user guid

164
γ s γ c REINFORCED CON COUNCIL REINFORCE User Guide to Excel spreadsheet files for contemporary reinforced concrete design with commentary and hard copy examples C H Goodchild BSc, CEng, MCIOB, MIStructE R M Webster CEng, FIStructE to BS 8110 and EC2 CONCRETE DESIGN SPREADSHEETS FOR D ETR REGIONS TRANSPORT ENVIRONMENT

Upload: proteorsrl

Post on 21-Dec-2015

16 views

Category:

Documents


7 download

DESCRIPTION

excel

TRANSCRIPT

Page 1: User Guid

�<PST�Qg �3PbT

@LIG�ALC>���NI��LGQ ���.IP���

AH��NI�"3�����������

�2WTRZTS�ATdXaX^]

�������!(((�120�U^`�A22

=BA �

! b^�V`XS #

#/6%23��b^�P[[�ab

\�W�PVV

" \\C^_�R^dT`

\\�γs !� Ô

1b\�R^dT`$

γc !�Ô BXST�R^dT`

REINFORCED CON

COUNCIL

?`^YTRb���[^RPbX^

] B_`TPSaWTTba�b^

�1B�'!! �)�3�3)�<

PX]�Q

2>=C8=D>DB�140

<��0]P[gaXa���3TaXV

]��b^�1B�'!! )!((&

���>`XVX]PbTS

B_P] '� �\

W Ô

2 QTP\Qe #

WU !&Ô

�-!).�34%%,

,%&4

<�2;Z=\

!Ô$�Ô

<�UPRTZ=\

!!%�&

�Q

�'

S \\

$##�

QU\\

# �

:�

�!#"

FTQ�<`Ta Z=\

"(&�

5[P]VT�<`Ta

Z=\

lll

:

� Ô"

h\\

$ %�$

f \\

Ô(�!

S� \\

($�

]Tb�UaR=�\\�

4fRTaa�<Z=\

0a��`TÓ\\�

Uab =�\\�

$#'�!

0a�`TÓ\\�

%Ô%

Qe�Q

lll

<X]���

�!#�

<X]�0a\\�

!(Ô

�$%&,%#4)/.

Ua =�\\�

"%%�&

1PaT�`PbX^

CT]a�<^S

2^\_�<^S

?T`\�;�S

�?`^YTRb 3JL?;>MB??NM�NI�"3�����

REINFORCE

�2[XT]b!>PCMILS�'LIO

J

<PST�Qg

�;^RPbX^]$$��-;CH�<?;G�'LC>M�#�NI�(���

@LIG�ALC>���NI��LGQ

#/.4).5/53�"%!-��!H;FSMCM��$?MCAH��NI�"3�����������

2WTRZTS

>`XVX]PbTS�U`^\�A22$!�f[a�^]

�23������������������������ �!(((�

120�U^`�A22

=BA

�"%.$).'�-/-%.4�$)!'2!-3��Z=\�

� %F;MNC=�-IG?HNM�

� 2?>CMNLC<ON?>�%HP?

3500/24�.I�� � � � � �

4[PabXR�<�!(#�! $ !�&

'%�"l

ll

ATSXab`XQcbTS�<� !Ô$�Ô

"'!�"'%�"

ll

l

�Q� �' �&

!� l

ll

ATSXab`XQcbX^]� " � �

# � � � �

30!.�.I�� � � � � �

4[PabXR�<�"&%�Ô"

!Ô"�&Ôl

ll

l

ATSXab`XQcbTS�<� #"'�(&

!$%�!"l

ll

l

�Q� !�!( �(Ô&l

ll

l

�$

�#

�"

�!

!

"

#

$

Ô

Ô

! !Ô

�$

�#

�"

�!

!

"

#

$

Ô

�3(%!23��Z=�

�%F;MNC=�3B?;LM

��

2?>CMNLC<ON?>�3B?

30!.�.I�

��

4[PabXR�E"Ô"�(

# �#"Ô"�$

!' �$l

l

ATSXab`XQcbTS�E "Ô%�%

"''�#"$!�#

!&!�(l

l

�$

�#

�"

�!

!

"

#

Ô

!

�$

�#

�"

�!

!

"

#

Ô

User Guide to Excel spreadsheet files

for contemporary reinforced concretedesign with commentary and hardcopy examples

C H Goodchild BSc, CEng, MCIOB, MIStructE

R M Webster CEng, FIStructE

to BS 8110 and EC2CONCRETE DESIGNSPREADSHEETS FOR

DETR

REGIONSTRANSPORTENVIRONMENT

Page 2: User Guid

This publication was produced by the Reinforced Concrete Council (RCC) as part of its project ‘Spreadsheets for concretedesign to BS 8110 and EC2’. This project was jointly funded by the RCC and the Department of the Environment, Transportand the Regions (DETR) under its Partners in Technology scheme and was made possible by members of industry with theircontributions in kind.

The RCC was set up to promote better knowledge and understanding of reinforced concrete design and building technology.Its members are Allied Steel & Wire, representing the major supplier of reinforcing steel in the UK, and the British CementAssociation, representing the major manufacturers of Portland cement in the UK.

Charles Goodchild is Senior Engineer for the Reinforced Concrete Council. He was responsible for the concept and managementof this project and this publication.

Rod Webster of Concrete Innovation & Design is principal author of the spreadsheets. He has been writing RC spreadsheetssince 1984 and is expert in the design of tall concrete buildings and in advanced analytical methods.

The ideas and illustrations come from many sources. The help and guidance received from many individuals are gratefullyacknowledged.

Thanks are due to members of the project’s Advisory Group for their time and effort in helping to make the project feasibleand in bringing it to fruition. The members of the Advisory Group are listed inside the back cover.

The RCC extends its special appreciation to:Richard Cheng, BSc, CEng, Eur Ing, FIStructE, author of the retaining wall and basement wall spreadsheets, Peter Noble forconversions and checking, and to Andy Pullen for initial studies into compatibility of spreadsheet software. Also to the lateSami Khan for help with post-tensioning spreadsheets. Thanks also to Alan Tovey (Tecnicom) and Gillian Bond (Words &Pages) for editing, design and production.

This User Guide, Spreadsheets for concrete design to BS 8110: Part 1 and EC2 is available as:• A publication plus CD-ROM available from BCA Publication Sales• An Adobe Acrobat file UserGuid.pdf on the CD-ROM• A Word document UserGuid.doc (text only) also available on the CD-ROM

Cover: Extracts from spreadsheets; photograph of the in-situ concrete frame building, ECBP, Cardington (©BRE)

97.370First published 2000ISBN 0 7210 1545 X

Price group F

© British Cement Association 2000

All advice or information from the British Cement Association and/or Reinforced Concrete Council is intended for those who will evaluatethe significance and limitations of its contents and take responsibility for its use and application. No liability (including that for negligence)for any loss resulting from such advice or information is accepted by the BCA, RCC or their subcontractors, suppliers or advisors. Usersshould note that all BCA software and publications are subject to revision from time to time and should therefore ensure that they are inpossession of the latest version.

Published by the British Cement Association on behalf of theindustry sponsors of the Reinforced Concrete Council

British Cement AssociationCementCentury House, Telford AvenueCrowthorne, Berkshire RG45 6YSTelephone (01344) 762676Fax (01344) 761214www.bca.org.uk

F O R W O R D

A C K N O W L E D G E M E N T S

Page 3: User Guid

1

INTRODUCTION 2

GENERAL NOTES 3

Managing the spreadsheets 3Familiarisation 4Using the spreadsheets 11Assumptions made 14

SPREADSHEETS TO BS 8110 17

Elements RCC11 Element Design.xls 17RCC12 Bending and Axial Force.xls 24RCC13 Punching Shear.xls 26RCC14 Crack Width.xls 32

Analysis RCC21 Subframe Analysis.xls 34Slabs RCC31 One-way Solid Slabs (A & D).xls 37

RCC32 Ribbed Slabs (A & D).xls 42RCC33 Flat Slabs (A & D).xls 47

Beams RCC41 Continuous Beams (A & D).xls 53RCC42 Post-tensioned Slabs & Beams (A & D).xls 62

Columns RCC51 Column Load Take-down & Design.xls 83RCC52 Column Chart generation.xls 88RCC53 Column Design.xls 90

Walls RCC61 Basement Wall.xls 93RCC62 Retaining Wall.xls 99

Stairs RCC71 Stair Flight & Landing - Single.xls 105RCC72 Stairs & Landings - Multiple.xls 108

Foundations RCC81 Foundation Pads.xls 112Tabular versions RCC91 One-way Solid Slabs (Tables).xls 115

RCC92 Ribbed Slabs (Tables).xls 117RCC93 Flat Slabs (Tables).xls 122RCC94 Two-way Slabs (Tables).xls 129RCC95 Continuous Beams (Tables).xls 131

SPREADSHEETS TO EC2 (ENV 1992) 135

Eurocode 2 135Notes regarding EC2 135Familiarisation 136Elements RCCe11 Element design.xls 137Analysis RCCe21 Subframe analysis.xls 145Beams RCCe41 Continuous beams (A & D).xls 148

SUPPORTING FOLDERS 154

Admin Acrobat ® Reader, fonts, registration form and Readme.txt 154ByOthers Useful programs and spreadsheet templates by others 155UserGuid This publication in Word and Acrobat formats 156

REFERENCES AND FURTHER READING 158

SYMBOLS 159

C O N T E N T S

SPREADSHEETS FOR CONCRETE DESIGN TO BS 8110 and EC2

Notes: In the text of this publication, spreadsheets are often referred to by their initial reference number rather than the full names given above. (A & D) = Analysis and Design.

Page 4: User Guid

2

This publication has been produced under the ReinforcedConcrete Council’s project, ‘Spreadsheets for concrete designto BS 8110 and EC2’. It provides.

• A User Guide for the spreadsheets producedunder the above project

• Examples of current commercial reinforced concretedesign

• A consensus of current commercial reinforced concretedesign practice

• A consensus of opinion concerning reinforced concretedesign to EC2.

The spreadsheets are intended to follow normal designpractice and cater for the design of low- to medium-risemulti-storey concrete framed buildings.

Over a number of years, the Reinforced Concrete Councilhas developed spreadsheets to produce cost-optimised span/depth charts(1). It was recognised that the spreadsheets couldprove to be a very useful tool for all designers – equallyuseful to the single practitioner, larger organisations andeducational establishments. Thus in 1996 a project was setup to commit reinforced concrete design to computerspreadsheet files. The project was jointly funded by the RCCand the Department of the Environment, Transport and theRegions (DETR) under its Partners in Technology scheme. Itwas made possible by the support and contributions of timegiven by individual members of industry. The project wasmanaged by the Reinforced Concrete Council and guidedby an 80-strong Advisory Group of interested parties,including consulting engineers and software houses.

The spreadsheets were to be issued with publicationscovering their use, complete with model designs andcommentary. Two issues were originally envisaged: one toBS 8110: Part 1, 1997, Structural use of concrete(2), and oneto Eurocode 2, Design of concrete structures, Part 1(3). Owingto uncertainties with the final detailed content of EC2, thenumber of spreadsheets to the ENV has been curtailed.Nonetheless, it has been possible to maintain acomprehensive coverage and present the spreadsheets toEC2 with those to BS 8110 in this single-volume User Guide.

The design of concrete structures has been described as timeconsuming and costly. Computer programs are usedextensively but designers are often reluctant to rely on ‘blackbox’ technology over which they have little knowledge orcontrol. Computer spreadsheets, on the other hand, are user-friendly, completely transparent and very powerful, and arebecoming increasingly popular in all aspects of engineering.They have powerful graphical presentation facilities andestablished links with other software, notably wordprocessors. In structural engineering, they suit concretedesign ideally, in that they can carry out a series ofmathematical calculations and, as in design, can check

whether certain conditions are met. They are an idealmedium to deal with the intricacies of concrete design.

And this is where it is hoped the publication and spreadsheetswill help students and inexperienced engineers grasp anunderstanding of reinforced concrete design. For theexperienced engineer, spreadsheets allow the rapidproduction of clear and accurate design calculations. It ishoped that the spreadsheets will allow younger users tounderstand concrete design and help them to gainexperience by studying their own ‘what if’ scenarios. Theindividual user should be able to answer their own questionsby chasing through the cells to understand the logic used.Cells within each spreadsheet can be interrogated, formulaechecked and values traced.

In producing the spreadsheets several issues have had to beaddressed. Firstly, which spreadsheet package should beused? Excel appeared to hold about 70% of the marketamongst structural engineers and was thus adopted. Morespecifically, Excel ’97 was adopted as being de facto the mostwidely available spreadsheet in the field. To avoidcomplications, it was decided not to produce correspondingversions using other spreadsheet packages.

In trying to emulate current practice, a consensus of opinionwas sought and used on several design issues. For instance,with flat slabs, should deflection checks consider the wholebay width as opposed to checking column strips and middlestrips? Should retaining walls conform to BS 8002(4), 8007(5)

or CECP2(6). It is anticipated that through use and continuingdevelopment more standardised design methods willemerge. Students and young engineers may follow the‘model’ calculations presented in the spreadsheets to forman understanding of contemporary reinforced concretedesign.

The introduction of Eurocode 2 is inevitable. Students andboth inexperienced and experienced engineers will all needto grasp an understanding of design to this code. There aredifferences between EC2 and BS 8110. The spreadsheetsshould help with the transition. The introduction ofEurocode 2 will provide commercial opportunities for thosewho are prepared to use it.

It is believed that both novices and experienced users ofspreadsheets will be convinced that spreadsheets havea great potential for teaching BS 8110 and Eurocode 2,improving concrete design and, above all, improving theconcrete design and construction process.

I N T R O D U C T I O N

Page 5: User Guid

3

G E N E R A L N O T E S

Managing the spreadsheetsUseSpreadsheets can be a very powerful tool. Their use willbecome increasingly common in the preparation of designcalculations. They can save time, money and effort. Theyprovide the facility to optimise designs and they can helpinstill experience. However, these benefits have to beweighed against the risks associated with any endeavour.These risks must be recognised and managed. In other wordsappropriate levels of supervision and checking, including self-checking, must, as always, be exercised when using thesespreadsheets.

Advantages

For the experienced engineer, it is hoped that thespreadsheets will help in the rapid production of clear andaccurate design calculations for reinforced concreteelements. The contents are intended to be sufficient to allowthe design of low-rise multi-storey concrete framedbuildings.

Spreadsheets allow users to gain experience by studying theirown ‘what if’ scenarios. Should they have queries, individualusers should be able to answer their own questions bychasing through the cells to understand the logic used. Cellswithin each spreadsheet can be interrogated, formulaechecked and values traced. Macleod(7) suggested that, inunderstanding structural behaviour, doing calculations isprobably not a great advantage; being close to the resultsprobably is.

Engineers are often accused of having little idea of the costsof their designs. With spreadsheets, it is a very simple matterto multiply the quantities of reinforcement, concrete andformwork required by current rates to give an idea ofmaterial costs. By considering these costs along with timecosts, different forms of concrete construction can becompared quickly and sizes or depths of elements can besensibly optimised.

Other benefits include quicker and more accuratereinforcement estimates, and the possibilities for electronicdata interchange (EDI). Already, bending schedules in theform of ASCII files derived from spreadsheets are the basisof some EDI and the control of bar-bending machines.Standardised, or at least rationalised, designs will make thechecking process easier and quicker.

Appropriate use

In its deliberations(8) the Standing Committee on StructuralSafety (SCOSS) noted the increasingly widespread availabilityof computer programs and circumstances in which theirmisuse could lead to unsafe structures. These circumstancesinclude:

• People without adequate structural engineeringknowledge or training may carry out the structuralanalysis.

• There may be communication gaps between the designinitiator, the computer program developer and the user.

• A program may be used out of context.

• The checking process may not be sufficientlyfundamental.

• The limitations of the program may not be sufficientlyapparent to the user.

• For unusual structures, even experienced engineers maynot have the ability to spot weaknesses in programs foranalysis and detailing.

The committee’s report continued: “Spreadsheets are, inprinciple, no different from other software…” With regardto these spreadsheets and this publication, the RCC hopesto have addressed more specific concerns by demonstrating“clear evidence of adequate verification” by documentingthe principles, theory and algorithms used in thespreadsheets. The spreadsheets have also had the benefitof the Advisory Group’s overview and inputs. Inevitably,some unconscious assumptions, inconsistancies etc(9). willremain.

LiabilityA fundamental condition of use is that the user acceptsresponsibility for the input and output of the computer andhow it is used.

As with all software, users must be satisfied with the answersthese spreadsheets give and be confident in their use. Thesespreadsheets can never be fully validated but have beenthrough beta testing, both formally and informally, throughmembers of the Advisory Group. However, users must satisfythemselves that the uses to which the spreadsheets are putare appropriate.

The initial spreadsheets were put through what was termed‘idiot-proofing’ to try and guard against strange numbersbeing used. By its very nature, this exercise could not be all-encompassing. Future developments, such as adoption ofEuropean standards, might lead to use of concrete strengthsof 37 N/mm2 (fck = 30, fcu = 37) and other material propertiesstrange to UK eyes. Another example is reinforcementdiameters of 14 mm that are used overseas.

ControlUsers and managers should be aware that spreadsheets canbe changed and must address change control and versionsfor use. The flexibility and ease of use of spreadsheets, whichaccount for their widespread popularity, also facilitate ad-hoc and unstructured approaches to their subsequentdevelopment.

Page 6: User Guid

4

Quality Assurance procedures may dictate that spreadsheetsare treated as controlled documents and subject tocomparison and checks with previous methods prior toadoption. Users’ Quality Assurance schemes should addressthe issue of changes. The possibilities of introducing acompany’s own password to the spreadsheets and/orextending the Revision history contained within the sheetentitled Notes! might be considered.

Managers might also consider making their own versionsinto template files, i.e. a spreadsheet saved with an .xltextension instead of .xls. When the user opens one of thesefiles, a copy is opened with a numerically incremented filename, i.e. Test.xlt will open as Test1.xlt. When the user saves,the Save as dialog box opens instead of directly saving.

ApplicationThe spreadsheets have been developed with the goal ofproducing calculations to show compliance with codes.Whilst this is the primary goal, there is a school of thought(10)

that designers are primarily paid for producing specificationsand drawings which work on site and are approved by clientsand/or checking authorities. Producing calculations happensto be a secondary exercise, regarded by many experiencedengineers as a hurdle on the way to getting the projectapproved and completed. From a business process point ofview, the emphasis of the spreadsheets might, in future,change to establishing compliance once members, loads anddetails are known. Certainly this may be the preferredmethod of use by experienced engineers.

The spreadsheets have been developed with the ability forusers to input and use their own preferred materialproperties, bar sizes and spacings etc. However, userpreferences should recognise moves for efficiency throughstandardisation. Another long-term objective is automation.To this end, spreadsheet contents might in future bearranged so that input and output can be copied and pastedeasily by macros and/or linked by the end-user. There arecounter-arguments about users needing to be closer to thecalculations and results in order to ensure they are properlyconsidered – see Appropriate use above.

We emphasise that it is up to the user how he/she uses theoutput. The spreadsheets have been produced to cater forboth first-time users and the very experienced withoutputting the first-time user off. Nonetheless, their potentialapplications are innumerable.

SummaryWith spreadsheets, long-term advantage and savings comefrom repeated use but there are risks that need to bemanaged. Spreadsheets demand an initial investment in timeand effort – but the rewards are there for those who takeadvantage. Good design requires sound judgement basedon competence derived from adequate training andexperience – not just computer programs.

