td-method

Upload: ashish-verma

Post on 07-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/4/2019 TD-method

    1/40

    Introduction to Time Domain

    Electromagnetic Methods

    Yanjie Zhu

    Yinchao ChenPaul G. Huray

    12/03/2004

  • 8/4/2019 TD-method

    2/40

    Outline

    Comparison of different numerical methods

    Introduction to Finite Difference Time Domain

    (FDTD) Method

    Applications of FDTD to electrical engineering

    Initial study ofCFDTD to the detection of PCB

    impurities and surface roughness

  • 8/4/2019 TD-method

    3/40

    Comparison of different numerical methods

    Frequency Domain Methods

    MoM (Method of Moment)

    Zeland IE3DTM

    Agilent ADSTM (AdvancedDesign System)

    Ansoft EnsembleTM

    FEM (Finite Element Method)

    Ansoft HFSSTM

    UGS FEMAPTM

    Time Domain Methods

    FDTD

    Remcom XFDTDTM

    Zeland FidelityTM

    RM Associate CFDTDTM

    MRTD (Multi-Resolution TimeDomain)

    PSTD (Pseudo-Spectral TimeDomain)

  • 8/4/2019 TD-method

    4/40

    Advantages & Disadvantages

    Features Advantages Disadvantages

    Point frequency

    approach

    MoM Most accurate method Find Green Function first

    FEM Mature method, adaptive

    mesh

    Huge matrices

    Frequency band

    approach: timepulse excitation

    FDTD Simple, Robust, versatile Long computation time

    MRTD

    PSTD

    Large structure simulation Complicated algorithm

  • 8/4/2019 TD-method

    5/40

    Principle of Finite Difference

    x

    2xxf2xxfxf

    dx

    xdf 000

    0

    )()()(

    )( '

    Derivative off(x) at point P using finite difference approximations

  • 8/4/2019 TD-method

    6/40

    Mesh Structure for FDTD Algorithm

    A standard Yees lattice

  • 8/4/2019 TD-method

    7/40

    Implementation of FDTD Algorithm

    E

    t

    EH er

    0 H

    t

    HE mr

    0

    z

    y

    x

    ezz

    eyy

    exx

    z

    y

    x

    zz

    yy

    xx

    0

    xy

    zx

    yz

    E

    E

    E

    00

    00

    00

    t

    Et

    E

    t

    E

    00

    00

    00

    y

    H

    x

    HxH

    zH

    z

    H

    y

    H

    Starting point is Maxwells differential equations.

  • 8/4/2019 TD-method

    8/40

    Updating Equations-Hz

    x

    kjiEkjiE

    y

    kjiEkjiE

    kji

    kjit

    kji

    t

    kjiH

    kji

    kjit

    kji

    kjit

    kjiH

    n

    y

    n

    y

    n

    x

    n

    x

    zz

    mzz

    zzn

    z

    zz

    mzz

    zz

    mzz

    n

    z

    ,21,

    21,

    21,

    21,

    21,

    21,

    21,

    21

    ,2

    1,

    2

    12

    ,2

    1,

    2

    1

    1

    ,2

    1,

    2

    1

    ,2

    1

    ,2

    1

    ,2

    1,

    2

    12

    ,2

    1,

    2

    1

    1

    ,2

    1,

    2

    12

    ,2

    1,

    2

    1

    1

    ,2

    1

    ,2

    1

    0

    0

    2

    1

    0

    0

    2

    1

  • 8/4/2019 TD-method

    9/40

    Updating Equations-Ez

    y

    kjiHkjiH

    x

    kjiHkjiH

    kji

    kjit

    kji

    t

    kjiE

    kji

    kjit

    kji

    kjit

    kjiE

    n

    x

    n

    x

    n

    y

    n

    y

    zz

    ezz

    zzn

    z

    zz

    ezz

    zz

    ezz

    n

    z

    )2

    1,

    2

    1,()

    2

    1,

    2

    1,()

    2

    1,,

    2

    1()

    2

    1,,

    2

    1(

    )2/1,,(2

    )2/1,,(1

    )2/1,,()2

    1,,(

    )2/1,,(2

    )2/1,,(1

    )2/1,,(2

    )2/1,,(1

    )2

    1,,(

    2

    1

    2

    1

    2

    1

    2

    1

    0

    0

    0

    01

  • 8/4/2019 TD-method

    10/40

    Selection of the parameters

    Cell size criterionminmaxmaxmax

    20

    1and, zyx

    maxmaxmax

    min

    rr

    c

    f

    v

    Excitation choicesGaussian pulse:

    Blackman-Harris pulse:

    2

    p

    2

    0nn

    N

    tttg exp)(

    2

    23cos

    2

    22cos

    2

    2cos

    43

    21

    p

    pn

    p

    pn

    p

    pn

    n

    N

    Nta

    N

    Nta

    N

    Ntaatb

  • 8/4/2019 TD-method

    11/40

    Boundary Conditions

    Shielded boundary:

    Perfect Electric Conductor (PEC)

    Perfect Magnetic Conductor (PMC)

    Open boundary:

    Absorbing Boundary Condition (ABC)

    Perfectly Matched Layer (PML)

