title かつおだしの嗜好性に寄与する香気成分の研究( dissertation … · 目次...

84
Title かつおだしの嗜好性に寄与する香気成分の研究( Dissertation_全文 ) Author(s) 斉藤, 司 Citation Kyoto University (京都大学) Issue Date 2015-01-23 URL https://doi.org/10.14989/doctor.r12897 Right Type Thesis or Dissertation Textversion ETD Kyoto University

Upload: others

Post on 30-Aug-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Title (Dissertation_ )

    Author(s) ,

    Citation Kyoto University ()

    Issue Date 2015-01-23

    URL https://doi.org/10.14989/doctor.r12897

    Right

    Type Thesis or Dissertation

    Textversion ETD

    Kyoto University

  • 2015

  • 1

    2

    12

    30

    TDD 46

    58

    77

    80

  • - 1 -

    GC-O Gas chromatography-olfactometry

    AEDA Aroma extract dilution analysis

    CPP Conditioned place preference

    NIRS Near-infrared right spectroscopy

    TDD (4Z,7Z)-Trideca-4,7-dienal

    BD Bonito broth flavored dextrin

    AD Mixed amino acids-nucleotides dextrin solution

    IMP Inosine 5-monophosphate

    GMP Guanosine 5-monophosphate

    DT Dashi taste solution

    sCO2 Supercritical carbon dioxide extraction

    KI Kovats Index

    RT Retention time

    IS Internal standard

    FD Flavor dilution

    Ch Channel

    ANOVA Analysis of variance

  • - 2 -

    1

    300

    800

    700 600 [1]

    400

    [2]

    [3]

  • - 3 -

    limonene 90

    [4]

    0.02 0.74 nootkatone[5]

    thioterpineol[6]

    GC-O

    GC-OGC- Olfactometry/

    GC-O GC

    Aroma Extract Dilution AnalysisAEDA [7]

    (6Z,8E)-undeca-6,8,10-trien-3-oneyuzunone [8]

    cis-3-methyl-4-decanolide[9]

  • - 4 -

    [10-13]1

    2 2030 6070

    400 [14-16]

    252 [17, 18]

    [19]

    [20]

    [21]

    Conditioned Place Preference test = CPP CPP

    2

  • - 5 -

    [22]

    CPP

    [23]

    [24-26]

    2

    2

    [27]

  • - 6 -

    NIRS

    NIRS

    [28]

    ethylmaltol

    [29]

    NIRS NIRS NIRS

    [26]

    GC-O

    (4Z,7Z)-

    trideca-4,7-dienal TDD [30]

    TDD

  • - 7 -

    TDD

    [30] TDD

    TDD

    NIRSTDD

  • - 8 -

    1 [31]

    95

    180

    140

    125

    15

    ppm

    ppbppm

  • - 9 -

    1. Nijssen, L. M., Ingen-Visscher, C. A. van, Donders, J. J. H. (Eds.) VCF

    Volatile Compound in Food : database Version 15.2-Zeist (TheNetherlands) :

    TNO Triskelion, 1963-2014.

    2. . FFI

    212: 919-9262007.

    3. 8-10

    1998.

    4. Dugo, G., Controneo, A., Verzera, A., Bonaccorsi, I . Composition of the

    volatile fraction of cold-pressed citrus peel oils, in Citrus: The Genus Citrus,

    G.Dugo and A. Di Giacomo (Eds.), New York: Taylor & Francis, 217-228,

    2002.

    5. MacLeod, W. D., Buigues, N. M. Sesquiterpenes, I. Nootkatone, a new

    grapefruit flavor constituent. J Food Sci 29: 565-568, 1964.

    6. Demole, E., Enggist, P. 1-p-Menthene-8-thiol: A powerful flavor impact

    constituent of grapefruit juice (Citrus parodisi MACFAYDEN) . Helvetica

    Chimica Acta 65: 17851794, 1982.

    7. Grosch, W. Determination of potent oclourants in foods by aroma extract

    dilution analysis (AEDA) and calculation of odour activity values (OAVs).

    Flavour Fragr J 9: 147-158, 1994.

    8. Miyazawa, N., Tomita, N., Kurobayashi, Y., Nakanishi, A., Ohkubo, Y.,

    Maeda, T., Fujita, A. Novel character impact compounds in Yuzu (Citrus

    junos Sieb.ex Tanaka) peel oil. J Agric Food Chem 57: 1990-1996, 2009.

    9. Nakanishi, A., Miyazawa, N., Haraguchi, K., Watanabe, H., Kurobayashi,

    Y., Nammoku, T. Determination of the absolute configuration of a novel

    odour-active lactone, cis-3-methyl-4-decanolide, in wasabi (Wasabia

    japonica Matsum.). Flavour Fragr J 29: 220-227, 2014.

