10102L

    M

    LL

    M

    M

    [ ] [ ] *10102 S AASC = .So, having the matrix )( 21 T T I z N , it may beeasily demonstrated that 11 )( = ZZ WW YY XX AA ,which is all we need and it is much easier to computethan 121 )(

    T T I z N .

    The PSD formula resulted after Mathematicacomputing is revealed in [Appendix 3] and thegraphical results are shown in the plots below:

  • 8/6/2019 Mlt35

    6/9

    Page 6

    Conclusions:Even if the PSD formula cant tell us too

    much about the code, the 2D and 3D plots are moresignificant. It is shown that the MLT 3 5 codeminimize high frequencies spectral components andthe d.c. component tends to zero.

    As further work, it might be interesting

    simulate and synthesize an MLT 3 m encoder startingfrom VHDL or Verilog code or from state transitiondiagram using tools as ModelSim or FPGA Express.

    References:

    [Alx] Alexandru, N. D. and Morgenstern, G.,[1998], Digital Line Codes and SpectralShaping, MatrixRom, Bucharest

    [Ans] ANSI X3T12, [1994], FDDI Twisted PairPhysical Layer Medium Dependent (TP-PMD), American National Standard

    [Car] Cariolaro, G. L. and Tronaca, G. P., [1974],Spectra of block coded digital signals,IEEE Trans., COM-22, (10), pp. 1555-1556

    [Cok] Cook, J. W., [1994], Spectra of a class of run-length limited MLT3 codes, Electron.Lett., 1994, 30, (16), pp. 1284-1285

    [Col] Coles, A. N., [1995], New pseudoternaryline code for high-speed twisted pair datalinks, Electronics Letters, 9 th Nov. 1995,vol. 31, no. 23, pp. 1976-1977

    [Dra] Drajic, D. and Petrovic, G., [1980], PowerSpectra of HDB n signals, Electron. Lett.,1980, vol. 16, no. 8, pp. 289-291

    [Mow] Mowbray, M., Coles, A. N. andCunningham, D. G., [1993], New 5B/ 6TCode for Data Tranmission on UnshieldedTwisted Pair Cable, Electronics Letters,vol. 30, pp. 340-343, Feb. 1993

    [Oec] [2001], Optimized EngineeringCorporation, http://www.optimized.com

    [Pet] Petrovic, G., [1979], Power Spectrum of Balanced Digital Signal Generated byMarkov Source, Electron. Lett., 1979, vol.15, no. 24, pp. 769-770

    Appendix 1:C code for MLT 3 m encoding

    / / MLT 3-m Encoder# include # include < stdlib.h># include # include # include < string.h># define MAX 100

    char InStr[MAX],UD,InAnt,In;int B,RDS,RDSStr[MAX];int t,i,m,OutAnt,OutStr[MAX],Out;

    void ReadIn(void){printf("\ nGive the input binary stream (maximum 100

    bits): \ n");t=1;do{t=0;gets(InStr);for(i=0;i

  • 8/6/2019 Mlt35

    7/9

    Page 7

    Out=-1;RDS--;

    }else{Out=1;RDS++;UD='U';

    }else if (OutAnt= =1)

    if (InAnt=='0')if (RDS(-(int)(m/ 2)))

    {Out=0;UD='U';

    }else {Out=0;}

    else / / InAnt== '1'{Out=0;}

    else / / In=='0'if (OutAnt==0)

    Out=0;else

    if (OutAnt==1){

    if (RDS(-(int)(m/ 2)))

    {Out=-1;RDS--;

    }else

    {Out=1;RDS++;

    UD='U';}

    InAnt=In;OutAnt=Out;

    }

    void WriteOut(void){printf("\ nInput stream:\ n");for(i=0;i

  • 8/6/2019 Mlt35

    8/9

    Page 8

    Appendix 2:PSD Bennett approach

    W[fn,p] = -218/ 5*cos(20*Pi*fn)*p^11+(1042/ 5*cos(20*Pi*fn)+ 144/ 5*cos(18*Pi*fn))*p^10+(-16*cos(16*Pi*fn)-636/ 5*cos(18*Pi*fn)-2566/ 5*cos(20*Pi*fn))*p^9+(1402/ 5*cos(18*Pi*fn)+32/ 5*cos(14*Pi*fn)+4151/ 5*cos(20*Pi*fn)+308/ 5*cos(16*Pi*fn))*p^8+ (-568/ 5*cos(16*Pi*fn)-92/ 5*cos(14*Pi*fn)-4748/ 5*cos(20*Pi*fn)-1972/ 5*cos(18*Pi*fn))*p^7+(108/ 5*cos(14*Pi*fn)-26/ 5*cos(12*Pi*fn)+4024/ 5*cos(20*Pi*fn)+636/ 5*cos(16*Pi*fn)+1918/ 5*cos(18*Pi*fn)-14/ 5*cos(10*Pi*fn))*p^6+ (-1372/ 5*cos(18*Pi*fn)+16/ 5*cos(8*Pi*fn)+ 2*cos(10*Pi*fn)+88/ 5*cos(12*Pi*fn)-52/ 5*cos(14*Pi*fn)-2696/ 5*cos(20*Pi*fn)-468/ 5*cos(16*Pi*fn))*p^5+ (-32/ 5*cos(12*Pi*fn)+1511/ 5*cos(20*Pi*fn)+241/ 5*cos(16*Pi*fn)-9*cos(8*Pi*fn)-16/ 5*cos(14*Pi*fn)-

    12/ 5*cos(6*Pi*fn)+768/ 5*cos(18*Pi*fn)-106/ 5*cos(10*Pi*fn))*p^4+(23/ 5*cos(6*Pi*fn)+106/ 5*cos(10*Pi*fn)-696/ 5*cos(20*Pi*fn)-348/ 5*cos(18*Pi*fn)+112/ 5*cos(12*Pi*fn)-98/ 5*cos(16*Pi*fn)+54/ 5*cos(8*Pi*fn)+37/ 5*cos(14*Pi*fn)+8/ 5*cos(4*Pi*fn))*p^3+(236/ 5*cos(20*Pi*fn)-66/ 5*cos(10*Pi*fn)-13/ 5*cos(6*Pi*fn)-58/ 5*cos(12*Pi*fn)+24*cos(18*Pi*fn)-4/ 5*cos(4*Pi*fn)+33/ 5*cos(16*Pi*fn)-33/ 5*cos(8*Pi*fn)-23/ 5*cos(14*Pi*fn))*p^2+(3/ 5*cos(6*Pi*fn)-

    27/ 5*cos(18*Pi*fn)+7/ 5*cos(14*Pi*fn)+12/ 5*cos(8*Pi*fn)+18/ 5*cos(12*Pi*fn)-3/ 5*cos(2*Pi*fn)-10*cos(20*Pi*fn)-2/ 5*cos(4*Pi*fn)+ 5*cos(10*Pi*fn)-8/ 5*cos(16*Pi*fn))*p+1/ 2-1/ 5*cos(14*Pi*fn)+3/ 5*cos(18*Pi*fn)-cos(10*Pi*fn)+1/ 5*cos(4*Pi*fn)-1/ 5*cos(6*Pi*fn)+ cos(20*Pi*fn)-3/ 5*cos(8*Pi*fn)-3/ 5*cos(12*Pi*fn)+1/ 5*cos(16*Pi*fn)+3/ 5*cos(2*Pi*fn).

    Appendix 3:PSD Petrovic approach

    W[fn,p]=

  • 8/6/2019 Mlt35

    9/9

    Page 9