references - springer978-3-662-09940-7/1.pdf · references 1. there are several series publications...

54
References 1. There are several series publications devoted to solid state physics and collec- tions of data on solids and their properties: Solid State Physies, edited by F . Seitz, D. Turnbull, H. Ehrenreich, F. Saepen, since 1955 (Academic Press, New York) Springer Series in Solid State Sciences, edited by M. Cardona, P. Fulde, K von Klitzing, H.-J . Queisser (Springer, Berlin) Springer Series in Surfaee Scienees, edited by G. Ertl , R. Gomer, D.L.Mills (Springer, Berlin) Springer Series in Materials Sciences, edited by U. Gonser, A. Mooradian, KA . Müller, M.B. Panish , H. Sakaki (Springer, Berlin) Semieonduetors and Semimetals (eds. R .K Willardson, A.C. Beer) since 1966 (Academic Press, New York) Springer Tracts in Modern Physies, G. Höhler (managing editor) (Springer, Berlin) Topies in Applied Physies, Series eds . C.E. Ascheron, H.J . Koelsch (Springer, Berlin) Landolt-Börnstein, Numerieal Data and Funetional Relationships in Sei- enee and Teehnology, New Series Group III: Crystal and Solid State Physics, editors K-H . Hellwege (Vols. 1 to 9), O. Madelung (Vols. 10 to 23), W. Martienssen (since Vol. 24) Festkörperprobleme/Advanees in Solid State Physies, editors F. Sauter O. Madelung (1967-1972), H.J. Queisser (1973-1975), J. Treusch (1976-1981), P. Grosse (1982-1987) , U. R össler R. Helbig (1993-1998), B. Kramer (1999-present) (Vieweg, Braunschweig) 2. Eneyclop edie Dietionary of Condensed Matt er Physies edited by C.P.Poole (Elsevier, Oxford 2003) 3. F.Seitz: The Modern Th eory of Solids (McGraw-Hill Book Company, New York 1940) 4. Ch. Kittel : Quantum Theory of Solids (John Wiley & Sons Inc. , New York 1963) 5. D. Pines: Elementary Exeitations in Solids (W.A. Benjamin Inc., New York 1964) 6. R. Kubo, T. Nagamiya: Solid State Physies (McGraw-Hill Book Company, New York 1969) 7. ,I.M. Ziman: Prineiples of the Theory of Solids (Cambridge at the University Press 1969) 8. W.A.Harrison: Solid State Theory (McGraw-Hill Book Company, New York 1970) 9. W. Jones, N.H.March: Theoretieal Solid Stat e Physies, Vol. 1: Per feet Lattiee in Equilibrium, Vol. 2: Non-Equilibrium and Disorder (John Wiley & Sons , London 1973)

Upload: phungmien

Post on 22-Apr-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

References

1. There are several series publications devoted to solid state physics and collec­tions of data on solids and their properties:• Solid State Physies, edited by F . Seitz, D. Turnbull, H. Ehrenreich, F .

Saepen, since 1955 (Academic Press, New York)• Springer Series in Solid State Sciences , edited by M. Cardona, P. Fulde,

K von Klitzing, H.-J . Queisser (Springer, Berlin)• Springer Series in Surfaee Scienees, edited by G. Ertl, R. Gomer, D.L. Mills

(Springer, Berlin)• Springer Series in Materials Sci ences, edited by U. Gonser, A. Mooradian,

KA. Müller, M.B. Panish , H. Sakaki (Springer, Berlin)• Semieonduetors and Semimetals (eds. R.K Willardson, A.C. Beer) since

1966 (Academic Press, New York)• Springer Tracts in Modern Physies, G. Höhler (managing editor) (Springer,

Berlin)• Topies in Applied Physies, Series eds . C.E . Ascheron , H.J . Koelsch

(Springer, Berlin)• Landolt -Börnstein, Numerieal Data and Funetional Relationships in Sei­

enee and Teehnology, New Series Group III: Crystal and Solid StatePhysics, editors K-H. Hellwege (Vols. 1 to 9), O. Madelung (Vols. 10 to23) , W. Martienssen (since Vol. 24)

• Festkörperprobleme/Advanees in Solid State Physies, editors F. Sauter(1962~1966), O. Mad elung (1967-1972) , H.J. Queisser (1973-1975) ,J . Treusch (1976-1981) , P. Grosse (1982-1987) , U. R össler (1988~1992) ,

R. Helbig (1993-1998) , B. Kram er (1999-present) (Vieweg, Braunschweig)2. Eneyclop edie Dietionary of Condensed Matt er Physies edited by C.P. Poole

(Elsevier, Oxford 2003)3. F . Seitz: The Modern Th eory of Solids (McGraw-Hill Book Company, New

York 1940)4. Ch . Kittel: Quantum Theory of Solids (John Wiley & Sons Inc. , New York

1963)5. D. Pines: Elementary Exeitations in Solids (W.A. Benjamin Inc., New York

1964)6. R. Kubo, T. Nagamiya: Solid State Physies (McGraw-Hill Book Company,

New York 1969)7. ,I.M. Ziman: Prineiples of the Theory of Solids (Cambridge at the University

Press 1969)8. W .A. Harrison: Solid State Theory (McG raw-Hill Book Company, New York

1970)9. W . Jones, N.H . March: Theoretieal Solid Stat e Physies, Vol. 1: Perfeet Lattiee

in Equilibrium, Vol. 2: Non-Equilibrium and Disorder (John Wiley & Sons ,London 1973)

Page 2: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

294 References

10. H. Haken: Quant enfeldtheorie des Festkörpers (B.G. Teubner , Stuttgart 1973),Quantum Field Theory of Solids 2nd printing (No rt h-Holland , Amsterdam1983)

11. J . Callaway: Quantum Theory of the Solid State (Acad emic Press, Sa n Diego1974)

12. N.W. Ashcroft, N.D. Mermin: Solid State Physics (W .B. Saunders Company,Philadelphia 1976)

13. W . Ludwig: Festkörperphysik, 2. Au flage (Akademische Verlagsgesellschaft,W iesbaden 1978)

14. O. Madelung: Introduction to Solid Stat e Th eory, Springer Serie s in Solid StateSeiences 2 , eds. M. Cardona, P . Fulde, H.-J. Qu eisser (Springer-Verlag, Berlin1978)

15. S.V . Vonsovsky, M.1. Kat snelson : Quantum Solid State Physics, Sp ringer Se­ries in Solid State Seiences 73, eds. M. Cardona, P. Fulde, K. von Klitzing,H.-J . Qu eisser (Springer , Berlin 1989)

16. A. Isihara: Condensed Matter Physics (Oxford University Press 1991)17. P.W . Anderson: Concepts in Solids (World Scientific, Singapore 1997)18. P.M . Chaikin , T .C . Lu bensky: Principles of Condensed Matter Physics, 1st

paperback edition with correct ions (Cambridge Univers ity Press , Cambridge2000)

19. P.L . Taylor , O. Heinonen : A Quantum Approach to Condensed Matter Physics(Cambridge University P ress, Cambridge 2002)

20. E.P. O 'Reilly: Quantum Theory of Solids (Taylor & Francis, New York 2002)21. E. Kaxiras: Atomic and Eleetronic Structure of Solids (Cambridge University

Press , Cambridge 2003)22. P. Phillips: Advanced Solid State Physics (Westview Press, Boulder Colorado

2003)23. http ://www.ccmr .comell .edu/brouwer/p654/notes .ps.

http ://www.fys.ku .dk/flensberg/book2003.pdf .http ://www.thp .uni-koeln .de/~alexal/qf t_ssOl .ps

24. Ch . Kittel: Introduction to Solid State Physics, 7th edit ion (John Wiley &Sons Inc., New York 1996)

25. K.H. Hellwege: Einführung in die Festkörperphysik, 3. Auflage (Springer,Berli n 1988)

26. H. Ibach , H. Lüth: Solid State Physics: An Introdu ction to Th eory and Exper­iment, 3rd edition (Sp ringer, Berlin 2003)

27. U. Kreibig, M. Vollmer : Optical Properties of Metal Clusters, Springer Ser iesin Material Seiences 25 (Springer , Berlin 1995)

28. W . Ekardt : Metal Clusters (W iley & Sons, New York 1999)29. P.-G. Reinhard, E . Suraud: An Introduetion to Cluster Dynamics (Wiley-

VCH, Wein heim 2003)30. C. Janot : Quasicrystals: A Primer (Clarendon Press, Oxford 1992)31. H.-R. Tr eb in: Quasicrysta ls (Wiley-VC H, Wein heim 2003)32. J .B. Suck, M. Schreiber, P. Häu ssler (eds.) :Quasicrystals Springer Series in

Solid State Science 55 (Springer , Berlin 2003)33. M.H. Brodsky( ed .) : Amorphous Semi conductors, Topics in Applied Physics

Vol. 36 , 2nd ed ition (Sp ringer, Berlin 1985)34. N. Mott : Condu ction in Non -Crystallin e Mat erials (Clar endon Press , Ox ford

1987)35. P .G. deG ennes, J . P rost : Th e Physics 0/ Liquid Crystals , 2nd edit ion (Claren­

don P ress, Oxford 1993)36. M. Daoud, C.E. Williams (ed ito rs) : Soft Matt er Physi cs (Sp ringer , Ber lin

1999)

Page 3: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

References 295

37. LW. Hamley: Introduction to Soft Matter (Wiley & Sons, New York , 2000)38. M. Kleman, O.D. Lavrentovich: Soft Matter Physics: An Introduction

(Springer, Heidelberg 2002)39. R .A.L. Jones: Soft Condensed Matter (Oxford University Press, New York

2002)40. G.F . Koster 'Space Groups and their Representations'. In:Solid State Physics

Vol. 5 p.173-256, eds . F. Seitz, D. Turnbull, Academic Press, New York 1957)41. G.F . Koster, J .O. Dimmock, R .G. Wheeler, H. Statz: Properties ofthe Thirty­

Two Point Groups, (MIT Press, Cambridge 1963)42. W . Ludwig, L. Falter : Symmetries in Physics: Group Theory Applied to Phys­

ical Problems, Springer Series in Solid State Seiences 64 (Springer, Berlin1988)

43. G . Burns, A.M. Glazer: Space Groups for Solid State Scientists, 2nd edition(Academic Press, Boston 1990)

44. J .D . Joannopoulos, R.D. Meade, J .N. Winn: Photonie Crystals (PrincetonUniversity Press 1995)

45. C.M. Soukoulis (ed.) : Photonie Band Gap Materials (Kluwer Academic Publ. ,Dordrecht 1995)

46. P. Vukusic, J .R . Sambles: Nature 424 852 (2003)47. M. Lannoo, P. Friedel: Atomic and Electronic Structure of Surfaces , Springer

Series in Surface Seiences 16 (Springer, Berlin 1991)48. H. Lüth: Surfaces and Interfaces of Solids, Springer Series in Surface Seiences

15 (Springer, Berlin 1993)49. H. Lüth: Solid Surfaces,Interfaces, and Thin Films, 4th edition, Springer Se­

ries in Surface Seiences (Springer, Berlin 2001)50. F. Bechstedt: Principles of Surface Physics (Springer, Berlin 2003)51. A. Gross: Theoretical Surface Science: A Microseopie Perspective (Springer,

Berlin 2003)52. G. Binnig, H. Rohrer: Appl. Phys. Lett. 40 178 (1982); Phys. Rev. Lett . 50120

(1983)53. H.-J . Guentherodt , R. Wiesendanger (eds.) : Scanning Tunneling Microscopy

I-III, Springer Series in Surface Seiences Vols.20,28,29 (Springer, Berlin1994-96)

54. R . Waser (ed .) : Nanoelectronics and Information Technology: Advanced Elec­tronic Materials and Novel Devices (Wiley-VCH, Weinheim 2003)

55. G. Mahan: Many-particle physics , 3rd edition (Kluwer Academic/PlenumPubl. , New York 2002)

56. S. Hüfner: Photoelectron Spectroscopy, 3rd edition (Springer, Berlin 2003)57. A. Goldmann (ed .): Landolt -Börnstein, Numerical Data and Functional Rela­

tionships in Science and Technology, New Series Group III: Condensed Matter,Vol. 23 a(1989) , b(1994), c(1999)

58. R . Kubo: J . Phys. Soc . Jpn. 12 570 (1957)59. D.L. Mills: Nonlinear Opiics (Springer, Berlin 1991)60. G. Rickayzen: Green Functions and Condensed Matter (Academic Press, Lon­

don 1980)61. F. Schwabl: Quantenmechanik für Fortgeschrittene (Springer, Berlin 1997)62. M. Born, K. Huang: Dynamical Theory of Crystal Lattices (Oxford at the

Clarendon Press 1954)63. A.A. Maradudin , E.W. Montroll, G .H. Weiss : Theory of Lattice Dynamics in

the harmonie Approximation, Solid State Physics Suppl. 3, ed . by F . Seitz andD. Turnbull (Academic Press, New York 1966)

64. A.K. Ghatak, L.S. Kothari: An Introduction to Lattice Dynamics (Addison­Wesley Publ. Comp. , Singapore 1972)

Page 4: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

296 References

65. B.A . Auld: Acoustic Fields and Waves in Solids (Wiley Interscience, 1973)66. W. Cochr an: The Dynamics 0/ Atoms in Crystals (William Clowes & Sons

Ltd., London 1973)67. H. Bilz , W . Kress: Phonon Dispersion Relations in In sulators, Springer Series

in Solid St ate Seiences 10 (Springer , Berlin , Heidelberg , New York 1979)68. P. Brüesch: Phonons: Theory and Experiments I, Springer Series in Solid St ate

Seiences 34 (Springer , Berlin , Heidelberg , New York 1982)69. P. Brüesch: Phonon s: Theory and Experiments II, Springer Series in Solid

St ate Seiences 65 (Springer, Berlin, Heid elberg , New York 1986)70. P. Brüesch: Phonons: Theory and Experiments III, Springer Ser ies in Solid

State Seiences 66 (Springer, Berlin, Heidelberg, New York 1987)71. G.K. Horton, A.A. Maradudin (eds.) : Dynamical Properties 0/ Solids Volumes

1-7 (Elsevier , Amste rdam 1974-1995)72. W . Kr ess: Phonon Dispersion Curves, One-Phonon Densities 0/ States and

Impurity Vibrations 0/ Metallic Systems , Physik Daterr/Physics Data (FIZKarl sruhe 1987)

73. M.T . Dove: Introduction to Latt ice Dynamics, (Cambridge Univers ity Press1993)

74. A.M. Kossevich: The Crystal Latti ce: Phonons, Soliton s, Dislocations (Wiley­VCH-Verlag, Berlin 1999)

75. G . Leibfried , W . Ludwig: Th eory 0/ anharmonic Effects in Crystals, in: SolidSt at e Physics 12, ed . by F . Seitz , D. Turnbull (Academic Press, New York1961) p. 275

76. W . Kress, F . deWette (eds .) : Surface Phono ns, Springer Ser ies in SurfaceSeiences 21 (Springer, Berlin, Heidelberg, New York 1991)

77. J .-P . Leburton, J . Pascual , C. Sotomayor Torres (eds.) : Phonon s in Semi ­conductor Nanostruciures, NATO ASI Series E: Applied Seiences Vol. 236(Kluwer Acad emic Publishers , Dordrecht 1993)

78. G.P. Srivastava : Theoretical Modelling 0/ Semiconductor Surfaces, (World Sei­enti fic, Singapore 1999)

79. L. van Hove: P hys. Rev . 89 1189 (1953)80. P.Y. Yu, M. Cardona: Fundamentals 0/ Semiconductors 3rd edit ion (Sp ringer,

Berlin , Heidelberg , New York 2003)81. J .T. Nye: Physical Properiies 0/ crys tals, (Clar endon Press, Oxford 1957)82. H.B. Huntington 'The Elastic Constants of Crystals' . In : Solid Stat e Physi cs

Vol. 7 p .213, eds . F. Seitz , D. Turnbull (Academic Press, New York 1958)83. G.A. Nor throp , J .P. Wolfe in : Nonequilibrium Phonon Dynamies, ed . by

W .E. Bron (Pl enum Press, New York 1985) p. 16584. Landoli-Bornstein Group III Vol. 41 Semiconductors, Subvolume A1a 'Lat t ice

Properties ' , ed . by U. Rössler (Springer , Berlin, Heidelberg, New York 2001)85. W . Schäfer , M. Wegener : Semi conductor Optics and Transport Phenomena,

(Springer , Berlin 2002)86. Yu.A. Izyumov, N.A. Chernoplekov: Neutron Spectroscopy (Consul tants Bu­

reau , New York 1994)87. L. Dobrzynski, K. Blinowski: Neutron s and Solid State Phys ics (Ellis Hor-

wood , New York 1994)88. D. Strauch and B. Dorner : J . Phys .: Condens. Matter 2 1427 (1990)89. S. Baroni, P. Giannozi, A. Test a: Phys. Rev . Lett . 58 1861 (1987)90. S. Baroni , S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73515

(2001)91. P. Giannozzi, S. de Gironcoli, P. Pavone, S. Baroni: Phys. Rev . B43 7231