    10. . 12-311987.

    11. ( ). 138-2332000.

    12. EPADHA . 2-101999.

    13. . 90-912012.

    14. . 74 ) :

  • - 10 -

    72-821989.

    15. . 38: 104-1111989.

    16.

    . 12: 123-1302005.

    17. Yajima, I., Nakamura, M., Sakakibara, M., Yanai, T., Hayashi, K. Volatile

    flavor components of dried bonito (Katsuobushi) I. On basic, acidic and

    weak acidic fractions. Agric Biol Chem 45: 2761-2768, 1981.

    18. Yajima, I., Nakamura, M., Sakakibara, H., Ide, J, Yanai, T., Hayashi, K.

    Volatile flavor components of dried bonito (Katsuobushi) II. From neutral

    fraction. Agric Biol Chem 47: 1755-1760, 1983.

    19. Doi, M., Ninomiya, M., Matsui, M., Shuto, Y., Kinoshitam, Y. Degradation

    and o-methylation of phenols among volatile flavor components of dried

    bonito (katsuobushi) by Aspergillus species. Agric Biol Chem 53: 1051-1055,

    1989.

    20. . 38: 848-8551989.

    21. . 26-622008.

    22. .

    9: 163-1682002.

    23.

    . 10: 781-7842003.

    24. Kawasaki, H., Yamada, A., Fuse, R., Fushiki, T. Preference for dried bonito

    broth in olfactory-blocked or taste nerve-sectioned mice in the two-bottle

    choice test. Biosci Biotechnol Biochem 72: 2840-2846, 2008.

    25. . Aroma

    Research 12: 222-2252011.

    26. Amitsuka, T., Okamura, M., Shiibashi, H., Yamamoto, N., Saito, T.,

    Nammoku, T., Tsuzuki, S., Inoue, K., Fushiki, T. A study of an aroma

    extraction method and evaluation of the aroma extract contribution to the

    palatability and reinforcement effect of dried bonito using mice. J Nutr Sci

    Vitaminol 60: 329-334, 2014.

    27. Kurobayashi, Y., Katsumi, Y., Fujita, A., Morimitsu, Y. , Kubota, K. Flavor

    enhancement of chicken broth from boiled celery constituents. J Agric Food

    Chem 56: 512-516, 2008.

  • - 11 -

    28. Sato, H., Obata, A. N., Moda, I., Ozaki, K., Yasuhara, T., Yamamoto, Y.,

    Kiguchi, M., Maki, A., Kubota, K., Koizumi, H. Application of near-infrared

    spectroscopy to measurement of hemodynamic signals accompanying

    stimulated saliva secretion. J Biomed Opt 16: 047002, 2011.

    29. Iizumi-Saito, K., Nakamura, A., Matsumoto, T., Yamamoto, N., Saito, T.,

    Nammoku, T., Mori, K. Ethylmaltol odor enhances salivary hemodynamic

    responses to sucrose taste as detected by near-infrared spectroscopy.

    Chemosens Percept 6: 92-100, 2013.

    30.

    .

    61: 519-5272014.

    31. 1988.

  • - 12 -

    2

    [1, 2]

    conditioned place preference testCPP

    [3]

    Skipjack tuna, Katsuwonus pelamis

    G

    Yellowfin tuna, Thunnus Albacares

  • - 13 -

    Spotted mackerel, Scomber australasicusBullet tuna, Auxis

    rocheiJapanese anchovy, Engraulis japonicus

    Ackroff 2

    [4, 5] CPP

    BD [6]

    NaCl IMPGMP

    ADAD

    BD

    BD

    [6]AD citralvaillinmenthol

    [6]

    2 CPP

    8 BALB/cCr SLC

    23 2C12

    6:00-18:00MF

  • - 14 -

    G

    DT [4]

    1

    1%

    Inosine 5'-monophosphate IMP

    guanosine 5'-monophosphateGMP

    NaCl

    DIAION HP20

    95% 5.0%

    95% 75

    8022

    80%

    65%

  • - 15 -

    G

    40 10 ml/min 25 MPa

    1.31.06.01.2

    2.0%

    2

    2 40

    50 ml

    0.89%

    30 3

    Preference value% 2

    100 %1002

    CPP

    CPP [6] 10

    1 3

    20 4 9

    30

    3

    10

    3 10

    10

  • - 16 -

    ShamONX 2

    [6-8]Sham

    35

    20 3

    Sham 3

    ONX 3

    p

  • - 17 -

    0.05%

    2.

    G

    2

    2 0.05

    G

    2a

    preference value G

    2b

    3.

