momen inersia dan volume

Upload: arly-demenzion

Post on 03-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Momen Inersia Dan Volume

    1/4

    MATHEMATICS 52

    SOLUTION SET 3

    14.5.32 The polar moment of inertia of the lamina is

    I0 =

    0

    a0

    r4 sin d r d =

    0

    1

    5a5 sin d =

    1

    5a5 cos

    0

    = 2

    5a5

    14.6.4 The value of the triple integral is

    I =

    6

    z=2

    2

    y=0

    3

    x1(x+y+z) dx dy dz

    =

    62

    20

    1

    2x2 +xy+xz

    31

    dy dz=

    62

    20

    (4 + 4y+ 4z) dy dz

    =

    62

    2y2 + 4y+ 4yz

    2y=0

    dz =

    62

    (16 + 8z) dz =

    16z+ 4z262

    = 256

    14.6.10 The value of the triple integral is:

    I =

    11

    22

    8y2y2

    z dz dy dx=

    11

    22

    1

    2z28y2y2

    dy dx

    = 11

    22

    (32 8y2) dydx= 1

    1

    32y 8

    3y322

    dx= 11

    2563

    dx

    = 512

    3

    14.6.12 The volume is:

    V =

    22

    4x2

    y0

    1 dz dy dx=

    22

    4x2

    y d y d x=

    22

    y2

    2

    4x2

    dx

    =

    22

    8 x

    4

    2

    dx =

    8x x

    5

    10

    22

    =128

    5

    14.6.20 The volume is:

    V =

    20

    2x0

    4x2z20

    1 dy dz dx=

    20

    2x0

    (4 x2 z2) dz dx

    =

    20

    4z x2z 1

    3z32x

    0

    dx=

    20

    1

    3(16 12x2 + 4x3) dx

    = 1

    3

    16x 4x3 +x4

    20

    =16

    31

  • 8/12/2019 Momen Inersia Dan Volume

    2/4

    2 MATHEMATICS 52 SOLUTION SET 3

    14.6.26 The moment of inertia of the solid(with density = 1) with respect tothe z-axis is

    Iz =

    22

    4x2

    y0

    (x2 +y2) dz dy dx=

    22

    4x2

    (x2y+y3) dy dx

    =

    22

    1

    2x2y2 +

    1

    4y44x2

    dx=

    22

    648x2 1

    2x6 1

    4x8

    dx

    =

    64x+

    8

    3x3 1

    14x7 1

    36x922

    =15872

    63 251.9365

    14.6.42Note first that the two surfaces intersect in a curve that projects verti-

    cally onto the ellipse x 1

    2

    2+z2 = 1

    in the xz-plane. Hence the volume of the solid is

    V =

    11

    1+21z212

    1z2

    2x+3x2+4z2

    1 dy dx dz =

    11

    1+21z212

    1z2

    (3 + 2x x2 4z2) dxdz

    =

    11

    1+21z212

    1z2

    [(x 1)2 + 4(1 z2)] dxdz

    Let z= sin , then dz = cos d

    = /2/2

    13

    (x 1)3 + 4x cos2 1+2cos 12 cos

    cos d

    =

    /2/2

    16

    3 cos4 + 16cos4

    d=

    /2/2

    32

    3 cos4

    d

    = cos3 sin /2/2+

    32

    3

    /2/2

    3cos2 sin2 d = 0 + 8

    /2/2

    sin2 2 d

    = 4

    sin2 d= 4

    1 cos22

    d = 4

    14.7.4The moment of inertia of a solid sphere of density , radiusa, and center

    (0, 0, 0) with respect to the z-axis is

    Iz =

    20

    a0

    a2r2a2r2

    r3 dz dr d= 2

    a0

    2r3(a2 r2)1/2 dr

    = 2 2

    15(2a4 +a2r2 3r4)(a2 r2)1/2

    a0

    = 8

    15a5 =

    2

    5ma2

    wherem= 43

    a3 is the mass of the sphere.

  • 8/12/2019 Momen Inersia Dan Volume

    3/4

    MATHEMATICS 52 SOLUTION SET 3 3

    14.7.12 The paraboloids meet in the circle x2 +y2 = 4, z = 4. Therefore thevolume between them is

    V =

    2

    0

    2

    0

    12

    2r

    2

    r2r dz drd = 2

    2

    0

    (12r 3r3) dr= 2

    6r2 34

    r4

    2

    0

    = 2 12 = 24

    14.7.16 Choose a coordinate system in which the cylinders axis is the z-axis,and its lower base lies in the (r, )-plane, so that the points of the cylinder aredescribed by:

    0 r a, 0 2, 0 z hThe volume of the cylinder is V =a2h and it has constant density , so its massis m= a2h, and the moment of inertia around the z -axis is:

    Iz =

    2

    0

    a

    0

    h

    0

    r3 dz dr d=

    2

    0

    a

    0

    r3h drd

    = 2

    1

    4r4h

    a0

    =1

    2a4h=

    1

    2a2 a2h= 1

    2ma2

    14.7.28 Note that both the shape and the density of our spherical shell aresymmetric around any diameter. So the moment of inertia will be the same for alldiameters, and we can restrict our attention to the diameter lying along the z -axis.The distance from this axis for a point with spherical coordinates (,,) is sin ,so our moment of inertia will be:

    Iz = 2

    0

    0

    2aa (,,)( sin )

    2

    2

    sin ddd

    =

    20

    0

    2aa

    6 sin3 ddd= 2

    0

    127

    7 a7 sin3 d

    = 127

    42a7 [cos 3 9cos ]

    0 =

    1016

    21 a7

    14.7.29 The surface with spherical-coordinates equation = 2a sin is gener-ated as follows. Draw the circle in the xz-plane with center (a, 0) and radius a.Rotate this circle around the z-axis. This generates the surface with the givenequation. It is called a pinched torus - a doughnut with an infinitesimal hole. Itsvolume is

    V =

    20

    0

    2a sin 0

    2 sin ddd= 2

    0

    1

    3(2a sin )3 sin d

    = 16

    3a3 2

    /20

    sin4 d=32

    3a3 1

    2 3

    4

    2 = 22a3

    We evaluated the last integral with the aid of Formula(113) from the long tableof integrals(see the endpapers). The volume of the pinched torus is also easy toevaluate using the first theorem of Pappus.(Section 14.5)

  • 8/12/2019 Momen Inersia Dan Volume

    4/4

    4 MATHEMATICS 52 SOLUTION SET 3

    14.8.2 The surface area element is dS=

    1 + 22 + 22 dA = 3 dA, so the areawe are looking for is:

    A=

    1

    0

    xx2

    3 dy dx=

    1

    0

    (3

    x 3x2) dx=

    2x3/2 x31

    0= 1

    14.8.8 The surface area element is dS=

    22 + 32 + 12 dA =

    14 dA, and weintegrate in cylindrical coordinates to get the area of the ellipse: 2

    0

    20

    r

    14 drd= 2

    1

    2r2

    14

    20

    = 2

    14 23.509

    14.8.10 The surface area element is dS=

    1 + 4x2 + 4y2 dA=

    1 + 4r2 dA,so the area is: 2

    0

    20

    r

    1 + 4r2 drd= 2

    1

    12(1 + 4r2)3/2

    2

    0

    = 1

    6(17

    17 1) 36.177