(1991)92. M. Wuttig, R . Franchy, H. Ibach: Solid State Commun. 57 445 (1986)

Page 5: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

References 297

93. J. Fritsch, P. Pavone, U. Schrö der: Phys. Rev. Lett . 71 4194 (1993) ; ,1. Fritsch,C. Eckl, P. Pavone, U. Sehr öder in: Festkörperprobleme/ Advances in SolidState Physics 36, ed . by R. Helbig (Vieweg, Braunschweig 1997) p. 135

94. L.L . Chang, K. P loog (eds .): Molecular Beam Epitaxy and Heterostructures,NATO ASI Serie E: Applied Seiences No. 87 (Martinus Nijhoff Pub!., Dor­drecht 1985)

95. M.A. Herman, H. Sitter: Molecular Beam Epitaxy, Springer Series in MaterialsSeiences 7 (Springer, Berlin 1989)

96. H.D. Fuchs, P. Etchegoin , M. Cardo na , K. Hoh , E.E. Haller: P hys . Rev. Lett .70 1715 (1993)

97. J . Spitzer , T . Ruf, M. Cardona, W. Dondl, R. Scherer, G. Abstreiter,E .E. Haller: Phys . Rev . Lett . 72 1565 (1994)

98. J .R . Salvador, F . Guo, T . Hogan, M.G . Kanatzidis: Nature 425 702 (2003)99. A. Sommerfeld , H. Bethe: Elektronentheorie der Meta lle (Springer, Berlin Hei­

delberg, New York 1967); reprinted from Handbuch der Physik Vol. 24/2100. N. Grewe , F . Steglich, In: Handbook 01 Physics and Chemistry 01 Rare Earths

Vo!. 14, ed . by K.A . Gschneidner jr. , L. Eyring (Elesevier , Amsterdam 1991)p.343

101. S. Roth: One-dimensional Metals (VCH-Verlagsgesellschaft, Wein heim 1995)102. H. Kiess (ed .): Conjugated Condueting Polymers, Springer Ser ies in Solid-State

Seiences 102 (Springer, Berli n 1992)103. P.,1.F. Harris: Carbon Nanotubes and Related Structures, 1st paperback edition

(Cambridge Unicersity Press, Cambridge 2001)104. M.S. Dresselhaus, G. Dresselhaus, P h. Avouris (eds .): Carbon Nanotubes : Syn­

thesis , Strueture, Properties, and App lications , Springer Topics in AppliedP hysics 80 (Springer , Berlin 2001)

105. A.H. Wilson: Theory 01 Metals , 2nd edition (Cambridge University Press1965)

106. W . Nolting: Quantentheorie des Magnetismus (Teubner, Stuttgart 1986)107. D. Shoenberg: J . Low Temp. Phys. 2 483 (1970)108. M. Cardona (ed .) : Light Scattering in Solids , Topics in Applied Physics 8

(Springer, Berlin 1975)109. A. Kallio, J . Piilo: Phys. Rev. Lett . 77 4237 (1996)110. D.M . Ceperley: Phys. Rev . B18 3126 (1978)111. H. Jones: The Th eoru of Brillouin Zones and Electronic Struciure in Crystals

(Nort h-Hol land Pub!. Comp., Amsterdam 1975)112. P. Fulde: Electron Correlations in Molecules and Solids, Springer Series in

Solid State Seiences 100 (Springer , Berlin, Heidelberg, New York , 3rd enlargededition 1995)

113. R.M. Dreizier , E.K. Gross : Density Funetional Theory : An Approach to theQuantum Many -Body Problem (Spr inger , Berlin 1990)

114. M. Levy : Proc. Nat!. Acad. Sei. USA N.Y . 76 6062 (1979)115. P. Hohenberg, W . Kohn: Phys. Rev . 136B 864 (1964)116. W . Kohn , L.J . Sham: P hys . Rev. 140A 1133 (1965)117. L. Hedi n: Phys. Rev . 139 A796 (1965)118. W .G. Au lbur , L. Jönsson, J .W. Wil kins in: Solid St ate Physics 54, ed . by

H. Ehrenreich (Academic Press, Orlando 1999) p . 1119. J .R . Chelikowski, A. Franciosi (eds .): Eleetronic Materials - A New Era in

Mat erial Sci ence, Springer Series in Solid State Seiences 95 (Springer, Ber lin1991)

120. W .A. Harrison: Electronic Struciure and the Properti es 01 Solids (W .H. Free­man and Company, San Francisco 1980; Dover edition, General Pub!. Com­pany, Toronto 1989)

Page 6: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

298 References

121. J. Kübler, V. Eyert 'Elect ronic Structure Calculations'. In: Material Scienceand Technology: Electronic Properties 0/ Metals and Ceramies Part I, ed . byK.H .J . Buschow (VCH-Verlagsgesellschaft, Weinheim 1991) p. 1-145

122. W.A. Harrison: Pseudopotentials in the Theory 0/ Metals (W .A. BenjaminInc ., New York, Amsterdam 1966)

123. C. Albrecht, J .H. Smet, D. Weiss, K. von Klitzing, R. Hennig, M. Langenbuch,M. Suhrke, U. Rössler, V. Umansky, H. Schweizer: Phys. Rev . Lett . 83 2234(1999)

124. Landolt-Bömstein, Numerical Data and Functional Relationships in Scienceand Technology, New Series Group III: Crystal and Solid State Physics, editorO. Madelung Vol. 13b p. 16 (1983)

125. Landolt-Bömstein, Numerical Data and Functional Relationships in Scienceand Technology, New Series Group III: Crystal and Solid State Physics, editorO. Madelung Vol. 13c p. 10 (1984)

126. Landolt-Bömstein, Numerical Data and Functional Relationships in Scienceand Technology, New Series Group III: Crystal and Solid State Physics, editorO. Madelung Vol. 22a p. 263 (1987)

127. M.L. Cohen, V. Heine : 'The Fitting of Pseudopotentrials to ExperimentalData and Their Subsequent Application' . In : Solid State Physics Vol. 24, p. 37,eds . H. Ehrenreich, F. Seitz, D. Turnbull (Academic Press New York 1970)

128. D. Vanderbilt : Phys. Rev . B41 7892 (1990)129. N. Troullier, J.L. Martins: Phys. Rev . B43 1993 (1991)130. L.F . Mattheiss: Phys. Rev . 134 A970 (1964)131. G.A. Burdick: Phys. Rev . Lett. 7 156 (1961)132. N.J . Shevchik, J . Tejeda, M. Cardona: Phys. Rev. B9 2627 (1974)133. A. Zunger: Phys. Rev . B21 4785 (1980)134. KO. Kane in: Semiconductors and Semimetals Vol. 1, eds . R.K. Willardson,

A.C. Beer (Academic Press, New York 1966) p .75135. W. Shockley: Phys. Rev . 78 173 (1950)136. U. Rössler: Solid State Commun. 49 943 (1984)137. P. Pfeffer , W. Zawadzki : Phys. Rev . B41 1561 (1990)138. H. Mayer, U. Rössler: Phys. Rev . B44 9048 (1991)139. T . Ando, A.B. Fowler, F . Stern: Rev . Mod . Phys. 54 437 (1982)140. G. Bastard: Wave Mechanics Applied to Semiconductor Heterostructures (Les

Editions de Physique, Les Ulis 1988)141. R. Winkler: Spin-Orbit Coupling Effects in Two-Dimensional Electron and

Hole Systems, Springer Tracts in Modern Physics 191 (Springer, Berlin 2003)142. R. Winkler, U. Rössler: Phys. Rev. B48 8918 (1993)143. S. Datta: Electronic Transport in Mesoscopic Systems (Cambridge University

Press 1995)144. D.K. Ferry, S.M. Goodnick: Transport in Nanostructures (Cambridge Univer­

sity Press 1997)145. Y. Murayama: Mesoscopic Systems: Fundamentals and Applications (Wiley­

VCH, Weinheim 2001)146. J .H. Davies, A.R. Long (eds .) : Physics 0/Nanostructures, Proc. 38th Scottish

Universities Summer School in Physics (IOP Publ., Bristol 1992)147. W .P. Kirk, M.A. Reed (eds .) : Nanostructures and Mesoscopic Systems (Aca-

demic Press Inc. , Boston 1992)148. Y. Imry: Introduction to Mesoscopic Physics (Oxford University Press 1997)149. K. von Klitzing, G. Dorda, M. Pepper: Phys. Rev . Lett. 45 494 (1980)150. J. Hajdu, M. Janssen: Introduction to the Theory 0/ the Integer Quantum Hall

Effect (VCH- Verlagsgesellschaft, Weinheim 1995)

Page 7: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

References 299

151. A.P. Cracknell: Magnetism in Crystalline Materials (pergamon Press, Oxford1975)

152. F. Keffer: Spin Waves in Handbuch der P hysik 18/ 2, ed . by S. Flügge(Springer, Berlin 1966)

153. P. Heller : Rep . Progr. Phys. 30/ IlI 731 (1967)154. R.M. White: Quantum Theory of Magnetism (Springer, Berlin 1983)155. T . Moriya: Spin Fluctuations in Itinerant Electron Magnetism, Springer Series

in Solid State Seiences 56 (Springer, Berlin 1985)156. A.S. Borovik-Romanov, S.K. Sinha (eds .): Spin Waves and Magnetic Excita­

tions , Modern Problems in Condensed Matter Seiences Vol. 22 (part 1 and 2)(North-Holland, Amsterdam 1988)

157. A. Auerbach : Interacting Electrons and Quantum Magnetism, corrected sec­ond printing(Springer, Berlin 1998)

158. D. Craik: Magnetism: Principles and Applications (John Wiley & Sons, Chich­ester 1995)

159. Kei Yosida: Th eory of Magnetism, Springer Series in Solid State Seiences 122(Springer , Berlin 1996)

160. D.J . Singh, D.A. Papaconstantopoulos; Electronic Structure and Magnetism ofComplex Materials, Springer Series in Materials Science 54 (Springer, Berlin2003)

161. V. Dotsenko: The Theory of Spin Glasses and Neural Networks (World Sei­enti fic, Singapore 1994)

162. T . Dietl, H. Ohno, F . Matsukara , J . Cibert, D. Ferrand: Science 287 1019(2000)

163. D.D. Awshalom , D. Loss, N. Samarth (eds .) : Semiconductor Spintronics andQuantum Computation, Springer Series in NanoScience Technology (Springer,Berlin, Heidelberg 2002)

164. J .C.S. Levy : Surf. Sei. Rep . 1 39 (1981)165. D.L. Mills: Surface Spin Waves in Magnetic Crystals in : Surface Excitations

edited by V.M. Agranovich, A.A. Maradudin (North-Hollan d P ubl. Comp.,Amsterdam 1984)

166. V.L. Moruzzi, J.P. Janak, A.R. Willians: Calculated Electroni c Properti es ofMetals (Pergamon, New York 1978)

167. U. von Barth, L. Hedin, J . Phys. C5 1269 (1972)168. W. Heisenberg : Z. Phys. 49 619 (1928)169. F . Bloch: Z. Phys. 61 206 (1930)170. T . Holstein, H. Primakoff, Phys. Rev . 58 1098 (1940)171. G. Shirane, V.J . Minkiewicz, R . Nat hans: J . Appl. Phys. 39 383 (1968)172. H.A. Mook, D.McK. Paul: Phys. Rev . Lett. 54 227 (1985)173. G.G. Low, A. Okazaki , R.W.H. Stevenson, K.C. Turberfield : J . Appl. Phys.

35 998 (1964)174. W . Gebhardt , U. Kre y: Pasenübergänge und kritische Phänomene (Vieweg­

Verlag , Braunschweig 1980)175. P. Papon, J . Leblond , P.H.E. Meijer: The Physics of Phase Transitions: Coti­

cepts and Applications (Springer, Heidelberg 2002)176. N.H. March: Electron Correlation in Molecules and Condensed Phases

(P lenum Press, New York 1996)177. A. Isihara: Electron Liquids , Springer Series in Solid State Seiences 96 (2nd

edition, Springer, Berlin 1998)178. V.1. Anisimov(ed .): Strong Coulomb Interaction in Electronic Structure Cal­

culations (Gordon and Breach Science Publishers 2000)

Page 8: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

300 References

179. G. Morandi, P. Sodano, A. Tagliacozzo, V. Tognetti (eds.): Field theoriesfor low-dimensional Condensed Matter Systems - Spin Systems and StronglyCorrelated Electrons , Springer Series in Sold State Seiences 131 (Springer,Ber lin 2000)

180. L.D . Landau, E .M. Lifshitz: Lehrbuch der Theoretisc hen Physik IX , Statistis­che Physik Teil24th correct ed edition (Akadem ie-Verlag, Berli n 1992)

181. D. Pines, P. Nozieres: The Theory of Quantum Liquids Vo!. 1 (Benjamin Press,New York 1966)

182. G. Baym, Ch. Pethick: Landau Fermi Liquid Theory (John Wiley& Sons, NewYork 1991)

183. A.A. Abrikosov: Fundamentals o] the Theory of Metals (North-Holland, Am­sterdam 1988)

184. G. Grüner: Density Waves in Solids (Addison-Wesley, Reading 1994)185.R.E. Prange, S.M. Girvin: The Quantum Hall Effect (Springer , New York,

1987)186. T . Chakraborty, P. Pietiläinnen: The Fractional Quantum Hall Effec t, Springer

Series in Solid State Seiences 85 (Springer , Berlin 1988) , 2nd edition 1995187. D. Yoshioka: Th e Quantum Hall Effect, Springer Series in Solid State Seiences

133 (Springer, Berlin 2002)188. A.A. Abrikosov: Quantum Field Theoretical Methods in Statistical Physics

(Pergamon Press, Oxford 1965)189. W . Nolting: Grundkurs Theoretische Physik 7: Vielteilchen-Theorie, 5. Au-

flage (Springer , Berlin 2002)190. J. Hubbard: Proc. Roy. Soc. A276 238 (1963)191. M.C. Gutzwiller: P hys . Rev. Lett. 10 159 (1963)192. N. Mott ; Metal-Insulator Transitions (Taylor & Francis Ltd., London 1974)193. A. Georges , G. Kotliar , W . Krauth, M.J . Rozenberg: Rev. Mod . Phys. 68 13

(1996)194. F. Gebhard: The Mott Meta l- Insulator Transition, Springer Tracts in Modern

Physics 137 (Springer, Berlin 1997)195. M. Imada , A. Fujimori, Y. Tokura: Rev . Mod . Phys. 70 1039 (1998)196. Y. Tokura (ed.) : Colossal Magnetoresistive Oxides (Gordon & Breach Science

Pub!. , London 2000)197. W . Metzner, D. Vollhardt: Phys. Rev . Lett . 62 324 (1989)198. E.R Dobbs: Helium Three (Oxford University Press, New York 2000)199. C. Weisbuch, B. Vinter: Quantum Semiconductor Structures (Acad. Press,

Boston 1991)200. M.J . Kelly: Low-dimensional Semiconductors (Clarendon Press , Oxford 1995)201. T . Ando, Y. Arakawa, K. Furuya , S. Komiyama, H. Nakashima (eds .): Meso­

scopic Physics and Electroni cs (Springer, Berlin 1998)202. V.J . Emery(ed .) : Correlated Electron Systems (World Scientific , Singapore

1993)203. F .D.M. Haldan e: J . Phys . C14 2585 (1981)204. J . Voit : Rep . Progr. Phys. 57977 (1995)205. M. Sassetti in: Quantum Transport in Semiconductor Subm icron Structures,

ed . by B. Kramer (Kluwer Academic Publichers 1996)206. S. Tomonaga: Progr. Theor. Phys. 5 544 (1950)207. J .M. Luttinger: J . Math, Phys. 4 1154 (1963)208. G. Zwicknagl: Adv . in Physics 41 203 (1992)209. D.C. Tsui, H.L. Stoerme r , A.C . Gossard: Phys . Rev. Lett. 48 1559 (1982)210. R Willett , J .P. Eisenstein, H.L. Störmer,D.C. Tsui , A.C. Gossard , J .H. En­

glish: Phys. Rev . Lett . 59 1776 (1987)211. RB. Laughlin: Phys. Rev. Lett. 50 1395 (1983)

Page 9: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Referenees 301

212. O. Heino nen (ed .) : Composite Fermions (World Scientifie, Singapore 1998)213. P. Streda, J . Kucera, A.H. MacDonald: Phys. Rev . Lett. 59 1973 (1987)214. M. Büttiker: Phys. Rev . B38 9375 (1988)215. S. Nakajima, Y. Toyozawa, R. Ab e: Th e Physics 0/ Elementary Ex citations,

Springer Ser ies in Solid State Seiences 12 (Springer, Berlin 1980)216. P. Vogl: Th e Electron-Phonon Interaction in Semi coruluctors in Physics 0/

Non linear Transport in Semiconduciors, D.K. Ferry, J .R. Barker, C. Jacoboni(editors) , NATO ASI Series B: Physics Vol. 52 (Plenum Press, New York 1980)