    DT vs DT

    2

    0.05

    3

    4. CPP

    3 ADBDAD

    21.9 1

    0.05

    BD AD+sCO2

    4

  • - 18 -

    1

    3

    DTDT DT 2

    1

    [9-12]

    [13, 14]

    31 [15] 40

    [11, 13, 14, 16-18]

  • - 19 -

    2

    G

    2

    2 G

    preference value G

    3 2

    3

    2 2

    2 3 30 2

    [19]G

    G

    alkyl pyrazine

  • - 20 -

    [20]

    eicosapentaenoic acidEPA docosahexaenoic acidDHA

    [21, 22] [22]

    [23]

    alkyl pyrazine [24]

    propanal butanalhexanal 3 6

    [25]

    4 CPP

    CPP BALB/cCr

    BD 4

    DT AD

    AD

    AD

    AD BD

    [6]

  • - 21 -

    2

    CPP

  • - 22 -

    1

  • - 23 -

    1

    2

    SEM (n=7, 8)#, p

  • - 24 -

    2 2

    (a)

    2 SEM (n = 8)*,

    p

  • - 25 -

    3

    2 (n = 9)(n = 7)

    SEM*, p

  • - 26 -

    4 CPP

    AD

    BDAD AD + sCO2

    (s)SEM (n=11)

    *, p

  • - 27 -

    1. Manabe, Y., Matsumura, S., Fushiki, T. Preference for high-fat food in

    animals. Fat detection: taste, texture, and post ingestive effects. 243, 2010.

    2. gmo, A., Galvan, A., Talamantes, B. Reward and reinforcement produced

    by drinking sucrose: Two processes that may depend on different

    neurotransmitters. Pharmacol Biochem Behav 52: 403-414, 1995.

    3. Tzschentke, T. M. Measuring reward with the conditioned place preference

    (CPP) paradigm: update of the last decade. Addict Biol 12: 227-462, 2007.

    4. Kawasaki, H., Yamada, A., Fuse, R., Fushiki, T. Preference for dried bonito

    broth in olfactory-blocked or taste nerve-sectioned mice in the two-bottle

    choice test. Biosci Biotechnol Biochem 72: 2840-2846, 2008.

    5. Ackroff, K., Kondoh, T., Sclafani, A. Dried bonito dashi: a preferred fish

    broth without postoral reward actions in mice. Chem Senses 39: 159-166,

    2014.

    6. Kawasaki, H., Yamada, A., Fuse, R., Fushiki, T. Intake of dried bonito broth

    flavored with dextrin solution induced conditioned place preference in mice.

    Biosci Biotechnol Biochem 75: 2288-2292, 2011.

    7. Yee, K. K., Costanzo, R. M. Restoration of olfactory mediated behavior after

    olfactory bulb deafferentation. Physiol Behav 58: 959-968, 1995.

    8. Yee, K. K., Wysocki, C. J. Odorant exposure increases olfactory sensitivity:

    olfactory epithelium is implicated. Physiol Behav 72: 705-711, 2001.

    9. D az-Maroto, M. C., Prez-Coello, M. S., Cabezudo M. D. Supercritical

    carbon dioxide extraction of volatiles from spices: comparison with

    simultaneous distillationextraction. J Chromatogr A 947: 23-29, 2002.

    10. Richter, J., Schellenberg, I. Comparison of different extraction methods for

    the determination of essential oils and related compounds from aromatic

  • - 28 -

    plants and optimization of solid-phase microextraction/gas chromatography.

    Anal Bioanal Chem 387: 2207-2217, 2007.

    11. Ramos, E., Valero, E., Ibanez, E., Reglero, G., Tabera, J. Obtention of a

    brewed coffee aroma extract by an optimized supercritical CO 2-based

    process. J Agric Food Chem 46: 4011-4016, 1998.

    12. Alissandrakis, E., Tarantilis, P. A., Harizanis, P. C., Polissiou, M.

    Evaluation of four isolation techniques for honey aroma compounds. J Sci

    Food Agric 85: 91-97, 2005.

    13. Barton, P., Hughes, R. E. Jr, Hussein, M. M. Supercritical carbon dioxide

    extraction of peppermint and spearmint. J Supercrit Fluids 5: 157-162,

    1992.

    14. Donelian, A., Carlson, L. H. C., Lopes, T. J., Machado, R. A. F. Comparison

    of extraction of patchouli (Pogostemon cablin) essential oil with

    supercritical CO2 and by steam distillation. J Supercrit Fluids 48: 15-20,

    2009.

    15. Hawthorne, S. B. Analytical-scale supercritical fluid extraction. Anal Chem

    62: 633A-642A, 1990.

    16. Reverchon, E., Senatore, F. Isolation of rosemary oil: comparison between

    hydrodistillation and supercritical CO2 extraction. Flavour Fragr J 7: 227-

    230, 1992.