FamiliarisationOutline descriptionThere are many different ways to present structural concretecalculations. ‘Calcs’ should demonstrate compliance withrelevant design codes of practice, but different designerswant to investigate different criteria and want to set outcalculations in different ways. Spreadsheets cannot satisfyeveryone. The spreadsheets presented here have been setout to cover the criteria that may be deemed ‘usual’. It isincumbent on the user to judge whether these criteria arepertinent and sufficient for the actual case in hand. It is alsoincumbent on the user to ensure that the inputs are correctand that outputs are of the correct order of magnitude.

The spreadsheets are intended to follow normal designpractice and cater for the design of low- to medium-risemulti-storey concrete framed buildings. Each type of elementmay be designed in several different ways, e.g. horizontalframe elements may be designed using:

• Element design: design of simple elements to BS 8110:Part 1(2)

• ‘Tabular design’: design of elements based on momentand shears derived from BS 8110: Part 1 Tables 3.12 and3.5

• Analysis and design: design of elements based onmoments and shears from analysis, e.g. sub-frameanalysis, embodied within the spreadsheets.

Element design

The element design spreadsheets illustrate the basicprinciples of reinforced concrete design from input materialproperties, dimensions, moments, shears and axial loads, etc.They form the basis of element design used in succeedingspreadsheets. The moments, shears and axial loads usedshould be derived from separate analysis (e.g. handcalculations, sub-frame analysis spreadsheet or other analysispackage). For further explanation the user is referred to BS8110 or a number of standard reference works(11, 12, 13).

‘Tabular design’

The tabular design spreadsheets use Tables 3.12 and 3.5 fromBS 8110: Part 1 to automate the derivation of designmoments and shears. The use of these tables is, however,restricted. For slabs, BS 8110: Part 1, Clause 3.5.2.4, restrictsthe use of Table 3.12 to where:

• In a one-way slab, the area of a bay (one span x fullwidth) exceeds 30 m2

• The ratio of characteristic imposed loads, qk, tocharacteristic dead loads, gk does not exceed 1.25

• The characteristic imposed load, qk, does not exceed5 KN/m2, excluding partitions

• Additionally, for flat slabs, there are at least three rowsof panels of approximately equal span in the directionbeing considered.

G E N E R A L N O T E S

Page 7: User Guid

5

For beams, Clause 3.4.3, Table 3.5 is valid only where:

• Characteristic imposed loads, Qk, do not exceedcharacteristic dead loads, Gk

• Loads are substantially uniformly distributed over threeor more spans

• Variations in span length do not exceed 15% of thelongest span

If design parameters stray outside these limits, thespreadsheets should be used with caution.

Analysis and design

To provide for more general application, these versionscombine sub-frame analysis with design. Spreadsheets forone-way slabs, ribbed slabs, flat slabs and beams providepowerful design tools. Sub-frame analysis is used in the post-tensioned concrete design spreadsheet.

The flat slab spreadsheet is intended to be used one-directionat a time. The post-tensioned concrete design spreadsheetfollows Concrete Society TR43(14) and involves sub-frameanalysis at various limit states. The principles used areapplicable to both beams and slabs with either bonded orunbonded tendons. The examples of the retaining wall andbasement wall spreadsheets are based on common practice.

The sub-frame analysis spreadsheet, RCC21.xls, may of coursebe used alone (and the elements designed by other meanssuch as RCC11.xls).

Column design

Column design is presented in, essentially, two differentways; either an amount of reinforcement is determined or

the capacity of a section is checked – two valid designapproaches.

Under RCC11 Element Design.xls (or RCC11.xls for short),the amount of reinforcement is calculated (by iterating tofind the neutral axis depth in order to solve two simultaneousequations).

Under RCC52.xls for single axis bending and RCC53.xls fortwo axis bending, N-M interaction charts are derived frompresumed reinforcement arrangements. Individual load casesare checked against the capacity of the column with thevarious reinforcement arrangements.

RCC51.xls is set out so that the user may undertake atraditional column load take down, assess design momentsand critical axis before calculating the amount ofreinforcement required.

RCC12.xls determines the capacity of an unsymmetricalreinforced column (or beam).

Others

Other spreadsheets provide for the design of padfoundations catering for one or two columns, punchingshear, stairs (either as single flights and single landings orflights and landings as in a stair core), small retaining wallsand basement walls. More detail and further references aregiven within the spreadsheets themselves.

LayoutAs with all software, spreadsheets have their own jargon.The basic terminology for layout is shown on the followingscreen dump.

G E N E R A L N O T E S

Excel file name Cell reference Cell Drop down menu bar

Toolbars(use View/Toolbars toswitch on and off)

Formula bar

Scroll bar

Worksheet area

Sheet tabs

Toolbar

Other software

Typical spreadsheet layout

Page 8: User Guid

6

Each spreadsheet may contain several linked sheets (i.e.layers or pages) that deal with different aspects of design.The sheet’s name on the sheet tab as illustrated above givesan indication of the content. For the more involvedspreadsheets, individual sheets are devoted to a fullexplanation of the design (with references for educationaland validation purposes) or analysis, etc, and other sheetsgive an abridged version more in keeping with therequirements of experienced practising engineers. Furthersheets may contain analysis calculations, data for graphs andcalculation of reinforcement weight. All spreadsheets havea Notes! sheet where disclaimers, status and revision historiesrelating to each spreadsheet are incorporated (sheet namesare differentiated by the use of an appended exclamationmark).

Those sheets with names in capitals are intended for printingout as design calculations: it is these sheets that are printedout as examples in this guide. Other sheets are available to

view in the spreadsheets. These may need to be printed forchecking purposes and parts of them, such as simple designroutines, may be pasted into word-processed calculations(see Printing, page 14). Print-outs of [RCC41.xls]Weight!,Analysis!, Bar!, Graf!, and Notes!, and [RCC51.xls]Ltdcalcs!and Stiffs! shown at the end of their respective sections givetypical illustrations of these types of ‘workings’ pages.

The spreadsheets are intended to be as consistent as possible.Generally, upper sheets consist of calculations, notes andworkings as illustrated in the example below, which givesan indication of the contents of a typical spreadsheet. Thefirst sheet consists of input, followed by results of analysis,design, weight of reinforcement, analysis, detailed designwith references, graph data and finally a revision history.

Sheet tabs (from RCC 41.xls)

Typical spreadsheet (RCC41.xls)

MAIN!Main sheet

�?`^YTRb 3JL?;>MB??NM�NI�"3������2[XT]b !>PCMILS�'LIOJ�; RPbX^] $$��-;CH�<?;G�'LC>M�#�NI�( @LIG�ALC>���NI��

#/.4).5/53�"%!-��!H;FSMCM��$?MCAH��NI�"3�����������>`XVX]PbTS�U ^\�A22$!�f[a�^]�23�������������������������!(((�120�U^ �A22

�,/#!4)/. Bc__^`ba�U`^\�V`XS� ! b^�V`XS #

�-!4%2)!,3URc $ =�\\� W�PVV " \\

Ug[ $% =�\\� γs !� ÔUgd "Ô =�\\� γc !�Ô

�30!.3 ,��\� (��\\� <Q��\\� B@��\\� 4SJ? <@��\\�B?0=�!� '� Ô # !&Ô A # B?0=�"� %� Ô # !&Ô A # B?0=�#�B?0=�$�B?0=�Ô�B?0=�%�

�3500/243 !"/6%��\� (��\\� "��\\� %H>�#IH> "%,/7��\� (��\\�Bc__^`b�! #�Ô # # 5 $� # Bc__^`b�" #�Ô # # 5 Ô� # Bc__^`b�# #�Ô # # 5 $� # Bc__^`b�$Bc__^`b�ÔBc__^`b�%Bc__^`b�&

/0%2!4).'�).3425#4)/.3�%.4%2�$!4!�).�",5%�#%,,3�/.,9� � 3OJJILNM

�<PST�Qg �3PbT �BWTTb�=^ �2%$�-%33!'%3�).$)#!4%�%.429�%22/23�LGQ ��.IP��� �� �!$*534�2%$)342)"54)/.�/.�.%84�3(%%4

�2WTRZTS �ATdXaX ] �9^Q�=^ �!$*534�2%).&/2#%-%.4�/.�30!.3�3(%%4=BA � 2��

#/6%23��b �P[[�abTT[�C^_�R^dT` "Ô \\ �1b\�R^dT` $ \\ �BXST�R^dT` #Ô \\ �

�,/!$).'�0!44%2. Cg_T�,�C��;�^`�A�TRbP]Vc[P � 1U�\Pf %

GCH G;R � # !3403 ! !�$ � # !

8<?>B43 !�% � !2%"!2�,!9%2).' � !Bc__^`b�abTT[ � !X]�P[b�[PgT �. H � !

2P]�QT�:�]XUT���2�P]bX[TdT �� `�4�]RPab T��X]�[X]T�2�"��\\� %H>�#IH> 2P]�QT�5�XfTS�� `�?�X]]TS��X]�R [c\]a�5�9# ? � 4]S !# ? � 8]b !# ? � 4]S !

� � !� !� !

REINFORCED CONCRETE COUNCIL

?`X]b�BWTTb

?`X]b�0;;�>cb_cb

�,/!$).' D3;a��Z=�\�����?;a��Z=�����?^aXbX^]��\�$?;> )GJIM?> 0IMCNCIH ,I;>?> $?;>

3J;H�� ,I;> ,I;> @LIG�F?@N ,?HANB 3J;H�� ,I;>D3;� "�' " � lllll lllll D3;?;�!� lllll ?;�!?;�"� lllll ?;�"

?P b�D3;� ?P b�D3;3J;H�� 3J;H��

D3;� "Ô�' " � lllll lllll D3;?;�!� lllll ?;�!?;�"� lllll ?;�"

?P b�D3;� ?P b�D3;3J;H�� 3J;H��

D3;� lllll lllll D3;?;�!� lllll ?;�!?;�"� lllll ?;�"

?P b�D3;� ?P b�D3;

�,/!$).'�$)!'2!-

�2%!#4)/.3��Z=�3500/24� � � � � �

0;;�B?0=B�;>0343� "Ô%�% Ô"(�% !%&�$>33�B?0=B�;>0343� "Ô%�% $!#�# "(�(4E4=�B?0=B�;>0343� &'�! #%Ô�! !&!�(

2WP PRbT XabXR�3TPS ("�& " (�# Ô(�"2WP`PRbT XabXR�8\_^aTS &(�# !$&�' ÔÔ�%

)GJIM?> 0IMCNCIH ,I;>?> �

,I;> @LIG�F?@N ,?HANBlllll lllll �

lllll

lllll �

lllll lllll �

lllll �

lllll �

lllll lllll �

lllll �

lllll �

� �

�? `^ YTRb 3JL?;>MB??NM�NI�"3������2 [XT]b !>PCMILS�'LIOJ�;^RPbX^] $$��-;CH�<?;G�'LC>M�#�NI�(���@LIG�ALC>���NI��

#/.4).5/53�"%!-��!H;FSMCM��$?MCAH��NI�"3�����������>`XVX]PbTS�U ^\�A22$!�f[a�^]�23�������������������������!(((�120�U `�A22

�"%.$).'�-/-%.4�$)!'2!-3��Z=\�

� %F;MNC=�-IG?HNM � � 2?>CM

3500/24�.I� � � � � �4[PabXR�<� !(#�! $ !�& '%�" l l

ATSXab`XQcbTS�<� !Ô$�Ô "'!�" '%�" l l�Q� �' �& !� l l

ATSXab`XQcbX^]� " � � # � � � �

30!.�.I� � � � � �4[PabXR�<� "&%�Ô" !Ô"�&Ô l l l

ATSXab`XQcbTS�<� #"'�(& !$%�!" l l l�Q� !�!( �(Ô& l l l

�3(%!23��Z=�

�$ �# �" �!

! " # $ Ô

Ô ! !Ô�$ �# �" �!

! " # $

Ô

/0%2!4).'�).3425#4)/.3REINFORCED CONCRETE COUNCIL �%.4%2�$!4!�).�",5%�#%,,3�/.,9�

<PST�Qg 3PbT ?PVT �2%$�-%33!'%3�).$)#!4%�%.429�%22/23�LGQ ��.IP��� �� �!$*534�2%$)342)"54)/.��NB?H�'/4/�30!.3�MB??N

2WTRZTS ATdXaX^] 9 Q�=^=BA � 2��

27>>B4�A438BCA81DC8>=�;8<8CB��#�"�"�!� �,�5c[[�`TSXab`XQcbX^]�!�,�;X\Xb�P[b�a_P]�c_eP`S�`TSXab`XQcbX^]�b^���"�,�=^�a_P]�\^\T]b�`TSXab`XQcbX^]�!

;X\XbTS�a_P]�`TSXab`XQcbX^]�aT[TRbTS

MNLC<ON?>�%HP?FIJ? ��

� � �l Z=\�\ �l Z=\�\ �l l �

B4;42C�A438BCA81DC8>=���74A4�

� �lll

?`X]b�BWTTb

! !Ô

� % F;MNC=�3B?;LM � � 2?>

30!.�.I � �4[PabXR�E "Ô"�( # �# "Ô"�$ !' �$ l

ATSXab`XQcbTS�E "Ô%�% "''�# "$!�# !&!�( l

� � �4[PabXR�E l l l l l

ATSXab`XQcbTS�E l l l l l

� � � � �!,,�30!.3 0Q^dT ! '�# �#Ô�" �#%�

,/!$%$ 1T[^e &!�! �!'�Ô �"#�%/$$�30!.3 0Q^dT !!%�% �%Ô�! " �$

,/!$%$ 1T[^e &%�Ô �#$�" !�%%6%.�30!.3 0Q^dT #"�' !%�% �Ô"�

,/!$%$ 1T[^e "!�Ô '�& �#$�"

�#/,5-.�-/-%.43��Z=\�

�$

�#

�"

�!

!

"

#

Ô ! !Ô

�$

�#

�"

�!

!

"

#

Ô

>CMNLC<ON?>�3B?;LM �

l

l

l

l

� �

Ô ! !Ô

ACTIONSMain graphical output of Bending Moment

Diagrams, and shear force diagrams, butalso input for redistribution

G E N E R A L N O T E S

Page 9: User Guid

7

G E N E R A L N O T E S

Analysis!Workings of the sub-frame analysis carried outusing moment distribnution

�?` YTRb B_`TPSaWTTba�b �1B�'!! �;^RPbX ] 3�3)�<PX]�QTP\�6`XSa�2�b �7���U`^\�V`XS�!�b �#

2>=C8=D>DB�140<��0]P[gaXa���3TaXV]��b �1B�'!! )!((&�> XVX]PbTS�U \�A22$!�f[a�^]�23������������ �������������!(((�120�U `�A22

!.!,93)3-CH�FI;> !� f�STPS�[^PS,CP?�FI;> �$ f�STPS�[^PS�� !�% f�X\_ aTS�[ PS �CPQ[T�"�!�$CMNLC<ONCIH�&;=NILM

3504�� 3504��5J�=IF ,I�=IF 2 , 5J�=IF ,I�=IF

!�Q !Ô !Ô !�@ 8�<;L "Ô "Ô ) %&Ô %&Ô #!"Ô #!"Ô %&Ô %&Ô 3NC@@H?MM !("'Ô&!$# !"%Ô%"Ô #( %"Ô #( %"Ô !("'Ô&!$# ! !"Ô 3OG &! $$%$"�( !�4� (&;=NIL �"&!% �!&'" �ÔÔ ! �#"$ �!% � '$

3504�� 3504��, 5J�=IF ,I�=IF 2 , 5J�=IF ,I�=IF

!�Q !�@ 8�<;L �38E� � �38E� � �38E� �) �38E� � �38E� � �38E� � 3NC@@H?MM 3OG �4� �4� &;=NIL !� � � � !� � �

3504��, 5J�=IF ,I�=IF

!�Q 0;LNC;F�5$,�@;=NILM!�@ �8�<;L �38E� � ; ) �38E� � < 3NC@@H?MM 3OG �4�

&CR?>�%H>�-IG?HNM 30!.�� 30!.�� 30!.�� 30!-CH�FI;> , 2 , 2 , 2 ,#;HN '"�% $%$�$ � �

5$, !#&�% !#&�% &&�$ &&�$ � � �

0,�� � � � � �38E� � �38E� � �38E� �

0,�� � � � � �38E� � �38E� � �38E� �

J;LN�5$, � � � � �38E� � �38E� � �38E� �

&%- !#&�% !#&�% &&�$ &&�$ � � �

,CP?�FI;>#;HN !#Ô$�"$ &%!�&% � �

5$, ""Ô�&! ""Ô�&! !"%�(% !"%�(% � � �

0,�� � � � � �38E� � �38E� � �38E� �

0,�� � � � � �38E� � �38E� � �38E� �

J;LN�5$, � � � � �38E� � �38E� � �38E� �

&%- ""Ô�&! ""Ô�&! !"%�(% !"%�(% � � �

-IG?HN�$CMNLC<ONCIH(C#IF 3504�� ,I#IF (C#IF 3504�� ,I#IF

-CH�FI;> �!#&�% !#&�% �&&�$

#&�#& &Ô�& "$�Ô# �(�%# �!(�Ô! �"%� ! �Ô� %

�(�&Ô #&�'Ô �"#�((

"�%Ô Ô�#& !�&$ �"�"" �$�$( �Ô�(( �!�!%

�"�"Ô "�%' $� #

�%! !�"$ �$ �!� & �"�!' �"�( � �Ô%

�!� ( �%" �(#

�# �% �!( � �"Ô � �Ô � �%& � �!#

� �"Ô �# �$Ô

� & �!$ � $ � �!" � �"$ � �#" � � %

� �!" � & �!

� # � & � " � � # � � % � � & � � !

� � # � # � Ô

� ! � " � � � ! � � # � � $ � � !

3OG $!� $ �%&�(& "%�(# �!#�## !Ô"�!Ô �!#!�'# �&�

�?` YTRb B_ TPSaWTTba�b �1B�'!! �;^RPbX ] 3�3)�<PX]�QTP\�6 XSa�2�b �7���U`^\�V XS�!�b �#

2>=C8=D>DB�140<��0]P[gaXa���3TaXV]��b �1B�'!! )!((&�> XVX]PbTS�U \�A22$!�f[a�^]�23������������ �������������!(((�120�U `�A22

,CP?�IH �""Ô�&! ""Ô�&!

/>>�3J;HM %!�# !"$�!& $ �"# �#%�!! �&#�!# �(&�Ô! �!'�(%

�#%�Ô& %"� ( �

(�(# " �!" %�Ô" �(�(# �" �!" �"%�'" �Ô�"!

�! � % ! � % !Ô�!!

"�&# Ô�Ô# !�&( �$� # �'�!% �! �'& �"�!!

�$� ' "�&& $�!%

!�!! "�"$ �&# �!�!! �"�"$ �"�(( � �Ô'

�!�!" !�!" !�%(

!.!,93)3�))

� �

� � � � � � �

�$'�&% � � �

!!�!( # �"" � &�#$ � � �

�!#�$! � � �

#� ' '�#! � "� " � � �

�Ô�$$ � � �

!�"Ô #�#& � �'" � � �

�!�Ô � � �

!.�� 30!.�� 30!.��2 , 2 , 2

� �

� � � � �

�38E� � �38E� � �38E� � �38E� � �38E� �

�38E� � �38E� � �38E� � �38E� � �38E� �

�38E� � �38E� � �38E� � �38E� � �38E� �

� � � � �

� �

� � � � �

�38E� � �38E� � �38E� � �38E� � �38E� �

�38E� � �38E� � �38E� � �38E� � �38E� �

�38E� � �38E� � �38E� � �38E� � �38E� �

� � � � �

(C#IF 3504�� ,I#IF (C#IF 3504��&&�$ � � �

�!&�&& �$&�(' � �!!�%% � � �

�!#� � � �

"�(' '� % � !�(% � � �

�"�(( � � �

�%( !�'% � �$Ô � � �

�!�$Ô � � �

�## �( � �"" � � �

� �## � � �

� ' �"! � � Ô � � �

� �!% � � �

� $ �! � � " � � �

� � $ � � �

� ! � " � � ! � � �

�!#�%$ ""�Ô( � �'�(Ô � � �

!.!,93)3�)

3504��2 , 5J�=IF ,I�=IF 2

! ! 38

! ! & & 38 ' ' !( ' &! ( !