217. G.L. Bir , G.K P ikus: Symmetry and Strain induced Effeets in Semiconductors(J . Wiley & Sons , New York 1974)

218. KL.Ivchenko, G.K Pi kus : Superlattices and Oiher Heteros tru ciures , SpringerSreies in Solid State Seiences 110 (Springer , Berlin 1995)

219. H. Fröhlich, H. Pelzer , S. Zienau: Phil. Mag. 41 221 (1950)220. J .T . Devreese (ed .) : Polarons in Ionic Crystals and Polar Semiconductors

(North-Holland Publ. Comp., Amsterdam 1972)221. L. Regg iani (ed .) : Hot Electron tromspori in Semiconductors, Topics in Applied

Physics 58 (Springer , Berlin 1985)222. J . Shah (ed .): Hot Carri ers in Semiconduetors (Pergamon Press , Oxford 1988)223. J . Shah (ed .): Hot Carriers in Semicotuluctor Nanostructures (Academic

Press, Boston 1992)224. J. Shah: Ultra/ast Spectroscopy 0/ Semiconduetors and Semicoruluctor Nanos­

truciures, Springer Series in Solid St ate Scienees 115 (Springer, Berlin 1997)225. K Seeger : Semiconductor Physics, Spr inger Series in Solid-State Seiences 40,

8th ed ition (Springer, Berlin 2002)226. V.L. Bonch-Bruevich , S.G. Kalashnikov: Halbleit erphysik, translated from

Russian (VEB Deutscher Verlag der Wissenschaften , Berlin 1982)227. M. Lundstrom: Fundamentals 0/ Carri er Transport , 2nd edition (Cambridge

University Press 2000)228. D.K Ferry, J. R. Barker, C. Jaeoboni (editors) : Physics 0/Nonlinear Transport

in Semiconductors, NATO ASI Series B: P hysics Vol. 52 (P lenum Press, NewYork 1980)

229. B.K Rid ley: Electrons and Phonons in Semiconductor Multilayers (Cam­bridge University Press 1997)

230. H. Kamerlingh On nes: Leiden Comm. 120b, 122b, 124c (1911)231. P.G. DeGennes: Superconduetivity 0/ Metals and Alloys , (W .A. Benjamin Inc.,

New York 1966)232. M. Tinkham: Introduction to Superconductivity, (McGraw-Hill Ine ., New York

1975)233. W . Buckel: Superconduetivity: Fundamentals and Applications, (VCH Verlags­

gesellschaft , Weinheim 1991)234. V.V . Sehmidt: The Physics 0/ Superconductors, (Springer , Berlin 1997)235. K -H . Bennemann, J .B. Ketterson (eds .): Th e Physics 0/ Superconduciors,

Vol. 1: Conventional and High-Te-Sup ereonductors, Vol. 2: Novel Supercon­duetors (Springer , Berlin 2003)

236. J . Bardeen , L.N .Cooper, J .R.Schrieffer : Phys. Rev . 108 1175 (1957)237. J .G . Bednorz, K.A. Müller : Z. Physik B64 189 (1986)238. A.G. Leggett : J . Phys.(Paris) C7 19 (1980)239. C.A. Regal,C. Ticknor, J .L. Bohn, D.S. Ji n: Nature 424 47 (2003)240. W. Kohn in : Solid State Physics Vol. 5 257 (1957)241. S. Pantelides: Rev . Mod . P hys . 50 797 (1980)242. M. Lannoo, J . Bourgoin: Point Dejecis in Semiconductors I: Theoretical As­

pects , Springer Series in Solid State Seiences 22 (Springer, Ber lin 1981)243. A.K Ramdas, S. Rodriguez: Rep . Progr. P hys . 44 1297 (1981)

Page 10: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

302 References

244. J . Bourgoin , M. Lannoo: Point Defects in Semiconductors 11: Experim entalA spects, Springer Series in Solid State Seiences 35 (Sp ringer , Berlin 1983)

245. W . Schröter (ed .): Electroni c Struc ture and Properti es of Semicondueto rs, Ma­terials Science and Technology Vol. 4 (VCH Publichers, New York 1991)

246. E.F. Schubert : Doping in 111- V Semiconductors (Cambridge Univers ity P ress,Cambridge 1993)

247. J .-M. Spaeth , H. Overhof: Point Defeets in Semiconduetors and Insulato rs.Determination of Atomic and Electronic Structure from Paramagnetic Hyper­fin e Int eractions, Springer Series in Materials Science Vol. 51 (Springer , Berlin2003)

248. P. Vogl in : Advances in Solid State Physics 21 , J . Treusch (ed .) (Vieweg,Braunschweig 1981) p . 191

249. M. Scheffler in : Advances in Solid State Physics 22, P. Grosse (ed .) (Vieweg,Braunschweig 1982) p. 115

250. U. Kaufmann in: Advances in Solid State Physics 29, U. Rössler (ed .) (Vieweg,Br aunschweig 1989) , p. 183 and B.K. Meyer , K. Krambock, D. Hofmann, J .­M. Spaeth ibid. p. 201

251. R.J. Elliot t , J .A. Krumhan sl, P.L. Leath: Rev . Mod . Phys . 46 465 (1974)252. J . Rammer : Quantum Transport Theory, Frontiers in Physics 99 , ed . by

D. P ines (Perseus Books, Reading Mass. 1998)253. B. Kr amer, A. MacKinnon: Rep. Progr. Physics 56 1469 (1993)254. E . Abrahams, P.W . Anderson , D.C. Liciardello, T .V. Ramakrishnan: Phys.

Rev. Lett . 42 673 (1979)255. D.J . Thouless: Phys. Rev . Lett. 39 1167 (1977)256. D. Belitz, T .R. Kirkpatrick: Rev . Mod . Phys. 66 261 (1994) (The Anderson­

Mott transition)257. E . Abrahams, S.V . Kr avchenko, M.P. Sar achik: Rev. Mod . Phys . 73 , 251

(2001)258. J .S. Blakemore: Semicondu ctor Statistics (pergamon Press, Oxford 1962)259. I.M . Gradsteyn, I.S . Ryshik: Table of Integrals, Series and Products, tran slated

from Russian (Academic P ress , New York 1965)

Page 11: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Solutions

Solutions for Chap. 11.1:

poin t lattiee:

reeiproeal lattiee:

W igner- Seit z eell:

set of lat t ice vecto rs R n = 2:.~= 1 n ia i, n i int eger ,a , linear indep endent (d dim ension of the system)

G m = 2:.:=1 m j bj , mj integer,bj linear indep endent , an d a ; . bj = 2'mSij

contains all point s which are closer to a given R nt han to any ot her R n' # R n

(Lst.) Brillouin zone : W igner-Seitz cell of t he reciprocal lat t ice

d = 2, square latt iee: a l = a (l , 0) , a 2 = a (O, 1)-> b l = 21l-ja(1, 0) , b2 = 21l-ja(0 , 1)

d = 3, simple eubie(se) , body eentered eubie(bee), f aee een tered eubie(f ee)se: a l = a(l , 0, 0) , a 2 = a(O, 1,0) , a 3 = a(O, 0,1)-> bl = 27l' /a (1,0,0) , b2= 27l' / a (0 ,1 , 0) , b3 = 27l' / a (0,0,1 )

bee: a l = a/2 (1 , 1, - 1) ,-> b l = 27l' /a (1,1 ,0) ,

a 2 = a/2 (1, - 1, 1) ,b2 = 27l' / a(1 , 0, 1) ,

a 3 = a/2(- I, 1, 1)b3 = 27l' /a (0 , 1, 1)

f ee: a l = a/2 (0 , 1, 1) , a 2 = a/2( 1, 0,1 ) , a 3 = a /2(I , 1,0)-> b l = 21l-ja (-1 ,I ,1 ) , b2 = 27l'/ a (I , -1 ,1 ) , b3= 21l-ja (I ,I,-I)

1. 2 : Create Fibonacci sequence by replacing LS -> L and S -> L [21]:

LS

LSLLSLLS

LSLLSLSL

LSLLSLSLLSLLS

LSLLSLSLLSLLSLSLLSLSL not periodic

Rep lacing in t he last line LS -> L' and L -> Si gives t he configur ation of t he secondbu t last line (self-similarity) . For the Four ier transform see [30].1.3: Given two vectors a l ,a2, wit h la l l = al , la 21 = a2, and al . a 2 = cos o ,spanning a plan e. T he following 5 cases can be distinguished :

a1 = a2 , a = 7l'/2 square

o = 7l'/3 tri angular or hexagonal

Page 12: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

304 Solutions

a #- 1r12, 1r13

ar #- a2, o = 1r12 recta ngu lar

o #- 1r12

1.4: T Rn is t he t ranslat ion operator. It acts on a funct ion accord ing to

and commutes wit h t he sys te m Hamiltonian , [TRn , H ] = O. Therefore, t here existsimultaneous eigenfunctions of H and T Rn with t he pr oper ty

T Rn <pk( r ) = eik.Rn <pk (r )

i.e., t he wave eigenfunct ions in different Wigner-Seitz cells differ only by aphas efact or wit h wave vector k from t he 1st Brillouin zone.

1.5: Count nearest neighbors (n . n .) an d spheres per cube :

41r (a) 3 3 1rsc 6 n. n. , 1 sphere -> 3 2 [a ="6 = 0.52

41r (V3a) 3 3 V31r .bee 8 n. n. , 2 spheres -> 23 - 4- [a = - 8- = 0.68

41r ( a ) 3 3 tt[cc 12 n. n. , 4 spheres -> 43 2V2 [ a = 3V2 = 0.74

. 41r (V3a) 3 3 V31rdiarnond 4 n. n. , 8 spheres -> 83 - 8- [a = 16 = 0.34

1.6: A mass density n(r) = 8( r - r i) and using 8(r-ri ) = L q exp (iq · (r - r i ))I Vgives for t he scat tering amplit ude

F (k , k' ) = F (k - k' ) = L eiq.r i~1ei(k- k' +q).r = L eiq.ri8q ,k_ k'

i ,q v i, q

and wit h r i -> R n + T for a crystalline solid

.,. n

where t he last sum vanishes exee pt for q = G and Ln eiq.Rn = N 8q ,G . T hus theseattering amplit ude, which equals t he statie st rueture fact or (up to a faetor N)has peaks for the reciproeal lat ti ee veet ors.

Solu t ions for Chap, 2:

2 .1 : T he matrix representat ion of the eommutator [H,p] = 0 reads

n'

For eigens ta tes of H one has H mn, = E m8m,n' an d

Page 13: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Solutions 305

which means for Ern =1= En or m =1= n for non-degenerate states t hat pmn = O. Thesa me result is found by starting from t he statistical operator of t he eanonical (orgrand canonica l) ensemble.

2 .2 : Denote t he ground sta te by Itlio} and show t hat (TrßA)T=O= (tlioIAltlio) . With

ß = exp (-ßH) /Z write

Tr(ßA) = ~ L (tlimle- ßHItlin } (tlinIAl tlim) = ~ L e-ßEm(tlimI Al tlim) .m.n rn

With Z = e-ßEoL e- ß(Em -Eo) we ean wri t e

ttt

• ""' e- ß(Em-Eo) (tli IAltli )Tr (ßA) = U m m m

2:m e-ß(Em-Eo) T ---> O

becau se with Ern - Eo > 0 for all m =1= 0 all exponent ial factors vanish for T ---> 0except t he one for the ground state Itlio }.

2.3 : T he t hermal expectation value of the nurnber operato r is IV = 2:a na where

na is t he opera to r counting t he par t icles in an eigenstate of H. The gra nd eanonicalpar t it ion funct ion ean be written

00

ZG = L L e ß 2:o (JL-Eo )n o = Il L e ß (JL - E o )n o ,

N=O {no }N .o n o

where {na }N denotes t hose sets of particle numbers na whose sum is N . Forferm ions: n a ean be 0 or 1 and

while for bosons n a can be any non-n ega tive int eger and

ZG = rr (1+ eß(JL -Eo) + ... ) = rr (1_ eß(JL - Eo»)- 1o

Now make use of

(IV) = ~ 8 ln ZG = ~ _l_ 8ZGß 8 f-t ß Z G 8Jl

to obtain for fermions (IV) - '"(n ) _ '" 1- L.J o - L.J exp (- ß(f-t - Ea» + l

a o

and for bosons (IV) = L (na) = L exp (- ß( f-t~ Ea» _ 1a a

The function

f ± - 1o - exp (-ß(f-t - Ea» ± 1

is t he Fer mi-Dirac dist rib ution (upper sign) and t he Bose-Einst ein distribut ion(lower sign) . For large kBT » f-t we have exp ßf-t ~ 1 and f;; ---> exp (-ßEa).

Page 14: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

306 Solutions

2 .4: Ohm's law can be written jA = (> AlL El" thus the observable to be measured is(a component of) the elect rica l cur rent dens ity

N

A --> JA= e L Vl, A1= 1

with the velocit y op erator Vl,A = PI ,A/m. It can be written also as

JA(r) = 2~ L (ppJ(r - rl) + J(r - r l)Pl,A) .I

The op erator of the kinetic energy in the presence of an elect ro-magnetic field (hererepresented by the vector potential A(r, t)) is for the l-th elect ron

1 ( , ) z pr e ( ) z-PI- eA(rl ,t) =---2 pl ·A(rl ,t)+A(rl ,t) ,pl +O(A).2m 2m m

Neglect ing the last term on the rhs, we identify the perturbation as

Vext(t) = - L 2~ (PI ' A(rl ' t) + A(rl ' t) · PI) orI

= - Jd3r 2~ L (P1J(r - rl) + J(r - r l)Pl) ·A (r , t )

I, J

and t he observable iJ as anot her component of the elect ric current density. Theelectric field component is given by

EI' = - BAI' = -iwA IJ- and we can writeBt

Vext (t ) =-±L Jd3r3IJ- (r )E IJ- (r )e

iw t

I'

which in the long-wave length limit , when t he dependence of the vector pot enti alon r can be neglect ed , gives

Vext(t) = -±L Jd3rj lJ- (r )E lJ- e

iwt

I'

and we obtain the elect ric conduct ivity

as a correlation function for the components of the current density.

2.5: Wi th L1p(t) = L1PI (t) + L1pz(t) + . . ., where the ind ex refers to different ordersof Vext , we can write the equa t ions

(1) [Ho , L1pI] + [Vex t , po] = inpl first order in Vext

(2) [Ho, L1pz] + [Vex t , pI] = inpz second order Vex t .

The solution of (1)

Page 15: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Solutions 307

LlPI(t) = i~ [too

dt'e - iH o(t- t ' ) / h [Vex t (t') , po]eiHo(t -t' )/h

is to be used in (2), which can be solved in the same way as (1), to yield

t t 'Ll (t) = ~ [ dt ' [ dt" - iHo(t- t ' )/ h iH o(t - t")/" [ [ ]] iHo (t -t') /hP2 in e e ... , . .. , . . . e

- (Xl - 0Cl

wh ere the double commutator

[ [ ]] - [V. (t') - iHo(t- t " )/h [V. (t") ]].. . , . . . , . . . - ex t , e ext , po

indicates the structure of the second order response function

(LlA2)t = ... [B (T), [B(T') , -4.(0) ]] .

It is a two-time correlation function.

2. 6 : Evaluate the principal valu e integral

1+ 00

ReX(w) = 2. P ~ (8(wo - w') - 8(wo+ w')) dw'1r W ' - W

- 00

whi ch yields

R () - Xo (1 1) _2Xowo ---n_1---::-ex w - - ---+--- - - - -tt Wo - W Wo +w 1r w5 - w2

Solutions for Chap.3:

3 .1 : The potential energy of the linear chain (Fi g. 3.16) is

(1 ) (2 )

here (1) is the contribution due to the relative d isplacements of MI and M2 in theunit cell n and (2) that due to the relative displacement between MI in unit celln + 1 and M 2 in unit cell n .Distinguish the force constants

, (nn) (nn)n = m , T = T : <p 1 1 = <p 2 2 = 2f

for the restoring force acting on MI (M2) if the neighbor atoms are kep t fixed ,

, (nn)n = m , T = 1, T = 2 : <p 1 2 = -f and

, (m+1m)n = m + 1, T = 1, T = 2 : <p 1 2 = - f .

Due to actio = reactio we have

Page 16: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

308 Solutions

for T = 1 : cP ( 77) + cP ( 7~ ) + cP ( 7n; 1) = 2f - f - f = 0

for T = 2 : cP ( ~ ~ ) + cP ( ~ 7) + cP ( ~ n i 1 ) = 2f - 1 - 1 = 0 .