    17. Reis-Vasco, E., Coelho, J., Palavra, A. Comparison of pennyroyal oils

    obtained by supercritical CO2 extraction and hydrodistillation. Flavour

    Fragr J 14: 156-160, 1999.

    18. Da Porto, C., Decorti, D., Kikic, I. Flavour compounds of Lavandula

    angustifolia L. to use in food manufacturing: Comparison of three different

    extraction methods. Food Chem 112: 1072-1078, 2009.

    19. .

  • - 29 -

    37: 156-1621971.

    20. . 2005.

    21. Alkio, M., Gonzalez, C., Jntti, M., Aaltonen, O. Purification of

    polyunsaturated fatty acid esters from tuna oil with supercritical fluid

    chromatography. J Am Oil Chem Soc 77: 315-321, 2000.

    22. Frankel, E. Formation of headspace volatiles by thermal decomposition of

    oxidized fish oilsvs. oxidized vegetable oils. J Am Oil Chem Soc 70: 767-772,

    1993.

    23. Frankel, E. Lipid oxidation. Prog Lipid Res 19: 1-22, 1980.

    24. Amrani-Hemaimi, M., Cerny, C., Fay, L. B. Mechanisms of formation of

    alkylpyrazines in the Maillard reaction. J Agric Food Chem 43: 2818-2822,

    1995.

    25.

    . 71: 215-2172005.

  • - 30 -

    400

    /GC/O

    GC/O

    [1]

    3-

    (methylthio)propanal

    [2]

    [3]

  • - 31 -

    GC/OAEDA

    200 ml 120.0 g

    40 25 MPa

    360 g 0.83 g/ml 10 ml/min 10

    1200 g 21.27 g

    2-tert-butylphenol 99 on GC 4-tert-butylphenol

    99 2,6-dimethylphenol 99 2,6-dimethoxyphenol

    99 2-methoxy-4-propylphenol 4-propylguaiacol 99 2-

    methoxyphenol guaiacol 99 Sigma-Aldrich

    Benzene 99 2-methoxy-5-

    methylphenol5-methylguaiacol99

    4-hydroxy-3-methoxybenzaldehyde vanillin 99

    Rhodia 4-hydroxy-2,5-dimethyl-3(2H)-furanone furaneol

    99 Firmenich (4Z,7Z)-trideca-4,7-dienal

    99 Mo [4] 2-octyne- -ol

    19 (4Z/E,7E)-trideca-4,7-dienal

    (4E,7Z)-trideca-4,7-dienal 99 [5]

    (2E,7Z)-trans-4,5-epoxydeca-2,7-dienal 98 Miyazawa [6]

  • - 32 -

    Sigma-Aldrich 1-bromo-2-pentyne

    9%4-ethyl-2,6-dimethoxyphenol94 Shu [7]

    Sigma-Aldrich 3 ,5 -dimethoxy-4 -

    hydroxyacetophenone 1 48

    5.0 g 5.0 g

    80 250 Pa 120 Pa

    26 mg

    GC-MS

    Agilent 6890N GC Inert Cap WAX 60 m0.32 mm i.d.

    405

    3 /min 230 1.8

    ml/min 250 101 Agilent

    5975C MSD 70 eV

    250 230 150Scan m/z = 29~500

    Agilent ChemStation System

    GC Kovats IndexKI GC RT

    AEDA

    5 GC/O

  • - 33 -

    Agilent 7890A GC

    GC-MS

    1 1 250FID

    Gerstel ODPODP

    250

    50 ml/min

    KI

    Gerstel 1 2 GC-MS/O

    Agilent 7890A GC 1st DB-WAX LTM

    30 m0.25 mm i.d.2nd DB-1 LTM 30 m0.25 mm

    i.d. Agilent

    0.36 MPa Gerstel

    CIS1012 /s 2405

    min 1st 40 3 /min

    150 10 /s 250 2nd

    2nd 40 3 /min 1

    1 MSD ODP MSD GC-MS ODP

    GC/O KI

    2nd KI 2nd

    10.03 g 2-tert-

    butylphenol 1.192 mg4-tert-butylphenol 10.51 gbenzene 164.7 ng

    3 GC-MS 1

    2 GC-MS/O SIM

    2- tert-butylphenol m/z = 1354-tert-butylphenol m/z = 107benzene m/z =

  • - 34 -

    78 m/z 3

    GC

    IS

    AEDA

    FDFlavor dilution 10 1 FD

    KI=1894WAXguaiacol (1)

    2,6-dimethylphenol (3) 5-methylguaiacol (4)