'4 ' �$#" �%!(( �""(Ô �!Ô % �

3504��2 , 5J�=IF ,I�=IF 2

38 38 38 38 38 38

4 � !� � � �

� � � � � �38E� � �38E� � �38E� � �38E� �

�38E� � �38E� � �38E� � �38E� �

<PST�Qg��`\e����9 Q�= ��A%'�3PbT #�= d�((

(C#IF 3504�� ,I#IF (C#IF 3504�� ,I#IF (C#IF 3504�� ,I#IF � � � � �

� � � � � � � � � � �

� � � � �

� � � � � � � � � � �

� � � � �

� � � � � � � � � � �

� � � � �

� � � � � � � � � � �

� � � � �

� � � � � � � � � � �

� � � � �

� � � � � � � � � � �

� � � � �

� � � � � � � � � � �

� � � � � � � � � � �

<PST�Qg��`\e����9 Q�= ��A%'�3PbT

� �

� � � � � � � � � � �

� � � � �

� � � � � � � � � � �

� � � � �

� � � � � � � � � � �

� � � � �

� � � � � � � � � � �

� � � � �

#�= d�((

BAR!Showing design of reinforcement with

reference to code requirements. Spans 3, 4, 5and 6 follow on from 1 and 2

?` YTRb���[ RPbX ] B_`TPSaWTTba�b �1B�'!! �)�3�3)�<PX]�QTP\�6`XSa�2�b �7�)�U ^\�V`XS�!�b^2>=C8=D>DB�140<��0]P[gaXa���3TaXV]��b �1B�'!! )!((&���>`XVX]PbTS�U \�A22$!�f[a� ]�23�������������������������!(((�120�U `�A

B_P] '� �\ W Ô C _�R dT #&2 QTP\ Qe # 1b\�R dT Ô"

WU !&Ô BXST�R dT $&

�-!).�34%%, ,%&4 ���, 30!.<�2; Z=\ !Ô$�Ô<�UPRT Z=\ !!%�& % �( #"(�

�Q �' �& !�!( S \\ $##� $ÔÔ� $#"� QU \\ # � # � # � :� �!#" �! $ �!Ô%

FTQ�< Ta Z=\ "(&� "Ô(�$ #$'�(5[P]VT�< Ta Z=\ lll lll #"#�!

: � Ô" � "$ �!$&h \\ $ %�$ $#"�# #$#�#f \\ Ô(�! Ô �% !(&�"S� \\ ($� %'� $Ô�

]Tb�UaR =�\\� � � $" �"4fRTaa�< Z=\ � � � 0a��`TÓ \\�

Uab =�\\� $#'�! $#'�! $#'�!0a�`TÓ \\� %Ô% #"! "!''Qe�Q lll lll !� <X]�� � �!#� �!#� �!#�<X]�0a \\� !(Ô !(Ô !(Ô

�$%&,%#4)/.Ua =�\\� "%%�& "##�&

1PaT�`PbX^ "%� CT]a�< S �'2^\_�< S !�!?T \�;�S "$�!0RbcP[�;�S IE !'�Ô

= �! # #, \\� ($" "$!#

= �" IE IE 0a�_` d \\� ($" "$!#

,�� � IE �&"% IE !�'%"2[TP �SXab \\ &#� ÔÔ�

<X]�B \\ IE "Ô� IE #"� <Pf�B \\ IE !&%�" IE " !�!

�#/-02%33)/.�34%%,ATÓcX TS \\� &"$ #"#

��! \\ IE " IE !%��" \\

<Pf�=^�[PgT` $ Ô= �! # ", ($" $ "

= �" IE IE 0a��_` d \\� ($" $ "

,�� � IE �&"% IE �#! 2[TP �SXab \\ &#� !&$�

<X]�B \\ IE "Ô� IE "Ô� �3(%!2

E�Pb�R[ Z= "Ô%�%E�Pb�S Z= "!%�(

d =�\\� !�%& dR =�\\� �Ô"& .IGCH;F

�d�dR�Qd =�\\ #$"�' !" � ;X]Z�� \\ IE !" IE !";TVa IE " IE "/ \\ !Ô& #"$

0SYcab�b^ \\ !Ô # U^ ��D3;�^][g� \\ !((( lllU^`��eXbW�?;� \\ !((( lll0SYcab�b^ \\ !(Ô lll0a�3Xab \\ IE (#� IE '&� 0a��3Xab \\ IE &#� IE �

#

"$!#

IE

"$!#

IE !�(#'

ÔÔ� QTbeTT]�QP aIE #"� #�!"�!!�!IE !% �! CPQ[T�#�"'

' CPQ[T�#�"ÔIE "Ô

$

"

('"

IE

('"

IE �&'( �!Ô%� QTbeTT]�QP a

IE "Ô� #�!"�!!�!

"''�#

"$(�' #�$�Ô�!

"� & 4Ó]�# �&#! CPQ[T�#�'#'"�% CPQ[T�#�&

IE !" #�!"�&�!IE "

!$! #�!"�&�!!"Ô

"!%Ô U` \�R[ �=�0

�=�0 ��,�� �

"!"Ô U` \�UPRTIE '&� #�$�Ô�ÔIE � #�!"�&�"

�#��� 30!. �

�A22

\\�b^�\PX]�abTT[ 9 Q�=^ A%'\\�b^�\PX]�abTT[ Qg `\e\\�b^�\PX]�abTT[ 3PbT #�= d�((

2)'(4 1B'!! �ATU"'!�""Ô �" �& $!Ô� # � #�$�!�Ô �! $ 5XV�#�#"!Ô�' 5XV�#�#lll 5XV�#�# �!"! #�$�$�$#Ô(�$ #�$�$�$!"#�Ô #�$�$�$(%�Ô!#Ô�# 5XV�#�##$�Ô' $#'�! 5XV�#�#!%!&lll �!#� CPQ[T�#�"Ô!(Ô

"(#�& 4Ó]�'! � #�$�%�#�$ �' CPQ[T�#�! !�" CPQ[T�#�!!('�% #�$�%�#

IE � #�$�Ô�!

?`X]b�BWTTb

Weight!Calculation of reinforcement

�?`^YTRb 3JL?;>MB??NM�NI�"3����� REINFORCE

�2[XT]b !>PCMILS�'LIOJ <PST�Qg�;^RPbX ] $$��-;CH�<?;G�'LC>M�#�NI�(���@LIG�ALC>���NI�� LGQ

#/.4).5/53�"%!-��!H;FSMCM��$?MCAH��NI�"3����������� 2WTRZTS>`XVX]PbTS�U`^\�A22$!�f[a�^]�23���� �� �� ��� �� ��� �� ��� ����!(((�120�U `�A22 =BA

�!002/8)-!4%�7%)'(4�I@�2%).&/2#%-%.4,I=;NCIH .I 4SJ? $C; ,?HANB�4/0�34%%, Bc__^`b�! # C " "(Ô

B_P]�! " C !% $&&Ô

Bc__^`b�" # C #" $"

B_P]�" " C "Ô Ô%Ô

Bc__^`b�# " C !% """Ô

�"/44/-�34%%, Bc__^`b�! # C " !!

B_P]�! # C #" &%Ô

Bc__^`b�" " C "Ô "'

B_P]�" " C "Ô Ô%Ô

,).+3 B_P]�! $# A !" !$

B_P]�" "" A !" !$

35--!29 a_PRT a�]^b�X]R[cSTS C bP[�`TX]U^`R

ATX]U^`RT\T]

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �''' Ô#�$ � � �''' "&�# � � � � � � � � � � � � � � � � � �

RT\T]b�X]�QPg��ZV� $&!

]b�ST]aXbg��ZV�\�� "!� /H�ALIMM�PIFOG?

ED CONCRETE COUNCIL

3PbT ?PVT��.IP��� ��

ATdXaX^] 9^Q�=^� 2��

5HCN�QN 7?CABN"�$%% "!�' � � !�Ô&' !Ô�! � � %�#!# &(�Ô � � #�'Ô# $#�Ô � � !�Ô&' &� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � "�$%% '�! � � %�#!# !$$�( � � #�'Ô# "!�% � � #�'Ô# $#�Ô

?`X]b�BWTTb 2 3 25 44

spans Laps 30 40

35 38

40 35

351 0 100 0 100

Bobs 20 110 10 11025 180 12 140

2950 Lap x 32 230 16 1801810 Hooks 40 280 20 2204768 1.4 50 350 25 3504768420028005650 2565022101410-200 1.4-2006060-50 1.4-506060-50 1.4-506060-50 1.4-506060

1095 1385 1765076502800 1.4 1 1400 1515

350 1 1 175 210

5650-200-20085 1 3 25 60

85 1 3 25 60

-50-5085 1 4 25 60

85 1 4 25 60

-50-5085 1 5 25 60

85 1 5 25 60

-50-5085 185 1

1378 14 11 18611 0 0 01378 8 9 5611 0 0 0-334 #VALUE! ###### #VALUE!119 #VALUE! ###### #VALUE!-350 #VALUE! ###### #VALUE!115 #VALUE! ###### #VALUE!-350 #VALUE! ###### #VALUE!115 #VALUE! ###### #VALUE!-350 #VALUE! ###### #VALUE!115 #VALUE! ###### #VALUE!

1245000000 945000000 0 0 0 0

Volume 2.19 m3

SPANS!Design for sections of each span. Spans 3, 4, 5and 6 follow on; extraneous spans blanked out.Input of bar size and link size required

�?`^YTRb 3JL?;>MB??NM�NI�"3����� REINFO

�2[XT]b !>PCMILS�'LIOJ <PST�Qg�;^RPbX ] $$��-;CH�<?;G�'LC>M�#�NI�(���@LIG�ALC>���NI�� LG

#/.4).5/53�"%!-��!H;FSMCM��$?MCAH��NI�"3����������� 2WTRZTS> XVX]PbTS� U ^\�A22$!�f[a�^]�23�� �� �� ��� �� �� �� �� �� �� ����!(((�120� U ` �A22 =B

�30!.�� ,%&4 #%.42%!#4)/.3 < Z=\ !!%�& #"(�

�Q �' !�!($%3)'. S \\ $##� $#"�

0a \\� %Ô% "!''0a� \\�

4/0�34%%, ;PgT`�! � 4 �� � 4 ��;PgT`�"0a�_`^d \\� ($" 0a��_ ^d $ "

"4-�34%%, ;PgT`�! � 4 �� � 4 ��;PgT`�"0a��_`^d \\� ($" 0a�_`^d "$!#

$%&,%#4)/. ;�S !'�Ô!( 0[[ eTS "$�!$( �3(%!2 E Z= "!%�( ,CHE��

d =�\\� !�%& !"dR =�\\� �Ô"& .IGCH;F

,).+3 2���������@IL����� 2��������[TVa =^ " "

#(%#+3 ��0a IE IE

2^dT` IE IE

\X]�B IE IE

\Pf�B IE IE

;X]Za<PX]�QP`a

\Pf�E IE

3TU[TRbX ] IE

IE

IE

IE

IE

/0%2!4).'�).3425#4)/.3ORCED CONCRETE COUNCIL �%.4%2�$!4!�).�",5%�#%,,3�/.,9�

3PbT ?PVT �2%$�-%33!'%3�).$)#!4%�%.429�%22/23�GQ ��.IP��� �� �!$*534�2%"!2�5.4),�#(%#+3�!4�"/44/-�!2%�/+�

ATdXaX^] 9^Q�=^BA � 2��

2)'(4"Ô �" �& $!Ô� !%!&'

� 4 �� �

0a�_ ^d "$!#� 4 �� �

0a��_ ^d ('"

"$(�'"� & �&#!

2���������@IL�����"

IE

IE

IE

IE

IE

IE

IE

?`X]b�BWTTb

�0a�T]WP]RTS�Qg� !" 2

0a !"� ! !% spans

�b^_ !%� ! " � " � ! "Ô�/� "Ô� ! #"!% #"� ! $ R

�30!.�� ,%&4 #%.42%!#4)/.3 < Z=\ "%"�' !$%�!

�Q �'! �(%$%3)'. S \\ $!Ô� $#Ô�Ô

0a \\� !&$" '# 0a� \\�

4/0�34%%, ;PgT`�! � 4 �� � 4 ��;PgT`�"0a�_`^d \\� "$!# 0a��_ ^d ('"

"4-�34%%, ;PgT`�! � 4 �� � 4 ��;PgT`�"0a��_`^d \\� ('" 0a�_`^d ('"

$%&,%#4)/. ;�S !#�&&& 0[[ eTS #"�% ' �3(%!2 E Z= " "�' ,CHE��

d =�\\� !�%"( !"dR =�\\� �&#! .IGCH;F

,).+3 2���������@IL����� 2��������[TVa = " "

#(%#+3 ��0a IE IE

2^dT` IE IE

\X]�B IE IE

\Pf�B IE IE

;X]Za IE IE

2)'(4 �

%!�"!� $#(� ##Ô

� 4 �� �

0a�_ ^d $ "� 4 �� �

0a��_ ^d $ "

!#!�&!� �#(Ô

2���������@IL�����"

IE

IE

IE

IE

IE

Page 10: User Guid

8

Typical screen layoutsUpper sheets

The calculations are intended to mimic hand-writtencalculations as far as possible with a little more explanationby way of references to codes and derivation of numbersthan would usually be the case in normal submissions. Sheetsintended for printing out are divided into three sections,calculations, operating instructions and workings. Theoutput is intended to be sufficient to allow detailing,although the designer should always consider and allow forrationalising reinforcement both within and betweenelements. The example below is from RCC11.xls. In this case,the sheet designs solid slabs from moments, shears, materialdata etc that are input by the user. Input cells are in blueand are underlined (so they can be recognised in black andwhite versions).

The cells under Operating Instructions contain help and errormessages that are intended to help the user with the correctoperation of the spreadsheet. They also contain variously

checks, print boxes and combo-boxes. Box markers indicatewhere checks have been carried out and have provedsatisfactory. Print buttons (buttons with macros assigned tothem) automatically print out the calculation sheets providedthat macros have not been switched off. Combo-boxes allowchoices between specified options.

To the right hand side of many spreadsheets are intermediatecalculations, data for graphs, etc. These ‘workings’ are notconsidered vital to understanding the calculation: they maynonetheless be viewed and investigated. ‘Workings’ may alsobe contained on supplementary sheets.

Notes!Disclaimers, status and

revision history ofspreadsheet

3XaR[PX\T`

BbPbca�^U�a_`TPSaWTTb

?cQ[XR�`T[TPaT�dT`aX^]�

ATdXaX^]�WXab^`g��A22$!�2^]bX]c^ca�1TP\a��0���3�

$;N? 6?LMCIH !=NCIH 3CT?��E"�

#�0cV�(( A22$!�d!� 5X`ab�_cQ[XR�`T[TPaT��

�8]R[cSTa�β�dT`aX^]�R^\\T]ba�! "(

0[[ PSdXRT ^` X]U^`\PbX^] U`^\ bWT 1`XbXaW 2T\T]b 0aa^RXPbX^] P]S�^` ATX]U^`RTS 2^]R`TbT 2^c]RX[ Xa

X]bT]STS U^` bW^aT eW^ eX[[ TdP[cPbT bWT aXV]XUXRP]RT P]S [X\XbPbX^]a ^U Xba R^]bT]ba P]S bPZT

`Ta_^]aXQX[Xbg U^` Xba caT P]S P__[XRPbX^]� =^ [XPQX[Xbg �X]R[cSX]V bWPb U^` ]TV[XVT]RT� U^` P]g [^aa `Tac[bX]V

U`^\ acRW PSdXRT ^` X]U^`\PbX^] Xa PRRT_bTS Qg bWT 120� A22 ^` bWTX` acQR^]b`PRb^`a� ac__[XT`a ^`

PSdXa^`a� DaT`a aW^c[S ]^bT bWPb P[[ 120 a^UbeP`T P]S _cQ[XRPbX^]a P`T acQYTRb b^ `TdXaX^] U`^\ bX\T b^

bX\T�P]S�aW^c[S�bWT`TU^`T�T]ac`T�bWPb�bWTg�P`T�X]�_^aaTaaX^]�^U�bWT�[PbTab�dT`aX^]�

CWXa a_`TPSaWTTb aW^c[S QT caTS X] R^\_[XP]RT eXbW bWT PRR^\_P]gX]V _cQ[XRPbX^] �B_`TPSaWTTba U^`

R^]R`TbT STaXV] b^ 1B '!! � 42"� PdPX[PQ[T U`^\ 1`XbXaW 2T\T]b 0aa^RXPbX^]� CT[U^`S 0dT]cT� 2`^ebW^`]T�

1T`ZaWX`T�A6$�%HB��

Graf!Data for graphs in charts

�? YTRb B_ TPSaWTTba�b �1B�'!! �; RPbX^] 3�3)�<PX]�QTP\�6 XSa�2�b �7���U` \�V XS�!�b �#

2>=C8=D>DB�140<��0]P[gaXa���3TaXV]��b �1B�'!! )!((&�> XVX]PbTS�U` \�A22$!�f[a� ]�23�������������������������!(((�120�U^ �A22

,/!$).'�$)!'2!- !$�#(140< !$

BD??>ACB ' ' !$ !$ !$

�Ô&�% Ô �#' �&" Ô �#' �Ô&�Ô' Ô �#' �!$�$3�D3; ' ' ' !$ !$ !$ !$ !$

"Ô�' "Ô�' "Ô�' "Ô�' ;�D3; "Ô�' $Ô�' $Ô�' "Ô�' $Ô�' $Ô�' "Ô�' 3�?D3; ' ' ' '

$Ô�' $Ô�' $Ô�' $Ô�' $Ô�' $Ô�' $Ô�' $Ô�';�?D3; $Ô�' $Ô�' $Ô�' $Ô�' $Ô�' $Ô�' $Ô�' $Ô�'?;�! ' ' !$ !$ !$

$Ô�' $Ô�' $Ô�' $Ô�' $Ô�' $Ô�' $Ô�' $Ô�'

?;�" ' ' !$ !$ !$$Ô�' $Ô�' $Ô�' $Ô�' $Ô�' $Ô�' $Ô�' $Ô�'

-/-%.4�$)!'2!-330!.��

8 �$ �' !�" !�% " "�$ "�' #�"-�?��;FF !&(�Ô '&� # Ô�$(& �%Ô�! �!"Ô �!&#�& �"!" �"#( �"ÔÔ-�?��I>> !(#�! (&�#Ô !"�Ô# �%!�$ �!"$ �!&%�% �"!' �"$' �"%'-�?��?P?H Ô$�#$ ""�%# �$�(Ô �"'�$ �$&�& �%"�(" �&$ �' �( �'#�'"?;G -�L��;FF !Ô$�Ô Ô&�"% �"( �! $ �!%( �"""�% �"%Ô �"(& �#!'-�L��I>> !Ô$�Ô Ô&�"% �"( �! $ �!%( �"""�% �"%Ô �"(& �#!'-�L��?P?H %Ô�"! #%� # ! �(& �(�(% �"%�' �#(�$$ �$' �Ô"�$ �Ô"�&����G;R !#Ô�" %'�!Ô '�&%' �!(�( �##�$ �$$� Ô �Ô!�' �Ô%�& �Ô'�%����GCH #'� $ !Ô�'$ �#�$% �$Ô�% �'&�$ �!"#�% �!Ô" �!&$ �!'&

,IQ?L�<IOH> �"( �! $ �!%( �"""�% �"%Ô �"(& �#!'