Tr anslation invar iance allows to shift the cell index.Considering the equilibrium positions X nl = na for M I and nn 2 = na + ro for

M 2 along the chain , we find the eleme nts of the dynarnical matrix

1 (nn) 21D ll(q) = M l cP 11 = MI '

and

For n = m , X nl - X n2 = - ro and for n = m + 1, X m +l ,1 - X m ,2 = a - ro, the forceconstant equa ls - 1 and with a = 2ro we have

D I2(q) =~cos(qro) = D21(q) .M 1M2

T he eigensolutions of

There ar e two solut ions for each q. For q = 0 t he squ ar ed frequencies are

2 2fM 2w+(O) = M

1M2' and w_ (O) = 0

and for q ':::'. 0 with 1 - 2 sin2 qro = cos qa ':::'. 1 -la2/ 2 (for q « 'Ir ja)

w2(q) ':::'. _1_ [M ± {M2 _ MIM2l a2}1/2] ':::'. L [1 ± {1_Lla2}]M 1M2 J-l 2M

with the reduced mass J-l = M 1M2/M and

2 'Ir 21w+(q« -) ':::'. - independent of q and

a J-l

2 'Ir 1 2 2 ('Ir rTw_ (q)(q« ; ) ':::'. 2M q a ....... ta .: q «;) ':::'. V2Njaq .

For q = n f a and cos qa = -1 t he solut ions are

w~(~)= M!M2 (M±{Mf+MJ-2MIM2r/2) or

Page 17: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Solutions 309

w(q)

o rrJ2a q rrJa

Fig. S.1. Disp ersion for the linear chain with twodifferent masses per unit cell (sol id lin es). Thedash ed curves show the result if the two massesare equa l

A plot of t he two branches is shown in Fig. S.l : the lower br anch with t he lineardependence around q c::= 0 for the acoustic phonons and the ftat upper branch forthe optical phonons are separate d by a gap which results from the different massesMI =f M2. For MI = M2 = M the gap closes and we have a chain with period aand the dispersion

w(q) =~Sinqaextends to 11"/ a (thin dash ed line in Fig. S.l) , which is the limit of the Brillouin zonefor the chain with lattice const ant a.Solving the eigenvector equat ions, we findfor q = 0 : w- (O) = 0 e- (O) rv (VfV[;,yM';") move with same phase

w+(O) =,fiJ e+(O) rv (yM';",-VfV[;) move with opposite phase

for q = ~ : w _ ( ~) = 1ft e ., ( ~) rv (1,0) M 2 in rest

w+ ( ~ ) = jIi; e+ (~ ) rv (0,1) MI in rest .

3.2: For cent ra l forces t he adiabat ic potential dep ends on r nt, n IR~ + U nt -

R~ - U n l and t he force constants can be written

with k =m-n .

•7

•3

•8

•2

•o

•4

•6

.­x

•5

Fig. S .2. Sketch of the two-dimensional qu adratic latticewith numbers to address the individuallatt ice point .

Page 18: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

310 8olutions

Nearest neighbors to mass in the center (see Fig. 8.2) are

R~ = aex, Rg = aey , R~ = -aex, R~ = -aey

with force const ant s

(10)_ (20)_ (30)_ (40)_ (kO)_O1> x x - 1> y y - 1> x x - 1> y y - 1>1 ,1> x y -

next nearest neighbors are

R~ = aex - e y , R~ = -aex + ae y

with force const ant s

(50) (50) (70) (70) 11> x x = 1> y y = 1> x x = 1> y y = 2 1>2

(50) (50) (70) (70) 11> x y = 1> y x = 1> x y = 1> y x =-21>2

and

and

R~ = ae; + aey with (60) (60) (60) 11> x x = 1> y y = 1> x y = 2 1>2

Rg = -aex - aey with 1> (~ ~) = 1> (~ ~) = 1> (~ ~) = ~1>2 .

The force constant

1> ( ~ ~ ) follows from ~ 1> ( ~ ~) = °

---+ 1> (~~) = - t 1> (~ ~) = -2(1)1 + 1>2)Oi,j .

The elements of the dynamical matrix ar e

D xx(q) = ~ ~ 1> (~~) e- iq. R~

2= - M (1)1(1- cos qxa ) + 1>2 (1 - cosqxacosqya))

2Dy y(q) = - M (1)1(1 - cosqya) + 1>2(1 - cosqxacosqya))

D xy(q) = - ~ 1>2 sinqxasinqya .

The secular problem is

11

D xx(q) - w2

Dxy(q) 211 = 0 .D xy(q) Dyy(q) - Mw

ForT-X : O:::::qx :::::1r /a , qy=O , sinqya=O , cosqya= 1 wehavetwobranches

Page 19: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Solutions 311

2 2 2 2Wl (qx) = M«(Pt+ 1>2)(1 - cosq xa) and W2 (qx) = M 1>2(1- cosqxa)

with Wl,2(qx) rv qx for qx «1'i/a but different slopes.For T - M : q = (q, q)/V2 , 0 ::; q ::; V21'i /a the secular problem yields

with the solutions

M w2

= 2a ± 2b : M wi = 21>1 (1 -cos ~)

Mw~ = 21>1 (1 -cos ~) + 21>2 (1 -cos J; )Again we find two branches with w(q) rv q for «< n ]a and different slopes.For X - M : q = (1'i /a ,q) , 0::; q ::; n Ia t he off-diagon al terms of the dynam icalmatrix vanish and one has

wi = ~(21)1+ 1>2(1+ cOSqa)) and w~ = ~(1)I+ 1>2 -(1>I - 1>2) cOSqa) .

The two bran ches have always finit e frequenci es and connec t t hose already obtain edfor the X and M point .

For each of these directions one eigenvector is longitudinal (1Iq) and one tran s­verse (-1 q) .

3 .3 : Periodic boundaries account for the fact t hat the physics of a solid rep eat sover macroscopic dist ances, i.e., t he Bloch phase faet or equals one for a t ranslationRN = N i o., + N2a2 + N3a3 over a macroscop ic length (Ni » 1 , i = 1,2, 3:)

ei k.R N = 1 or k· RN = 21'i x integer.

This implies (t ake a simple cubic lattice with V = L1L2L3 , Li = Ni a as example)that the components of the wave vector t ake the discrete values (particle in thebox) ki = 21'ini/Li , i = 1,2,3 and 0 ::; n i ::; Ni - 1. Thus N = N 1N2N3 is thenumber of k in the first Brillou in zone and each k takes a volume (21'i) 3/V. Thiscan be exploite d in replacing a sum over k by an int egral acco rding to

L" '=(2~) 3 J...d3k.

k

Similar considerations hold for syste ms with reduced dimension.

3.4: For t he commutator [as(q) ,a~,(q')l evaluate

[ws(q)Qs(q) + i1\(-q) ,ws,(q')Q s,(-q') - iPs,(q')] =-iws(q) [Q s(q) , Ps'(q')] +iws'(q') [Ps(-q) ,o. (-q')] = 2hws(q)6s,s,6q ,q '

'---v--' ' v "

ih oS,s , oq ,q ! - ili c5 s ' S, oq ,q !

to find [as(q) ,a ~ ,(q')] = 6s,s'6q ,q " The two other commutation relat ions follow inthe same way (no te that ws(q) = ws(- q» .

Page 20: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

312 Solutions

3.5: In the Schrödinger picture we have

[as(q) , Ho] = hws(q)as(q) or as(q)Ho = (Ho + hws(q))as(q) .

Thus, for any power fun ction f(Ho) we ca n write

as(q)f(Ho) = f (Ho + hws(q))as(q)

and obtain

( t) t ( , 0) iHot/h ( 0) - iHot/h t ( , 0)a; q, as' q , = e a; q, e as' q ,

= e-iW8( q)t as (q , 0)a~ / (q' , 0) .

Using the commutation relation and taking t he t he rmal expectat ion value gives

(as ( q, t ) a~,(q' , O)) = e- iws (q)t (ns (q ,T ) + l)Os,sIOq ,ql .

Similar we have

a1(q)Ho = (Ho - hws(q)) a1(q)

and by following the sa me steps we find the second relation . For the third relationwe have, afte r extracting t he exponential with the ti me-de pe nde nce , t he thermalexpectat ion value of a product of two annihila t ion operators, which van ishes.

3.6: The displ acement is a time-d ep endent operator in t he Heisenberg picture. St artby writ ing (with [po , Ho] = 0)

((q . un(t)) 2) = Tr (po eiHot /h (q . Un(O)) 2e-iHot/h)

and obtain by cyclic permutation under the t race

which is inde pende nt of t . Formulate the latt ice displ acem ent with (3.23) and (3.39)

( )

1/ 2

Un = L 2N:~s(q) (a1(-q) + as (q) ) es (q)eiq ' R~s,q

in te rms of ph onon op erators and evaluate

(q 'Un )2= N~ L (a~/(-q')+as/(q'))(a~"(-q")+ as"(q")) xs ' ,q !

e" .a"

(

2 ) 1/ 2h i ( q' +q") . R~ ' "X 4w

s, (q') w

slI(q") e (q.es/(q))(q .esll(q )) .

After mul tiplying ou t the op erator terms, the t hermal expectation value of thisexpression follows with t he formulas of problem 3.4 as

For T -+ 0 we have ns(q,T) -+ 0 wh ich leaves only the contr ibution of t he zero­point motion

Page 21: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Solu tions 313

For T > 0, employ the Debye model by writing Ws (q) = vq for all s and indepe nde nt

of the direction of q . Summation over s ' yields a factor 3. Wri t ing (q . e s , (q , )) 2 =q2 cos 19 2 where 19 is the angle between q and e s, (q ') , the sum over q' can be carriedout in spherica l pol ar coordinates with the cut-off at qt: = wo /v (with the Debyefrequency wo ) giv ing

( (q . U n ) 2) = ~~61WD lu» ( exp (nw/~BT)_ 1 + ~) dw .

For high temperatures, kBT » lua , t he distribution fun ction afte r expanding t heexponent ial yields knT[Iu» and by neglecting t he term 1/2 we find for the Debye­Waller fact or

W - Y k T lwD

d _ 3lkBT- 3 B w - 2

M wo 0 M wo

which is always posit ive.For low temperatures, knT « lua , the int egral over w reads afte r substituting

nw/kBT = x

l

wD _ nw6 (knT)21XD xdx. . . dw - + " 1

o 4 u. 0 eX-

For T ---> 0 the upper lim it goes to 00 and the int egral take the value 11"2 /6 (seeAp pendix). Thus we may writ e

w = 3l . (nw6 + 11"2 (knT)2) = 3n2l (! + 11"2 (.I-) 2)

M W6 4 6 n MkBeO 4 6 eowith t he Debye temperature eo .

3.7: a) The point group of a cubic lattice consists of 48 elements (24 rotations,each can be combined with t he inversion). Unde r these op erations, wh ich can berepresented by orthogon al 3 x 3 matrices Sai , t he coordinates x, y , z are interchangedand (under inversion) chan ge their sign . Likewise the components of the elas t ict ensor tran sform according to

Ca ß"I1j = Sa i S ßjS"Ik SIj/ Cij k l (double ind ex summat ion) .

The invari ance of the elas t ic te nsor under these t ransformations leaves only t hosecompo nents d ifferent from zero , for which pairs of indice s are identical and of thenon-vanishing compo nent s all those are identic al which t ransform into each otherby the symmetry operations . T hus, there are only 3 ind ependent te nsor components

CXXXX= Cy y y y = Czz z z = Cu

Cx y x y == Cx z x z == Cy x y x == Cz x z x == C12

Cx x y y == Cy y z z == Cz z x x == Cx x z z == Cz z y y == C44

which are written here in Voigt notation.b) Using ui(r , t) = u; exp (i(q · r - wt)) the wave equat ion for the elastic displace­ment field lead s to a set of coupled homogeneous linear equations for t he componentsui , which has solut ions if

Ilpw2oi! - Cij k / qj q k 11 = O.

Page 22: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

314 Solutions

For r - X or q = (q ,O,O) it reads

11

pw2 ~Cll q2 pw 2 ~CI2q2 2 ~ 2 11=°° ° pw - CI2q

and has solutions

WL =~ q , e r, = (1,0,0) longitudinal

WT =~ q , e T = (0,1 ,0) t ransverse

= (0,0,1) transverse .

For r - Kor q = (q , q , 0) /v'2 we have Cijklqj qk = (CiXXI +Ciyyl +Cixyl +Ciyx!)q2/ 2and the secular problem

11

pw2 - ~(Cll + C12)q2 -~(CI2 + C44 )q2 ° 11

- ~(C120+ C44)q2 PW2_~( COll+ CI2)q2 ° =0 .pw2 _ CI2q2

One solut ion is immediate ly found to be

WTl =~ q , eTl = (0,0,1) transverse .

The other two follow from

11 <; A pw-:;~ A 11 = (pw 2 - A)2 - B2

= °wit h A = (ci r + C12)q2/ 2 and B = ( C12 + C44 )q2/2 and read

J Cll - C44 r:WT2 = q , eT2 = (I ,-I ,0) /v2 t ransverse2p

2CI2 + Cll + C44 ~ . .WL = q , er. = (I,I ,0) /v2 longitudinal .

2p

These resu lt s can be compared with the phonon disp ersion (e.g. those given inSect. 3.6 wh ich are all for lattices with cubic symme t ry ). The slope of the aco usticbranches for given p can be t aken to determine the elast ic constants.

3 .8: The cubic anharmonic ity Ll(at + a)3 is first writt en in norm al order

(at + a)3 = a t3 + 3at2a + 3(at + a) + 3ata 2+ a3

and t hen truncated by replacing at a ---> (ata) = n(T) and omitti ng t he terms at3

and a3• Thus the Hamiltonian reduces t o

H = nwoata + Ll(T)(at + a) , with Ll(T) = 3Ll(n(T) + 1) .Calculate now the correct ions t o t he oscillator ground state In) with n = °due tothe anharmonicity, which by making use of (Ola II)( I la t IO) = 1 reads in Brillouin­Wi gn er perturbation theory

c = Eo _ nwo = Ll2(T)

.2 c -nwo

Page 23: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Solutions 315

The smaller solut ion of the qu adratic equat ion in e

E« = .!.hwo _ Ll2{T)

2 hwo

expresses a zero-point energy which decreases as Ll {T ) increases due to thermalph onon excit at ion with t he temperature. This is the beh avi or of a soft mode.

Solutio n s for Chap. 4:

4.1 : The electrostatic pot ential of a homogeneou s positive charge density +en {r)with n{r ) = N / V is

if>{r) = r e n{r ' ) d3r' .Jv 41rcolr - r' l

l t s interaction energy with the homogeneous elect ron density - en{r ) is

r 3 ( N)2 J 3 J 3 I e2

'He l - io n = -e Jv

n{r) if>{r) d r = - V d r d r 41rcoJr _ r/ l .

With (see Appendix)

e2

_ L iq .( r- r ' ) e2

- vqe , v - - -41rcolr - r /l q - coV q2

q

the double integr al is evaluated

giving 'Hel-ion = -N2 vo. Similarly t he interact ion energy of t he hom ogeneous elec­tron and ion sys tems can be ca lculated wh ich each give the sa me result up to afactor - 1/ 2. Thus t he sum of all t hese divergent interact ion energ ies vanish for t hejellium mod el.

4 .2 : The elect ro n density n determines via the density of states D {E ) and theFerrn i-Dirac distribution fun cti on the che m ical potential p,{T ). Für a 3D elect ro n

sys tem we may write D {E ) = 3nVE/ 2E:/2

and define a fun ction G{ E ) with

1E E 3 /2

o D{EI )dE' = G {E) = n (EJ

to express t he particle density as

n = G{E)j{E ,p" T) I: -100

dEG{E) Öj{~:, T) .

The first t erm vanishes and the integral can be eva luated by using the fact , t hatthe derivative of j{E, p" T) is strongly peaked at E = p, (für kBT « p,). ExpandG {E) in a power seri es around E = p,

G{ E) = 11" dE' D {E' ) + f (E - p,)n dnG(E ) I .O n dE E= I"

n= l

The int egra l gives G {p,). Because ö j / ö E is an even fun ction only the eve n powersof t he expansion contribute and we find as t he two lead ing t erms

Page 24: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

316 Solutions

100 81 3n 1 100

2 81n = - G (/-L ) dE dE - ~ r.; dE(E - /-L) dE (*).

o 8E F y/-L 0

T he first term gives n(/-LI EF )3/2 . With

81 eß(E -p, )

dE = - ß ( e ß ( E -p, ) + 1)2 ' ß = kBT and subst it ut ing x = ß (E - /-L)

100 2 81 1 100

2 eX

dE(E-/-L) dE= - ß 3 dx x x 2 'o 0 (e +1)

The value of the integral is Jr2 /6. Thus (*) reduces to the relation

(/-L ) 3/ 2 ( ( k BT) 2 Jr

2)1::= - 1+ - -

E F /-L 8

which can be solved to give

This result corresponds to the Sommerfeld expansion (see Appendix).

4 .3 : For 2D the number of st ates (p er unit area) D(k)dk in a circular ring withradius k and thickness dk is

D( k )dk = (2~)2 2Jrkdk (the factor 2 counts the spins) .

Use the dispersion relation for free elect rons Ek = h?k2 / 2m to substitute k by E

D(E)dE = D(k) dk dE = ~ ~VE ~_1_dEdE JrYh? Yh? 2VE

mor D(E) = - 2 = con st .