    2,6-dimethoxyphenol (8) furaneol (5) 4-

    propylguaiacol (7) 4-ethyl-2,6-dimethoxyphenol (9) vanillin

    (10)KI=1906WAX

    AKI=2097WAX B

    1 2 GC-MS/O

    1 2 GC-MS/O 1st GC/O

    1st 1 1st

    KI=2097WAXRT=45.85 min

    B 45.646.0 min 2nd

    GC/O KI=1340DB-1 1st

    RT=72.17 min 2a 2b

    Miyazawa [6]

  • - 35 -

    (2E,7Z)-trans-4,5-epoxydeca-2,7-dienal 2c

    GC RT

    1st KI=1906WAXRT=40.43 min

    A40.141.1 min 2nd

    GC/O KI=1461DB-1

    RT=72.43 min 3a 3b

    m/z=194

    m/z=150 M44 McLafferty

    [8] 13

    2C13H22O m/z=123

    M71 C5H11

    7 M44 McLafferty

    2

    3 7 2

    -6 4 7

    4

    [5] WAX DB-1 KI 2

    4 A KI

    (4Z,7Z)-trideca-4,7-dienalTDD

    AEDA 10 TDD (2E,7Z)-

    trans-4,5-epoxydeca-2,7-dienal 8 GC-MS SIM

    guaiacol (1)

    5-methylguaiacol (4) 2,6-dimethoxyphenol (8) 4-ethyl-2,6-dimethoxyphenol

    (9) 2-tert-butylphenol 2,6-dimethylphenol (3) furaneol (5) 4-

  • - 36 -

    propylguaiacol (7)vanillin (10) 4-tert-butylphenol

    3

    TDD (2E,7Z)-trans-4,5-epoxydeca-2,7-dienal 1 2 GC-MS/O

    SIM

    benzene TDD (2) ((2E,7Z)-trans-4,5-

    epoxydeca-2,7-dienal (6)2

    3

    CPP

    GC-O AEDA 10

    8

    [1, 2, 9, 10] 2 GC

    Miyazawa

    yuzunone [11]

    GC

    2 (2E,7Z)-

    trans-4,5-epoxydeca-2,7-dienal TDD

    TDD

  • - 37 -

    [4]

  • - 38 -

    No. compounda KIb FD factor odor descriptionc identification moded

    1 2-methoxyphenol (guaiacol) 1894 15625 mediciny M, K, O

    2 unknown A 1906 3125 woody, cardboard-like O

    3 2,6-dimethylphenol 1940 3125 phenolic M, K, O

    4 2-methoxy-5-methylphenol (5-methylguaiacol) 1976 3125 mediciny M, K, O

    5 4-hydroxy-2,5-dimethyl-3(2H)-furanone (furaneol) 2055 3125 sweet M, K, O

    6 unknown B 2097 3125 metalic O

    7 2-methoxy-4-propylphenol (4-propylguaiacol) 2144 3125 woody, phenolic M, K, O

    8 2,6-dimethoxyphenol 2302 3125 mediciny M, K, O

    9 4-ethyl-2,6-dimethoxyphenol 2442 3125 woody, phenolic M, K, O

    10 4-hydroxy-3-methoxybenzaldehyde (vanillin) 2614 3125 sweet, vanilla-like M, K, O

    1 AEDA FD 3125

    a MSKI b WAX Kovats ndex c GC/O d MMSKKIKovats ndexOGC/OGC/

  • - 39 -

    10.00 20.00 30.00 40.00 50.00 60.00 70.00 (min) 0.00

    1

    1 2 GC-MS/O 1st

  • - 40 -

    2

    (1 2 GC-MS/O 2nd )

    a) KI=2097WAX45.646.0 min

    b) KI=1340DB-1

    c) (2E,7Z)-trans-4,5-epoxydeca-2,7-dienal

  • - 41 -

    70.00 71.00 72.00 73.00 74.00 75.00 76.00 77.00 78.00 79.00 (min)

    a) b)

    20 40 60 80 100 120 140 160 180 200

    79

    67

    55 41

    98

    150 123

    109 137

    165

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    (m/z)

    (abun

    danc

    e)

    194 179

    KI=

    1461

    (DB

    -1)

    3

    1 2 GC-MS/O 2nd

    a) 40.141.1 min

    b) KI=1461DB-1

  • - 42 -

    compound WAX DB-1 odor descriptionb

    unknown A 1906 1461 woody, cardboard-like

    (4E,7E)-trideca-4,7-dienal 1906 1465 oily, weak

    (4E,7Z)-trideca-4,7-dienal 1912 1472 powdery, citrus-like

    (4Z,7E)-trideca-4,7-dienal 1907 1465 oily, citrus-like

    (4Z,7Z)-trideca-4,7-dienal 1906 1461 woody, cardboard-like

    2 unknown A (4E/Z,7E/Z)-trideca-4,7-dienal WAX DB-1

    KIa

    a Kovats ndex b GC/O

  • - 43 -

    4 (4E/Z,7E/Z)-trideca-4,7-dienal

    a) (4E,7E)-trideca-4,7-dienalb) (4E,7Z)-trideca-4,7-dienalc) (4Z,7E)-trideca-4,7-dienald) (4Z,7Z)-trideca-4,7-dienal

  • - 44 -

    3

    a SIM m/z b

  • - 45 -

    1.

