the need to increase ghana's per capita electricity generation substantially to sustain...

48
THE NEED TO INCREASE GHANA’S PER CAPITA ELECTRICITY GENERATION SUBSTANTIALLY TO SUSTAIN DEVELOPMENT AND GROWTH By: Dr. Ing. J. K. D. Annan, FGhIE; JKD NANNA CONSULT m: +(233)244317182 +(233)541719555 e: [email protected] [email protected]

Upload: joseph-annan

Post on 28-May-2017

231 views

Category:

Documents


6 download

TRANSCRIPT

   

               

THE  NEED  TO  INCREASE  GHANA’S  PER  CAPITA  ELECTRICITY  GENERATION  SUBSTANTIALLY  TO  

SUSTAIN  DEVELOPMENT  AND  GROWTH    

                 By:        Dr.  -­‐  Ing.  J.  K.  D.  Annan,  FGhIE;                        JKD  NANNA  CONSULT                                                  m:  +(233)244317182                                      +(233)541719555                              e:  [email protected]                                      [email protected]                                                                                    

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  2    ©  2013  JKD  NANNA  CONSULT  

     

   

Foreword    

I   have  had   various   technical   and   scientific   discussions   and   arguments,   and  my  concerns  have  been  buttressed  as  follows:    

Ø “Knowledge that cannot be utilized by the ignorant is best utilized by the wise”. We  must  eschew  charlatanism.  An  example  is  the  fact  that  as  an  emerging  country   in   the  oil  and  gas   industry,  so  many  people  associated  with  this  sector  do  not  understand   the  difference  between  LNG  (liquefied  natural  gas)  and  LPG  (liquefied  petroleum  gas).  Very  serious  blunders  are  apt  to  be   committed   because   of   this   basic   and   fundamental   error,   and   affect  process  design  and  equipment  selection.    What  is  LNG  (Liquefied  Natural  Gas)?  Natural   gas   is   composed   primarily   of   methane,   but   may   also   contain  ethane,  propane  and  heavier  hydrocarbons.  Small  quantities  of  nitrogen,  oxygen,  carbon  dioxide,  sulfur  compounds,  and  water  may  also  be  found  in   “pipeline”   natural   gas.   The   liquefaction   process   removes   the   oxygen,  carbon   dioxide,   sulfur   compounds,   and   water.   The   process   can   also   be  designed  to  purify  the  LNG  to  almost  100%  methane.  When  natural  gas  is  cooled  to  a  temperature  of  approximately  -­‐259oF    (-­‐161oC)   at   atmospheric   pressure,   it   condenses   to   a   clear,   colourless,  odourless   liquid   called   liquefied   natural   gas   (LNG).   One   unit   volume   of  this   liquid   takes   up   about   1/600th   the   volume   of   natural   gas.   LNG   is  neither  corrosive  nor  toxic.    LNG   yields   about   40%  more   heating   value   than   any   liquid   fuel   derived  from  the  chemical  conversion  of  natural  gas.    What  is  LPG  (Liquefied  Petroleum  Gas)?  Liquefied  petroleum  gas  (LPG)  is  often  confused  with  LNG  and  vice  versa.  They  are  not  the  same  and  the  differences  are  significant.  LPG   is   composed   primarily   of   propane   (upwards   to   95%)   and   smaller  quantities  of  butane.  (Reference:  Figure  1)  LPG  can  be  stored  as  a  liquid  in  tanks  by  applying  pressure  alone.                      

 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  3    ©  2013  JKD  NANNA  CONSULT  

     

   

   

Figure  1:  Terminology  and  Constituents  –  Liquefied  Natural  Gas  and  its  Liquid  Products  

 Ø “One poor tool working all the time but doing bad work, is of small

value compared with the sharp, keen, perfect instrument used only a short time but which turns out perfect work”.  We  must  always  endeavour  to  rely  on  equipment  of  highly  reliable  quality  and  efficiency.    

Ø “A standard is a document established by consensus, and approved by a recognized body, to provide for common and repeated use, rules, guidelines and characteristics, for activities and/or their results, aimed at the achievement of optimum order within a given context”.    It  is  very  pertinent  to  invest  significant  resources  and  adopt  (identically)  as  national  standards  the  numerous  global  standards  pertaining  to  the  oil  and  gas  industry.    

Ø Rudyard   Kipling’s   poem,   “The   Children’s   Song”,   has   been   a   continuous  inspiration:  

Land of our Birth, we pledge to thee Our love and toil in the years to be; When we are grown and take our place As men and women with our race. Father in Heaven who lovest all, Oh, help Thy children when they call; That they may build from age to age An undefiled heritage.

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  4    ©  2013  JKD  NANNA  CONSULT  

     

Teach us to bear the yoke in youth, With steadfastness and careful truth; That, in our time, Thy Grace may give The Truth whereby the Nations live. Teach us to rule ourselves alway, Controlled and cleanly night and day; That we may bring, if need arise, No maimed or worthless sacrifice. Teach us to look in all our ends On Thee for judge, and not our friends; That we, with Thee, may walk uncowed By fear or favour of the crowd. Teach us the Strength that cannot seek, By deed or thought, to hurt the weak; That, under Thee, we may possess Man's strength to comfort man's distress. Teach us Delight in simple things, And Mirth that has no bitter springs; Forgiveness free of evil done, And Love to all men 'neath the sun! Land of our Birth, our faith, our pride, For whose dear sake our fathers died; Oh, Motherland, we pledge to thee Head, heart and hand through the years to be!