Jrn

For 1D the corresponding number of st ates per un it length is

2 dk 1 [2:;;; 1D(k)dk = 2Jr dk and D(k) dEdE = ;y h? 2,jEdE

~1

or D(E) = - 2 - 2 rr;; '2Jr ti y E

For a zero-dimensional system the spect ru m is discrete (with energies Ei) and thedensity of state s is given by

D(E) = 2 L 8(E - Ei) '

4. 4 : The condition to fill n elect rons into the lowest (spin-degenerate) Landaulevelfollows from (4.43) or in simplified form from EF = luu; and reads

which can be solved to give

Page 25: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Solutions 317

Note, that B is rela ted to t he number of elementary flux quanta. Take the valuefor nie= 0.65810- 15 Tm2 to obtain for a met al n = 1023 em- 3 a magnetic field ofB c::: 1.37 105 T and for a doped semieonduct or with n = 1014 em -3 a field strengthB c::: 0.137 T . The latter is easily achieved in a laboratory.

4.5: The Zeem an energy for free eleetrons is ±/-lBB. It shifts the density of statesof up and down spins (Landau qu antiza tion is no t eonsidered here) against eachother

1 1 1 dD( E)D±(E, B) = '2D( E ± /-lBB) c::: '2D(E) ± '2/-lBB~ which yields

D (E B) c::: .!. _1_ (2m) 3/2 .JE(1 ± /-lBB) .± , 221T2 n2 E

The nu mb er of spin up and down elect rons N±(E , B) is obtained by inte grati ng thedensity of stat es mult iplied with t he Ferrni-Dirac dis tribution function and multi­plying with t he volume V. The first term of D±(E, B ) gives N (Jt )/2 indep endentof B . The second term is evalu at ed by employing the Sommerfeld exp an sion (seeAppendix) lead ing to

=±.!. B{J1l dD(E)dE 1T2(k

T)2d2D(E) I } .

. .. 2/-lB d E + 6 B dE2 E=ll- 00

The int egral gives D(JL) and with D(E) ~ ,JE the second te rm ca n be rewrittenusing d 2 D(E) /dE2 = -D(E) /4 E 2 to obtain

1 V {1T2(kBT) 2}N±(E B) ~ - N(/-l) ± -/-lBBD(/-l) 1 - - - ., - 2 2 24 /-l

The magn etiz ation follows as

2 (k T)22 1T BM = /-lB(N+ - N _ )/V = /-l BBD(Jt) { 1 - 24 ---;- } .

For T = 0 with D(Jt c::: EF) = 3n/2EF this is identical with (4.50) .

4.6: T he HF approximat ion is better for t he elect ron system with th e smallerdensity par amet er T s . According to Tab le 4.1 the Ts-values of doped semiconductorsare smaller t han those of rnet als . On the other hand the elect ron density (per cm- 3

)

is higher in met als. Note, that T s is given in the length seale (effective Bohr radius )of the material.

4 .7: Second order per turbation yieIds a cont r ibut ion

a) Applying the int eraction operator to the Fermi sphere IlJio) gives non-vani shingcontributions only if the states with p , q are inside and those with p - k , q + kouts ide of th e Fermi sphe re . Con sider therefore the corresponding excite d statesIlJirn ). These st ates with Ern - Eo = n2k · (q - p + k) /m eont r ibute to E2.b) The electron t aken from p to p - k is put back to p in the direct process but toq in the exchange process. For the former eva luate

(lJiol L Vk I C~ / _k l pC~ / +k l pI Cq l p l eplpllJim ) (lJirnl L VkC~_kaC~+kaI CqaICpa l lJio)p 'q Jk ' pqk

pp' o o '

Page 26: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

318 Solutions

For the direct process the intermediate st ates have to fulfill the conditions

p ,o' = p' - k' ,p p - k;« = p' ,p

q.o = q' + k' ,p' q + k ,« = q' ,p'

or

0' = p , 0" = p' , p' = p - k , q' = q + k, k' = -k .

It remains to det ermine

(lJioI c~o- C~o- ,Cq+ko-l(~P -ko- C~ _ko-C~+kO-' cqo-' Cp o 11]/0 ) = .. .which can easily be rearranged as for k =I- 0 all fermion operators anti-commuteand one obtains

.. . = (lJioIc~o-Cpo-c~o-' Cqo ' Cq +ko- ' C~+ko-,Cp-kaC~ _ko- IlJio )

= npo-nqo-' (1 - nq+ko-' )(1 - np -ko-)

where tl-qo = B(kF - q) is the Fermi-Dirac distribution function for T 0 K.Summing over spin indices (factor 4) gives for the direct process

Eg ir = -4~ V~ 2 (m ) n po-nqo- ,(l - nq +ko-' )(1 - np -ko-) .c: n k · q -p+kp,q,k

c) For small k , i.e., excit at ion elose to the Fermi surface

np +k :::::: n p + k: >V'pnplkF = n p - k· ep8(kF - p) and

n p(1 - np +k) = n p{ l - n p + k · e p8(kF - p)} = npk · ep8(kF - p) '" k .

Replace now the denominator für small k by 2kkF and per form the sum over p andq in polar coordinates. Finally the sum over k is to be perfo rm ed over an expressionwhich contains 1/k4 from o», l / k from t he denominator, and k 2 from the numeratorwhich together with k 2 from integration in k-space leads to Jdk /k = lnk.

4.8: a) The meaning of cl (c,,) of creating(annihilating) a fermion in t he state owith the probability amplit ude 'IjJ" (r) implies, that lJit (r )(lJi(r)) creates(annihila tes)a fermion at r .b) Write

[lJi t (r), lJi(r')] = L 'IjJ: (r )'IjJ" ,(r') [cl, c",]= L 'IjJ: (r )'IjJ" ,(r') = 8(r - r'), '-v-"

O: , Q /)0. ,0'

Q

and simil ar for [lJi(r),lJi(r ')] = [lJit(r) ,lJit(r')] = O.c) For free elect rons t he density operator is

n(r) = lJit(r)lJi(r) = L e- i(k'-k ).r~Ck ' Ck and with q = k' - k

k ' ,k

no = 2:k cl ck /v = n is the op erator of partiele density (its eigenvalue being n)

while 2::k C~+q Ck = nq describes density fluctuations.d) The Coulomb interaction can be rewritten with

t t _ t ( " " t)Cp+ko-Cq_ko-,Cqo-'Cpo- - -cp+ko- Uo- ,o-'Uq-k ,p - cpo-cq_ko-' Cqo '

Page 27: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Solutions 319

by applying t he fermion commutat ion mies and by usin g t he number opera tors t heCoulomb int eract ion becomes

1",", t t _ 1 ",", ( " " )2" L VkCp+kuCq_ ku,C qu' Cpu - 2" L Vk N kN_ k - Nk # O,p ,q k # O

G , a l

4 .9: Replace in t he given express ion

([Nq(T), N _q(O)])exact ---> ([Nq(T),N- q(O)])o and Nea ---> Ns« + (Nq)

wit h t he induced number fluctua t ion (Nq ) . From Sect . 4.5, t ake

!im eV

2

2 .~ 100

dTeiWT-rT([Nq(T) , N_q(O)])o = V q7l"o(q,w)r -o cO q In 0

to write

or (Nq) = NextVq7l"o(q ,w)1 - Vq7l"o(q ,w)

and identi fy with

1 _ 1 (Nq ) RPA- - - - - - =:- c (q ,w ) = 1 - V q7l"o(q ,w) .c(q ,w ) Next

4 .10: Using relat ions given in Sect . 4.6, the lhs of t he given equat ion can be written

Aft er showing (by insert ing a complete set of eigenstates IlJim) of Hjell) t hat

-L 21iwm ol(lJioINqIlJim)12 = (lJio l[[Hjell, Nq],N- qlllJio)

one has to evalua te t he do ub le commutator . T his is done wit h Hjell wri tten in t er msof density fluctuations (see (4.105) and problem 4.8). Rea!ize first with Nk = N_ k

and [Nk, N d = 0 t hat t he int eract ion ter m commutes wit h N q . Evaluate

wh ich by applying fermion commutat ion mies yields

[Hjell, N q] = L Ek (4ck+ q - 4_qCk ) = L (Ek - Ek+q) ct Ck+qk k

and with Ek = 1i2 k2 12m

" 1i2 q2 " fj,2 "'"' t

[HjelI, N q] = - 2m N q - m L k · q Ck Ck+qk

T he first term rv Nq does not cont ribute to t he double commutato r which, t he refore,reads

Page 28: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

and with k + q --> k

320 Solutions

Evaluating t he commutator with t he ru les for fermion operators lead s to

~ ~ _ n,2~ ( t t )[[Hj e l\, N q], N _ q] - - m L-- k · q CkCk - Ck+qCk+q

k

n2 n22= --~ ct Ck = --q N .

m L--k mk

Conside ring the factors on e has

1=dwwlm c(q~w) = - ;r~q ( - 21n)(-~ lN)= -~w; .

4 .1 1: Evaluate for w = 0

Cl (q, 0) = 1 - _ c2 L fk+q - i» b . . c 0c. y wr it ing ror q --> :

CoV q2 Ek+q - Ekk ,a

Thus on e has

c2

cl(q) ':::'. 1 + - V 2 L 8(Ek - E F)cO q

k ,a

c2

2V 1= 2= 1+ COV q2 (2;rp 4;r 0 d k k 8(Ek - E F)

= 1 + L _l_ (2m)3/2E l/2 andcOq2 2;r2 h.2 F

e2 1 2m kF2

T 2 3ne2

Cl(q) ':::'. 1 + ------kF = 1 + - with kFT = -- .cOq2 2;r2 n2 q2 2coEF

The meaning of kFT becomes evident when looking at t he screened Coulomb inter­action Vq/Cl( q, O) whose Fourier transform is ofthe form exp(-kFTr) /r : l /kFT isthe Themas-Fermi screening lengt h .

4.12: Use the pair-distribution fun ct ion (1.11)

ger) = 1 + ~ L eiq.r (S (q ) -1) and use

q

S(q) = ~ Lnpa(1 -np+qa) towritep,a

and

ger) = 1 + :V I >iq.r [ ~ L Tl-pa (1 - n q+q,a) - 1]q pur

Page 29: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Solutions 321

The su mmation can be carried out by writing

_ ""' - ip.r ,,", i(p+q)·r _ 2""' - ip.r ,,", iq' .r. . . - L n pe L n p+qe - L n pe L n q,e .p ,a q p q'

This do uble sum with the occ upation factors was ca lculated already in Sect . 4.4 forT = 0 K by integrat ing over the Fermi sphere and yields ger) = 1 - pHF j en (seeFig.4.13) .

Solutions für Chap. 5:5 .1: Taking spin into account , the expe ct at ion value of HN with the Slater deter­minant rJtN is written

(rJtN lllN lrJtN) = t Jdx1/J~(x) ( ;:~ + v(r) ) 1/J,, (x )0 =1

N

+~ L JJdxdxl'l/)~(x) 1/Jß(x')v(r - r/)

1/J,,(x)1/Jß(x')o,ß= l" 'l'ß

N

-~ L JJdxdxl1/J~(x) 1/Jß(x')v(r - r/)

1/Jß(x) 1/Jo,(x') .o ,ß = l" 'l'ß

Carrying out the summation over spin variables , t he first two terms b ecome ident icalwith (5 .8) , while the third term (which appe ars because the Slater deterrninant isan antisyrnmetrized product of N single-particle wave fun ctions) contributes on lyif 1/Jo. and 1/Jß ar e states with the same spin . The variational principle leads for t hefirst two terms to the Hartree equations, which become modified by a contributionfrom the third term , t he exchange term (5.11) .

5 .2 : For free elect rons with 1/Jk(r ) = exp (i k · r) /VV the averaged exchange densityreads

- H F ( ') 2n r , r = - Nk k '

Ikl ,l k 'l :SkF

L I 1 1 i(k' - k+q).(r - r ' )d 3 I-- e rq2 V v

k k ' q '- J

Ik l ,lk ' l :S kF v

k ,k '

Ikl.l k' l:SkF

2e2

---coN V

and with t he Fourier transform of I /Ir - r/l the exchange potential be comes

2e2

Vx.Slater(r) = - coNV

W it h t he exchange energy Ex(n) = - 3e2kF/ 167l'2co from Sect . 4.4 on e finds

LDA 4 LDA 2Vx (r) = 3"Ex (n(r)) = 3"Vx,Slater(r) .

5.3: The nu mber of discrete k = (k 1 ,k2,k3 ) with k, = 27l'ni/Li, i = 1, 2, 3 with0::; n , < Ni in a Br illouin zone is N = N1N2N3, which is t he nu mber of unit cells

Page 30: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

322 Solutions

in the erystal or periodicity volume. Thus, for eaeh elect ron in the unit eell withgiven spin t here is one state in the energy band, i.e., eaeh band ean aeeommodate2N eleet rons .

5.4: A point at the Brillouin zone boundary is eharaeterized by the relation k' =k - G. T he eondit ion of degeneraey is k2 = k,2, thus (k - G? = (k ')2 beeom es2k . G = G 2

, whieh is the eondit ion for Bragg refleetion.

5.5: The primitive reciproeallattiee veetors of the square lattiee are bl = (1, 0)21l" ja,and b2 = (0, 1)21l" / a. Wri te t he free eleetron energies

E(k) = ~(k + G)2 = ~ (21l") 2 ",22m 2m a

for the sm allest G at the points r,M , and X and eonnect eorresponding point s byparabolas defined by G .

If 1/ = 1,2,3 is the number of eleet rons per atom then , for one atom per uniteell, n s = 1/ / a2 is the areal eleetron density. The radius of the Fermi circle is givenby kt: = v21l"n s and t he Fermi energy by

E F = ~k~ = ~ (21l") 2 s:2m 2m a 21l"

or "'} = 1/ / 21l" whieh is 0.159 for 1/ = 1.

5.6: Proeeed as in problem 5.5 and see [111] for the free-eleetron bands along T - L.

5.7: In the almost free-e lect ron pieture, the energy bands of AI, Si, and GaAsderive from the free-eleetron bands of the fee lattiee (see problern 5.6) . Due to thedifferent eryst al struetures (Bravais lattiee for AI, diamond strueture for Si, zineblende strueture for GaAs) the energy gaps are det ermined by different Fouriereomponents of the pseudo-potential :

v. () ""' (T)( RO) V. (G) - ig'T (T)(G )psp r = L vpsp r - n - T ---> p s p = e vpsp .n,T

For AI with T = 0 the strueture factor S(G) = LT

exp (- iG . T) equals 1 for allG . For diamond and zine blende with T = ±T' with T' = (1,1 , l)a/8 one has

Vpsp(G) = e- iG ' T' v(+)(G ) + eiG ' T

' v( - )(G )

= eos (G · T') VS(G) - i sin (G· T') VA(G) ,

where

vs (G ) = v(+)(G ) +vH (G ) and VA(G ) = v(+)(G ) - v(-) (G ) .

In Si t he anti-symmetrie potential VA(G) vanishes. Thus, Fourier eomponents atdifferent reciproeal lattiee veetors determine the energy bands of AI, Si, GaAs.Especia lly, for G = (2,0, 0)21l"[a we have eos (G . T) = 0 but sin (G . T) = 1 andthe ant i-sy mmetrie poten tial present in GaAs removes the degeneraey of t he levelXl in Si (see Fig.5.1O).

5.8: The erystal field split t ing is det ermined by t he matrix formed by

Kv ' v = L Jd3r

4»(r)v(r - R~) 4>v(r)n

with 1/ = x y , yz , zx , 3z 2- r2, x 2- y2. The point group op erations of t he eubie latt ieeturn t he eoordina te t ripIe x , y , z into any other permutation including sign changesof x ,y , and z , while leaving Ln v(r - R~) invariant . Thus, the groups of orbitals

Page 31: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Solutions 323

dxy,dyz, dzx and d3z3 _ r 2 , dx2 _ y2 form invariant sets under the cubic po int gra up,which are classified by the irreducible representations r25, and r12, respectively,and the matrix with t he elements K v'v has block-diagonal form. Further inspectionshows, that each of the diagon al blo cks is itself diagonal for t he given basis withidentical diagonal matrix element s, Ums, the crystal field split t ing gives a 3-fold(r25, ) and a 2-fold (n2) state as ca n be seen at t he r po int of t he band st r uct uresdep ict ed in F igs.5.14 and 5.15. There is no differenc e between sc, bcc, and fcccrystal st ruct ure becau se they have the sa me point gro up .

5.9: T he overl ap matrix Sv 'v(k) is hermitian and ca n be diagonalized by a unitar ytran sformation U: U SU - 1 = S ' with S~''" = S~8," , ,"" The diagonal element s S~ ofthe transformed overlap matrix rep resent t he norm s of the new basis states wh ichare always positi ve. T hus the eigenvalue equat ion ca n be rewri tten

U IIU - 1 UC = E U SU- 1 UC ."-v--'~ '-v-'~

H ' C' S' e r

One can multiply this equat ion with the inverse square raot of the diagonal matrixS ' to ar rive at the eigenva lue equat ion

S, - 1/2 II ,S, - 1/2S I1 / 2C ' = ES' l /2C'

and with ij = S, -1 /2II' S, -1 /2,C = S,l /2C' one has t he standard eigenvalue prob­lem with t he secular equat ion

with iI = S, - 1/2UH 'U - 1S ,- 1/ 2.