5JJ?L�<IOH> !Ô$�Ô %'�!Ô ! �(&

"?;G

,� $ $ �' $ $ $ $ $ $

30!.��,I=;F�8 �# �% �( !�" !�Ô !�' "�! "�$

8 ' '�# '�% '�( (�" (�Ô (�' ! �! ! �$

-�?��;FF #$'�! "&Ô�$ " '�( !$'�Ô ($�!( $%� Ô $� $ �#!�' �%!�%

-�?��I>> "Ô �! "!Ô�# !'"�( !Ô"�' !"Ô ((�Ô! &%�#Ô ÔÔ�Ô" #&� !

-�?��?P?H ""(�' !%$�$ ! Ô�! Ô!�(! $�''" �#%� " �& �' �((�$ �!""

"?;G

-�L��;FF "'!�" "!!�( !$'�& (!�%$ $ �&! �$� '% �$"�' �&�# �! "

-�L��I>> "'!�" "$$�( "! �( !&(�" !$(�( !""�' ('�!# &Ô�&Ô ÔÔ�%'

-�L��?P?H "'!�" "!#�" !Ô!�$ (Ô�%" $%� " "�ÔÔ$ �#$�' �%% �(!�!

����G;R "$#�% !("�' !$%�" ! %�( '&�$( %(�%% Ô#�$Ô #'�'& "Ô�(!

����GCH !% �' !!Ô�! &#�ÔÔ #%�#$ #�$!& �"Ô�"! �$(�Ô �%(�% �'Ô�#

,IQ?L�<IOH> �"Ô�"! �$(�Ô �&Ô�# �! "

5JJ?L�<IOH> "'!�" "$$�( "! �( !&(�" !$(�( !""�' ('�!# &Ô�&Ô ÔÔ�%'

"?;G

,� # # # # # # !�' # #

30!.��,I=;F�8

8 !$ !$ !$ !$ !$ !$ !$ !$ !$

-�?��;FF

-�?��I>>

-�?��?P?H

"?;G

-�L��;FF

-�L��I>>

-�L��?P?H

����G;R

����GCH

,IQ?L�<IOH>

5JJ?L�<IOH>

"?;G

,�

�? YTRb B_ TPSaWTTba�b �1B�'!! �; RPbX^] 3�3)�<PX]�QTP\�6 XSa�2�b �7���U` \�V XS�!�b �#

2>=C8=D>DB�140<��0]P[gaXa���3TaXV]��b �1B�'!! )!((&�> XVX]PbTS�U` \�A22$!�f[a� ]�23�������������������������!(((�120�U^ �A22

30!.��,I=;F�8

8 !$ !$ !$ !$ !$ !$ !$ !$ !$

-�?��;FF

-�?��I>>

-�?��?P?H

"?;G

-�L��;FF

-�L��I>>

-�L��?P?H

����G;R

����GCH

'2!0(�$!4!�))

!$ !$ !$ !$ !$ !$ !$ !$ !$ !$ !$ !$

�#"' �#"& �#!Ô �"(# �"Ô( �"!Ô �!Ô( �("�( �!Ô�&

&�&&% #"�"Ô % �'% (#�Ô( !# �Ô !&!�$ "!%�% "'!�"

$ % ' ' ' ' ' ' %�' ' ' '

"�& # #�# #�% #�( $�" $�Ô $�' Ô�! Ô�$ Ô�& %

! �& !! !!�# !!�% !!�( !"�" !"�Ô !"�' !#�! !#�$ !#�& !$

�'Ô�" �! # �!!$ �!!( �!!' �!!! �('�" �&'�( �Ô#�$ �"!�( !Ô�'" Ô(�%$

" �'# %�(%$ �$�Ô' �!#�' �" �& �"Ô�# �"&�Ô �"&�Ô �"Ô�! �" �$ �!#�# �#�(&

�!#' �!$( �!Ô# �!Ô! �!$" �!"' �! ' �'!�# �$'�% �(�' #Ô�!$ '%�"

�!"" �!#% �!$$ �!$% �!$" �!#! �!!Ô �("�" �%#�Ô �"'�% !"�$' Ô(�%$

#&�($ ""�Ô" (�$"! �!�#% �(�'! �!Ô�( �!(�' �"!�" �" �$ �!&�# �!!�' �#�(&

�!! �!"# �!# �!# �!"$ �!!# �(Ô �&! �$ �( �$�%Ô #&�&! '%�"

!$�Ô' $�'&$ �#�"! �(�%% �!$�Ô �!&�& �!(�# �!(�" �!&�% �%�'% "$�% % �#$

�(%�' �! $ �! & �! Ô �((�& �'(�' �&Ô�Ô �Ô%�( �#&�$ �!Ô�# �(�## �"�&'

�!"" �!#% �!$$ �!$% �!$" �!#! �!!Ô �("�" �%#�Ô �"'�% �!!�' �#�(&

#&�($ ""�Ô" (�$"! #&�&! '%�"

# #�% % % % % % % % Ô�$ % %

!$ !$ !$ !$ !$ !$ !$ !$ !$ !$ !$ !$

'2!0(�$!4!�)

!$ !$ !$ !$ !$ !$ !$

�!$�$

!$ !$ !$ !$ !$ !$ !$ !$ !$

!$ !$ !$ !$ !$ !$ !$ !$ !$ !$ !$

!$ !$ !$ !$ !$

!$ !$ !$ !$ !$

#�% $ $�$ $�' Ô�" Ô�% % %�$ %�' &�" &�% '

�"% �"Ô$ �"#' �"! �!&" �!"# �%"�% '�Ô ! ( �$% !'#�# "'&�! $ !�&

�"&% �"&$ �"% �"#% �" ! �!ÔÔ �('�$ �# �% $'� $ !#&�% "#'�! #$(�$

�'"�$ �&& �%&�$ �Ô#�& �#Ô�( �!#�( !"�!$ $"�#Ô &%�%( !!Ô�" !Ô&�& " $�Ô

�#"' �#"& �#!Ô �"(# �"Ô( �"!Ô �!Ô( �("�( �!Ô�& &"�#Ô !&!�# "'!�"

�#"' �#"& �#!Ô �"(# �"Ô( �"!Ô �!Ô( �("�( �!Ô�& &"�#Ô !&!�# "'!�"

�$'�( �$ �( �"'�' �!"�% &�&&% #"�"Ô % �'% (#�Ô( !# �Ô !&!�$ "!%�% "%Ô�'

�Ô&�& �Ô#�( �$&�" �#&�% �"Ô�! �(�&% '�$(% "(�%$ %#�#" !"'�# " ! "'!�"

�!(# �!(" �!'" �!%Ô �!$! �! ( �%'�( �"!�$ ##�%" ' �%! !! �$ !$#�!

<PST�Qg��`\e����9 Q�= ��A%'�3PbT

!$ !$ !$ !$ !$

Pb�R [�UPRT �!Ô &�'Ô!$#�Ô #Ô&�Ô!ÔÔ�( # %�$$!�(& !'%�Ô !!%�& "#'�&!!%�& "#'�&Ô#�&' "$%�(! (�! "Ô �""(�#' !# �Ô

#�= d�((

"(�#' !# �Ô

!!%�& "Ô �"

�!Ô Ô�'Ô

#!! #%�(%

"#"�$ �'�($

!(%�# Ô(�(

"$Ô�' #Ô�"(

"%"�' �'�!%

"$%�$ %!�!(

"!&�& $!�(#

!#&�$ �%�"%

!#&�$ �'�!%

"%"�' %!�!(

�!Ô

<PST�Qg��`\e����9 Q�= ��A%'�3PbT

#�= d�((

G E N E R A L N O T E S

Page 11: User Guid

9

G E N E R A L N O T E S

CalculationsThis is the area that will printout using the automatedprint button

Operating instructionsGives messages, options, helpmessages, etc. pertinent to thedesign

WorkingsMay not be intelligible to the layman withoutlooking at the workings of the cells. Workingscan be extensive and whole sheets may bedevoted to them.

Spreadsheet file name Contents of cells can beedited or investigated

Excel toolbar menus

Sheet tab(Spreadsheetname)

Combo-box used forautomated choices

Concurrent softwarebeing usedGenerally references to

BS 8110 etc

Results in bold Input cells are in blue andare underlined (so theycan be recognised inblack and white versions)

Typical screen layout

Page 12: User Guid

10

Other sheets

These sheets are not necessarily intended for printing outand may not be understandable without reference to theprinted calculations. For instance, in the case shownimediately below (from [RCC52.xls]Calcs!) the N-Mrelationship for 32 mm diameter bars in this particularcolumn is being calculated for increments of neutral axisdepth. Many iterations are required in order to constructthe N-M graph. There are therefore many calculations andthese are set out in tables. The volume of calculations makesit difficult to produce legible print-outs on a limited numberof sheets.

Notes!

The Notes! sheet illustrated at the bottom of the page showsthe disclaimer, status and revision history of eachspreadsheet. The disclaimer and status should be read andunderstood. The revision history provides a record of thespreadsheet being used and may provide a basis for users’QA procedures. The revision/version and name of thespreadsheet shoud appear on all print-outs. This example istaken from [RCC52.xls]Notes!

3XaR[PX\T`

BbPbca�^U�a_`TPSaWTTb

?cQ[XR�`T[TPaT�dT`aX^]�

ATdXaX^]�WXab^`g��A22Ô"�2^[c\]�2WP`b�VT]T`PbX^]

$;N? 6?LMCIH !=NCIH 3CT?��E"�

%�0cV�(( A22Ô"d!� 5X`ab�_cQ[XR�`T[TPaT��

�8]R[cSTa�β�dT`aX^]�R^\\T]ba�" #"

0[[ PSdXRT ^` X]U^`\PbX^] U`^\ bWT 1`XbXaW 2T\T]b 0aa^RXPbX^] P]S�^` ATX]U^`RTS 2^]R`TbT 2^c]RX[

Xa X]bT]STS U^` bW^aT eW^ eX[[ TdP[cPbT bWT aXV]XUXRP]RT P]S [X\XbPbX^]a ^U Xba R^]bT]ba P]S bPZT

`Ta_^]aXQX[Xbg U^` Xba caT P]S P__[XRPbX^]� =^ [XPQX[Xbg �X]R[cSX]V bWPb U^` ]TV[XVT]RT� U^` P]g [^aa

`Tac[bX]V U`^\ acRW PSdXRT ^` X]U^`\PbX^] Xa PRRT_bTS Qg bWT 120� A22 ^` bWTX` acQR^]b`PRb^`a�

ac__[XT`a ^` PSdXa^`a� DaT`a aW^c[S ]^bT bWPb P[[ 120 a^UbeP`T P]S _cQ[XRPbX^]a P`T acQYTRb b^

`TdXaX^] U`^\ bX\T b^ bX\T P]S aW^c[S bWT`TU^`T T]ac`T bWPb bWTg P`T X] _^aaTaaX^] ^U bWT [PbTab

dT`aX^]�

CWXa a_`TPSaWTTb aW^c[S QT caTS X] R^\_[XP]RT eXbW bWT PRR^\_P]gX]V _cQ[XRPbX^] �B_`TPSaWTTba�

U^` R^]R`TbT STaXV] b^ 1B '!! P]S 42"� PdPX[PQ[T U`^\ 1`XbXaW 2T\T]b 0aa^RXPbX^]� CT[U^`S

0dT]cT��2`^ebW^`]T��1T`ZaWX`T�A6$�%HB��

�� ";L�>C;G?N?LS��, Ô$ mm S�, "$% mm 0aR�, $'"Ô�Ô mm²

=, �ÓcPS`PbXR P�, $""! � Q�, Ô($! '(�& R�, �(�4� &

]�\Pf�, %Ô&�Ô 8]bT dP[�, "�%%Ô �"$�X]bT dP[a�QTbeTT]�=, �P]S�=QP[�

=�,� �a^[dT�U �hT ` �=�

] =Tcb P[�PfXa ("�Ô( (Ô�"Ô (&�(" ! �Ô' ! #�"Ô ! Ô�(! ! '�Ô' ! ! ! �"$ ! ! #�(!

5R 2^]R�R^\_�U RT #( '"! $ " %( $! ##! & $"$Ô%Ô $#Ô'! $ $$& %" $Ô'#! $%(ÔÔ' $' ' &

R�abPX] BbTT[�R^\_�ab PX] � ! $% � ! Ô" � ! Ô& � ! %" � ! %& � ! &" � ! &% � ! ' � ! '$

b�abPX] BbTT[�bT]a�ab PX] � Ô' � ÔÔ$ � Ô"( � Ô % � $'$ � $%# � $$# � $"$ � $ %

UaR BbTT[�R^\_�ab Taa "&%�! ! "'&�Ô# "('�## # '�Ô% #! '�"% #"&�$& ##%�"# #$$�Ô& #Ô"�Ô"

Uab BbTT[�bT]a�ab Taa $#'�! $#'�! $#'�! $#'�! $#'�! $#'�! $#'�! $#'�! $#'�!

5aR BbTT[�R^\_�U RT %%%! (! %(#&$& &! (' $ &$$$' &%&''" &( ! & '! ! "$ '#! #%" 'Ô Ô$!

5ab BbTT[�bT]a�U RT ! Ô& ! ! ! Ô& ! ! ! Ô& ! ! ! Ô& ! ! ! Ô& ! ! ! Ô& ! ! ! Ô& ! ! ! Ô& ! ! ! Ô& ! !

h 2^]R�[TdT �P`\ " $�## " #�! $ " ! �($ " �&$ ! ((�Ô$ ! ('�#$ ! (&�! $ ! (Ô�($ ! ($�&$N 5R���5aR���5ab � #'�' &%�! ! ! ! "� # ! $%�%' ! ' �! % "! "�Ô$ "$#�(! "&$�#$M <�> �A " &�&& "! ! �! Ô "! $�#% "! &�$! "" �#! ""#� ' ""Ô�&! ""'�"! "# �%

;PQT[a U �RWP b

=�SXUU #'�' #&�# #Ô�(" #$�%Ô ##�$& #"�#' #! �#& # �$# "(�ÔÔ

<�SXUU #�#' #�"! #� Ô "�( "�&% "�%# "�Ô! "�#( "�"'

Example of other sheet

Notes! sheet

G E N E R A L N O T E S

Page 13: User Guid

11

Using the spreadsheetsUsing the spreadsheets for the first time /Frequently Asked QuestionsBase versions

Initially, always start from the base versions on the CD-ROM.If in doubt, go back to the version on the CD-ROM. Thesesafeguards are to avoid using corrupted or bespoke files.Eventually, familiarity with the spreadsheets and QualityAssurance procedures may overtake this basic precaution.

Please note that whilst all spreadsheet cells, apart from inputcells, are covered by nominal protection, it is possible tochange the contents of cells. Original versions by RCC canbe sourced from the RCC’s CD-ROM or website. Also, pleasenote conditions of use and disclaimers associated with theuse of the spreadsheets contained within the sheet titledNotes! and elsewhere in this User Guide.

Excel

The spreadsheets are normal Excel ’97 files. Excel ’97 (©Microsoft Corporation) is a standalone package or may beincluded as part of the Microsoft Office ’98 package on PCsor Macs. The files are compatible with Excel 2000, part ofOffice 2000, and are likely to be compatible with futureversions of Excel. Those not familiar with Excel are directedto the Help functions within Excel and relevant literatureavailable at book and computer shops.

Please note that the spreadsheets will not necessarily workwith previous versions of Excel (e.g. ’95, 5.x etc) or otherspreadsheet programs. This is due to incompatibility betweensoftware and backward incompatibility between versions.(To check which version of Excel you are running see sign-on screen, or Help/About Microsoft Excel or see Printreg.xlsunder Administrative files.). Those running Excel 2000 areadvised to use the Save As/ .xls function to avoid inordinatelylarge file sizes.

Long file names

The base versions of the spreadsheets are saved with longfile names to aid familiarity with each spreadsheet’s purpose.Some software and networks only recognise eight charactersfor a file name. In use, users may be requested by the systemto allow abbreviated names, e.g. RCC11.xls .

As shorthand, the spreadsheets are generally referred to bytheir number rather than their name in full, i.e. RCC11.xls isused as shorthand for RCC11 Element Design.xls.

Loading a spreadsheet for the first time

Under Windows ’95, ’98 or NT insert the spreadsheet CD-ROM into the CD drive (drive D: assumed). A spreadsheetcan be loaded using one of the following methods:

• From ‘My Computer’, double click on My Computer,double click on D (assumed CD drive), then double clickon spreadsheet of your choice. Excel will boot up and

most probably warn about macros before loading thespreadsheet fully. In order to proceed, enable macros(see below).

• Successively click Start/ Programs/ Microsoft Explorer.Double click on CD Drive (D). Double click on thespreadsheet of your choice, e.g. RCC11.xls. If notalready loaded and available, Excel will boot up andload up with RCC11.xls

• Successively click Start/ Programs/ Microsoft Excel. OnceExcel has booted up, click on File in top menu bar/Open/ Look in and scroll through to the CD Drive.

No installation program per se is included. Under filemanagers such as Microsoft Explorer, the CD-ROM versionsof the spreadsheets can be dragged and dropped into anappropriate folder specified by the user. Alternatively, fromwithin Excel, the spreadsheets can be loaded directly fromthe CD-ROM – but should users wish to save the modifiedspreadsheet, it has to be saved to an alternative drive.

Macros

When loading the individual spreadsheets, Excel may warnyou about the presence of macros. All the macros providedin the files are either to allow automated printing of the‘calculations’ or to provide choices by way of combo-boxes.The printing macros have been assigned to buttons. Turningthe macros off will not affect the actual function of thespreadsheets but will make printing of the sheets asconfigured more difficult and make the choice of optionsvery much more difficult.

Fonts

Unless the appropriate fonts Tekton and Marker (suppliedin the CD-ROM) have been installed by the user, theappearance on screen will be different from that in thepublication and from that intended. These condensed fontshave been used to emulate a designer’s handwriting and toallow adequate information to be shown across the pageand in each cell.

If problems are experienced it is most likely that the fontson your computer screen will have defaulted to the closestapproximation of the fonts intended (e.g. the toolbar maysay Tekton but a default font such as Arial will have beenused). The spreadsheets will work but not as intended – endsof words may be missing, and numbers may not fit cellsresulting in a series of hashes, #####. Column width and celloverlap problems occur only when the correct fonts are notloaded.

It is strongly suggested that the Tekton and Marker fontsare copied into your computer’s font library. This may bedone in the following manner, either:

• Start/ Settings/ Control Panel/ Fonts/ File/ Add Fonts andwhen asked “copy fonts to system directory” say yes.

or

G E N E R A L N O T E S

Page 14: User Guid

12

• Through Microsoft Explorer and copying (or dragging)the font files into your font library, usually contained inWindows/ Set-up/ Fonts.

Default font size

Even with the correct fonts installed, the appearance of thesheets might be different from those in this publication.This may be due to the default font size on the user’scomputer being different from the font size 12 used in thedevelopment of the spreadsheets. For instance if the user’sdefault font size is 10, pages will appear and print narrowerthan intended (as unformatted cells will revert to a narrowercell width than intended).

Please ensure that the default font size is set at 12. (Tools/Options/ General/ Standard font and size). If standard fontor size is changed it will become effective only afterrebooting Excel. While the spreadsheets were developedusing Tekton 12, many True Type font size 12 (e.g. Arial orpreferably Times New Roman 12) may give adequatepresentation.

If a series of hashes (#####) still appears, it may be necessaryto resize the column width.

Screen view

The spreadsheets have been developed assuming that part,if not the whole, of the Operating Instructions column is inview. This column contains comments, instructions, checks,explanations etc. and is important to the correct operationof the spreadsheets.

Generally, a screen zoom of 75% has been used as a defaultsize on the sheets. Occasionally, other zoom sizes have beenused in order to aid comprehension.