 

   

                 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  5    ©  2013  JKD  NANNA  CONSULT  

     

   

Chapter  1.      Introduction    Ghana as a developing and emerging economy faces a three-fold energy challenge, namely:

I. Meeting the needs of people who still lack access to basic, modern energy services;

II. Meeting the country’s industrial and economic development agenda; and III. Participating in a global transition to clean, low-carbon energy systems.

All these aspects of this challenge demand urgent attention. Firstly, access to reliable, affordable and socially acceptable energy services is a pre-requisite to alleviating extreme poverty and meeting other societal development goals. Secondly, the country’s avowed aim of attaining a standard of living akin to a middle-income country would hinge upon the corresponding economic and industrial activities. Thirdly, global emissions are purported to be contributing to environmental problems, such as climate change and poor air quality, that put the health and prosperity of people around the world—but especially those in poor countries—at grave risk. Historically, humanity’s use of energy has been marked by four broad trends:

1. Rising consumption and a transition from traditional sources of energy (e.g., wood, dung, agricultural residues) to commercial forms of energy (e.g., electricity, fossil fuels);

2. Steady improvement in the power and efficiency of energy technologies; 3. A tendency (at least for most of the 20th century) toward fuel diversification,

and de-carbonization, especially for electricity production; and 4. Improved pollution control and lower emissions.

Ghana has to maximize the effective use of natural energy resources to sustain economic growth and improve the quality of life of the people. It would be necessary to accelerate the use of energy efficiency and lower-carbon energy sources, especially natural gas. This acceleration would have many concurrent benefits for Ghana in terms of reducing pollution and improving public health, making feasible a broad expansion of access to basic energy services and laying the foundation for more competitive industries and sustainable economic growth. Moreover, to the extent that sustainable energy policies promote the development of indigenous renewable-energy industries, when feasible, there would be the additional benefit of creating new economic opportunities, reducing Ghana’s exposure to volatile world energy markets and help in conserving resources for internal investment by curbing outlays for imported fuel.

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  6    ©  2013  JKD  NANNA  CONSULT  

     

 

Chapter  2.      Current  Situation    Ghana is currently being confronted with significant challenges in the energy sector, with per capita electricity consumption levels far lower than the expected levels to enable Ghana assert and sustain the requisite development agenda consistent with such expectations. Data provided in Table 2-1. confirms this current assertion. Table 2-2. indicates a sample calculation of electricity consumption per capita. Electricity demand is rising and there are no indications that this demand will be curbed significantly in the short and medium term. At the same time, the electricity generating capacity is aging and new electricity generating capacity should be developed to fill the gap that has developed between electricity demand and supply. Our power generation sector will therefore continue to be under severe strain in the coming years, and the expected consequences for the Ghanaian economy and the standard of living of Ghana’s citizens.

     

Table  2-­‐1.      Electricity  consumption  per  capita  worldwide    Electric  power  per  capita  [  in  watt  ]  =  Total  population  electricity  consumption  [  in  MW·∙h/yr  ]  ·∙  1,000,000/(365.25  x  24)/population.    

                                 Electric  power  per  capita  [  in  watt  ]  =  Total  population  electricity  consumption  [  in  MW·∙h/yr  ]  ·∙  114.077116/population.    

1  MW·∙h/yr  =  1,000,000  Wh/(365.25  x  24)h  =  114.077116  Watt    

Rank   Country   Electricity  consumption          (MW·∙h/yr)  

Year  of  Data   Source   Population   As  of   Average  power  per  

capita  (watts  per  person)  

—   World   19,320,360,620   2002-­‐10   all  sources   ~7,035,000,000   2005-­‐12   313  

001   China   4,693,000,000   2011   CIA   1,353,821,000   2012   395  

002   United  States   3,886,400,000   2010   US  DoE   316,090,000   2013   1402  

—   European  Union   3,037,000,000   2009   CIA   503,492,041   2012   688  

003   Russia   1,016,500,000   2012   [Ministry  of  Energy  (Russia)]   143,400,000   2013   808  

004   India   959,070,000   2011   MOSPI   1,210,193,422   2011   90  

005   Japan   859,700,000   2011   CIA   126,659,683   2012   774  

006   Germany   607,000,000   2011   BDEW   80,333,700   2012   861  

007   Canada   549,500,000   2008   CIA   33,476,688   2011   1871  

008   France   460,900,000   2008   CIA   65,350,000   2012   804  

009   Brazil   455,700,000   2010   CIA   193,946,886   2012   268  

010   South  Korea   455,100,000   2011   CIA   50,004,441   2012   1038  

011   United  Kingdom   344,700,000   2008   CIA   63,181,775   2011   622  

012   Italy   309,900,000   2010   CIA   59,530,464   2012   581  

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  7    ©  2013  JKD  NANNA  CONSULT  