5.10: T he near est neighbors in the sc crystal structure are

R~ : a(±I,0, 0) , (0, ±1 , 0) , (0, 0 ± 1)

leading to the disp ers ion

Es (k ) = Es + 2Jss(a)(cos (kxa) + cos (kya) + cos (kza))

which for k = (k ,O,O) becomes Es(k) = Es + 2Jss(a) cos (ka) and for k =(k ,k,k) , Es (k ) = Es + 6Jss(a) cos(ka) with band wid ths E (O) - E((rr /a ,0,0)) =4Jss(a) and E (O) - E ((7r/a,7r/a,7r/a)) = 12Jss(a) , respec t ively.For the bcc crystal st ruct ure one has

o aRn : 2"(±1 , ±1 , ±1) , (Cfl , ±1 , ±1) , (±1 , Cfl , ±1), (±1 , ±1 , Cfl)

leading to t he disp ersion

Es(k) = Es + 2Jss (~) {COS(~(kx +ky+ kz)) +cos(~(-kx+ky+kz))

+ cos ( ~ (kx - ky + kz)) + cos (~(kx + ky - kz)) }

which for k = (k ,0, 0) becom es Es(k ) = Es + 8Jss(a /V3) cos (ka/2) and for k =(k , k, k ), Es (k ) = Es + 2Jss(a /V3)(cos(3ka/2) + 3c os (ka/2)) with band widthsE (0)-E((27r/a,0,0)) = 16Jss(a /V3) and E (O)-E((7r/a, 7r /a , 7r /a)) = 8Jss(a /V3).5.11: For a solut ion see P.R. Wallace, Phys. Rev. 71 , 622 (1947) and the ar t icle byS.E. Loui s in [104].

5 .12: Use the Peierl s subst itut ion E(k ) -t lI(p - eA? with the vector po t enti alA = (0, B(x cos 0 + z sin 0, 0)) corresponding to B = B(sin 0,0, cos O) to write

Page 32: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

324 Solutions

2 1 2

H = 2PX +-- (py - eB(x cos(} + z sin(})f+.EE..-.m t 2m t 2m l

T he equations of mo ti on for t he compo nents of t he mom ent um are (up to te rms'" Pu whieh vanish la ter due to py = 0)

i e2 B 2

Px = -·d px , H ] = - - - (x cos {} + a sin e) cos {}fL mt. 2 B 2

pz = - ~ [Pz , H ] = __e - (x cos {) + zsin {}) sin e ,n. mt

Take t he derivati ves of t hese equation with resp ect to t and replace ± = Px/mt , z=pz/ml t o obtain

- Px = wZ cos2 {}Px + WtWt sin ()cos {}pz

- Pz = wZ sin {} cos {}px + WtW/ sin2 (}pz

with w/,t = eB/m /,t. With px,z '" exp (- iwt ) t his becom es a set of homogeneouslinear equations and the eigenfreque ncies follow from

11

w; cos2

{} - w2

WtW/ sin ocos o 11 = 0w; sin {} cos {} WtW/ sin 2

{} - w2

with t he non trivial solution

2 2 2 . 2 2 2 ( cos2

{} sin2 o)W = Wt cos {} + WtW/ Sill {} = e B --2- + - -mt m tmt

The express ion in t he bracket is t he squared inverse cyclotro n mass for t heanisotropie ene rgy sur face if t he magnet ie field includes t he ang le {} wit h the zax is. See [4] .5.13: For k = (kx , ky, 0) and "VV II (OOI) t he interface spin-orb it (or Rashba) termreads

Hso (k ) = al "VVI(kyax - kxa y)

and wit h k± = kx ± iky = kexp (±i~) and a ± = (ax ± ia y)/2

Hso (k , ~) = ia l"VVI (k+a _ - k-a+) = ia' (ei'Pa _ - e-i'P a +) .

T he subband Hamilt oni an wit h spin-orbit inter act ion becom es

(

Ek ia ' e-i 'P )H(k , ~) = . I -i'P .

- l a e Ek

It s eigenvalues E±(k) = Ek ± a l"VV lk do not de pend on ip and are two parabo lasshifte d ag ainst each other . Use the eigenvect ors

Ik ± ) - _1 1 1 ), - J2 =fie' 'P

to calculate t he expec tation value of the vector of Pauli spin matrices:

(k , ± Iu lk , ± ) = ± (ex sin rp - e y cos rp) .

T hus , t he spin is always or iented perpendicular to t he wave vector k = (kx , ky , 0)and rotates wit h ip , Note, that t he states on eac h par abola form a Kr amers pair .See [141].

Page 33: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Solut ions 325

Solutions fo r C hap.6:

6. 1 : Choose t he quantum numbers for t he Bloch states

0= nka, ß = nkjj , 0 ' = n'k 'IJ' , ß' = n'k'jj' .

After carrying out t he summat ion over spin variables t he mat r ix element reducesto

Vaßß'a' = Jd3r Jd3 r' 'l/J~k u (r ) 'l/J~ kü (r ' ) Kir e~ r ' l 'l/Jn' k' u (r )'l/Jn'k' ü (r ' ) .

Decompose t he Bloch fun cti on into plan e wave and lat t ice per iod ic par t s, expandt he products of period ic par ts wit h t he sa me arg ume nt in a Fourier series

u~k u(r)Un ' k'u(r) = L B nnkku (G )eiGor ,

G

and use the Fourier transform of t he Co ulomb interaction to perform the integrationover the space vari ables to find

Vaßß' a' = L B nn'kk ' u (G) B nn'kk 'ü( G')G,G' ,q

e2 Jd3 - i(k- k' - q- G)or Jd3 , - i(k - k' +q- G') .r'

X - V 2 r e r eEO q

For t he single-band approximation set n = n = n' = n' and with only leading termsin t he Fou rier series, G = G ' = 0, write

B nn'kk' u (G ) --> Bkq , B nn' kk ' ü (G' ) --> B kq

and obtain

Vaßß' a' = L v( q) V2

Bkq B kqÖk' ,k_q Ök ,k' -q .q

6. 2: To check normalizat ion and ort hogonality write

L I d3r<p~u (r - R )<Pn' u, (r - R ' )

1 J: """""" - ik ·R- ik' ·R ' Jd 3 ,I,' (),I, ( )= N Va ,u' Z:: e r "Pn k a r lf/n ' k 'a rk ,k'" ,v

_ 1 L - ik .(R-R') J: _ J: J:-- e Un n' - Unn ' UR R 'N " ,k

Thus locali zed fun ction s, represented by Bloch funct ions , are orthogonal whe n cen ­tered on different sites. In sofar t he Wannier representation d iffers from t he LCAO.Int rod uce fermion operators for t hese locali zed Wannier st ates by

1 """""" ik .RCn H o = r;;r L...J e Crvk a

yN k

and ca lcula te the anti-commutator

Page 34: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

326 Solutions

_" s: 1 """" ik .( R - R' ) _ s: , s:- Un ,n ' Uu ,u ' N L...t e - Un ,n 'U u ,u 'U R ,R ' .

k

T he othe r ant i-commutato rs yield

{ C~Rcr ' c~, R ' er' } == { Cn R u , Cn' R ' q ' }

6 .3: Use t he represent ation (6.7) of t he Bloch fun ctions to write

1N2

x Jd3r Jd3r ' </J*(r - R 1 )</J* (r ' -R2 ) t;; l r e~ r 'I </J ( r - R~ ) </J ( r ' -R; ) .

Use (6.8) with the expo nent ials and sums over the wave vectors to replace thefermion operators of Bloch states in the inter action term by t hose of Wannier state sto find (6.10) .

6.4: T he commutator between c+C! and cl Cr

[ t t ] _ t t t tcrcl , Clcr - CrClCl cr - cl cr crcl

is eva luated by using t he ant i-commutator for fermion operators and writ ing

chcl cr = c+(1 - clcdcr = c+cr - c+clcLcr

= c+cr - cl (1 - CrC+ )Cl = c+cr - ClCl + clC!cr c+

where the las t t erm ca ncels in t he commutator . T hu s we have

[ t t ] _ t tcrC!,cl cr - crcr- cl cl '

T he ot her commutat ion rela tio ns

follow in a similar way. T hese t hree commutators are t he same as t hose betweenS ± and SZ and corr espo nd to t he operator algebra of t he Ca rte sian component s oft he angular moment um S X, SY, and SZ.

6. 5 : Evaluate the commutator

[Sf S~, sj] = SfS~Sj - SjSfS~

= - iExß-ySj S~5i,j - S f iExßßj5j ,k ,

to write t he commuta tor of Sj with t he first te rm of t he Heisenberg hamiltonian

for i = j , bl j

for k = i , k i= i

= - i L Jij (S i X S j )xi h

Page 35: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Solu t ions 327

where for ob t aining the last !ine use was mad e of i =I k and of the meaning of theLevi-Civ it a symbol. For the commutator with the sec ond term of the Heisenberghamiltonian evaluat e

"'[SZ SXJ - ", . Sßs: . . - ·sy6 i, j - 61c zxß j U' .J - 1 j .

i . ß

Putting together both con tributions find

dSj i [ X) 1dt = r; 'H. spin , Sj = -r;

6 .6: Eva luate the commut.ator

[CI'k 'O{ ,) = [ukb1k - vkb1k,Uk,b;k' -vk, b2k, )

=UkUk' [b1k,b;k,) +VkVk' [b1k,b2k,) = (uk - vk)Ok.k"'"-v--"" '"-v--""

0k ,k ' - 8 k ,k '

which for (u~ - v~ ) = 1 is a boson commutation relation . In the sam e way, calculate

[CI'k , ßk' ] = [1Lkb1k - vkb1k ,Uk,b2k, - vk, b;k' )

= - UkVk' [b1k,bik ') - VkUk' [b1k,b2k, ) = 0 .

The remaining commutat ion relations are obtain ed in a similar way.

6.7: Using t he new boson operators for coupled magnon-phonon modes, t he hamil­t onian becomes

Hp -rn = L { Cl'kCl'k (liw~ cos2 Bk + liWk sin2 Bk - 2Ck sin B k cos B k )

k

+ ßkßk (liw~ sin ' Bk + liWk cos2 Bk + 2Ck sin Bk cos Bk)

+ Cl'k ßk [(liw~ - liWk) sin Bk cos Bk + Ck (cos2 Bk - sin2 Bk))

+ Cl'kßk [(nw~ - ttWk) sin Bk cos Bk + Ck (cos2 Bk - sin2 Bk)) } .

It can be diagon a!ized with

(hw~ - nwi,n) sin Bk cos B k + Ck ( cos" Bk - sin ' Bk) = 0

or

- 2Cktan 2B k = -:---;c-----,,....-,,,-

nw~ - liwi,n

For w~ = wi,n = Wk we have cos2 Bk = sin' Bk = 1/2 and find for the eigenenergiesof the coupled modes

liwJ: = nWk - Ck and liw~ = liWk + ci;

and for the correspo nding boson operators

and

6 .8 : With t he inverted t ran sform ation relations (6.59) write t he t erms of (6.56) :

Page 36: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

328 Solutions

bikb1k = akak u~ + ßkßk v~ + (ak ßk + a kßk ) UkVk

b~kb2k = ßkßkU~ + ak akv~ + (ßkak + ßkak ) UkVk

blkb~k = (a ka k + ßkßk ) UkVk + ak ßku% + ßka kvk

b1kb2k = (a kak + ßkßk ) ue v» + a kßku% + ßka kvk

to obtain afte r arranging operators in nor mal order

'Hspin ::::: e, + 2JavS L { (o:kak + ßkßk ) (u% + vk + 2,kUk Vk)k

+ (o{ ßk + a kßk ) (2Uk Vk + , k(uk + vk) ) + 2(,k Uk Vk + vk )} .

Add and subt ract u% to t he las t ter m und er the sum to find with 11% - vk = 1 theexpression (6.60).

6 .9 : Extend (6.53) by t he te rms d ue to t he an isotropy field HA and t he extern alfield Hext

'Hs p in = J a L s.: S 2j - Y/lB L ((HA + Hext) S :i - (I-lA - Hext) S~i)n .n .i j

and rep lace t he sp in op erators by boson operators on each sublattice using t heHolst ein- P rim akoff transfor mation to obtain

'Hs p in = - 2JavNS2 - 4g/lBHANS

+ 2JavS L {blkb 1k +b1kb2k+'k (blk b~k +b1kb2k)}k

+ 2Y/lsHA L (blkb1k + b1kb2k) + g/lBHext L (blk b1k - b~kb2k )k k

Elimi nate the coupling between the sublat t ices using t he Bogoliubov t ransfor mation(6.57) and writ e with t he abbrev iations

C = - 2Ja vN S 2 - 4g/lBHANS , A = 2Ja vS , B = 2911BHA , C = g/lBHext

'Hs p in ::::: C + L { A,k (2ukvk (ak ak + ßkß k + 1) + (u% + v~ )(akßk + a kßk ) )k

+ (A + B) ((uk + vk )(a ka k + ßkßk ) + 2UkVk (ak ßk + a kßk) + 2vk)

+ C (akak - ßkßk ) } .

Diagon alize with A,k(uk + vk ) = - 2(A + B )UkVk. Square t his rela t ion and use

uk - Vk = 1 to get a b iquadratic equation for Uk. Take its solut ion to find

2 2 { (A + B ? }1/2 1{ A2,k }1/2Uk + Vk = ± (A + B F _ A2,k ' UkVk = =F 2 (A + BF - A2,k

Ident ify t he prefact or of t he magnon nu mb er ope rators as t he magnon energy

nWk = {( A + B) 2 _ A2, k} 1/2

which wit hout anisotropy field (B = 0) reduces to t he disp ersion relation for theant ifer romagne t ic magnons which for sm all k is linear. W ith anisotropy field one

Page 37: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Solutions 329

find s a finite magnon energy for k = 0 and a qu adratic dispersion for small k ascan be seen in F ig. 6.8.

6 .10: Evalunte for low tempe rat ure (T « Tc ) the magnet ization (per unit volume)

M(T) = sue (NS -~(blbk )) or

where the qu ad rat ic dispersion for small k is used. The int egral (it is a Bose integral)can be solved as described in t he Appendix to yield Bloch 's T 3

/2 law:

M(O) _ M(T) = ((~) g/lB(~) 3/2 T 3/2 .2 M(O) 41rD

See [154].6.11: Calculate the expec tation value in (6.106) for T = 0:

m

Replace the op erators M ± by t he fermion op erators an d extract the exponentialswith the time dependence. The energy differen ce E m - Eo of exact eigenstatesbecom es in HF approximat ion t he energy difference of single-p article energies forparticle-hole excit at ions with spin-flip across t he Fermi energy. By manipulationsas in Sect . 4.5 one arrives at the spin suscepti bility (6.108).

In order to evalua te (6.108) , use

n2 n2

Ek +q T - Ek! = - .1 + -k . q + Eq , Ek T - Ek - q ! = - .1 + -k . q - Eqm m

with Eq = n2l /2m and perform the sum over k with the subst it ut ion k . qkq cos e, cos e= x . The first term can be written

A ! = "" 1~ hu: + Ek + q T - Ek !

Ikl :Sk F I

V l k F

! 1+1

1= -- dkk2 dx.(21r)2 0 - 1 Iu» - Ll + Eq + n2 kqx / m

The int egral over x can be solved according to

1+1~ = ! la

+b

d z = ! In 11 + b/a I .

- 1 a + bx b a - b Z b 1 - b/a

Looking for collective exci t ations at small q one has b/a « 1 and can use theexpansion

Page 38: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

330 Solutions

!lnI1+b/a! ~ ~ {~ +! (~) 3} = ~ {I +! (~) 2}b 1 - b/ a b a 3 a a 3 a

to obtain

l kF { 2 ( 2 ) 2 ( ) 2 }A - ~ 1 dk k2 1 +~ !!:...!!. 1! - (27f)2liw - L1+€q ° 3 m liw - L1+€q

After integration and corresponding evaluat ion of t he second term A T one arr ivesat (6 .108).

Solutions for Chap.7:

7.1: Evaluate t he commutator [Ck ,iT ' c~+qerct ' _qer,Ck 'erlckerl by successively inter­changi ng C;;; ,iT with the four operators appearing in the interaction t erm. Each stepleads to a change in sign and in add it ion gives a Kronecker 6 for exc hange with thecreation operators, t hus

In terchange in the seco nd term t he las t two op erators and repiace C7 by C7' and k byk ' . Repl ace in t he first term q by - q and cons ide r t he prop er ti es of the int eractionmatrix eleme nt t o find t he ex pression for [C;;;, 'Hint] (7.20) . The commutator [4,'Hintlis eva lua ted by analogous steps,

7.2: T he equat ion of motion of t he full Gree n fun cti on G( k C7 ;t - t') (7.21) ca n bewr itten wit h (7 .23) as

(in:t - € ker ) G( kC7;t - t') = 6(t - t') +Jdt" E(kC7 ;t - t")G(kC7;t" - t') .