    . 48: 570-5772001.

    2. .

    48: 16-182004.

    3. . 155: 95-104

    1987.

    4. Mo, W.-P., Burger, B. V., LeRoux, M., Spies, H. S. C. Mammalian exocrine

    secretions: IX. Constituents of preorbital secretion of oribi, Ourebia, ourebi.

    J Chem Ecol 21: 1191-1215, 1995.

    5. . 2012-178984 (2012.9.20).

    6. Miyazawa, N., Fujita, A., Kubota, K. Aroma character impact compounds in

    Kinokuni mandarin orange (Citrus kinokuni) compared with Satsuma

    mandarin orange (Citrus unshiu). Biosci Biotechnol Biochem 74: 835-842,

    2010.

    7. Shu, C.-K., Mookherjee, B. D. Volatile components of phenolic fraction of

    cooked bacon. J Agric Food Chem 33: 1107-1109, 1985.

    8. Budzikiewicz, H., Djerassi, C. , Williams, D. H. Mass spectrometry of

    organic compounds. Holden-Day, San Francisco, 129-173, 1967.

    9. . 256: 51-562012.

    10. . 2011-217632 (2011.11.4)

    11. Miyazawa, N., Nakanishi, A., Tomita, N., Okubo, Y., Maeda, T., Fujita, A.

    Novel key aroma components of galbanum oil. J Agric Food Chem 57: 1433-

    1439, 2009.

  • - 46 -

    TDD

    AEDA [1]

    AEDA GC/O

    10

    (4Z,7Z)- trideca-4,7-dienalTDD

    [2-4]

    [5] TDD

    .

    MT-N

  • - 47 -

    2.

    7 10

    4 3

    30 ml 0.1 g

    [6]

    TDD 9 TDD 10

    100 g

    guaiacol 910 g 5-methylguaiacol 1.6 mg 2,6 dimethoxyphenol 26

    mg4-ethyl-2,6-dimethoxyphenol5.5 mg2,6-dimethylphenol120 g4-

    propylguaiacol 580 g vanillin 190 g furaneol 290 g (2E,7Z)-

    trans-4,5-epoxydeca-2,7-dienal0.11 gTDD0.45 g

    25 1

    3 30 ml

    0.1 g

    7

    1 2 3 4 5

    6 7

    5

  • - 48 -

    9 TDD 10

    t

    3. TDD

    i ) 6

    25 6

    105229 20 ppm 20 ppm

    TDD 0.2 ppb 3

    TDD

    60

    40 ml

    4. TDD

    20 13 7

    Czerny [7] TDD

    5. TDD

    20 13 7

  • - 49 -

    25 1

    ( ) TDD 0.05

    ppb 3

    40 ml

    5

    t

    10 TDD

    TDD 9 TDD 10

    6

    7

    5

    1 9

    5

    TDD 10 9

    TDD

  • - 50 -

    TDD

    TDD

    TDD

    TDD 1

    TDD

    20 TDD

    0.014 ppb

    TDD

    [5]

    TDD

    TDD 0.014 ppb

    TDD 0.05

    ppb TDD

    2

  • - 51 -

    TDD

    TDD

    [6]

    10 6

    TDD

    TDD

    AEDA 10

    TDD

    TDD

    TDD

    TDD

  • - 52 -

    TDD

    [2-4]

    [5]

    TDD TDD

    [8]

    1

    -nonalactone

    [9] TDD

    TDD

  • - 53 -

    1.00

    3.00

    5.00

    7.00

    *

    1 9 9 +TDD

    5n7, *, p

  • - 54 -

    0

    0

    +TDD 6

    1 6

  • - 55 -

    1.00 2.00 3.00 4.00 5.00

    TDD

    2 TDD

    n=20, **, p

  • - 56 -

    1. Schieberle, P. New developments in methods for analysis of volatile flavor

    compounds and their precursors. In Characterization of Food: Emerging

    Methods, Gaonker, A.G., ed. Elsevier Science, Amsterdam, The

    Netherlands, 403-431, 1995.

    2. Stevenson, R. J., Prescott, J., Boakes, R. A. Confusing tastes and smell:

    How odours can influence the perception of sweet and sour tastes. Chem

    Senses 24: 627-635, 1999.

    3. Yokomi, N., Ito, M. Influence of composition upon the variety of tastes in

    Cinnamomi cortex. J Nat Med 63: 261-266, 2009.