     

013   Spain   267,500,000   2008   CIA   47,265,321   2012   645  

014   Turkey   242,000,000   2012     75,627,384   2013   365  

015   Australia   225,400,000   2008   CIA   23,060,903   2013   1114  

016   Taiwan   220,800,000   2009   CIA   23,315,822   2012   1080  

017   South  Africa   212,200,000   2008   CIA   52,982,000   2013   457  

018   Iran   206,700,000   2009   CIA   77,356,669   2013   305  

019   Ukraine   181,500,000   2009   CIA   44,854,065   2012   461  

020   Saudi  Arabia   174,500,000   2008   CIA   29,195,895   2012   681  

021   Mexico   134,600,000   2009   CIA   117,409,830   2013   131  

022   Poland   132,200,000   2008   CIA   38,501,000   2011   391  

023   Sweden   132,100,000   2008   CIA   9,555,893   2012   1576  

024   Thailand   131,600,000   2008   CIA   66,720,153   2011   225  

025   Indonesia   126,100,000   2008   CIA   237,424,363   2011   61  

026   Norway   115,600,000   2008   CIA   5,063,709   2013   2603  

027   Netherlands   112,500,000   2008   CIA   16,788,973   2013   764  

028   Egypt   109,100,000   2008   CIA   84,550,000   2013   147  

029   Argentina   104,700,000   2008   CIA   41,737,066   2012   286  

030   Vietnam   101,000,000   2011   CIA   90,388,000   2012   127  

031   Malaysia   93,800,000   2009   CIA   28,334,135   2010   377  

032   Kazakhstan   88,110,000   2011   CIA   16,967,000   2013   593  

033   Venezuela   85,850,000   2011   CIA   28,946,101   2011   338  

034   Belgium   84,780,000   2008   CIA   11,035,948   2012   876  

035   Finland   83,090,000   2008   CIA   5,421,827   2012   1747  

036   Pakistan   74,350,000   2010   CIA   180,440,005   2012   47  

037   United  Arab  Emirates  

70,580,000   2008   CIA   8,264,070   2010   974  

038   Austria   65,670,000   2009   CIA   8,414,638   2011   890  

039   Greece   59,530,000   2008   CIA   10,815,197   2011   627  

040   Czech  Republic   59,260,000   2010   CIA   10,513,209   2012   643  

041   Switzerland   57,500,000   2009   CIA   8,014,000   2012   818  

042   Chile   56,350,000   2008   CIA   17,402,630   2012   369  

043   Iraq   55,660,000   2010   CIA   31,129,225   2012   204  

044   Philippines   54,400,000   2009   CIA   103,775,517   2013   60  

045   Romania   51,460,000   2010   CIA   18,631,386   2013   315  

046   Portugal   48,270,000   2008   CIA   10,581,949   2012   520  

047   Israel   47,160,000   2008   CIA   8,002,300   2013   672  

—   Hong  Kong  (China)  

43,140,000   2011   CIA   7,061,200   2010   696  

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  8    ©  2013  JKD  NANNA  CONSULT  

     

048   Kuwait   42,580,000   2008   CIA   2,818,042   2012   1723  

049   Hungary   42,570,000   2010   CIA   9,942,000   2012   488  

050   Singapore   41,200,000   2010   CIA   5,312,400   2012   884  

051   Uzbekistan   40,100,000   2009   CIA   29,559,100   2012   155  

052   Bangladesh   39,100,000   2012   BP   161,083,804   2012   28  

053   Colombia   38,820,000   2008   CIA   47,072,915   2012   94  

054   New  Zealand   38,271,000   2009   MED   4,468,200   2013   976  

055   Serbia   35,500,000   2011   CIA   7,186,862   2011   563  

056   Peru   34,250,000   2011   CIA   30,475,144   2013   128  

057   Denmark   32,070,000   2010   CIA   5,687,591   2012   643  

058   Belarus   31,070,000   2008   CIA   9,457,500   2012   375  

059   Algeria   30,500,000   2008   CIA   37,900,000   2012   92  

060   Syria   28,990,000   2008   CIA   22,530,746   2012   147  

061   Slovakia   28,760,000   2010   CIA   5,410,836   2012   606  

062   Bulgaria   28,300,000   2009   CIA   7,364,570   2011   438  

063   Republic  of  Ireland  

26,100,000   2011   CIA   4,588,252   2011   648  

064   Libya   22,890,000   2008   CIA   5,670,688   2006   460  

065   Morocco   21,470,000   2008   CIA   32,878,400   2012   74  

—   Puerto  Rico  (United  States)  