Rep lace t he Gree n fun ct ion and t he self-energy by t hc ir Fourier t ransform withrespect to t he ti me arg uments and identify t he in tegr ands to obtain

(liw - € ker ) G( kC7 ;w) = 1 + E (kC7 ;W)G(k C7 ;w) .

After mult ip lication with t he Green function of t he non-interacting system

GO(kC7; W) = (nw - € ker )- l

one arrives at t he Dyson equat ion

G( kC7;W) = GO (kC7 ;W) + GO( k C7 ;W)E(kC7;W) G(k C7 ;W) .

7.3: The commut at or of ni-erCier with t he single-p article part Ho yields three t ermsdue t o interchange of creat ion and annihilat ion op erators:

[ni- er Cier , Ho] = L tmj (CL er Ci - er Ci er C~er , Cjer ' - C~er, Cjer'CLerCi -erCier )m i o '

= L tmj (6im6er er ,ni-er Cjer - 6 i m 6 er- er, c L erCi erCj - er

nvi o '

- 6ij 6 er- er, C;"_er Ci - erCi er)

= L tim ( n i - crCm cr + C;_ erCm-crCi cr - C;" _ erCi - crCicr ) ,

rn

Page 39: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Solu tions 331

where the last line is obtained by prop er choice of the summation ind ices andrearrangin g the ope ra tors. Similarl y the commutator with the interaction term isevalua ted

[ni-aCia, H1 ] = ~UL (ni -aCian ma,nm- a' - nma ,nm-a,ni-aCia)rno '

~UL ni-a (Cia C~a, Cma, nm-a' - nma,nm-a,Cia)rnc"

= ~ UL ni-a (ÖimÖaa'Cian i- a + ÖimÖa-a ,ni-aCia) ,-mo '

wh ich using n7- a = n i-a becomes (7.55) .

7.4: Calculat e t he derivative of the self-energy (7.70) and obtain the spec t ral weight

(E - 100 - U(l - (n_a) ))2 + U2(n _a )(1 - (n-a) )

For the lower Hubbard band with E = 100+ 2t cos ka this becomes

(2t coska - U(l - (n _a) ))2Z'ower = 2

(2tcos ka - U(l- (n - a) )) + U2(n _a)(1 - (n - a) )

and reduces for k = rr/2a t o Zlower = 1- (n - a ) . For the upper Hubbard band withE = 100+ U + 2t cos ka the resul t is

(2t cos ka + U(n_ 0' ) ) 2

Zupper = 2(2t coska + U( n - a) ) + U2(n _a )(1 - (n - a) )

and Zupp er = (n - a) for k = tt / 2a. Note that the spec t ral weights for k = rr/ 2a aret hose of the atomic limit (see Fig. 7.3).

7.5: This problem is solved in some detail in [157,189]. It leads to the so-calledt - .J model, where t is the hopping integral and .J '" e/U is the effective exchangematrix element .

7 .6 : Describing the delocalized electrons by fermion operator s cL , Cteo in a bandwith dispersion Ek and the localized electrons with energy IOd by ferrnion operatorsdt , da , t he Hamiltonian is forrnulate d as

H = L EkcLcka +L E dd~dak ,O" o

k,a

Here th e third term describes t he hybridi zation between t he locali zed and delo­calized elect rons. This is the Anderson impurity model. It can be ex tended byconsidering inst ead of a sing le impurity a periodic configuration of sites i with delect rons. For this case t he fermion operators for d elect rons becom e dIa' dia andsummation over t he sites i is to be considered . See P.W . Anderson: Phys. Rev . 12441 (1961) and [55]Sect . 6.2, [112, 178].

7 .7: For t he solution see [112, 178]. It uses a contour int egration in the complexfrequency plan e t aking into account the po sition of t he pol es for qu asi-particlesand holes.

Page 40: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

332 Solu tions

7.8 : Start from the expression (4.134) for t he real part of t he dielectric fun ction,whi ch for T = 0 reads

( ) 1 L 2Ek - Ek+q - Ek- qc l q, W = + Vq .

(nw - Ek + Ek_q)(nw - Ek+q + Ek )I k l ~ kF

Making use of t he free electron disp ersion Ek = n2 k 2 12m t he numerator simplifiesto - n2l Im while t he denominator takes t he form

(n2 ) 2 (n2 2) 2(nw - Ek + Ek_q)(nw - Ek+q + Ek ) = tu» - m k · q - 2m q

and t he expression to be eva luated by integrat ion is

"" 1 ( 2m) 2 "" 1s: ( 1t2 ) 2 ( 1t2 2) 2 = f? c: ( 2 _ 2k . )2 _ 4 'Ik l9F lu» - -:;;: k . q - 2m q I k l ~ k F qs q q

with q; = 2mnwln2.For d = 1 the vectors becom e scalars and t he sum can be written as t he integral

(us ing the substit utio n x = 2kq )

L J kF

d k L 1 J XF d kI (q ,w )= 21T -kF q: - q4 - 4q; kq + 4k 2q2 = 21T 2q - XF x 2 - 2q; x + q: _ q4

T he int egral can be found in int egral t ables giving

L 1 I(2k Fq - 2l? - 4q: II(q ,w) = 21T 4q3 In (2kFq + 2q2)2 - 4q: .

For w = 0 (or qs = 0) t his integral diverges for q -> kF.For d = 3, consid ering from t he beginning t he simpler case w = 0, t he corre­

sponding int egral is

I (q) = (L3)

3 21T l kFdk k

2J +l 4k 2 2

d co~ ~ _ 4 = 8 L2

33 1

kFd k In Ikk - q I'

21T 0 - 1 q cos q 1T q 0 + q

and yields by int egration

I (q) = 8~3q2 { ( k; _ 1) In (~ _ 1) _(k; + 1) In ( k; + 1)}For q -> kF t his int egral remain s finit e.

Solutions for Chap. 8:

8 .1 : The operator for linear elect ron- phonon int er action

'Hel - p h = - L V'lv (r l - Rn-r I R~ "T .Un"T

l ,n ,T'

can be wri tten in t erms of ph onon and electron op erators using (3.22) together with(3.39) and by rep lacing with (4.74)

L V'lv(rl - Rn "T I R~ "T -> L (nk l V'v l nl k')C~kCn' k "I n, k ,n ' ,k '

Page 41: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Solutions 333

The sum over the lattice sites n effects on ly the gradient of the potential and hasthe form of aBloch fun ction

'"' iq.R:;' I _ iq·rL e \Jv (r -Rn-r ) RO - e Uq-r(r)n.,.

n

where Uq-r (r) is a lattice periodic func tion. Aft er decomposition of t he electronBloch functions in t he matrix element into plan e wave and lattice per iodic partthe product U~k (r )un ' k' (r )Uq-r (r) can be expanded in a Fourier seri es. T hus theint egration over the crystal volume can be carried out with

Jd3 - i(k- k' - q- G)·r s:r e rvUk,k'+q+G

and yields t he relation between the involved wave vectors.

8. 2 : Using (3.76) one has OU;jOXi = Eii and can write

\J . u (r ) = L O~i ui(r) = L Eii = TrE .i i

For u (r) rv eiq.r follows \J . u = iq . u which differs from zero on ly for longitudinalphonons.

8 .3 : For transverse phonons with q = L " q"e" , u = L ß ußeß we have in general

q . u = L" q"u" = - iTr E = 0 but e.g. for the special case q = (q , 0, 0) , u =(0,U2, U3) the st ra in t ensor components are

i iEU = E22 = E33 = E23 = 0 , but El 2 = '2qU2 , El3 = '2qu3 ,

giving a nonvani shing cont r ibut ion to the elect ron-phonon interaction.

8 .4: Start with the classica l express ion for the interact ion energy (8.22) with

\J . P (r ) = - ~ e I4 1 6' ij k l (qiqkUj + qiqj Uk ) eiq.r double ind ex summation

= -2e14 (qyqzu x + qzq xUy + qxqyuz ) eiq

.r

.

Usin g (8.23) for the charge density, expressing t he displacement field by phononoperators, and integrating over the cryst al volume convert s Eint into the op erator

1t~- ph = _ 2e el4 '"'6'06' 00 L

s ,q

tiN qxqy e~(q) + C.p .

2Mws (q) q2

x (a1(- q) + as(q)) L Ci +qCk .k

8. 5 : To be calculated is the expression (T) (8.70) with t he given dependencies of T.The integrals are solved with the substitution E/kBT = x and we may write

1

00 3/ 2 - €/ knT d (k 1 ') 5/2 100

3/ 2 -xd T 5 / 2E e E= B X e X rv .

o 0

Sim ilar for T rv T - 1E- 1/ 2

100 3/ 2 - €/knT d T - 1 (k T)2 1 °O - xd TTE e E = B xe x rv

o 0

Page 42: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

334 Solutions

and for T ~ T - 1E1/ 2

100 3 /2 -< /kBT d T - 1 (k T )31OO

-xd T 2T E e E = B xe x ~ .

o 0

Thus for deformation potential coupling J1 (T ) ~ T - 3/2 and for piezoelectric cou­pling J1 (T ) ~ T - 1/ 2. This explains t he different slopes of the correspo nding graphsin Fig.8.5. For more det ails see [4,227] .

8.6: For t he solution see [4], Cha p. 7. The calculat ion is essentially the same asfor t he Fröhli ch coupling bu t with the l /q dependence of the inter act ion po tenti alrepl aced by a .J(j dependence. The number of virtually excited ph onons being pro­portional to the squar e of t he effect ive mass of the elect ron t urns out to be mu chsmaller t han 1. Replacing the electron by the much heavi er ion wou ld increase thisnumber to a value much lar ger than 1 indi cating that the perturbation calculationis not appropriat e.

8 .7 : We have to evaluate the commutator

['Hel- ph, S] = L VqVq' [Cl +qCk (a~q + aq) , cl'+q,Ck' (Qa~q' + ßaq, ) ]k ,q

k ' .a'

and write

[... , ...] = [a~q + aq, Qa~ q' + ßaq,] cl+qCkCk'+q,Ck'

+ [Cl +qCk,ck' +q,Ck'] (Qa~q' + ßaq, ) (a~q +aq)

The elect ron part of t he first term ca n be rearranged giving

cl+ qCkCk'+ q,Ck' = ck+qCk' +q,Ck,Ck + 8k,k'- qTtk'

wh ere t he first te rm has t he structure of an elect ron-elect ron inter action (t his isthe one we are looking for ). The ph onon part of t he first term gives

[a~q + aq, Qa~q' + ßaq,] = (-Q + ß )8q,q' .

The seco nd te rm, being bilinear in t he ph onon operators , is neglected as weil asthe term with the elect ron number operator to obtain t he approx imate form of thecommutator ['Hel-ph, S].8 .8: Using (8.119) the ground state expectation value of H rela ti ve to the groundstate of the normal sys tem is

Eo = (H) + L IE(k)1k

and can be written with

(Ukz) = COSBk , (Ukx) = sinBk and ~lf L sin Bk' = E(k)tanBkk '

as

Eo = - L E (k ) ( COSBk + ~ t an Bk sin Bk) + L IE (k )1.k k

Wi th

2<12

E (k ) tan Bk sinBk = -v. andelf

Page 43: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Solutions 335

and by replacing the sum over k by an energy integral over the she ll with thickn essnwo at the Fermi energy, one find s

1!iWD { 2 }.12Eo = 2D(EF) 0 de I' - (1'2 +ELF)l /2 - Veff '

where D(EF) is the density of states at the Fermi energy. The int egrat ion can easilybe performed and yields

The last expression, obtained for 1 » D( E F)Veff , teils us that the superconductingstate is stable as long as the effective interact ion is positive.

Solutions for Chap. 9:

9.1 : Besides the poles of Go(E) the full Green function G(E) has addit ional po lesfor 1 - Go(E)U = 0. In site representation U has block-diagonal form with a non­zero block U1 = U{R[} only in the diagonal for lat t ice sites around t he impurity.With Go(E) written in t he cor responding block form (with Go,{Rd(E) = GÖ(E)and corresponding matrices for the other blocks) , the matrix mu lti plication can bepe rformed to give

_ ( GÖ(E ) G6(E) ) ( U O) _ ( GÖ(E )U1

0 )Go(E)U - G5(E) G6(E) °° - G5(E)U 1 ° .

The determinant of 1 - Go(E)U is the product of the det erminants of it s diagonalblocks or 111- Go,{Rd(E)U{Rd ll = 0.9. 2 : The average of the individual resis tances is

N

(r) = ~ L rii= 1

and thereforeN N

(R) = (L Ti) = L (ri) = N (r ) .i= l i= l

The variance of R is given by

VarR = (L rirj ) - N 2(r )2 = (L r; ) + (L rirj) - N 2(r )2i j i# j

and with uncorr ela ted ftuctuations of the r ,

The relative variance given by

VarR(R)2

1 VarrN (r) 2

vanishes for N -; 00 •

9. 3 : T he transver se response reads

x(O,w) = e2 L (ilvln (f ' lvli') * 1=dT([C;(T)ct(T) ,Cj,C;t] )o .

i,J,i',J' 0

The time dependence of the operators gives a factor exp (i( Ei - I' f )TIn) and theintegral over T yields

Page 44: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

336 Solutions

i 100

dTek Cnw+c;-</+io)r = _ 1h 0 Iu» + 10; - 10f + io '

where t he small parameter 0 is introduced to regularize t he int egral. To eva luatethe remaining t hermal expectation value first calc ulate the commutator

With t he t hermal expectat ion value of (crc;' )o = f( 10;)0;,;1 the response functiontakes the form of (9.87)

X(O ,w) = _ e2~ 1(ilvl J)1 2 f(E ;) - f (Ef ) . .L....- lu»+ Ei - Ef + 10i ,f

9 .4: Write (for finit e w) the 0 function in the form

o(hw+ Ei - Ef ) = JdEo(E - Ei)O(E+ hw - Ef)

so that with Ei = E an d Ef = E + hw the conductivity is expressed by

O"(O,w) = -rre2 JdEf(E) - f~E + hw) L l(il vl f )120(E - Ei )O(E + hw - Ef) '

i ,f

The 0 functions can be replaced wit h (2.77) and E + = E + io by the imaginarypart of the corresponding single-part icle Green functions and give for the doublesum expression under the integral

L '" = L (i lv lf) (J lv li) ImGii (E+ )ImGff (E + + hw)i , f i , f

= :2 I > lvG(E + + hW)/J) (J lvG(E+) li ) ,i ,f

whic h for w -> 0 leads to Tr(vlmG(E+) vlmG(E+)) .

9 .5: Write ß (g) in the form

dg Lß(g) = dL g .

For 9 -> 00 use geL) = O"Ld-

2 and 0" indep endent of L to find

dg = a(d _ 2)Ld - 3 = (d - 2)2..dL L

which means

lirn ß(g) = d - 2 .g~oo

For 9 -> 0 use geL) '" exp (-L/,\) with dg/dL = - g/'\ and

lim ß(g) = - ~ .g~O /\

The sign of ß(g) is det ermined by dg /dL. For d ::; 2 and assuming a monotonousfunction it is always negative while for d > 2 t here is a sign change.