    4. Ito, M. Research and educational activities through perspective of

    pharmacognosy. Yakugaku Zasshi 130: 687-695, 2010.

    5. Inhibitory effect of

    Katsuo-dashi dried bonito stock on the taste and odor of lactic acid .

    44: 122-1272011.

    6.

    . 14: 34-392010.

    7. Czerny, M., Christlbauer, M., Christlbauer, M., Fischer, A., Granvogl, M.,

    Hammer, M., Hartl, C., Moran, N., Schieberle, P. Re-investigation on odour

    thresholds of key food aroma compounds and development of an aroma

    language based on odour qualities of defined aqueous odorant solutions .

    Eur Food Res Technol 228: 265-273, 2008.

    8. . 4925488

    (2012.4.25)

    9. . 5511210

    (2014.4.4)

  • - 57 -

    URL

    i) http://culinary-academy.jp (2013.12.28)

  • - 58 -

    [1, 2]

    [3-6]

    [7]

    NIRS

    [8, 9]NIRS

  • - 59 -

    NIRS

    NIRS NIRS

    NIRS

    NIRS

    (4Z,7Z)-trideca-4,7-dienalTDDTDD

    NIRS TDD

    DT

    105229

  • - 60 -

    GC/O

    10 ppm

    2

    2,6-dimethoxyphenolphenol4-methylguaiacolm-cresol

    guaiacol2,6-dimethoxy-4-methylphenolo-cresol4-ethylguaiacol

    5.6 ppm

    [10] 10 ppm

    10 ppm TDD 0.2 ppb

    TDD 4.4 ppm

    4

    NIRS

    10 30.54.6 3 7

    NIRS

    NIRS ETG-4000

    24 55% 50 lux

    311 52 Ch

    1

  • - 61 -

    NIRS

    7 -3

    3 -3

    3 -33

    NIRS 10 ml

    601

    10

    2 TDD

    2 TDD

    2

    2 4 4 1

    2 1

    2 1 2 4

    5

    5

    2 NIRS

    NIRS

    60 30 60 150

    60

    5

    30

    NIRS

  • - 62 -

    NIRS Ch oxyHb

    deoxyHb totalHb

    oxyHb

    30

    30

    10 10

    0 0

    3 ChCh 43, 44, 33 3 Ch

    Ch 52, 51, 41 1

    Ch 3 Ch

    SPSS 20.0J

    NIRS

    5

    10 2

    1 5

  • - 63 -

    2 5

    3

    4a

    TDD NIRS

    TDD

    TDD 4bTDD

    NIRS

    10

    30

    5

    Ch 44

    Ch 51 25

    Ch 43, 44, 33Ch 52, 51, 41

    6 Ch

  • - 64 -

    22ANOVA

    F(1, 4)=7.01 p=0.057

    F(1, 4)=6.41 p=0.065

    6a

    F(1, 4)=0.24p=0.65 6c

    F(1, 4)=0.006p=0.942F(1, 4)=1.75p=0.26

    7

    TDD

    TDD

    TDD

    TDD

    TDD

  • - 65 -

    22

    ANOVATDD TDD

    TDD

    F(1, 4)=0.24p=0.65 6cTDD

    F(1, 4)=8.67p=0.042 6d

    TDD TDD

    F(1,

    4)=14.5p=0.019 6bTDD

    TDD

    TDD

    TDD

    TDD

  • - 66 -

    [11-13]NIRS

    TDD

    TDD

    TDD

    NIRS 6

    NIRS

    [10] TDD

    1

    NIRS

  • - 67 -

    TDD

  • - 68 -

    52 51 50 49 48 47 46 45 44 43

    42 41 40 39 38 37 36 35 34 33 32

    31 30 29 28 27 26 25 24 2223

    21 20 19 18 17 16 15 14 13 12 11

    10 9 8 7 6 5 4 3 12

    41 (1-52)

    5251

    41

    1 NIRS 311 52

    3

  • - 69 -

    30

    60

    60

    180

    30

    60

    60

    180

    A

    -60 0 30 90

    (-60)

    270 0 30 90 270

    0

    2

    2

    B

    [oxyH

    b]

    [oxyH

    b]

    0

    (a)

    (b)

    2 (a) 1 2 (b)

    Ch 51

  • - 70 -

    3

    n=10, **, p

  • - 71 -

    4 ab

    **, p

  • - 72 -

    2.0

    [oxyH

    b]