19,460,000   2008   CIA   3,667,084   2012   605  

066   Croatia   18,870,000   2010   CIA   4,284,889   2011   502  

067   North  Korea   18,850,000   2008   CIA   24,554,000   2011   88  

068   Azerbaijan   18,800,000   2008   CIA   9,356,500   2013   229  

069   Qatar   18,790,000   2008   CIA   1,903,447   2013   1125  

070   Nigeria   18,140,000   2008   CIA   170,123,740   2012   12  

071   Tajikistan   16,700,000   2009   CIA   7,616,000   2011   250  

072   Iceland   16,480,000   2009   CIA   321,857   2012   5837  

073   Ecuador   14,920,000   2008   CIA   15,223,680   2011   112  

074   Slovenia   14,700,000   2009   CIA   2,055,496   2012   815  

075   Cuba   14,200,000   2008   CIA   11,163,934   2012   145  

076   Oman   13,250,000   2008   CIA   2,773,479   2010   545  

077   Turkmenistan   13,000,000   2009   CIA   5,125,693   2012   289  

078   Dominican  Republic  

12,870,000   2008   CIA   9,445,281   2010   155  

079   Tunisia   12,490,000   2008   CIA   10,732,900   2012   136  

080   Zimbabwe   12,470,000   2008   CIA   12,619,600   2012   113  

081   Jordan   11,300,000   2008   CIA   6,508,887   2012   198  

082   Bosnia  and  Herzegovina  

10,800,000   2009   CIA   3,839,737   2011   321  

083   Bahrain   10,480,000   2008   CIA   1,234,571   2010   968  

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  9    ©  2013  JKD  NANNA  CONSULT  

     

084   Lithuania   10,300,000   2008   CIA   2,966,954   2012   396  

085   Mozambique   10,180,000   2008   CIA   23,929,708   2011   48  

086   Lebanon   9,793,000   2009   CIA   4,224,000   2008   264  

087   Sri  Lanka   9,268,000   2010   CIA   20,277,597   2012   52  

088   Georgia   9,256,000   2011   CIA   4,469,200   2011   236  

089   Republic  of  Macedonia  

9,024,000   2011   CIA   2,058,539   2011   500  

090   Paraguay   8,500,000   2009   CIA   6,561,748   2011   148  

091   Costa  Rica   8,321,000   2009   CIA   4,586,353   2011   207  

092   Guatemala   8,161,000   2011   CIA   15,438,384   2013   60  

093   Uruguay   7,960,000   2011   CIA   3,318,535   2011   273  

094   Zambia   7,614,000   2008   CIA   14,309,466   2012   61  

095   Kyrgyzstan   7,474,000   2008   CIA   5,550,239   2010   154  

096   Estonia   7,431,000   2010   CIA   1,286,540   2013   658  

097   Trinidad  and  Tobago  

7,246,000   2008   CIA   1,346,350   2011   614  

098   Albania   6,593,000   2009   CIA   2,821,977   2011   266  

099   Honduras   6,540,000   2009   CIA   8,249,574   2010   90  

100   Luxembourg   6,453,000   2008   CIA   537,853   2013   1368  

101   Jamaica   6,400,000   2008   CIA   2,889,187   2012   253  

102   Bolivia   6,301,000   2011   CIA   10,389,913   2012   69  

103   Latvia   6,215,000   2010   CIA   2,027,000   2012   350  

104   Ghana   6,060,000   2008   CIA   24,200,000   2010   29  

105   Democratic  Republic  of  the  Congo  

6,036,000   2008   CIA   75,507,308   2013   9  

106   Panama   5,805,000   2010   CIA   3,661,868   2010   181  

107   Armenia   5,800,000   2011   CIA   3,262,200   2010   203  

108   El  Salvador   5,756,000   2011   CIA   6,134,000   2009   107  

109   Kenya   9,694,000   2012   CIA   43,500,000   2013   25  

110   Republic  of  Kosovo  

5,674,000   2011   CIA   1,733,872   2011   373  

111   Cameroon   4,883,000   2008   CIA   19,406,100   2012   29  

112   Nepal   4,883,000   2010   CIA   26,494,504   2011   21  

113   Yemen   4,646,000   2008   CIA   23,833,000   2011   22  

114   Burma   4,630,000   2008   CIA   60,280,000   2010   9  

115   Cyprus   4,556,000   2008   CIA   838,897   2011   619  

116   Moldova   4,463,000   2008   CIA   3,559,500   2012   143  

117   Montenegro   4,100,000   2010   CIA   625,266   2011   748  

118   Namibia   3,928,000   2008   CIA   2,100,000   2011   213  

119   Sudan   3,787,000   2008   CIA   30,894,000   2008   14  

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  10    ©  2013  JKD  NANNA  CONSULT  

     

—   Macau  (China)   3,660,000   2010   CIA   568,700   2012   734  

120   Ivory  Coast   3,584,000   2008   CIA   20,617,068   2009   20  

121   Tanzania   3,431,000   2008   CIA   44,929,002   2012   9  

122   Mongolia   3,375,000   2010   CIA   2,892,876   2013   133  

123   Angola   3,365,000   2008   CIA   18,498,000   2009   21  

124   Ethiopia   3,357,000   2008   CIA   91,195,675   2012   4  

125   Brunei   3,054,000   2008   CIA   408,786   2011   852  

126   Botswana   2,850,000   2008   CIA   2,029,307   2010   160  

127   Papua  New  Guinea  

2,757,000   2008   CIA   6,310,129   2012   50  

128   Nicaragua   2,646,000   2008   CIA   6,071,045   2012   50  

129   Mauritius   2,234,000   2008   CIA   1,291,456   2012   197  

130   Laos   2,230,000   2010   CIA   6,500,000   2012   39  

131   Malta   1,991,000   2010   CIA   452,515   2011   502  

132   Uganda   1,958,000   2008   CIA   35,873,253   2012   6  

133   The  Bahamas   1,907,000   2008   CIA   353,658   2010   615  

134   Senegal   1,763,000   2008   CIA   12,855,153   2011   16  

—   New  Caledonia  (France)  