Input

In the spreadsheets, input data is blue and underlined. Newdata may be input by overwriting default values or byentering values in ‘greyed out’ cells. Entering data in far-left greyed-out cells will also remove the grey conditionalbackground to other cells, which will then require data entry.Some input cells refer back to data on previous sheets withina workbook. These are coloured magenta, but change backto blue if other data are entered.

Do not copy and paste input from one cell to another asthis may cause formatting and other errors. Do not useSpace, Enter (the space equals text). If similar input isrequired in other cells then use ‘= cell reference’ with caution,e.g. ‘= B16’ in the appropriate input cell.

All non-input cells should have nominal protection and thecontents of these cells can be overwritten only if the userhas taken positive steps to overcome protection in order tooverwrite original contents.

In the page headers the ‘Made by’ and ‘Checked’ boxesshould be completed or cleared by using a blank or hyphen;clearing the cell completely would produce ‘0’ on subsequentsheets.

Values in red or red backgrounds

During operation, values in red or cells with red backgroundsflag either incorrect data to be changed or excess data to becleared (manually). Even using Space as an entry mightgenerate red backgrounds.

If you make a mess of it

Start again from the base version of the spreadsheet on theCD-ROM.

Printing

The sheets may be printed out in several ways:

• Through the automated print buttons in thespreadsheets (using these print macros will over-writeprint areas defined elsewhere)

• Using the Print icon on Excel’s standard toolbar

• Using File/ Print within Excel

• Copying and pasting (special) parts of the spreadsheetsto a word processor or other package. (Pasting (special)into a word processor file as a bitmap produces awysiwyg image.

• Pasting as other formats will probably require somepre-copying formatting of the spreadsheet and/or post-formatting of receiving cells.)

Print areas may be defined by:

• Highlighting area then clicking File/ Print Area/ SetPrint Area

• Clicking View/ Page Break Preview and adjustingboundaries to suit

Print previewing can be achieved using the Print Previewicon on the standard toolbar.

Print formatting

Different hardware and software are configured in manydifferent ways. This situation leads to many variations onthe actual print from individual printers. Best results are likelyto be obtained from Windows printers but even these maynot produce printing that is identical to that in thispublication. Some manipulation for printing with yourconfiguration may be inevitable. See also Printreg.xls underAdmin files.

Auto complete

Excel’s facility for AutoCompleting cells (e.g. entering ‘T’might auto complete to ‘Type’) can be a mixed blessing. Inmost spreadsheets it should be turned off via Tools/ Options/Edit and clearing the Enable AutoComplete for cell valuesbox.

G E N E R A L N O T E S

Page 15: User Guid

13

Help

Help is available from this User Guide, Spreadsheets forconcrete design to BS 8110: Part 1 and EC2. This can be readas either:

• 2 colour printed copy available from BCA PublicationSales

• In full colour through the Adobe Acrobat fileUserGuid.pdf on the CD-ROM. A copy of AdobeAcrobat Reader will be required to read this file. If notalready installed on your computer, a copy is availablefor installation on the CD-ROM. This facility is providedcourtesy of Adobe and is subject to their conditions ofuse

• As the Word document UserGuid.doc (text only) alsoavailable on the CD-ROM.

Help is also available at the following places:

• Within Excel under Help

• To the right hand side of the spreadsheets, cells underOperating Instructions contain help and error messages

• Queries should be e-mailed to [email protected] will be given to those who register andquote their password, but the RCC cannot guarantee toreply. See Shareware registration below. The RCCregrets that telephone enquiries cannot be dealt with.

Continued useShareware

These spreadsheets are offered as shareware. This can beconsidered a ‘try before you buy’ system where you areexpected to pay the program authors a registration fee ifyou find the programs useful or if they are used forcommercial design. In general you may pass on copies ofshareware programs to colleagues within the UK, althoughcommercial (for a fee) distribution requires special writtenpermission from the publisher.

Shareware registration

Designers who use this software in the course of their workare requested to pay a registration fee of £50 + VAT peroffice where the spreadsheets are used. The registration willcover spreadsheets to both BS 8110 and EC2. In order toregister please either use a print-out of Printreg.xls (seeunder Supporting folders page 152) or take a copy of thispage, fill it in and return with payment to The ReinforcedConcrete Council. Separate conditions apply for use outsidethe UK and for educational establishments - please apply inwriting.

Registered User

Name:

Organisation:

Address 1:

Address 2:

Town:

County:

Postcode (& Country):

Phone:

Fax:

E-mail:

Nature of business:

No. of employees

Cheques payable to: ‘The Reinforced Concrete Council’Send to: Reinforced Concrete Council, Century House,Telford Avenue, Crowthorne, Berkshire RG45 6YS

Benefits of registration

Registrants will receive:

• A receipt

• A password

• By quoting their password, preferential treatment withregard to support

• By using their password, free access to download anynew or updated spreadsheets that may be madeavailable on the RCC’s website at www.RCC-info.org.uk.

Registration will be valid for at least one year. Beyond thatperiod the RCC reserves the right to charge for downloadingupdates in order to cover costs.

Support

E-mailed questions, comments, developments andsuggestions are welcomed. Send them to [email protected] RCC regrets that it cannot guarantee to reply or to enterinto correspondence. Preference will be given to those whoregister and quote their password. The RCC regrets thattelephone enquiries cannot be dealt with.

Updates

It is intended that the RCC’s website (www.RCC-info.org.uk)will include updated versions of the spreadsheets. These willbe downloadable by registrants who can supply their validpassword.

Conditions of use: disclaimersA fundamental condition of use is that the user acceptsresponsibility for the input and output of the computerand how it is used.

G E N E R A L N O T E S

Page 16: User Guid

14

Whilst the spreadsheets have been checked with allreasonable care and diligence, they cannot be guaranteedfor use in every every eventuality.

Validation was held to be extremely important by theAdvisory Group but these spreadsheets can never be fullyvalidated. However, they but have been through betatesting, both formally and informally, through members ofthe Advisory Group and others. Users must satisfy themselvesthat the uses to which the spreadsheets are put areappropriate. Users must have read, understood and acceptedthe disclaimer contained on the inside front cover of thispublication (and repeated in the sheet named Notes! in eachspreadsheet).

Change controlNominal protection

Users and managers should be aware that the preadsheetscan be changed. Beyond nominal cell and sheet protection,the files are open and can be changed. There are severalreasons for this:

• The files can be customised by users to their ownpreferred methods of presentation and design (e.g.deflections might be calculated to part 2 of BS 8110;individual firms or project logos might replace theRCC’s logo)

• The protection should stop inadvertent changes andcorruption of cells

• Developments and improvements can be made and fedback to the RCC. Such feedback is encouraged andallows a wider consensus to be gained

• Protection can always be overcome by determinedusers

• Fully protected files can hide cell contents

• Spreadsheet emulators are at present unsuitable forthese particular applications

• Different designers want different facilities available tothem and should not be restricted

The spreadsheets are all protected (but with no password).In other words users have to do something positive if theyare to change any formulae, and must therefore takeresponsibility for any deliberate or accidental changes. Theproject’s Advisory Group held this to be a sensible position.

Users and managers must address change control andversions for use. The RCC can only control the base versionsissued on CD-ROM (and web page). The published examplescan be used as record copies to help identify changes. Users’Quality Assurance procedures may dictate the use of moresophisticated protection measures.

Development

The protection may be over-ridden to allow customisationand individual development. Any development of thespreadsheets should be undertaken by experienced staff who

have a good understanding of the problems and pitfalls ofboth design and spreadsheets. It may take an experiencedengineer four or five times longer to prepare a spreadsheetthan it would to produce the equivalent manual calculation:robust, commercially acceptable spreadsheets may take 50times as long. They can take even longer to test, check andcorrect. Only repetition of use makes the investment of timeworthwhile.

With relatively open files, designers are at liberty to alterthe spreadsheets as they wish. However, they must satisfythemselves that any alterations are correct and do notinterfere with any other aspect of the spreadsheet inquestion and conform to any QA procedures.

Notwithstanding the above, copyright of the spreadsheetcontents remains with the BCA for the RCC. Altered oramended versions of the spreadsheets may not be sold orhired without the written permission of the RCC.

Please inform the RCC of any major discrepancies found orimprovements made.

Saving files/file management

Many users save spreadsheets to a directory and/or folderof their choice. This is particularly true where spreadsheetspertaining to a particular project are saved to a folder giventhe project’s name.

Assumptions madeDuring the course of development of these spreadsheets, anumber of structural and computing assumptions have beenmade. These are discussed below

As enhancement

Several of the spreadsheets contain automatic routines thatincrease As in order to reduce service stress fs and thereforeincrease modification factors in order to satisfy deflectionchecks. The ‘As enhancement’ values are the percentages bywhich As required for bending are increased in order tosatisfy deflection criteria.

Reinforcement densities

Some spreadsheets give an indication of weight ofreinforcement in the margin under Operating Instructions.These densities should be used with great caution. Manyfactors can affect actual reinforcement quantities on specificprojects. These include different methods of analysis, non-rectangular layouts, large holes, actual covers used, detailingpreferences (curtailment, laps and wastage), and theunforeseen complications that inevitably occur. As may beexamined in the sheets entitled ‘weight’, the densities givenrelate to simple rectangular layouts and the RCC’sinterpretation of BS 8110. They make no specific allowancefor wastage.

G E N E R A L N O T E S

Page 17: User Guid

15

The densities assume that the areas or volumes of slabs aremeasured gross, e.g. slabs are measured through beams.Beam reinforcement densities relate to web width multipliedby overall depth

Rationalisation of reinforcement

Although it may appear that many of the spreadsheets giveleast-weight solutions (hence more bars, more work), theamounts of reinforcement derived are actually accurate (andnot necessarily rationalised). It is intended, therefore, thatthe amounts of reinforcement derived from the spreadsheetshould be considered as minima.

Redistribution

The spreadsheets with analysis allow redistribution inaccordance with BS 8110: Part 1, Clause 3.2.2.1. The usermay choose between three options. These options do not

affect redistribution at supports but do determine how spanmoments are calculated, as shown in the following table.

The user should specify more rationalised reinforcementlayouts to the detailer. Rationalisation should be donemanually – there would seem to be too many variables andpersonal preferences to enable automatic rationalisation. Adetailer can always close up spacing and/or reduce bardiameters if desired.

Most often the spreadsheets require bar size as input, ratherthan bar spacing. This can lead to unusual, but correct,spacings. Where bar diameter input is available, it may beworth investigating larger bars (at larger centres). Forinstance, in the design of a flat slab it would probably bepreferable to use 4828 larger bars at greater centres ratherthan 6840 smaller bars at small centres (weight is marginallydifferent, 82.5 kg/m3 c.f. 80.8 kg/m3). This results in 30%fewer bars compared with 2% extra steel. Rationalisedarrangements with least number of bars without breaking

G E N E R A L N O T E S

Redistribution of moments: options forcalculating span moments

Design span moments

Support moment fromwhich span moment iscalculated Comments

Spead- Designsheet supportoption momentnumber

0 bbM bbM Design span moments will probably be less than elasticmoment (minimum of 70% of elastic moment).

This option may lead to a kinked bending moment diagram asthe 70% kicks-in in the spans.

In the case of thin sections such as slabs, consideration of spandeflection and service stress often leads to reinstatement of anyreinforcement theoretically saved.

1 bbM Minimum of Design span moments might be less than elasticbbM and Malt/bb moment but less likely than with option 0.

Increasing the minimum support moment for the calculationof span moment from Malt to Malt/bb is seen as a sensiblecompromise between options 0 and 2.

2 bbM Minimum of Design span moments cannot be less than thanbbM and Malt elastic moment.

Most often used but if, typically, 20% redistribution isspecified at supports, design span moments will increase byabout 10% over elastic span moments.

Again, in thin sections, consideration of deflection and servicestress can limit additional amounts of reinforcement due toincreased span moment.

Wherebb = (moment after redistribution)/(moment before redistribution)

= 100% - % redistribution requestedM = elastic moment at support, all spans loadedMalt = maximum elastic Moment at support, alternate spans loaded

Page 18: User Guid

16

the spacing rules and least number of bar marks are alwayspreferable. Eventually, it may be possible to automate thisprocess, but for the time being it is between the programuser (i.e. the designer) and the detailer to decide how torationalise bar arrangements. Any estimates ofreinforcement must take this process into account.

Other spreadsheets tend to size bars in such a way thatminimum centres (or clear spacings) are not exceeded.

It is assumed that issues of detail will be considered by theengineer and detailer. Issues such as radius of bottom barsand beam bearings, space between bars in narrow beams,spliced bars at supports of beams, connection details, etc.,need to be considered.

Imposed c.f. live loads

Loosely, Imposed load is taken to be the characteristic loadinput by the user. Live load is taken to be that part of theultimate load that is not characteristic dead load (i.e. Liveload = n - gk).

#DIV/0! (Divide by zero) errors

In some spreadsheets, #DIV/0! results may arise and bedisplayed. In sheets intended for printing out, #DIV/0!indicates an error in or invalid input. In sheets of workings,they have no relevance to the validity of the sheet or thespreadsheet as a whole.

Please note that in many cases, but not all, a very small valuehas been used rather than zero in order to avoid #DIV/0!(divide by zero) problems in Excel, e.g. [RCC53.xls]Cases!13:B18 where = IF(ERROR(G3),0.000001,G3) has been used.

Linking spreadsheets

To avoid complications, links between different spreadsheetshave not been used. Nonetheless, for the experienced user,linking provides a powerful tool. The results of onespreadsheet can be linked through to become the input foranother, or project data can be auto-loaded. This minimisesthe amount of input required and at the same time reducesthe scope for error in data transfers. For example, the resultsof a beam analysis can be carried through to beam design.Any links created by the user are at his or her discretion.

Deflections

Deflection checks are based on span:depth criteria in thecodes. Estimates of actual deflections are not yet availablewithin the spreadsheets.

Analysis: cantilever deflections and supportrotation

Support rotations are ignored. Support rotation cannot bedetermined except as part of a rigorous deflection analysis.Rotations cannot be easily derived from momentdistribution, and in any case, gross section slopes are of littleor no value. It is assumed that BS 8110’s usual deemed-to-satisfy L/d checks (“rule of thumb”) are adequate.

If support rotations are expected to be critical additionalchecks should be undertaken.

Sign convention

Sagging moments are considered to be positive moment andare plotted downwards. This convention was used so thatExcel plots the bending moment diagram in the direction ofthe deflected form (the right way from the engineer’ s pointof view!).

Screen resolution

The spreadsheets have been developed in 1024 x 768resolution, so that their appearance will be acceptablebetween SVGA (800 x 600) and 1280 x 1024. They willobviously work in VGA (600 x 480), but higher resolutionsare recommended.

Y2K

The spreadsheets rely on Excel and the users’ systems beingyear 2000 compliant.

G E N E R A L N O T E S

Page 19: User Guid

17

RCC11.xls includes sheets for designing

• Solid slabs,

• Rectangular beams,

• T beams (and ribbed slabs) for bending,

• Beam shear and

• Columns with axial load and bending about one axis.

RCC11.xls designs elements to BS 8110: Part 1, 1997. It isassumed that loads, moments, shears, etc. are available forinput from hand calculations or analysis from elsewhere. Agoverning criterion can be deflection; span-to-depth ratiosare used as per BS 8110: Part 1, Clause 3.4.6.

SLAB!This sheet allows for the design of a section of solid slab ina single simply-supported span, in a continuous span, atsupports or in a cantilever. These choices have a bearing ondeflection limitations and the user should choose theappropriate location from the combo-box to the right handside. The user may also choose to allow for no or nominalcompression steel; this again affects deflection factors. Toan extent the spreadsheet will automatically increasereinforcement in order to lower service stresses and enhanceallowable span to depth ratios. The spreadsheet allows acertain amount of theoretical over-stress as defined by theuser in cell M7. Engineering judgement is required to ensurethat any over-stress is acceptable and that specifiedreinforcement is sensibly rationalised.

The example is taken from Designed and detailed (15). Theslight variance in reinforcement requirements is due to thespreadsheet allowing marginal over-stress and allowingcentres in increments of 25 mm.

RECT~BEAM!This sheet designs rectangular beams. The location of thebeam may be either in a single simply-supported span, in acontinuous span, at supports or in a cantilever. These choiceshave a bearing on deflection limitations and the user shouldchoose the appropriate location from the combo-box to theright hand side.

When considering span reinforcement, the spreadsheet will,where necessary, automatically increase reinforcement inorder to lower service stresses and enhance allowable span-to-depth ratios. In checking deflection, the sheet entitledRECT~BEAM! includes two bars of the specifiedreinforcement diameter to derive a modification factor forcompression reinforcement. The facility to specify additionalcompression reinforcement to enhance span-to-depth ratiosis contained within TEE~BEAM!

The example is taken from Designed and detailed (15). Theexpression for area of tension steel required may beunfamiliar to some and is explained below:

As = (39 x 106/390.0 + 242.5 x 106/381.1)/438.1= ([M - Mu]/[d - d’] + Mu/z)/(fy/gm)= As’ + Mu(gm/zfy)= 1684 mm²

TEE~BEAM!TEE~BEAM designs T beams and L beams in single simply-supported span, end span, internal span or cantileverlocations. Again, these choices have a bearing on deflectionlimitations and the user should choose the appropriatelocation from the combo-box to the right hand side. Withrespect to the effective width of the flange, the user mayalso choose that the section is considered as a tee- or aninverted L beam.

A default value for the width of the flange bf is calculatedand displayed as input. This cell may be overwritten if, forinstance, say the user wishes to allow for openings etc. Thedefault is calculated as being:

web width + 0.14 span for T beams, internal span

web width + 0.16 span for T beams, end span

web width + 0.07 span for L beams, internal span

web width + 0.08 span for L beams, end span

In the determination of compression steel, where the neutralaxis lies below flange, the concrete in web, bw, below flangehas been ignored. This is seen as a valid alternative to theapproach in Clause 3.4.4.5 .

In order to calculate the appropriate deflection factor forcompression reinforcement, there is a facility to specifycompression reinforcement. When considering deflection,the spreadsheet will, where necessary, automatically increasespan reinforcement in order to lower service stresses andenhance allowable span-to-depth ratios.

The example is taken from Designed and detailed (15). Thespan could have been defined as an end span rather thaninterior span: the part of the span in hogging would havebeen greater than the 70% assumed and the width of theflange could have been taken as being wider (1580 mm),leading to some economy.

SHEAR!This sheet checks beams or slabs for shear and calculatesany shear reinforcement required. It is hoped that the inputis self-explanatory.

RCC11 Element Design.xls

S P R E A D S H E E T S T O B S 8 1 1 0

E L E M E N T S R C C 1 1–

Page 20: User Guid

18

Providing the applied load is fundamentally a UDL, or wherethe principal load is located further than 2d from the faceof the support, BS 8110: Clause 3.4.5.10 allows shear to bechecked at d from the face of support. Checks for maximumshear (either 5.0 N/mm2 or 0.8fcu

0.5) are carried outautomatically. A maximum link spacing of 600 mm is used;this is seen as a sensible maximum.

The example is taken from Designed and detailed (15). Thevalue of shear used is that at d from the face of support (i.e.300.0 – (0.45 + 0.30/2) x 68.12 = 259 kN). The designed linkswould be necessary for a distance of 1500 mm from thisposition before reverting to nominal link arrangements. Itmay have been more appropriate to have used T10s and thefull 300.0 kN shear at centre of support. This would havelead to T10 @125 for 1750 mm from the centre of support.(The difference in length of designed links is due to thedifferent capacity of the nominal links.)

Apart from punching shear, shear in slabs is rarely critical.(See RCC13.xls.)