    -0.5

    0 90

    0 90

    Ch 52 Ch 51 Ch 50 Ch 49 Ch 48 Ch 47 Ch 46 Ch 45 Ch 44 Ch 43

    Ch 31 Ch 30 Ch 29 Ch 28 Ch 27 Ch 26 Ch 25 Ch 24 Ch 23 Ch 22

    Ch 10 Ch 9 Ch 8 Ch 7 Ch 6 Ch 5 Ch 4 Ch 3 Ch 2 Ch 1

    Ch 42 Ch 41 Ch 40 Ch 39 Ch 38 Ch 37 Ch 36 Ch 35 Ch 34 Ch 33 Ch 32

    Ch 21 Ch 20 Ch 19 Ch 18 Ch 17 Ch 16 Ch 15 Ch 14 Ch 13 Ch 12 Ch 11

    5 10

    52 Ch -0.52 mMmm

    0 090 30 Ch 52, 51, 44, 43

  • - 73 -

    * *

    + n.s.

    0

    0.5

    1

    1.5

    2

    TDD

    0

    0.5

    1

    1.5

    2

    TDD

    0

    0.5

    1

    1.5

    2

    0

    0.5

    1

    1.5

    2

    a

    b

    c

    d

    6 TDD

    TDD

    abTDD

    5 3 ChTDD

    c

    dTDD

    5 3 Ch*, p

  • - 74 -

    7 5

    n.s., not significant; 22

    ANOVA

  • - 75 -

    1. Shephard, G. M. Smell images and the flavour system in the human brain.

    Nature 444: 316-321, 2006.

    2. Verhagen, J. V., Engelen, L. The neurocognitive bases of human multimodal

    food perception: sensory integration. Neurosci Biobehav Rev 30: 613-650,

    2006.

    3. Frank, R. A., Ducheny, K., Mize, S. S. Strawberry odor, but not red color,

    enhances the sweetness of sucrose solutions. Chem Senses 14: 371377,

    1989.

    4. Schifferstein, H. N., Verlegh, P. W. The role of congruency and pleasantness

    in odor-induced taste enhancement. Acta Psychologica 94: 87105, 1996.

    5. Dalton, P., Doolittle, N., Nagata, H., Breslin, P. A. The merging of the

    senses: integration of subthreshold taste and smell. Nat Neurosci 3: 431

    432, 2003.

    6. Stevenson, R. J., Prescott, J. The acquisition of taste properties by odors.

    Learn Motiv 26: 433455, 1995.

    7. Small, D. M., Voss, J., Mak, Y. E., Simmons, K. B., Parrish, T., Gitelman, D.

    Experience-dependent neural integration of taste and smell in the human

    brain. J Neurophysiol 92: 1892-1903, 2004.

    8. Jobsis, F. F. Noninvasive, infrared monitoring of cerebral and myocardial

    oxygen sufficiency and circulatory parameters. Science 198: 1264-1267,

    1977.

    9. Scholkmann, F., Kleiser, S., Metz, A. J., Zimmermann, R., Mata Pavia, J.,

    Wolf, U., Wolf, M. A review on continuous wave functional near-infrared

    spectroscopy and imaging instrumentation and methodology. Neuroimage

    85: 6-27, 2014.

  • - 76 -

    10. Matsumoto, T., Saito, K., Nakamura, A., Saito, T. , Nammoku, T., Ishikawa,

    M., Mori, K. Dried-bonito aroma components enhance salivary

    hemodynamic responses to broth tastes detected by near-infrared

    spectroscopy. J Agric Food Chem 60: 805-811, 2012.

    11. Garrett, J. R. The proper role of nerves in salivary secretion: a review. J

    Dent Res 66: 387-397, 1987.

    12. Yeomans, M. R. Olfactory influences on appetite and satiety in humans.

    Physiol Behav 89: 10-14, 2006.

    13. Bender, G., Hummel, T., Negoias, S., Small, D. M. Separate signals for

    orthonasal vs. retronasal perception of food but not nonfood odors. Behav

    Neurosci 123: 481-489, 2009.

  • - 77 -

    2

    GC-MS AEDA

    guaiacol 5-methylguaiacol 2,6-

  • - 78 -

    dimethylphenol 4-ethyl-2,6-dimethoxyphenol 2,6-dimethoxyphenol 4-

    propylguaiacol vanillin furaneol (2E,7Z)-trans-4,5-epoxydeca-2,7-dienal

    (4Z,7Z)-trideca-4,7-dienalTDD 10 (2E,7Z)-

    trans-4,5-epoxydeca-2,7-dienal TDD

    TDD

    TDD

    6

    TDD 9

    TDD 10

    TDD

    TDD

    TDD

    TDD

    TDD

    TDD

  • - 79 -

    TDD

    TDD

    TDD TDD

    TDD

    TDD

    NIRS

    TDD

    TDD

    TDD

    TDD

  • - 80 -

    2

  • - 81 -

    4

    1 5

    3

    4

    2

    5

    4

    26 11