1,674,000   2008   CIA   252,000   2011   757  

135   Gabon   1,600,000   2008   CIA   1,475,000   2009   124  

136   Cambodia   1,559,000   2008   CIA   14,952,665   2010   12  

137   Malawi   1,559,000   2008   CIA   16,407,000   2013   11  

138   Suriname   1,440,000   2008   CIA   560,157   2012   293  

139   Swaziland   1,207,000   2008   CIA   1,185,000   2009   116  

140   Madagascar   1,032,000   2008   CIA   22,005,222   2012   5  

141   Barbados   945,000   2008   CIA   274,200   2010   393  

142   Fiji   865,800   2008   CIA   858,038   2012   115  

143   Guinea   855,600   2008   CIA   10,057,975   2009   10  

—   Aruba  (Netherlands)  

846,300   2008   CIA   101,484   2010   951  

—   United  States  Virgin  Islands  

784,500   2008   CIA   106,405   2010   840  

144   Guyana   688,000   2008   CIA   752,940   2010   104  

145   Burkina  Faso   683,500   2008   CIA   15,730,977   2010   5  

146   Togo   671,900   2008   CIA   7,154,237   2013   11  

147   Benin   653,000   2008   CIA   9,598,787   2012   8  

—   Bermuda  (United  Kingdom)  

636,400   2008   CIA   64,268   2010   1129  

—   Jersey  (United  Kingdom)  

630,100   2004   CIA   97,857   2011   734  

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  11    ©  2013  JKD  NANNA  CONSULT  

     

148   Niger   626,000   2008   CIA   17,129,076   2012   4  

—   French  Polynesia   623,100   2008   CIA   267,000   2010   266  

149   Andorra   598,700   2009   CIA   85,082   2011   802  

150   Palestinian  National  Authority  

550,000   2011   CIA   2,124,515   2012   30  

151   Maldives   542,000   2009   CIA   328,536   2012   188  

—   Cayman  Islands  (United  Kingdom)  

537,500   2008   CIA   54,878   2010   1117  

152   Republic  of  the  Congo  

534,000   2008   CIA   4,366,266   2012   14  

153   Mauritania   508,700   2008   CIA   3,359,185   2012   17  

154   Mali   455,700   2008   CIA   14,517,176   2009   4  

155   Liberia   311,600   2008   CIA   4,128,572   2011   9  

156   Haiti   309,000   2010   CIA   9,719,932   2011   4  

157   Saint  Lucia   308,000   2008   CIA   173,765   2009   202  

158   Somalia   293,000   2008   CIA   10,085,638   2012   3  

159   Burundi   273,400   2008   CIA   8,749,000   2012   4  

—   Faroe  Islands  (Denmark)  

268,800   2010   CIA   49,267   2011   622  

160   Djibouti   260,400   2008   CIA   792,198   2012   37  

161   Seychelles   241,800   2008   CIA   84,000   2009   328  

—   Greenland  (Denmark)  

239,400   2010   CIA   56,370   2012   484  

162   Cape  Verde   238,600   2008   CIA   523,568   2013   52  

163   Rwanda   236,800   2008   CIA   11,689,696   2012   2  

164   Lesotho   236,000   2008   CIA   2,067,000   2009   13  

165   Afghanistan   231,100   2009   CIA   30,419,928   2012   1  

166   Eritrea   224,900   2008   CIA   6,086,495   2012   4  

167   The  Gambia   204,600   2008   CIA   1,782,893   2009   13  

168   Belize   200,400   2008   CIA   312,698   2010   73  

169   Bhutan   184,000   2009   CIA   742,737   2012   28  

170   Federated  States  of  Micronesia  

178,600   2002   CIA   106,104   2013   192  

171   Grenada   177,400   2009   CIA   110,000   2005   184  

—   American  Samoa  (United  States)  

176,700   2008   CIA   55,519   2010   363  

—   Turks  and  Caicos  Islands  (United  Kingdom)  

162,800   2008   CIA   46,400   2012   400  

—   Gibraltar  (United  Kingdom)  

156,000   2008   CIA   29,752   2011   598  

172   Central  African  Republic  

148,800   2008   CIA   4,422,000   2009   4  

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  12    ©  2013  JKD  NANNA  CONSULT  

     