COLUMN!This sheet designs symmetrical rectangular columns whereboth axial load, N, and maximum design moment, Mx areknown (see BS 8110: Part 1, Clause 3.8.2, 3 and 4). It iteratesx/h to determine where the neutral axis lies. The sheetincludes stress and strain diagrams to aid comprehension ofthe final design.

For simplicity, where three or more bars are required in thetop and bottom of the section, it is assumed that a(rotationally) symmetrical arrangement will be required forthe side faces. This appears to be common practice, for smallto medium sized columns.

For more detailed consideration see RCC52.xls. In particular,see RCC53.xls regarding the issue of side bars.

COLUMN! Assumes that the moment entered has alreadybeen adjusted, if necessary, for bi-axial bending. For manyside and all corner columns, there is no other choice than todesign for bi-axial bending, and the method given in Clause3.8.4.5 must be adhered to, i.e., RCC53.xls or sheets 2 and 3of RCC51.xls should be used.

Theoretical shortfalls in area of up to 2% are considered tobe acceptable. In theory, negative amounts of reinforcementrequired can be obtained but these are superseded byrequirements for minimum amounts of reinforcement incolumns. No adjustment is made in the area of concreteoccupied by reinforcement.

Maximum link centres are given. The routine in the areaL61:U81 investigates shear when, in accordance with Clause3.8.4.6, M/N > 0.6h. In such cases either a maximum allowableshear is shown where shear is critical, or input of shear andnumber of legs in links allows the links to be designed for

the applied shear. Even in unbraced structures shear is rarelylikely to be critical.

The example is taken from Designed and detailed (15).

E L E M E N T S R C C 1 1–

Page 21: User Guid

19

S L A BE L E M E N T S R C C 1 1– –

�4;4<4=C�34B86=�b �1B�'! ! )! ((&

�3 /,)$ �3 ,!"3�> `XVX]PbTS�U`^\�A22! ! �f [a�^]�23��������! (((�120�U^`�A22

�).0 54 ;^RPbX^] $ $ ��CHN?LCIL�MJ;H�MIFC>�M F;<3TaXV]�\^\T]b��< " �$ Z=\�\ URc $ =�\\� γR = ! �Ô

�Q ! � Ug $% =�\\� γa = ! � Ôa_P] Ô \\

7T XVWb��W ! &Ô \\ BTRbX^]�[^RPbX^] 2 >=C8=D>DB�B?0=1P �� ! " \\

R^dT ` " \\�b �bWXa�`TX]U `RT\T]b

�/540 54 $ $ ��CHN?LCIL�MJ;H�MIFC>�M F;< 2 ^\_`TaaX^]�abTT [�, =^]TS�,�! &���" ���! "�"�,�! $(� �\\ �

�#�$�$�$� : ��,� �! Ô%�-�: �,� � "#��^Z �

�#�$�$�$� h�,�! $(� �J �Ô���� �"Ô��� � "#�� �(�M��,�! $Ô�! �-� �(ÔS�,�! $! �%�\\�#�$�$�! � 0a�,�" �$ 4%��$% ��! $! �%�f�! � Ô�,�#"(�-�\X]�0a�,�""'�\\��\

0 2/6)$ % �4� ��������������GG��G �

�4Ó]�'� Ua�,��"�#�f�$% �f�#"(��#"#��! � �,�#! "�"�=�\\��4Ó]�&� CT]a�\^S�UPRb �,� �ÔÔ����$&&���#! "�"���! " ��� �(��� �(! (��,�! �# Ô�#�$�%�#� ?T`\XaaXQ [T �;�S�,�"%� �f�! �# Ô�,�##�(#!� 0RbcP[�;�S�,�Ô ��! $(� �,�##�ÔÔ&��^Z �

� �

Page 22: User Guid

20

R E C T ~ B E A ME L E M E N T S R C C 1 1– –

�4;4<4=C�34B86=�b �1B�'! ! )! ((&

�2% #4!.' 5,!2�"%!-3�>`XVX]PbTS�U`^\�A22! ! �f [a�^]�23��������! (((�120�U^`�A22

�).0 54 ;^RPbX^] $ $ ��-;CH�<?;G�� MN�& FIIL��CHN?LH;F�MOJJILN3TaXV]�\^\T]b��< "'"� Z=\ URc $ =�\\� γR = ! �Ô

�Q �& Ug $% =�\\� γa = ! � ÔB_P] ' \\ 2 ^\_�R^dT` $ \\�b �\PX]�`TX]U `RT\T]b

7T XVWb��W Ô \\ CT]a�R^dT` $' \\�b �\PX]�`TX]U `RT\T]b

1`TPSbW��Q # \\ BXST �R^dT` #Ô \\�b �\PX]�`TX]U `RT\T]b

CT]a�� "Ô \\

2 ^\_�� ! " \\ BTRbX^]�[^RPbX^] 2 >=C8=D>DB�B?0=

�/540 54 $ $ ��-;CH�<?;G�� MN�& FIIL��CHN?LH;F�MOJJILN �S�,�Ô ���$'���"Ô�"�,�$#(�Ô�\\

�#�$�$�$� : ��,� �! $�+�: �,� �! "" R^\_`TaaX^]�abTT [�`TÓcX`TS�#�$�$�$� h�,�$#(�Ô� �Ô���� �"Ô��� �! $� �(�M����,�#' �%�+�$! &�Ô�\\�#�$�$�$� f�,��$#(�Ô���#' �%��� �$Ô�,�! # �'�\\

S��,�$ ���! "�"�,�$%� �\\ �

�5XV�#�#� ' LIMM�@M=�������� �.�GG���@LIG�MNL;CH�>C;AL;G ��5XV�#�#� ]Tb�UaR�,�$#'�! ��� �%&�f�$ ��! ��,�$" �"�-�� �=�\\�

4fRTaa�<�,�<���<c��,�"'"� � �! ""��� �! $��� �! ""�,�$ � �Z=\0a��,�$ � 4%��$" �"���$#(����$%� ��,�"$"�\\�02/6)$ % ���4� ��=IGJL?M M CIH�M N??F�������GG� �

�5XV�#�#� Uab�,�$#'�! �=�\\��� �

0a�,��$ � 4%��#(#����"$"� 4%��#' �%���$#'�! �,�! %'#�\\� �02/6)$ % ���4���N?HM CIH�M N??F���� ����GG� 0a�T]WP]RTS�Q g�&� �U^ �STU[TRbX^]

�4Ó]�'� Ua�,��"�#�f�$% �f�! �%'#��! �(%#�� �& �,�#&Ô�%�=�\\��CPQ [T �#�! ! � 2 ^\_�\^S�UPRb �,�! ��� �"Ô&���#��� �"Ô&��,�! � &(�+�! �Ô�CPQ [T �#�! � CT]a�\^S�UPRb �,� �ÔÔ����$&&���#&Ô�%���! " ��� �(���$�'%%��,� �%(&�+�"�#�$�%�#� ?T`\XaaXQ[T �;�S�,�"%� �f�! � &(�f� �%(&�,�! (�Ô$"�#�$�%�! � 0RbcP[�;�S�,�' ��$#(�Ô�,�! '�" #��^Z �

Page 23: User Guid

21

T E E ~ B E A ME L E M E N T S R C C 1 1– –

�4 ;4<4=C�34B86=�b �1B�'! ! )! ((&

�3 )-0 ,% �4% % ��,�"% !-3�> `XV X]PbTS�U`^\�A22! ! �f [a�^]�23��������! (((�120�U^`�A22

�).0 54 ;^RPbX^] $ $ ��-;CH�<?;G��� MN�& FIIL��G�MJ;H< #"'� Z=\ URc $ =�\\� γR = ! �Ô �Q ! � Ug $% =�\\� γa = ! � Ô

a_P] ' \\ 2 ^\_�R^dT ` $' \\�b �\PX]�`T X]U `RT\T]b

W Ô \\ CT]a�R^dT ` $ \\�b �\PX]�`T X]U `RT\T]b

Qe # \\ BXST �R^dT ` #Ô \\�b �\PX]�`T X]U `RT\T]b

QU ! $" \\

WU ! &Ô \\ BTRbX^]�[^RPbX^] 8=C4A 8> A �B?0=CT]a�� "Ô \\ BTRbX^]�bg_T C�140<

C^_�abTT [ " ]^�� ��! "

�/540 54 $ $ ��-;CH�<?;G��� MN�& FIIL��G�MJ;H �S�,�Ô ���$ ���"Ô�"�,�$$&�Ô�\\: ��,� �! Ô%�-�: �,� � "(

�#�$�$�$� h�,�$$&�� ����� �"��� � "(�� �(�M���,�$#"�&�-�$"�! �\\�#�$�$�$� f�,��$$&����$"�! ��� �$�,�$(�&�\\ �

�#�$�$�$� 0a�,�#"'� 4%��$"�! ��$% �f��! � �,�! &%! �\\� �

0 2/6)$ % ���4���<INNIG���� ����GG� �

�4Ó] �'� Ua�,��"�#�f�$% �f�! �&%! ��! �(%#�,�"&Ô�! �=�\\��CPQ [T �#�! ! � 2 ^\_�\^S�UPRb `�,�! ��� �! %'���#��� �! %'��,�! � Ô#�+�! �Ô�CPQ [T �#�! � CT]a�\^S�UPRb `�,� �ÔÔ����$&&���"&Ô�! ���! " ��� �(���! �! Ô#��,�! �#& �+�"�#�$�%�#� ? T`\XaaXQ [T �; �S�,�" �'�f�! � Ô#�f�! �#& �,�# � !�#�$�%�! � 0RbcP[�; �S�,�' ��$$&�Ô�,�! & �'&&��^Z IE

Page 24: User Guid

22

S H E A RE L E M E N T S R C C 1 1– –

�4;4<4=C�34B86=�b �1B�'! ! )! ((&

�"% !-�3(% !2�>`XVX]PbTS�U`^\�A22! ! �f [a�^]�23��������! (((�120�U^`�A22

�).0 54 ;^RPbX^] $ $ ��-;CH�<?;G��� MN�& FIIL��G�MJ;H��2(�?H>URc $ =�\\� γR = ! �Ô > <

Ug[ "Ô =�\\� γa = ! � Ô $Ô #

-;CH�3 N??F ,CHE ,?AM 3 C>?�=IP?L 3 B?;L��6 5$,

" "Ô ! " " #Ô "Ô(� %'�!]^ \\�� \\�� =^ \\ Z= Z=�\

�/540 54 $ $ ��-;CH�<?;G��� M N�& FIIL��G�MJ;H��2(�?H>0a�,�('"�=�\\��,� �&"&�

�4Ó]�#� d�,�"Ô(� �f�! ���# ��$Ô �,�! �(! (�=�\\��CPQ [T �#�'� dR�,� �%%Ô�=�\\���U ^\�bPQ[T �#�'

�d���dR�Qd�,�#&%�! �=�\\0 2/6)$ % ���F?AM �2� ����� �����������.�GG? `^dXST �U �SXabP]RT �^U�! Ô �\\bWT]�]^\X]P[�[X]Za�,�"�[TVa�A! "�/ �#"Ô

Page 25: User Guid

23

C O L U M NE L E M E N T S R C C 1 1– –

�4;4<4=C�34B86=�b^�1B�'!! )!((&

�#/,5-.�$%3)'.�>`XVX]PbTS�U`^\�A22!!�f[a�^]�23��������!(((�120�U^`�A22

�).054 ;^RPbX^] $$��?RN?LH;F�=IFOGH0fXP[�[^PS��= ! "% Z= URc $ =�\\�

<^\T]b��< !!&� Z=\ Ug $% =�\\�

WTXVWb��W # \\ Ugd $% =�\\�

Q`TPSbW��Q # \\ γm !� Ô abTT[

<Pf�QP`�� "Ô \\ γm !�Ô R^]R`TbT

R^dT`��b^�[X]Z� # \\ ;X]Z�� ' \\

��#!,#5,!4)/.3 $$��?RN?LH;F�=IFOGH

U`^\�<��� 0a�,�i<��� �%&URc�Q�SR�W�"���SR�"�k�J�W�"�S����UaR�Uab��V\L� �#�$�$�!�

U`^\�=��� 0a�,��=��� �%&URc�Q�SR�V\�����UaR���Uab� �5XVa�"�!��"�"���#�#�

�eWT`T�0a�,�0ab�,�0aR)���SR,\X]�W� �(f�

�%&URc�V\�, !&�( =�\\� S��, Ô �Ô \\

Ug�V\�, $#'�! =�\\� S�, "$(�Ô \\

U`^\�XbT`PbX^]��]�P��ST_bW��f��, !'"�! \\ SR�, !%#�( \\

�%&�URc�Q�SR�V\�, '&'�$ Z=

BbTT[�R^\_�ab`PX]�, � "Ô#BbTT[�bT]a�ab`PX]�, � !#

BbTT[�ab`Taa�X]�R^\_��UPRT��UaR�, $#' =�\\� �2^\_��ab`Taa�X]�`TX]U��BbTT[�ab`Taa�X]�bT]aX[T�UPRT��Uab�, "Ô( =�\\� �CT]aX[T�ab`Taa�X]�`TX]U��

U`^\�<���0a�, '"Ô \\� U`^\�=���0a�, '"Ô \\�

�/54054 $$��?RN?LH;F�=IFOGH/+��

0a�`TÓ�S�,�'"Ô\\��C�1)��� 02/6)$%��4��

;X]Za�)�� 02/6)$%�4�������

BH<<4CA820;�A42C�0=6D;0A�

2>;D<=�34B86=

�XT�"C"ÔC�1���('"\\��C�1����"�"��^�P���/�!((RR��

�!&�(�=�\\�

=^bTa

Bb`TaaTa�X]�=�\\"

2^\_`TaaX^]���dT

�������=Tcb`P[�PfXa

3NL?MM�>C;AL;G

$#'

�"Ô(

3NL;CH�>C;AL;G

� "Ô#

� � !#

� #Ô

� � ""&

Page 26: User Guid

24

This spreadsheet gives an interaction chart for momentagainst axial load for rectangular sections with asymmetricalreinforcement arrangements. Initially intended for beamswith axial load it is also applicable to asymmetricallyreinforced columns.

MAIN!Moments are considered to be about the x-x axis. All appliedloads and moments should be ultimate and positive, aspositive moments induce tension in the bottomreinforcement.

With asymmetrical arrangements of reinforcement thediagram indicates that negative moments are theoreticallypossible. After much consideration, the diagram isconsidered to be correct but strictly is valid only for loadcases where the member is operating above 0.1fcu and withat least minimum eccentricity. These limits are shown onthe graph. A reciprocal diagram is generated automaticallywhen top and bottom steels are reversed in the input.

Calcs!Calcs! Shows the derivation of the chart where momentcapacity is calculated at intervals of neutral axis depth fromn.a. depth for N = 0 to n.a. depth for N = Nbal, then inintervals from n.a. depth for N = Nbal to n.a. depth for N = Nuz.This sheet shows workings and is not necessarily intendedfor printing out other than for checking purposes.

RCC12 Bending and Axial Force.xls

E L E M E N T S R C C 1 2–

Page 27: User Guid

25

M A I NE L E M E N T S R C C 1 2– –

�? ` YTRb 3JL?;>MB?? NM �NI�"3 ��� � ��REINFORCED CONCRETE

COUNCIL�2 [XT]b !>PCMILS�' LIOJ �<PST�Qg �3PbT �? PVT

�;^RPbX^] "?;G�# � ����,?P? F�� 2-7 ���!OA��� ��

"% .$ ).' �!.$ �!8)!,�&/2#% �NI�" 3 ��� � ��� ��� �2WTRZTS �ATdXaX^] �9^Q�=^

>`XVX]PbTS�U`^\�A2 2 ! "�f [a ��^]�23�������������������! (((�120�U^`�A22 =BA � 2��

�-!4% 2)!,3URc #Ô =�\\� γs ! � Ô

Ug $% =�\\� γc ! �Ô

�3 % # 4)/. # /6% 23 �b �\PX]�abTT [�

W $Ô \\ C>? # \\

Q # \\ 1>CC>< # \\

B834B # \\

�2% ).&/2# %-% .4";L�� .I !L?; � 3 J;=?

C>? "Ô " ('" �&"& ! ( � �

1>CC>< #" # "$! # ! �&'& &"� �

�,/!$ # !3 % 3 �D;B� #!3 % . -RR #!3 % . -RR

� "$ ! � ! #

-�.�CHN?L;=NCIH�=B;LN�@IL�����R�����M?=NCIH��# ���=IH=L? N? �

"$

!

�! 0RURc

M min

�"

�!

!

"

#

$

�" �! ! " # $ Ô

-/-% .4��-RR�Z=\

!8)!,�#/-02%33)/.��.

�Z=

25

Page 28: User Guid

26

This spreadsheet designs punching shear links. Essentially itis intended to be used with simple rectangular flat slabs toBS 8110 i.e. with RCC33.xls. Equally it can be used inconjunction with RCC81.xls or to check wide beams in, say,troughed slabs.

The spreadsheet is presented as four pairs of sheets dealingwith internal, edge, (external) corner and re-entrant corners.

It should be remembered that in slabs these traditional linksare time-consuming to fix on site – proprietary systems aregenerally much quicker to fix on site and this far outweighsfirst cost.

INTERNAL! (Similarly EDGE!, CORNER andREENTRANT!)These sheets constitute the input and main output. Input isfairly self-evident but, as ever, care must be exercised inensuring correct values are used. The top diagram acts as alegend and the chart at the bottom of the sheet shows thecolumn, any holes and link perimeters, and should act bothas a check for input and help explain output. The x-x axis isacross the page.

To the right is a combo-box that allows either:

• Input of both Vt (design shear transferred to column)and Veff (design effective shear including allowance formoment transfer) is required. These figures should beavailable from sub-frame analysis e.g. output fromRCC33.xls under Reactions (see p 50). A value of Veff,computed from Vt and the factor according to locationof the column (see BS 8110: Part 1, Clause 3.7.6) issuggested under Operating Instructions: in general thisfigure may be regarded as a maximum: calculatingeffective shear from moment transfer generally resultsin lower figures.

or

• Input of Vt alone. Veff defaults to the values given inBS 8110: Part 1, Clause 3.7.6

The areas of steel in the two directions should be averagesin each direction, i.e., ensure that it reflects the actualreinforcement in the sides of the perimeter, an average ofcolumn strips and middle strips as appropriate.

Except when checking column face shear, holes under halfthe slab depth or ¼ column side are ignored as in the secondparagraph of BS 8110: Part 1, Clause 3.7.7.7. Multiple holesshould be aggregated pro-rata as if they were one hole atone position.

The shear at 1.5 d and at the first perimeter requiring noreinforcement is shown under Results.

The examples emulate the example used for RCC33.xls, i.e.emanating from the in-situ building of the EuropeanConcrete Building Project (ECBP) at BRE Cardington. Veff isgiven as an input. Reinforcement has been increased to T16@ 150 (1340 mm2/m) both ways to increase vc to overcomeproblems with rules regarding v > 2vc (see Clause 3.7.7.5).As will be seen Veff is less than 1.4Vt. In the case of edgecolumns, a factor of 1.25 can be used if bending is about anaxis parallel to edge and 1.4 if perpendicular (Clause 3.7.6.3).A worse case has therefore been taken.

Int Dets! (Similarly Edge Dets!, Corner Detsand Re-ent Dets!)These sheets show design calculations, determination ofcritical perimeters, enclosed areas and link requirementscomplete with references to BS 8110. They are not necessarilyintended for printing out other than for checking purposes.The area load is deducted from Vt, before Vt is enhanced.

These sheets use the relationship Veff/Vt to calculate shear atsuccessive perimeters. Deductions for holes in the calculationof shear perimeters are calculated by finding the angledefined by the extremities of the hole. The projection ofthis angle is deducted from the appropriate perimeter.