  • 8/4/2019 TD-method

    12/40

    Sequence of an FDTD Iteration Cycle

  • 8/4/2019 TD-method

    13/40

    Calculation of MMICs Parameters

    C

    EyL

    i1 i2

    j2

    j0

    j1h

    Hy

    Hx

    0

    0

    00

    0

    00 ,,,,

    j

    m

    zx

    n

    y

    h

    nn yznymxnEldztEztv

    2

    1

    2

    1

    ),,(),,(

    ),,(),,(,,

    012

    1

    022

    1

    022

    1

    012

    1

    021021

    j

    jjz

    n

    yz

    n

    y

    i

    ii

    z

    n

    xz

    n

    xC

    nn

    yznyjxiHyznyjxiH

    xznyjxiHxznyjxiHldztHzti

  • 8/4/2019 TD-method

    14/40

    Calculation of MMICs Parameters

    )},({

    )},({0

    tzIFFT

    tzVFFTZ

    i

    iThe characteristic impedanceZ0 is calculated by

    002

    2 )(

    )(

    reff

    tzVFFTtzVFFT

    anglezz j

    i

    ij ,

    ,

    )(

    1

    )(

    For a transmission line, the effective dielectric constant effis defined as:

    with:

    )(

    )(

    )(

    )(11

    tiFFT

    tiFFT

    tVFFT

    tVFFTS

    inc

    ref

    inc

    ref

    For a two-port network, S11 and S21 can be defined as:

    )(

    )(

    )(

    )(21

    tiFFT

    tiFFT

    tVFFT

    tVFFTS

    inc

    trs

    inc

    trs

    kLjkLj

    ineS

    eS

    ZfZ 211

    2

    11

    01

    1

    Input Impedance:

  • 8/4/2019 TD-method

    15/40

    Near-to-Far Field Transformation

    EnM

    HnJ

    s

    s

    s

    jkR

    s

    S

    jkR

    s

    dsR

    eMF

    dsR

    eJA

    '4

    '4

    0

    0

    AFk

    FjH

    FAk

    AjE

    0

    2

    0

    2

    11~

    11~

  • 8/4/2019 TD-method

    16/40

    Conformal FDTD

    When the object to be simulated has curved surfaces and edges,

    the stair casing approximation of conventional FDTD technique

    can produce significant errors.

    Stair case:

    Conformal:

    Using integral

    equation

  • 8/4/2019 TD-method

    17/40

    Applications of FDTD in Electrical Engineering

    Simulation of Wave Propagation Problems

    Microwave Engineering Problems

    Antenna Problems

    Scattering Problems

    Signal Integrity Problems

  • 8/4/2019 TD-method

    18/40

    Simulation of Wave Propagation

    I will show a simple 1dfdtd matlab code

    to clarify the wave propagation problem.

  • 8/4/2019 TD-method

    19/40

    Microstrip Low-pass filter

    5.65mm

    r=2.2 0.794mm

    x

    y

    z

    2.54mm

    2.413mm

    5.65mm

    20.32mm

  • 8/4/2019 TD-method

    20/40

    Result

    0 5 10 15 20-50

    -40

    -30

    -20

    -10

    0

    10

    |S11

    |

    |S21

    | Sheen et al

    FDTD solver

    Microstrip Low Pass Filter

    Frequency (GHz)

    |S11

    |and|

    S21

    |(dB)

  • 8/4/2019 TD-method

    21/40

    Conical Horn Antenna

    d1=0.71, d2=1.86, lt=1.08, l=3.75, =28degree

  • 8/4/2019 TD-method

    22/40

    Result

    CFDTD ------------

  • 8/4/2019 TD-method

    23/40

    Result

  • 8/4/2019 TD-method

    24/40

    Scattering Problems

    41095.2

    1

    1

    r

    r

    r

    y

    z

    x

  • 8/4/2019 TD-method

    25/40

    Result

    0 0.5 1 1.5 2 2.5 3-75

    -70

    -65

    -60

    -55

    -50

    -45

    -40

    -35

    -30

    -25

    f (GHz)

    RCS(dBsm)

    dispersive, FDTD

    dispersive, theoretical

    Debye sphere 22.5 degree incidence

  • 8/4/2019 TD-method

    26/40

    Signal Integrity Problem

    Layer Material r Height Function SpacingGND Copper 1.4

    Substrate FR4 4.4 5

    Trace Copper 1.4 Sig 5 mil / 20 mil space

    Structure Stack-up:

    T1

    T3

    T2

    T4Port1 Port2

    Top View:

    100mil*100mil

    Cell size:

    0.7mil*0.7mil*0.35mil

    Frequency range:

    10GHz-60GHz

  • 8/4/2019 TD-method

    27/40

    Result

  • 8/4/2019 TD-method

    28/40

    ResultSig

    Sig

    Sig

    GND

    GND

    GND

  • 8/4/2019 TD-method

    29/40

    ResultSig

    Sig

    Sig

    GND

    GND

    GND

  • 8/4/2019 TD-method

    30/40

    Result

    Sig

    GND

    Sig

    GND

  • 8/4/2019 TD-method

    31/40

    Initial study ofCFDTDto the

    detection of PCB impurities

  • 8/4/2019 TD-method

    32/40

    Time domain field distribution

  • 8/4/2019 TD-method

    33/40

    Time domain current distribution

  • 8/4/2019 TD-method

    34/40

    Initial study ofCFDTDto the

    detection of PCB impurity

  • 8/4/2019 TD-method

    35/40

    Time domain field distribution

  • 8/4/2019 TD-method

    36/40

    Time Domain current distribution

  • 8/4/2019 TD-method

    37/40

    Comparison of field distribution

  • 8/4/2019 TD-method

    38/40

    Comparison of current distribution

  • 8/4/2019 TD-method

    39/40

    Comparison of field distribution on yzplaneWithout impurity

    With air bubble

  • 8/4/2019 TD-method

    40/40

    Comparison of field distribution on yzplaneWith dielectric bubble r=10

    With PEC bubble