173   Saint  Vincent  and  the  Grenadines  

122,700   2008   CIA   120,000   2008   117  

174   Saint  Kitts  and  Nevis  

120,900   2008   CIA   51,300   2005   269  

175   Antigua  and  Barbuda  

107,000   2008   CIA   81,799   2011   149  

176   Samoa   98,580   2008   CIA   194,320   2012   58  

177   Chad   93,000   2008   CIA   10,329,208   2009   1  

178   Equatorial  Guinea  

85,560   2008   CIA   1,622,000   2010   6  

179   Sahrawi  Arab  Democratic  Republic  

83,700   2008   CIA   301,293   2010   32  

180   Dominica   80,910   2008   CIA   71,293   2011   129  

181   Solomon  Islands   72,540   2008   CIA   523,000   2009   16  

182   East  Timor   67,590   2011   CIA   1,066,582   2010   7  

183   Guinea-­‐Bissau   65,100   2008   CIA   1,647,000   2010   5  

184   Sierra  Leone   53,940   2008   CIA   6,000,000   2012   1  

185   Tonga   52,288   2012   TongaPowerLtd   103,036   2011   58  

—   Saint  Pierre  and  Miquelon  (France)  

49,290   2008   CIA   5,774   2011   973  

186   Comoros   48,360   2008   CIA   798,000   2010   7  

—   British  Virgin  Islands  

41,850   2008   CIA   27,800   2012   172  

187   Vanuatu   39,990   2008   CIA   224,564   2011   20  

188   São  Tomé  and  Príncipe  

38,130   2008   CIA   183,176   2011   24  

189   Nauru   29,760   2008   CIA   9,378   2011   362  

—   Cook  Islands  (New  Zealand)  

29,760   2008   CIA   19,569   2006   173  

—   Montserrat  (United  Kingdom)  

20,460   2008   CIA   5,164   2012   452  

190   Kiribati   20,460   2008   CIA   103,500   2010   23  

—   Falkland  Islands  (United  Kingdom)  

15,810   2008   CIA   2,932   2012   615  

—   Saint  Helena  (United  Kingdom)  

7,440   2008   CIA   4,255   2008   199  

—   Niue  (New  Zealand)  

2,790   2008   CIA   1,398   2009   228  

 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  13    ©  2013  JKD  NANNA  CONSULT  

     

Table  2-­‐2.      Calculation  of  Per  Capita  Electricity  Consumption      

(i)        Electric  power  per  capita  [  in  watt  ]  =  Total  population  electricity  consumption  [  in  MW·∙h/yr  ]  ·∙  1,000,000/(365.25  x  24)/population.    (ii)      Electric  power  per  capita  [  in  watt  ]  =  Total  population  electricity  consumption  [  in  MW·∙h/yr  ]  ·∙  114.077116  /population.    (iii)    1  MW·∙h/yr  =  1,000,000  Wh/(365.25  x  24)h  =  114.077116  Watt  

     Sample  Calculation    From  equations  (i),  (ii)  and  (iii):-­‐    

(a) Ghana’s  total  population  electricity  consumption  of,  say,  6,060,000  MW.h/yr,  is  equivalent  to:  6,060,000×114.077116  𝑊𝑎𝑡𝑡.    

(b) With  a  stipulated  population  of  24,200,000,  Ghana’s  per  capita  electricity  consumption  is:  6,060,000×114.077116  𝑊𝑎𝑡𝑡/24,200,000    =    0.25041322×114.077116  𝑊𝑎𝑡𝑡   =  28.57  𝑊𝑎𝑡𝑡  

                                                         

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  14    ©  2013  JKD  NANNA  CONSULT  

     

   

Chapter  3.      How  to  Mitigate  the  Challenges   The challenge of renewing and expanding the electricity generating capacity has corresponding linkages to current and future technologies, standards, and fuel mix, which will bind the sector in the long term, influencing the path to sustainability, competitiveness, and energy security. Concerning the future fuel mix, it is expected that fossil fuel power plants will become increasingly important in Ghana’s electricity-generating sector, with natural gas being the fuel to focus on. In this context, a comparative assessment/analysis is a prerequisite for planning the future energy and electricity facilities of the country in order to make timely decisions. It requires the identification of the expected levels of energy and electricity demand and the options that are available to meet these demands, taking special note of the national energy resources and potential imported sources. Further analysis would be needed for the optimization of the supply options to meet the demand in the most efficient and economic manner with due consideration of the environmental impacts and resource requirements. The scope of this total energy system analysis would involve the following:

i. The energy supply sectors (oil, gas, and renewable energy sources); ii. The energy conversion sectors (oil refining, gas processing, and power

generation); iii. Energy transportation and distribution (distribution and transportation of oil,

gas, and refinery products, electricity transmission and distribution); iv. Energy use at the demand side; and v. Emissions.