RCC13 Punching Shear.xls

E L E M E N T S R C C 1 3–

Page 29: User Guid

27

I N T E R N A LE L E M E N T S R C C 1 3– –

�?`^YTRb 3JL?;>MB??NM�NI�"3����� REINFORCED CONCRETE COUNCIL

�2[XT]b !>PCMILS�'LIOJ �<PST�Qg �3PbT �?PVT

�;^RPbX^] %#"0�4SJC=;F�&FIIL�#IFOGH�"� LGQ ���.IP��� ��

?D=278=6�B740A�b^�1B'!! )!((& �2WTRZTS �ATdXaX^] �9^Q�=^

Originated from R C C 13 .xls on CD © 1999 BCA for RCC =BA � 2��

�-!4%2)!,3 URc =�\\" $ 34!453 ,?A?H>Ugd =�\\" $% 6!,)$�$%3)'.

[X]Z�� \\ '

�$)-%.3)/.3 0 \\ $ 4 \\ "

1 \\ $ 5 \\ Ô

6 \\ !Ô 7 \\ !Ô

�,/!$).' Eb Z= (%Ô�Ô ETUU�, Z= ! % �&

c[b�D3; Z=�\" !%�!

#/,5-.

).4%2.!,

�3,!" W \\ "Ô Sf \\ "!Ô 0af \\"�\ !#$

Sg \\ !(Ô 0ag \\"�\ !#$

PdT�S \\ " Ô PdT�0a � �%ÔÔ

�2%35,43 ETUU�, ! % �& Z= dR�, �&Ô'' =�\\"�CPQ[T�#�'�

0b�R^[��UPRT��d�\Pf�, #�ÔÔ( =�\\" 0b�!�ÔS�_T`X\TbT`��d�, !�#%Ô =�\\"

0b�#�&ÔS�_T`X\TbT`��d�, �%'" =�\\"

02/6)$%�,).+3 �aX]V[T�[TV� �

?T`X\TbT`�! ! "�U`^\�R^[�UPRT

?T`X\TbT`�" "Ô%�U`^\�R^[�UPRT

?T`X\TbT`�# $! �U`^\�R^[�UPRT

?T`X\TbT`�$ Ô%$�U`^\�R^[�UPRT

0 0F;H �

���4����������4����������4����������4�������

����

27

Page 30: User Guid

28

E D G EE L E M E N T S R C C 1 3– –

�?`^YTRb 3JL?;>MB??NM�NI�"3����� REINFORCED CONCRETE COUNCIL

�2[XT]b !>PCMILS�'LIOJ �<PST�Qg �3PbT �?PVT

�;^RPbX^] #IFOGH�"� LGQ ���.IP��� ��

?D=278=6�B740A�b^�1B'!! )!((& #/,5-. �2WTRZTS �ATdXaX^] �9^Q�=^

Originated from RCC13.xls on CD © 1999 BCA for RCC =BA � 2��

�-!4%2)!,3 URc =�\\" $ 34!453 ,?A?H>Ugd =�\\" $% 6!,)$�$%3)'.

[X]Z�� \\ '

$)-%.3)/.3 0 \\ $ 4 \\ �&Ô

1 \\ "Ô 5 \\ �"&Ô

3 \\ 6 \\ !Ô

7 \\ !Ô

�,/!$).' Eb Z= Ô �( ETUU�, Z= %"&�&

c[b�D3; Z=�\" !%�!

%$'%

�3,!" W \\ "Ô Sf \\ "!Ô 0af \\"�\ " !

Sg \\ !(Ô 0ag \\"�\ !#$

PdT�S \\ " Ô PdT�0a � �'!!

�2%35,43 ETUU�, %"&�& Z= dR�, �'!$& =�\\"�CPQ[T�#�'�

0b�W^[T�UPRT��d\Pf�, $� !# =�\\" 0b�!�ÔS�_T`X\TbT`��d�, !�Ô(&% =�\\"

0b�$�ÔS�_T`X\TbT`��d�, �%(#% =�\\"

02/6)$%�,).+3 �aX]V[T�[TV� �

?T`X\TbT`�! ! "�U`^\�R^[�UPRT

?T`X\TbT`�" "Ô%�U`^\�R^[�UPRT

?T`X\TbT`�# $! �U`^\�R^[�UPRT

?T`X\TbT`�$ Ô%$�U`^\�R^[�UPRT

?T`X\TbT`�Ô &!&�Ô�U`^\�R^[�UPRT

0 0F;H

���4����������4����������4����������4����������4�������

����

28

Page 31: User Guid

29

C O R N E RE L E M E N T S R C C 1 3– –

�?`^YTRb 3JL?;>MB??NM�NI�"3����� REINFORCED CONCRETE COUNCIL

�2[XT]b !>PCMILS�'LIOJ �<PST�Qg �3PbT �?PVT

�;^RPbX^] #IFOGHM�!���$���!���$� LGQ ���.IP��� ��

?D=278=6�B740A�b^�1B'!! )!((& #/,5-. �2WTRZTS �ATdXaX^] �9^Q�=^

Originated from RCC13.xls on CD © 1999 BCA for RCC =BA � 2��

�-!4%2)!,3 URc =�\\" $ 34!453 ,?A?H>Ugd =�\\" $% 6!,)$�$%3)'.

[X]Z�� \\ '

�$)-%.3)/.3 0 \\ $ 4 \\ Ô

1 \\ "Ô 5 \\ �"&Ô

2 \\ 6 \\ !Ô

3 \\ 7 \\ !Ô

�,/!$).' Eb Z= "&"� #Ô

c[b�D3; Z=�\" !%�!

#/2.%2

�3,!" W \\ "Ô Sf \\ "!Ô 0af \\"�\ " !

Sg \\ !(Ô 0ag \\"�\ " !

PdT�S \\ " Ô PdT�0a � �('#

�2%35,43 ETUU�, #$ � Z= dR�, �'%'% =�\\"�CPQ[T�#�'�

0b�W^[T�UPRT��d\Pf�, #�$ ' =�\\" 0b�!�ÔS�_T`X\TbT`��d�, !�%'!' =�\\"

0b�$�ÔS�_T`X\TbT`��d�, �'"$# =�\\"

02/6)$%�,).+3 �aX]V[T�[TV� �

?T`X\TbT`�! ! "�U`^\�R^[�UPRT

?T`X\TbT`�" "Ô%�U`^\�R^[�UPRT

?T`X\TbT`�# $! �U`^\�R^[�UPRT

?T`X\TbT`�$ Ô%$�U`^\�R^[�UPRT

?T`X\TbT`�Ô &!&�Ô�U`^\�R^[�UPRT

0 0F;H

��4���������4���������4���������4���������4�������

����

29

Page 32: User Guid

30

R E E N T R A N TE L E M E N T S R C C 1 3– –

�?`^YTRb 3JL?;>MB??NM�NI�"3����� REINFORCED CONCRETE COUNCIL

�2[XT]b !>PCMILS�'LIOJ �<PST�Qg �3PbT �?PVT

�;^RPbX^] !H�?R;GJF? LGQ ���.IP��� ��

?D=278=6�B740A�b^�1B'!! )!((& #/2.%2 �2WTRZTS �ATdXaX^] �9^Q�=^

Originated from RCC13.xls on CD © 1999 BCA for RCC =BA � 2��

�-!4%2)!,3 URc =�\\" $ 34!453 ,?A?H>

Ugd =�\\" $% 6!,)$�$%3)'.

[X]Z�� \\ '

�$)-%.3)/.3 0 \\ $ 4 \\ "

1 \\ $ 5 \\ �Ô

2 \\ �! 6 \\ !

3 \\ �! 7 \\ !

�,/!$).' Eb Z= $&'� ETUU�, Z= Ô(!�%

c[b�D3; Z=�\" !%�!

�3,!" W \\ "Ô Sf \\ "!Ô 0af \\"�\ !#$

Sg \\ !(Ô 0ag \\"�\ !#$

PdT�S \\ " Ô PdT�0a � �%ÔÔ

2%�%.42!.4

�2%35,43 ETUU�, Ô(!�% Z= dR�, �&Ô'' =�\\"

�CPQ[T�#�'�

0b�W^[T�UPRT��d\Pf�, "�"!# =�\\" 0b�!�ÔS�_T`X\TbT`��d�, !� #( =�\\

"

0b�#S�_T`X\TbT`��d�, �%#!( =�\\"

02/6)$%�,).+3 �aX]V[T�[TV� �

?T`X\TbT`�! ! "�U`^\�R^[�UPRT

?T`X\TbT`�" "Ô%�U`^\�R^[�UPRT

?T`X\TbT`�# $! �U`^\�R^[�UPRT

0 0F;H

��4���������4����������4�������

������

30

Page 33: User Guid

31

I N T D E T SE L E M E N T S R C C 1 3– –

�?`^YTRb 3JL?;>MB??NM�NI�"3�����

�;^RPbX^] #IFOGH�"� %$'%�#/,5-.

?D=278=6�B740A�b^�1B'!! )!((& �<PST�Qg��`\e����9^Q�=^��A%'

>`XVX]PbTS�U`^\�A22!#�f[a�^]�23����������!(((�120�U^`�A22 �3PbT !(�=^d�((

$%4!),%$�#!,#5,!4)/.3ETUU�Eb !�"Ô#! �T]WP]RT\T]b�UPRb^`� [X]Z�[TV�P`TP Ô �#

7^[T�STScRbX^]�. H4B

�#2)4)#!,�0%2)-%4%23 �%.#,/3%$�!2%!30?L�.I ; )HN?LH;F #BIIM?�µ >?>O=N &CH;F�µ 0?L�.I %>A?�$

! # &�Ô #&% "!# "$' !''" ! �Ô%%

" $%!�"Ô $(( "&$Ô #"# "$"" " �($!

# %!Ô %"" ##% #(( "(%! # !�$!

$ &%'�&Ô &$Ô #(&Ô $&$ #Ô ! $ !�(&$

Ô (""�Ô '%' $Ô( Ô$( $ $! Ô "�%#"

% ! &%�"Ô ((! Ô" Ô %"$ $Ô'! % #�#'Ô

& !"# !!!$ Ô'" %(( Ô!"! & $�"##

' !#'#�&Ô !"#& %$#Ô &&Ô Ô%% ' Ô�!&Ô

Hole face !# ( !#( &%! Hole face �!

Col face ( ( Col face �!

�,).+�2%15)2%-%.43 QCNBCH

0?L�.I P !MP 4IN;F�.I ,I=;NCIH ";H>

! !�Ô(&% !##& "%�Ô( !�Ô �S !

" !�""%" $%% (�"' "�"Ô�S !

# �('&! ÔÔ$ !!� # #� �S !

$ �'!(! %ÔÔ !#� $ #�&Ô�S !

Ô �%(#% &Ô% � $�Ô �S

% �Ô(Ô& 'Ô& � � �S

& �Ô!%% (Ô' � � �S

' �$Ô! ! Ô( � � �S

Hole face $� !"'

Col face #�#(!"

�,).+�0%2)-%4%23 147.95270?L�.I ; )HN?LH;F #BIIM?�µ >?>O=N &CH;F�µ .I 3J;=CHA

! ! "�Ô "!" !#! !$' !!%" !! !"Ô

" "Ô%�"Ô ##Ô !("Ô ""# !& !�' !% !"

# $! $Ô' "Ô$ "(' ""$!�% ! "'

$ Ô%#�&Ô Ô'! #!ÔÔ #&$ "&'!�Ô !" "&Ô

Ô &!&�Ô & $ #&& $$( ##"!�# !# #

% '&!�"Ô '"& $#'Ô Ô"$ #'%!�! !Ô "(Ô

& ! "Ô (Ô Ô Ô(( $$ �( !& "(

' !!&'�&Ô ! &# Ô%!Ô %&$ $($ �& !( "(

( !##"�Ô !!(% %"# &Ô Ô$' �Ô " #

Page 34: User Guid

32

Crack Width!In the design of reinforced concrete structures, it is assumedthat the tensile capacity of concrete does not contribute tothe strength of the structure, and steel reinforcement isprovided to resist the internal tensile forces that develop.Because steel reinforcement can develop the resisting tensileforce only by extension (i.e. steel needs to extend to developstress), and hence causes cracks to form in the surroundingconcrete, cracks in reinforced concrete structures cannot beavoided. In day-to-day practical design, crack widths arecontrolled by limiting the maximum spacings of the tensionreinforcement. However there are times when the engineerwill need to carry out more rigorous analysis and calculations,e.g. in the design of water-retaining structures, and designfor severe exposure where estimation/prediction of crackwidth is important. This spreadsheet calculates crack widthsin accordance with BS 8110 and BS 8007.

Crack width limits are set as:

• BS 8110: Part 1, Clause 3.12.11.2.1 0.3 mm – In ‘normal’reinforced concrete structures

• BS 8007 0.2 mm – In water-retaining structures undersevere or very severe exposure

• BS 8007 0.1 mm – In water-retaining structures withcritical aesthetic appearance

In calculation of crack width, elastic theory with ‘crackedsection’ is adopted. Both BS 8110: Part 2 and BS 8007appendix B gives the crack width formula.

−+

××=

xh

ca21

a3W

cr

mcr

In calculating crack width, w, the average strain, em, at thelevel where cracking is being considered allows a stiffeningeffect, e2 of concrete between cracks

2m 1 −=

where e1 is the theoretical strain at the level considered,calculated on the assumption of a cracked section using halfthe concrete modulus Ec to allow for creep effects.

( )( )xdAE3xhb

s

2

2s −××

−×=

BS 8007 allows an additional enhancement factor of 1.5 incalculating e2 for structures designed with a crack widthlimit of 0.1 mm. The spreadsheet provides an option to adoptthis enhanced factor if design crack width is limit to 0.1 mm.To choose this option, select the blue ‘check box’ on theright hand margin.

acr is the distance from the point considered to the surfaceof the nearest longitudinal bar. The input value is defaultedto the distance at the point on the tension face midwaybetween two bars. However other values can be entered tosuit other locations, e.g. corner bars. The default value canbe reset by pressing the blue button on the right handmargin.

RCC14 Crack Width.xls

E L E M E N T S R C C 1 4–

Page 35: User Guid

33

C R A C K ~ W I D T H SE L E M E N T S R C C 1 4– –

�?`^YTRb

3 JL?;>MB?? NM �NI �"3 ��� � �? N=�2[XT]b

!>PCMILS�' LIOJ <PST�Qg 3PbT ?PVT�;^RPbX^]

' LC>�FCH? �� 2# ���!OA��� ��

# L;=E�7C>NB�# ;F=OF;NCIHM �NI�"3�� � ���� �����"3������ ��� 2WTRZTS ATdXaX^] 9^Q�=^

�> `XV X]PbTS�U`^\�A22! $�f [a�^]�23��������! (((�120�U^`�A22 =BA 2��

# 2!# +�7)$ 4(�# !,# 5,!4)/.3 ���& ,% 852% �

).0 54URc, #Ô =�\\

"

Ug, $% =�\\"

0`TP�^U�`T X]U `RT\T]b���0a���, " (# \\"

Q �, ! \\

W �, "Ô \\

S�, " \\

<X]X\c\�R^dT �b �bT]aX^]�`T X]U `RT\T]b���2 > ���, $ \\

<Pf\c\�QP �a_PRX]V���B���, ! Ô \\

1P �SXP���3 80���, " \\���PR`���,���B�"�M"��2 >�3 80�"�M"�M�! �"��3 80�"��Pa�ST UPc[b�^ �T]bT �^bWT �dP[cT �,� ' �! \\

��PR ���Xa�SXabP]RT �U ^\�bWT �_^X]b�R^]aXST`TS�b �bWT �ac UPRT �^U�bWT �]TP`Tab�[^]VXbcSX]P[�QP`

0__[XTS�aT dXRT �\^\T]b���<a��, %(� :=\

# !,# 5,!4)/.3\^Sc[X�^U�T [PabXRXbg�^U�R^]R`TbT ���4R��,��! �"���" � �"�URc��, ! #�Ô :=�\\

"

\^Sc[X�^U�T [PabXRXbg�^U�abTT [���4a���, " � :=�\\"

<^Sc[P �`PbX^���α ���,��4a�4R��, ! $�'!�� ρ ����,�0a�QS�,� � !

ST_bW�b �]TcbP[�PfXa���f ��,���α.ρ����α.ρ�"���"�α.ρ� �Ô�S�,� 'Ô \\

��I���,�S��f�#��, ! &"

AT X]U `RT\T]b�ab Taa���Ua���,�<a��0a�I���, ! (" =�\\"

2 ^]R`TbT �ab Taa���UR ���,��Ua�0a��� �Ô�Q�f��, (�Ô =�\\"

BbPX]�Pb�a^UUXb�^U�R^]R`TbT �QTP\�a[PQ�� ε1 ��,��Ua�4a���W�f���S�f��, � ! #&Ô

BbPX]�ScT �b �abXUUT]X]V�T UUTRb�^U�R^]R`TbT �QTbeTT]�R`PRZa���ε"���,ε "�,�Q ��W�f�

"��#�4a�0a��S�f���U �R`PRZ�e XSbWa�^U� �"�\\ DaTS

ε "�,�! �Ô�Q ��W�f�"��#�4a�0a��S�f���U �R`PRZ�e XSbWa�^U� �! �\\ ]�P

ε "�,� � ! '(

0dT`PVT�abPX]�U �RP[Rc[PbX^]�^U�R`PRZ�e XSbW���ε\ �� ,�ε ! �ε "�, � ! ! '%

2 P[Rc[PbTS�R`PRZ�e XSbW����e ���,�#�PR`�ε\��! �"��PR`�R���W�f��

# !,# 5,!4% $ �# 2!# +�7)$ 4(��Q�� ��� � \\

REINFORCED CONCRETE COUNCIL

��PR`��

��,����,��

��a��

�R^��

��380��

��Q��

��W����S����f��

=4DCA0;��0G8B

0a

ε!

h

Ua

εR

�Ua��0a�����εa

� ���UR��Q��f����� ��������

33

2

2

Page 36: User Guid

34

RCC21 SubframeAnalysis.xls analyses sub-frames inaccordance with BS 8110 using moment distribution. Inputsare required on two sheets.

MAIN!This single sheet consists of the main inputs, most of whichshould be self-explanatory. As in other spreadsheets, avoidpasting input from one cell to another as this may causeformatting and other errors.

The dimension of the flange width, bf, is automated to beeither bw + 0.07 x span for L beams or bw + 0.14 x span for Tbeams.

Unwanted data cells are ‘greyed out’. The use of C, K, or Ecan alter the characteristics of a support from cantilever toknife-edge to encastre. Remote ends of supports may be Ffor fixed; otherwise they default to pinned. Extraneous datais highlighted in red or by messages in red. Under OperatingInstructions a number of checks, mainly for missing entries,are carried out and any problems are highlighted. At thebottom of the sheet a simplistic but to-scale arrangementand loading diagram is shown. This is given to aid datachecking. It may prove prudent to write down expectedvalues for bending moments at each support down beforeprogressing to ACTIONS!

Also, under Operating instructions, the user should inputthe type of redistribution required as explained more fullyunder Redistribution (see page 17).

• 0 means full redistribution

• 1 limits alternate span upward redistribution to thepercentage specified

• 2 means no span moment redistribution

UDLs are input as line loads e.g. 4k N/m2 for a 5.0 m widebay would be input as 20 kN/m.

Ultimate and characteristic support reactions are given atthe bottom of the sheet

ACTIONS!This sheet includes charts showing the elastic bendingmoment diagram, redistributed moment envelope, elasticshear forces and envelope of redistributed shear forces.These diagrams are based on data from the analysisundertaken in Analysis! at 1/20 span points. Maximum spanand support moments are given.