Page 45: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Index

absorption coefficient 56acoustie phonon 47adiabatic- approximation 37- potential 38, 44alkali halide 7alloy 263Anderson model 212anti-ferromagnet 171,175approximation- adiabat ie 21- Born 268- Born, self-consist ent 268- Born-Oppenheimer 21,223- coherent potential 268- continuum 52- Cooperon 274- effect ive-mass 144, 150,258- harmonie 39- Hartree 96, 118, 163- Hartree-Fock 95,97, 162, 176, 180,

199- local density 121,123- local spin density 158- mean field 98, 176, 248- molecular field 175- one-band 257- random ph ase 104, 183, 271- relaxation time 235- self-consistent field 104- t-rnatrix 267- Thomas-Fermi 135- tight-binding 139, 160, 195- virtual cryst al 267atomie limit 198

back scat te r ing 274band- conduction 134- heavy hole 149- ind ex 118,125- light hole 149

- structure 118, 124, 125, 131- valence 134, 143band gap 129, 143- engineering 152- problem 124band structure- free elect ron 131- of Al 132- of Cu 141- of Fe 158- of Si 134- of transition metals 141BCS theory 242Bothe-Salp et er equation 273binding- chemieal 4, 61, 75- covalent 16,61,64, 141, 144- het eropolar 16,61- homopolar 16- ionie 16- metallic 16- van der Waals 16Bloch- elect ron 124, 127, 180- equat ion 167- funct ion 125, 126, 137,257,271 ,281- representation 167, 169, 172- st ate 255- theorem 6,41 ,281Bogoliubov tran sformation 172, 208Boltzmann equat ion 234bond charge 61, 144- model 61Born series 260, 264Bose-Einst ein- conde nsat ion 252- distribution 47Bragg condition 129Brillouin- function 177- zone 6,41 ,43, 49,118

Page 46: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

8047123, 158

338 Index

bulk modulus 70

carbon nanotubes 143,207center coordinate 85central-cell- correction 258, 259- potential 259characte r t able 281chemical potential 194cluster 4, 17collective- excit at ion 41- mode 41,43collision term 234compliance constant 52composite fermion 220compressibility 54conditions- periodic boundary 41,77conductance 277conductivity- dc 272,276- electric 25,32,223,270- heat 32configur at ion- average 265- equilibrium 18, 63- ofions 38const ant

com p lia nce 52elastic 51

- Madelung 19stiffness 51

Cooper pair s 246cooperon approximation 274correlation 12- density-density 31- effects 189- elect ron 82, 189- energy 108

hole 112spin-spin 30

coupling- exciton-photon 173

phonon-photon 173- piezoelectric 231- plasmon-phonon 173- spin-orbit 17crit ical- exponent 178- po int 47- t emperature 157, 175,241 ,251crystal

liquid 4- mixed 7, 263

molecular 7- momentum 5- photonie 8- quasi 4- structure 5crystal field split t ing 139cryst a lline structure 4Curie temperature 179Curie-Weiss law 179current density 271- diamagnetic 271

electric 25heat 25

- par amagnetic 271cyclotron frequency 83

de Ha as-van Alphen- oscillat ions 131, 133Debye- frequency 49,245,251

law 50- model 48, 170- temperature 49,251Debye-Waller factor 50,68,73defect- ant i-site 256, 262- Frenkel 256- point 256deformation potential 227degeneracy- Kramers 126- spin 126density- average 11- fluctuation 11,205,208- paramet er 78,97,109density functional theory 63, 118, 120density of states 151, 182,251,261 ,

275- elect ron- phononDFT-LDAdiagram- ladder 273- maximally crossing 274diamagnetism- Landau-Peierls 89diamond 49dielectric- function 25, 31- polarization 25- screening 30

Page 47: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

dielectric constant- high frequen cy 58- st atic 58dielectric function 56- elect ronic part 101- longitudinal 101- transverse 101dimensionality 8, 149, 206, 207, 278dipole- approximation 56- moment 54- operator 55direct- exchange 165- t erm 96dis location 262disorder- compositional 7,67,255,263- diagonal 263- isotope 263- off-diagonal 263- st ruct ural 4,7,255,263,276- su bstitutional 276distribution- Bose--Einstein 47- Fermi-Dirac 80, 272doping 256Dulong-Petit law 48dynamical matrix 41Dyson equ ation 193,264

edge channel 221effect- de Haas-van Alphen 90, 131- qu anturn Ha ll 152effective- 9 factor 85- mass 85,89, 147- single-particle potential 117, 151Ein stein relation 278elastic- constant 51,53- modulus 52electric conductivity 25,223electron- closed shell 15- core 75, 136- gas 75- valence 15, 75, 136clectron system- low-dimensional 83- two-dimensional 150, 189, 215electron-electron interaction 161,279

Index 339

electron-phonon interaction 223elementary f1ux quantum 86energy- band structure 118- dissipation 57,233- fun ctional 122- gap 129,259- loss spectroscopy 103- relaxation 234energy bands- of Al 132- of Cu 141- of ferromagnetic Fe 159- of Ge 143- of Si 134- of transition metals 141energy gap 134, 143energy- Ioss- fun ction 31, 105, 107,271ensemble- canonical 23- grand-canonical 24- mean value 22equilibrium- configurat ion 18- position 18, 38- thermodynamic 20exchange- charge density 120- direct 165- energy 159- hole 100- Rudermann-Kittel 165- t erm 97excitat ion- collective 41, 107, 165, 183- elect ron-hole 103- elem entar y 43- particle--hole 106- spin-flip 182

Fermi- circle 130- contour 131- energy 78, 141, 144- gas, ideal 78

hole 100, 112- int egral 81,287- liquid 189

sphere 77,78,91 ,95,96, 103, 106,108,159

- surface 90, 131,247- temperature 79- velocity 79

Page 48: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

340 Ind ex

- wavelength 79Fermi surface- of Ag 133- of Al 133Ferrni -Dirac- d istribution 81, 204fermion- annihilation operator 92- composit e 152, 220- creat ion operator 92- heavy 82,89,210- vacu um 92ferrom agnet 175ferromagnetic- ground state 163, 166- insu lator 162, 165ferromagnetism 182- strong 183- wea k 183field quantization 45filling factor 86 , 152fine st ructure constant 231fluct uation- density 101- number 101force constant 40,51,60four -ce nt er integral 196Fröhlich- coupling constant 231- polaron 239fractional- cha rge 220- filling 215- quantum Hall states 215free energy 70, 88, 204function- dens ity-density corr elation 9- dielectric 30- pair- distrib ution 8,9,100- Wa nni er 161,261

ga p- direct 145- ind irect 145- par ameter 251Gr üneisen- parameter 71- relat ion 71gradient expansion 123grand-canonical- ensemble 24- potent ial 88Gr een function 28

- retarded 33, 190- spectral representation 33- two-part icle 273ground st at e 4,77,95- energy 78,97- of t he lat t ice 38,45- theorem 109group- of the wave vector 6

po int 6,40, 229- space 7- trans lation 5

harmonic- approxi mation 39,44- oscillator 39Hartree- approximation 96- equation 119- self-energy 193Har tree approximation 163Hart ree-Fock- approximation 95- eq uation 120- self-energy 193Har tree- Fock approximation 199Har t ree-Fock approximation 176heavy fermion 82,89, 210Heisen berg- Hamiltonian 162, 164, 175- model 164het erostruct ur e 149,207hierarchy problem 191Hohenberg-Koh n t heorem 121hole 144Holst ein - P rimakoff tran sformation

168Hooke 's law 52hopping matrix element 161,212Hubbar d- band 200,269- Hamiltonian 196- model 195Hund's rule 166hybridizat ion 141,158, 212

impurity 255, 275- conce ntration 264- deep 259- intersti t ial 256- shallow 257,259- substitutional 256insulator 134, 195,276- anti-ferromagn et ic 171

Page 49: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

- ferromagnetic 165- Mott-Hubbard 200interaction~ effect ive elect ron-elect ro n 243- electron-electron 117- elect ron- phonon 223- exchange 157

fermion-boson 226- van der Wa als 62interface 262irreducible- di agram 267- represen t a tion 141,281Ising model 164isot ope 67- disorder 263- effect 242,252

J astrow-typ e wave fun ction 219jellium model 19, 76, 94, 117

k.p theory 146Kohri-Sham equation 121, 123Kramers deg eneracy 126Kr amers-Kronig relation 57Kubo formula 28Kubo-Greenwood formula 273

Lame const ants 54Landau- level 84,269,276- qu antization 91lattice- body-cent ered cubic 6

Bravais 5- displacement 18, 38- dis tortion 259- dynamics 37, 42

dynamics, nonlinear 44face-centered cubic 6point 5reciprocal 5, 10

- thermal expansion 44- t ranslation 40- vector 5- with basis 5Laughlin wave funct ion 219LCAO method 259LDA + U 201lifetime 223, 232- qu as i-particle 269- single-part icle 274Lindhard fun ction 104, 206linear response 24

Index 341

liquid 8- Bose 202- clas sical 202

Fermi 202Luttinger 207

- qu antum 202localization 215- length 255- weak 274Lyddan e-Sachs- Teller relat ion 59

Madelung const ant 19magn etic- length 84, 217- order 157magnetism 160- itiner ant elect ron 180- theory of 164magnet ization 176, 180magnon 157,165,168,184,226magnon d isp ersion 185mass- effect ive 147, 151- op erator 123matrix eleme nt- hopping 161- transfer 161,263matter- condensed 4- soft 4mean field 176mean free path 274mesoscopic- phy sics 152- regime 265- syst em 17rnet al 16,49,60,108,195,276- alkali 82- noble 6,79,82, 131, 139- normal 6, 79, 131, 139- transition 6,82, 140, 165metal-insulator~ transit ion 276mobility 237- edge 276model- Anderson 212- bond charge 61- Hubbard 212- jellium 76- rigid ion 60- shell 60- St on er 180

Page 50: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

342 Index

- Tomonaga-Luttinger 210, 221modulus- bulk 54- rigidity 54- Young 54molecu lar field 176

nanophys ics 8nonlinear lattice dynamics 44nonparabolicity 147normal coordinate 42,43, 55

occupation- nurnber 45, 93- nu mb er operator 46, 93operator- annihilation 44- creation 44- field 271- stat istical 23orbital- S p2 143- sp3 143- ant i-bond ing 143- bonding 143- directed 143- hybrid 143- localized 162order- fer rim agnetic 165- ferromagnetic 165- par ameter 178, 252oscillat ions- de Haas- van Alphen 90, 133- qu antum 131- Shubnikov-de Baas 91, 131overlap integral 138

pair- electron-hole 134,144pair-distribution- function 9,11 ,12,100,111par amagnetism- Pauli spin 89particle- independent 189particle-hole- cont inuum 106, 185- excit at ion 106parti t ion fun ction- ca nonica l 24- grand-canonical 24, 46periodic- boundar y condit ion 125, 285

phase- ferromagnetic 178- liquid 4- par amagnetic 178- solid 4- t ran sition 175, 178phase transition 179, 202phonon 19, 37, 45- acou stic 47- confined modes 66- disp ersion cur ves 60- energy 45- focusing 53- hot 233- lifet ime 57- longitudinal 56- op erator 55- optical 54- surface 65- t ransverse 56- vacuum 45- virtual 239phonon dispersion- of C\'-Fe 60- of AI 60- of Cu(100) 66- of GaA s 64- of GaAs(110) 66- of KI 60- of Si 62- of solid 4He 62phonons- acoust ic 227- optical 229photonie- band structurc 8- crystal 8piezoelectric- coupling 231- effect 231- tensor 231plasm a frequency 107plasmon 107plasmon dispersion 185plasmon-phonon modes 108point defcct 255point group 281pol ari zation- func t ion 104pol aron 224, 239- ene rgy 241- Fröhlich 239- mass 241

Page 51: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

polymer 207potential- effective 118- adiabatie 22,51 ,62- chemieal 24,46,80, 88- effective 120- effective single-particle 18, 117

empty core 135- exchange-correlation 151- grand-canonieal 88- Hartree 119, 151- self-consistent 260process- normal 226- Umklapp 226propagator 190pseudo-potential 135, 137

quantum- liquid 202- oscillations 88- wire 207quantum Hall- effect 91, 152- effect, integer 153- plateau 153quantum limit- elect r ic 151- magnet ie 88, 152quantum weil 149qu asi-hole 194qu asi-particle 99, 127, 194, 199,202,

203, 205, 210, 211- correction 123- dispersion 213- distribution 206- effect ive mass 205- energy 123,204- lifetime 269- weight 206quasicrystal 4

reflection coefficient 58relation- dispersion 33- Kr am ers -Kronig 33,57relaxation- electron-Iattice 223relaxation time- transport 223, 270representation- occupation number 44-46, 92, 232,

248

Index 343

resonance- cyclotron 84- elect ron spin 84- paramagnetic 84- spin-flip 84response- fun ction 28, 35, 52, 55- linear 24,270- nonlinear 32- transverse 271Reststrahlen band 58, 65

scaling theory 278scanning tunneling mieroscopy 8scattering- back 236- backward 270- forward 236, 270- inelastic 59- neutron 59- rate 232, 234screening 101- Themas-Fermi 107, 135SDFT-LDA 158self-averaging 265self-consiste nt- harmonie approximation 73- solution 119, 124self-energy 193, 198,200,202,227,

232,266,273- exchange-correlation 123- Hartree 193- Hartree-Fock 193- singl e-p article 192semiconductor 7, 16, 79, 108, 131, 134,

143-145,256shell model 60Shubnikov-de Haas oscillations 131Slater determinant 92,119soft mode 73solid- amorphous 4, 8, 263- crystalline 4, 8Sommer feld- coefficient 82, 205, 210, 215- expansion 81,289- model 78, 96sound- propagation 48, 53- velocity 49sound propagation- longitudinal 53- transverse 53sp ecific heat 48,71 , 171,203,205

Page 52: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

344 Index

- of elect rons 81- of phonons 48sp ectral funct ion 34spin 17- degeneracy 126- density 158- pol ari zation 123, 158, 180, 186- susceptibility 183, 215sp in polarized electrons 159spin suscept ibility 203spin waves 157, 165, 168- in ant iferromagnets 171- in ferromagnets 165spintronics 157split t ing- longitudinal-transverse 65state- ant i-bonding 143,259- bonding 143,259- extended 6, 255, 275, 276- localiz ed 7,255,275,276sti ffness constant 51Stoner- condition 182, 186- cont inuu m 183- model 180, 182strain tensor 52, 231structure- diamond 7

fact or 8- rocksalt 7- zinc blende 7structure fact or 70- dyn amic 11,68, 105, 109- static 10, 109sllb band 149super-exchange 165supe rconductivity 224, 241superconductor- high-T, 7superlattice 66, 131- isotope 67surface 8, 262- magnon 157- phonon 65susce pt ibility 28- dielectric 28, 55- magneti c 29, 89system- mesoscopic 17

t-J modelt-matrix

331264,270

temperature- crit ical 175- Curie 179- Neel 175term- direct 162- exchange 162theorem- dissipation-ftuctuation 35, 206- Hoh enberg-Kohn 121thermal- average 9- energy 48- expansion 44, 70- expec tat ion valu e 22,46, 190, 271- lattice expansion 44time reversal 126t ran sfer matrix element 161, 195,263transformation- Bogoliubov 172, 208- Holstein-Primaleoff 168- Schri effer-Wolff 243t ransition- metal-insulator 200, 255, 276tran slation- op erator 124- pr imitive 18translation group 281transport- linear 235- nonlinear 235- relax ation t ime 223, 235, 274tran sverse- effective charge 59truncation 191

vacuum- fermion 92van Hove singularity 47velocity- of sound 48- sound 49, 53vertex op erator 273Voigt notation 52,231

Wannier- representation 169Wannier function 161,261warping 53, 147, 149Weiss constan t 176Wigner crystal 112,220Wigner-Seit z cell 5, 125

XY model 164

Page 53: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Zeem an termzero poin t- contr ibution- motion 45

83

173

zone scheme- extende d- reduced- rep ea ted

128128128

Index 345

Page 54: References - Springer978-3-662-09940-7/1.pdf · References 1. There are several series publications devoted to solid state physics and collec ... N.D. Mermin: Solid State Physics

Also 0/interest:

Springer Series in

SOLID-STATE SCIENCES

SeriesEditors:M. Cardona P. Fulde K. von Klitzing R. Merlin H.-J. Queisser H. Störmer

The Springer Series in Solid-State Seiences consists of fundamental scientific books pre ­pared by leading researchers in the field. They strive to communicate, in a systematic andcomprehensive way, the basic principles as weIl as new developments in theoretical andexperimental solid-state physics.

126 Physical Prope rties of Quasicrystal s 137 Quantum TransportEditor: Z.M. Stadnik in Submicron Devices

127 Positron Annihilation A Theoretical Introduction

in Semiconductors By W. Magnus and W. Schoen maker

Defect Studies. By R. Krause -Rehberg 138 Phase Separationand H.S. Leipner in Soft Matter Physics

128 Magnet o-Optics MiceIlar Solutions, Microemulsions,

Editors : S. Sugano and N. Kojima Critical Pheno mena

129 Computat ion al Materials Science By P.K. KhabibuIlaev and A.A. Saidov

From Ab Initio to Monte Carlo 139 Optical Response of Nanostructures

Methods. By K. Ohno, K. Esfarjani, Microscopic Nonlocal Theory

and Y. Kawazoe By K. Cho

130 Contact, Adhes ion and Rupture 140 Fractal Concepts

of Elastic Solids in Condensed Matter Physics

ByD. Maugis ByT. Nakayama and K. Yakubo

131 Field Theories for Low-Dimensional 141 Excitons in Low-Dimensio nal

Condensed Matt er Systems Semiconductors

Spin Systems and Strongly Correlated Theory, Numerical Methods,

Electrons. ByG. Morandi, P.Sodano, Applications ByS. GlutschA. Tagliacozzo, and V. Tognetti 142 Two-Dimensional Coulo mb Liqu ids

132 Vortices in Unconventional and Solids

Superconductors and Superfluids By Y. Monarkha and K. Kono

Editors : R.P. Huebener, N. Schopohl, 143 X-Ray Multip le-Wave Diffractionand G.E. Volovik Theory and Application

133 The Quantum Hall Effect By S.-L. Chang

ByD. Yoshioka 144 Physics of Transition Metal Oxides

134 Magneti sm in the Solid State By S. Maekawa, T. Tohyama,

By P.Mohn S.E. Barnes, S. Ishihara,

135 ElectrodynamicsW. Koshibae, and G. KhaliuIlin

of Magnetoactive Media 145 Point-Contact Spectroscopy

By1.Vagner, B.1. Lembrikov, By Y. Naidyuk and 1.K. Yanson

and P. Wyder 146 Optics of Semiconductors

136 Nanoscale Phase Separation and Their Nanostructures

and Colossal Magnetoresistance Editors: H. Kalt and M. Hetterich

The Physics of Manganitesand Related CompoundsByE. Dagotto