The necessary actions ought to be taken:

• To undertake a detailed analysis of overall energy and electricity demand, and

its future evolution;

• To project the need for fossil energy in Ghana that is driven by the expected demand and development growth for all appropriate energy sources;

• To undertake an assessment of future supply potential of indigenous energy resources – and provide, by considering several alternative scenarios, a set of possible scenarios as input to national decision-making in the energy sector;

• To identify domestic fossil fuel energy supply sufficiency and the potential for

energy exports;

• To undertake the analysis of possibilities of import of various fuels;

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  15    ©  2013  JKD  NANNA  CONSULT  

     

• To undertake fossil fuel energy infrastructure development to support the

growing energy use in Ghana;

• To analyze, in view of the projected high reliance of the power system and other demand sectors on natural gas, the development of the gas sector in detail in order to identify possible supply constraints, price implications and relevant policy measures;

• To identify the potential role of renewable energy sources in the Ghanaian

energy system;

• To quantify environmental emissions of the whole energy sector associated with the expected growth of energy consumption and possible emission mitigation measures;

• To analyze the evolution of future options for electricity generation;

• To evaluate the formulation of alternative expansion plans for the electric

sector development; and The specific objectives of this study would be:

• To study and implement energy infrastructure development to support the growing energy use;

• To accelerate, in view of the projected high reliance of the power system and other demand sectors on natural gas, the holistic development of the gas sector, after identifying all possible supply constraints, price implications and relevant policy measures:

• To identify the potential role of renewable energy sources in the energy system;

• To provide, by considering several alternative scenarios, a set of possible scenarios as input to national decision-making in the energy sector.

The reference case — baseline scenario — should correspond to the unlimited supply of natural gas, either domestic or imported natural gas or both. The main assumptions for this scenario are:

o Utilize domestic resources to the extent possible;

o Maintain energy diversity and avoid dependency on a single source;

o Increase the use of natural gas, considering unlimited supply of natural gas; not just in the availability of this energy source but also for availability of the infrastructure for the transportation and distribution of the energy source;

o Consider utilization of advanced environmentally friendly technologies in the

energy supply system.

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  16    ©  2013  JKD  NANNA  CONSULT  

     

 

Chapter  4.      Natural  Gas    Natural gas is a naturally occurring hydrocarbon gas mixture consisting primarily of methane (Reference: Table 4-1; Table 4-2; Table 4-3).

 

Table  4-­‐1:  Typical  Composition  of  Natural  Gas    

Table  4-­‐2:  Composition  of  a  Typical  Natural  Gas  

 

 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  17    ©  2013  JKD  NANNA  CONSULT  

     

Table  4-­‐3:  Composition  of  Typical  Petroleum  Gases    

 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  18    ©  2013  JKD  NANNA  CONSULT  

     

Natural gas is becoming the preferred fuel for power generation in a lot of countries. Natural gas is an efficient fuel source that produces lower pollutant emissions than many other fuel sources. Additionally, gains in efficiency of power generation using natural gas and the comparatively low initial investment costs of building natural gas based power generation facilities, make natural gas an attractive alternative to other fuels. Storage  and  Distribution    Natural gas storage and distribution should be a critical component of Ghana's energy infrastructure and this would be very instrumental in helping to meet the fluctuating demands of the country’s energy market. The storage and distribution of an adequate supply of natural gas are important for the establishment of power generation facilities. Other methods of storing and supplying natural gas are used because of the high volumes involved in storing natural gas. The most common method of storing natural gas is in its liquefied state. Liquefied natural gas (“LNG”) is produced when natural gas is cooled to a cold, colourless liquid at -162.2oC (-260oF). Liquefying natural gas reduces its volume by more than 600 times, making it more practical to store and transport. LNG is stored at very low (near atmospheric) pressure in double-walled, insulated tanks. LNG tanks are classified in three different types, which are:

• A single containment tank; • A double containment tank; and • A full containment tank.

A single containment tank is either a single tank or a tank comprising an inner tank and an outer container designed and constructed so that only the inner tank is required to meet the low temperature ductility requirements for the storage of the product. A double containment tank is a tank designed and constructed so that both the inner tank and the outer tank are capable of independently containing the refrigerated liquid stored. A full containment tank is a double tank designed and constructed so that both the inner tank and the outer tank are capable of independently containing the refrigerated liquid stored. The difference between the double containment and full containment is that the outer tank of a full containment tank is intended to be capable of both containing the refrigerated liquid and of controlled venting of the vapour resulting from product leakage after a credible event. The full containment tank is regarded as the most advanced type among these three types of LNG tanks. The tanks are also classified by the elevations above ground level:

Ø above-ground type; Ø in-ground type; and

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  19    ©  2013  JKD  NANNA  CONSULT  

     

Ø under-ground type.

v Primary containment is the first and most important requirement for

containing the LNG product. This first layer of protection involves the use of appropriate materials for LNG facilities as well as proper engineering design of storage tanks onshore and on LNG ships and elsewhere.

v Secondary containment ensures that if leaks or spills occur at the onshore LNG facility, the LNG can be fully contained and isolated from the public.

In order to use LNG as a power source, the LNG is converted to its gaseous state using a re-vaporization process. The re-vaporized LNG is then distributed through pipelines to various end users. Figure 4.1, Figure 4.2, Figure 4.3, Figure 4.4, and Figure 4.5 are illustrations of the LNG value chain.

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  20    ©  2013  JKD  NANNA  CONSULT  

     

 Figure  4.1:  Natural  Gas  –  From  Production  &  Processing,  Transmission  

&  Storage,  to  Distribution    

 

 Figure  4.2:    The  entire  flow  from  exploration  and  development  of  natural  

gas  to  utilization  is  called  the  LNG  chain      

 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  21    ©  2013  JKD  NANNA  CONSULT  

     

 

Figure  4.3:    LNG  Value  Chain  

Upstream: gas reservoir exploration, natural gas production and liquefaction Middle stream: LNG transportation Downstream: LNG receiving, storage and distribution.

Figure  4.4:    Traditional  LNG  Value  Chain  

 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  22    ©  2013  JKD  NANNA  CONSULT  

     

Figure  4.5:    LNG  Supply  Chain    

 

                                       

   

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  23    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  4.6:    Schematic  Diagram  of  LNG  Plant  Process  Flow    

                                       

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  24    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  4.7:    This  LNG  Train  refers  to  the  Compressors  Train  used  in  the  Industrial              Process  to  convert  Natural  Gas  to  Liquefied  Natural  Gas  (LNG)        

     

                                   

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  25    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  4.8:    LNG  from  wellhead  to  fuel  tank    

   

                                           

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  26    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  4.9:    Typical  Structure  of  an  LNG  Storage  Tank      

 

 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  27    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  4.10:    Example  of  highly  safe  full  containment  LNG  tank  comprising  of  an  inner  tank  made  of  9%  nickel  steel  and  a  pre-­‐stressed  concrete  outer  

tank    

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  28    ©  2013  JKD  NANNA  CONSULT  

     

Figure  4.11:    Full  Containment  LNG  Storage  Tank      

 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  29    ©  2013  JKD  NANNA  CONSULT  

     

Figure  4.12:    Design  of  mega-­‐sized  LNG  storage  tank  

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  30    ©  2013  JKD  NANNA  CONSULT  

     

Figure 4.6, Figure 4.7, and Figure 4.8 are schematic diagrams of LNG plant process flows.

Figure 4.9, Figure 4.10, Figure 4.11, and Figure 4.12 are illustrations of typical structures of LNG storage tanks.

One advantage of LNG is that LNG may be transported by ship to markets further than would be practicable with pipelines. This technology allows customers who operate a long way from natural gas reserves to enjoy the benefits of natural gas. The importation of LNG by ship would require the construction of LNG import terminals for LNG storage and re-vaporization facilities at on-shore locations that are close to the shipping lanes.

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  31    ©  2013  JKD  NANNA  CONSULT  

     

Chapter  5.    Types  of  Liquefied  Natural  Gas  (LNG)  Storage  Tanks    

Table  5-­‐1:  Definitions  of  types  of  LNG  storage  tanks    

   

 Table  5-­‐2:  Types  of  LNG  storage  tanks  

 

     

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  32    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  5-­‐3:  Types  of  containment        

 

                                           

 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  33    ©  2013  JKD  NANNA  CONSULT  

     

   

Table  5-­‐4:  LNG  storage  tank  containment  and  progression  of  bund  wall      

     

Table  5-­‐5:  Examples  of  Single  Containment  LNG  storage  tanks        

         

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  34    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  5-­‐6:  Selected  Single  Containment  Type        

           

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  35    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  5-­‐7:  Typical  Single  Containment  –  Double  Metal  Tank        

                                               

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  36    ©  2013  JKD  NANNA  CONSULT  

     

   Figure  5-­‐8:  Typical  Bottom  Corner  of  Single  Containment  –  Double  Metal  

Tank        

                                           

 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  37    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  5-­‐9:  Selected  Double  Containment  Type        

           

 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  38    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  5-­‐10:  Typical  Double  Containment  –  PC  Outer  Wall        

                                             

 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  39    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  5-­‐11:  Selected  Double  Containment  Type  –  RC  Outer  Wall  +  Earth  Embankment  

     

       

 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  40    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  5-­‐12:  Typical  Double  Containment  Type  –  RC  Outer  Wall  +  Earth  Embankment  

     

                                             

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  41    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  5-­‐13:  Selected  Full  Containment  Type  –  PC  Outer  Wall        

           

 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  42    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  5-­‐14:  Typical  Full  Containment  Type  –  PC  Outer  Wall        

                                               

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  43    ©  2013  JKD  NANNA  CONSULT  

     

   Figure  5-­‐15:  Typical  Bottom  Corner  of  Full  Containment  Type  –  PC  Outer  

Wall    

   

                                           

 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  44    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  5-­‐16:  Typical  Roof  Corner  of  Full  Containment  Type  –  PC  Outer  Wall        

                                           

 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  45    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  5-­‐17:  Selected  Above  Ground  –  Membrane  Type        

   

                                 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  46    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  5-­‐18:  Typical  Membrane  Type  –  Above  Ground        

                                             

 

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  47    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  5-­‐19:  Typical  Bottom  Wall  of  Membrane  Type  Containment  System        

     

 Figure  5-­‐20:  Comparison  of  each  container  type  

   

 

     

JKD  NANNA  CONSULT,  Version  21  Sunday,  September  15th,  2013  

  48    ©  2013  JKD  NANNA  CONSULT  

     

   

Figure  5-­‐21:  Comparison  of  each  container  type  (continued)