The user is required to input desired amounts ofredistribution to the initial moments in line 26. Cell L14allows three types of distribution according to the user’spreference for calculating span moments (see Assumptionsmade: redistribution). Redistribution input is included close

to the bending moment diagrams in order to give the usercontrol rather than relying on blanket redistribution.The sheet also tabulates elastic and redistributed ultimateshears and column moments according to the various loadcases.

Analysis!This sheet details the moment distribution analysis carriedout but is not necessarily intended for printing out otherthan for checking purposes

Graf!This sheet comprises data for graphs used on other sheets,particularly in ACTIONS! It is not necessarily intended forprinting out other than for checking purposes

RCC21 Subframe Analysis.xls

A N A L Y S I S R C C 2 1–

Page 37: User Guid

35

M A I NA N A L Y S I S R C C 21– –

�?`^YTRb 3JL?;>MB??NM�NI�"3�����

�2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] ,?P?F����"?;G�IH�FCH?�� @LIG�"�NI�%��������

35"&2!-%�!.!,93)3�NI�"3����������

>`XVX]PbTS�U`^\�A22"!�f[a�^]�23����������������!(((�120�U^`�A22

�,/#!4)/. Bc__^`ba�U`^\�V`XS� 1 b^�V`XS 4

�30!.3,��G� (��GG� <Q��GG� B@��GG� 4SJ?

B?0=�!� &� % #&Ô !Ô C

B?0=�"� !"� % #&Ô !Ô C

B?0=�#� !"� % #&Ô !Ô C

B?0=�$� %� % #&Ô !Ô C

B?0=�Ô�

B?0=�%�

�3500/243!"/6%��G� (��GG� "��GG� %H>�#IH> "%,/7��G�

Bc__^`b�! "�(Ô $ # 5 #�!

Bc__^`b�" #� $ # ? #�!

Bc__^`b�# � #�!

Bc__^`b�$ :

Bc__^`b�Ô $� $ # ? #�!

Bc__^`b�%

Bc__^`b�&

REINFORCED CONCRETE COUNCIL

�<PST�Qg �3PbT �?PVT

2-7 ���.IP��� ��

�2WTRZTS �ATdXaX^] �9^Q�=^

=BA 2��

<@��GG� ,/!$).'�0!44%2.!#ÔÔ GCH G;R

" ÔÔ 3403 ! !�$

" ÔÔ 8<?>B43 !�%

!"!Ô

(��GG� "��GG� %H>�#IH>

$ # ?

# # ?

$ # ?

#

# # ?

�,/!$).' D3;a��Z=�\�����?;a��Z=�����?^aXbX^]��\�

$?;> )GJIM?> 0IMCNCIH ,I;>?>

3J;H�� ,I;> ,I;> @LIG�F?@N ,?HANB 3J;H��D3;� #"�" !"�Ô lllll lllll D3;

?;�!� lllll ?;�!

?;�"� lllll ?;�"

?P`b�D3;� ?P`b�D3;

3J;H�� 3J;H��D3;� #"�" !"�Ô lllll lllll D3;

?;�!� lllll ?;�!

?;�"� "Ô "Ô Ô� lllll ?;�"

?P`b�D3;� ?P`b�D3;

3J;H�� 3J;H��D3;� "$�$" '�%Ô lllll lllll D3;

?;�!� lllll ?;�!

?;�"� lllll ?;�"

?P`b�D3;� &�Ô $�Ô !�Ô "�$ ?P`b�D3;

�,/!$).'�$)!'2!-

"

�2%!#4)/.3��Z=�3500/24� � � � �

0;;�B?0=B�;>0343� !Ô#�Ô &"$�' &&'�# $&'�$

>33�B?0=B�;>0343� !&&�& $%Ô�( Ô%'�$ $!Ô�(

4E4=�B?0=B�;>0343� "&�" %"!� %#%�$ "&!�

2WP`PRbT`XabXR�3TPS &"�' #Ô$�% #'%�& "#&�"

2WP`PRbT`XabXR�8\_^aTS $&�$ !$"�& !$'�! (!�$

$?;> )GJIM?> 0IMCNCIH ,I;>?>

,I;> ,I;> @LIG�F?@N ,?HANB!&�Ô Ô�% lllll lllll

"$ % "� lllll

Ô !' $�Ô lllll

lllll lllll

lllll

lllll

lllll lllll

lllll

lllll

%

� � �&Ô�

�'�"

!!%�&

# �Ô

$%�"

Page 38: User Guid

36

A C T I O N SA N A L Y S I S R C C 2 1– –

�? ` YTRb 3 JL?;>MB?? NM �NI�"3 ��� � �REINFORCED CONCRETE

COUNCIL�2 [XT]b !>PCMILS�' LIOJ <PST�Qg 3PbT ?PVT

�;^RPbX^] ,?P?F����" ?;G�IH�FCH? �����@LIG�" �NI�% �������� 2-7 ���!OA��� ��

3 5"&2!-% �!.!,93 )3 �NI�"3�� � ��� ���� 2WTRZTS ATdXaX^] 9^Q�=^

>`XVX]PbTS�U`^\�A22"! �f [a�^]�23����������������! (((�120�U^`�A22 =BA � 2��

�"% .$ ).' �-/-% .4�$ )!' 2!-3 ��Z=\�

" % F;MNC=�-IG?HNM % " 2?>CMNLC<ON?>�% HP? FIJ? %

350 0/24�.I� � � � � � � �4 [PabXR�<� (Ô�# &$#�# '%'�% $"&�% #$�# l Z=\�\

ATSXab XQcbTS�<� ( �Ô ÔÔ&�Ô %($�( $ %�" #"�% l Z=\�\

�Q �(Ô �&Ô �' �(Ô �(Ô l l

ATSXab XQcbX^]� Ô� � "Ô� � " � � Ô� � Ô� �

30!.�.I� � � � � � �4 [PabXR�<� ! 'Ô� %##�! $ �! ! "! �$ l l

ATSXab XQcbTS�<� ! Ô"�! &$%�' #&#�Ô ! ! '�' l l

�Q� �'"" ! �! ' �(#$ �(&( l l

�3 (% !2�&/2# % �$ )!'2!-3 ��Z=�

" % F;MNC=�3 B?;LM % " 2?>CMNLC<ON?>�3 B?;LM %

1PaTS�^]�ac__^ b�

\^\T]ba�^U�

\X]��Q<��<P[b��Q�

�'

�%

�$

�"

"

$

%

'

!

! " # $

�!

�'

�%

�$

�"

"

$

%

'

!

! " # $

�Ô

�$

�#

�"

�!

!

"

#

$

Ô

Ô ! ! Ô " "Ô # #Ô $

�Ô

�$

�#

�"

�!

!

"

#

$

Ô

! " # $

30!.�.I � � �4 [PabXR�E ! (! � #! "�% $#Ô�% $#"�" #Ô%�( "'"�

ATSXab XQcbTS�E ! &&�& # "� $""�' $##�" #$Ô�! "&#�&

30!.�.I � � �4 [PabXR�E " #�$ ! ! '�$ l l l l

ATSXab XQcbTS�E " $�& ! ! %�& l l l l

�# /,5-.�-/-% .43 ��Z=\ � � � � � � �!,,�3 0!.3 0Q^dT "! � ' �& �$�!

,/!$% $ 1T[^e ! Ô� #"�( �$ �" �"�"

/$$ �3 0!.3 0Q^dT ÔÔ�% �& ! &�Ô

,/!$% $ 1T[^e #(�& �# Ô! �% (�Ô

% 6% .�3 0!.3 0Q^dT �""�& ! ! %�Ô �""�"

,/!$% $ 1T[^e �! %�" $&�% �! '� �! "�!

36

Page 39: User Guid

37

This spreadsheet analyses and designs (A & D: Analysis anddesign) up to six spans of one-way solid slabs to BS 8110using continuous beam analysis. There is user input on eachof the first four sheets and choice of reinforcement for eachspan is implicit.

MAIN!This single sheet consists of the main inputs, most of whichshould be self-explanatory.

The number of spans is altered by entering or deleting dataunder L (m). Unwanted data cells are ‘greyed out’. The useof C, K or E can alter the characteristics of the end supportsfrom cantilever to knife-edge to encastre. Extraneous datais highlighted in red or by messages in red. Under OperatingInstructions a number of checks are carried out and problemsare highlighted.

For the purposes of defining load, the section is assumed tobe 1.00 m wide. At the bottom of the sheet a simplisticloading diagram is given to aid data checking. Great careshould be taken to ensure this sheet is completed correctlyfor the case in hand. It may prove prudent to write downexpected values of bending moments at each support downbefore progressing to ACTIONS!

Support reactions are given at the bottom of the sheet.

ACTIONS!This sheet shows bending moment and shear force diagramsfrom the analysis undertaken in Analysis! The user is requiredto input the desired amount of redistribution to the initialmoments in line 25. Cell J14 allows three types of distributionaccording to the user’s preferences. Requestingredistribution at a cantilever produces a warning messagein the remarks column.

SPANS!In SPANS! the user is required to choose top, bottom andlink reinforcement for each span. The amounts of bendingand shear reinforcement required and checks are derivedfrom detailed calculations in Bar! Unwanted cells are ‘greyed’out.

Unless overwritten, reinforcement diameter specified for asupport carries through both sides of the support, i.e. thediameter specified for the right hand support of a spancarries over to the left hand support of the next span. Itmay be possible to obtain different numbers of bars eachside of the support due to differences in depth or to complywith minimum 50% span steel; practicality should dictatethat the maximum number of bars at each support shouldbe used.

With regard to deflection, the area of steel required, As mm2/m, shown under heading Design, may have beenautomatically increased in order to reduce service stress, fs,and increase modification factors to satisfy deflectioncriteria. The percentage increase, if any, is shown underDeflection. With respect to cantilevers, neither compressionsteel enhancement nor consideration of rotation at supportsis included.

Hogging moments at ¼ span are checked and used in thedetermination of top steel in spans. Careful examination ofthe Bending Moment Diagram and Graf! should help todetermine whether any curtailment of this reinforcement iswarranted.

To avoid undue sensitivity, especially with regard todeflection, reinforcement may be over-stressed by up to 2.5%

Please note that this example has a high point load near tothe first support. This load was chosen to illustrate that shearis checked and that shear links can be designed. In moreusual circumstances, no shear links will be required and theshear link diameter input at G22 should be deleted.

Weight!Weight! gives an estimate of the amount of reinforcementrequired in one direction of the slab per bay and per cubicmetre. Bay and support widths are required as input.

Simplified curtailment rules, as defined in BS 8110 Clause3.12, are used to determine lengths of bars. The figuresshould be treated as approximate estimates only as theycannot deal with the effects of designers’ and detailers’preferences, rationalisation, etc, etc. They do not allow forreinforcement in supporting beams or for mesh.

Analysis!This sheet details the moment distribution analysis carriedout but is not necessarily intended for printing out otherthan for checking purposes.

Bar!This sheet shows design calculations, complete withreferences to BS 8110. It is not necessarily intended forprinting out other than for checking purposes. In manyinstance service stress, fs, has been set to 1.0 or 0.0001 N/mm2 to avoid problems with division by zero.

Graf!This sheet comprises data for graphs used on other sheets,particularly in ACTIONS! It is not necessarily intended forprinting out other than for checking purposes.

RCC31 One-way Solid Slabs (A & D).xls

S L A B S R C C 3 1–

Page 40: User Guid

38

M A I NS L A B S R C C 3 1– –

�? ` YT Rb 3 JL?;>MB?? NM �NI�"3 ��� � ��

�2 [XT]b !>PCMILS�' LIOJ �<PST�Qg �3PbT �?PVT

�;^RPbX^] �NB�& FIIL�M F;< @LIG�!�NI�' LGQ ���!OA��� ��

>=4�F 0H �B>;83�A2�B;01�34B86=�b �1B�'! ! )! ((&�R�e �0=0;HB8B �2 WTRZTS �ATdXaX^] �9^Q�=^

>`XVX]PbTS�U`^\�A2 2#! �f [a �^]�23����������������! (((�120�U^`�A22 =BA � 2��

�,/#!4)/.c__^`ba�U`^\�V XS� 0 b �V XS 6

�-!4%2)!,3 #/6% 23

URc #Ô =�\\� W�PVV " \\ C ^_�R^dT ` "Ô \\

Ug $% =�\\� γs ! � Ô abTT [ 1b\�R^dT ` "Ô \\

Ugd $% =�\\� γc ! �Ô R^]R`TbT

�30!.3 ,��\ � (��\\� 350 0/243

B?0=�! � '� #Ô 3OJJILN�.I 4SJ?

B?0=�"� &�" "Ô � ZB?0=�#� &�" "Ô �,/!$ ).' �0!44% 2. � 4B?0=�$� &�" "Ô GCH G;R :�]XUT ���2 �P]bX[T dT `��^ �4 �]RPab T �

B?0=�Ô� 3403 ! ! �$B?0=�%� 8<?>B43 ! �%

�,/!$ ).' D3;a��Z=�\�����? ;a��Z=�\����? ^aXbX^]��\� �,/!$ ).'$ ?;> )GJIM?> 0 IM CNCIH $ ?;> )GJIM?> 0 IM CNCIH

3 J;H�� ,I;> ,I;> @LIG�F?@N 3 J;H�� ,I;> ,I;> @LIG�F?@N

D3;� (�& Ô� llll D3;� %� ! �Ô llll?;�! � &Ô� ! � ?;�! �

? ;�"� ? ;�"�

3 J;H�� 3 J;H��

D3;� %� ! �Ô llll D3;� llll?;�! � ? ;�! �

? ;�"� ? ;�"�

3 J;H�� 3 J;H��

D3;� '�Ô Ô� D3;� llll?;�! � ? ;�! �

? ;�"� ? ;�"�

REINFORCED CONCRETE COUNCIL

�,/!$ ).' �$ )!'2!-

! '

�2% !#4)/.3 ��Z=�\�

3 50 0 /24� � � � � �

2 WP`PRbT XabXR�3 TPS (&�(& &(�'( $&�! Ô ÔÔ�Ô$ ! (�%Ô<Pf�8\_^aTS ! (�&% "$�! % "$�'& "Ô� &�#&<X]�8\_^aTS �"%�#Ô �%�! " �"�"" �$�Ô# �(�$$

<0G �D;C8<0C4 � ! %'�&& ! Ô �Ô! ! Ô�' ! ! &�&Ô #(�#

38

Page 41: User Guid

39

A C T I O N SS L A B S R C C 3 1– –

�? `^ YT Rb 3 JL? ;>MB? ? NM �NI �"3 ��� � ��REINFORCED CONCRETE

COUNCIL�2 [XT]b !>PCMILS�' LIOJ <PST�Qg 3PbT ? PVT

�;^RPbX^] �NB�& FIIL�M F;<���@LIG�!�NI �' LGQ ���!OA��� ���

/.% �7!9�3 /,)$ �2# �3 ,!" �$ % 3 )' .�NI�" 3 ��� � ��� ����=�Q�!.!2 WTRZ TS ATdXaX^] 9^Q�=^

> `XVX]PbTS�U`^\�A22#! �f [a�^]�23����������������! (((�120 �U^`�A22 =BA � 2��

�" % .$ ).' �-/-% .4�$ )!' 2!-3 ��Z=\�\�

! % F;M NC=�-IG?HNM ' ! 2?>CMNLC<ON?>�% HP? FIJ? '

3 50 0 /24�.I� � � � � �

4 [PabXR�<� ($�" Ô%�% && �# $(�" l lATSXab XQcbTS�<� &Ô�$ ÔÔ�Ô %(�% $'�& l l

�Q� ! � �' �(' �( �(( l lATSXab XQcbX^]� " � � "� � ! � � ! � �

3 0 !.�.I � � � �

4 [PabXR�<� ! ((�" ! '�% & � "$�& l lATSXab XQcbTS�<� ! ((�" ! %�! & �" ""�' l l

�Q� ! � �'%Ô ! � # �("$ l l

�"Ô

�"

�! Ô

�!

�Ô

Ô

!

! Ô

Ô ! ! Ô " "Ô # #Ô

�"Ô

�"

�! Ô

�!

�Ô

Ô

!

! Ô

! " # $

�3 (% !2�&/2# % �$ )!' 2!-3 ��Z=�\�

! ' ! 2?>CM NLC<ON?>�3 B?;LM '

3 0 !.�.I � � �

4 [PabXR�E � ! %'�' ! ! ! �" $$�! ##�( %'�' &$�(ATSXab XQcbTS�E ! %'�' ! '�( $$�Ô #%�! %(�& &$�%

3 0 !.�.I �

4 [PabXR�E � $Ô�# #(�( l l l lATSXab XQcbTS�E $$�! #(�# l l l l

% F;M NC=�3 B?;LM

�! Ô

�!

�Ô

Ô

!

! Ô

"

Ô ! ! Ô " "Ô # #Ô

�! Ô

�!

�Ô

Ô

!

! Ô

"

! " # $

39

Page 42: User Guid

40

S P A N SS L A B S R C C 3 1– –

�?`^YTRb 3JL?;>MB??NM�NI�"3������

�2[XT]b !>PCMILS�'LIOJ�;^RPbX^] �NB�&FIIL�MF;<���@LIG�!�NI�'

/.%�7!9�3/,)$�2#�3,!"�$%3)'.�NI�"3�����������=�Q�!.!,93)3

>`XVX]PbTS�U`^\�A22#!�f[a�^]�23����������������!(((�120�U^`�A22

�30!.�� ,%&40d \\ !

!#4)/.3 < Z=\�\ �

�Q !�

E Z=�\ !%'�&&

$%3)'. S \\ #!!�

0a \\��\ $ÔÔ

0a� \\��\ 0a�

4/0�34%%, 4 �� ����� �0a�_`^d \\��\ Ô # �

"4-�34%%, 4 �� ����� 40a��_`^d \\��\ ( Ô 0a�_`^d

3(%!2 d =�\\" �Ô$#

dR =�\\" �$(( BWTP`�[X]Za

<X]�!(��\ C �$%&,%#4)/. ;�S "%� Ô( 0[[^eTS

�#(%#+3 ��0a IE

S��f IE

\Pf�B IE

REINFORCED CONCRETE COUNCIL

<PST�Qg 3PbT ?PVT

LGQ ���.IP��� ���2WTRZTS ATdXaX^] 9^Q�=^

=BA � 2��

#%.42% 2)'(4&

!((�" &Ô�$

!� �'

! '�'&

# &� # (�

!Ô(& Ô'%

0a�

�� ��� 4 �� ����� 0a�_`^d %&

�� ����� 4 �� �����"Ô!# 0a��_`^d ' $

�#Ô"

a�`TÓcX`TS �$Ô#

� �

"%�% # IE �0a�X]R`TPaTS�Qg�$(�'��

IE IEIE IE

IE IE

�30!.�� ,%&40d

!#4)/.3 < &Ô�$

�Q �'

E $$�$%

$%3)'. S "!&�

0a '#'

0a� 0a�b^_

4/0�34%%, 4 �� ����� 40a�_`^d '($ 0a��_`^d

"4-�34%%, 4 �� ����� 40a��_`^d ##Ô 0a�_`^d

3(%!2 d �" Ô

dR �%!# �

� � ;X]

$%&,%#4)/. ;�S #"�'&& 0[[^eTS

�#(%#+3 ��0a IE

S��f IE

\Pf�B IE

#%.42% 2)'(4&"

!%�! ÔÔ�Ô

�'& �('

#%�!"

"!(� "!(�

#"Ô % (

$#!

�� ����� 4 �� �����$$( 0a�_`^d %$%

�� ����� 4 �� �����#&& 0a��_`^d #&&

�!%Ô

�Ô$&

Za�]^b�`TÓcX`TS � �

ÔÔ�#"Ô IE

IE IE

IE IE

IE IE

Page 43: User Guid

41

S P A N SS L A B S R C C 3 1– –

�?`^YTRb 3JL?;>MB??NM�NI�"3������

�2[XT]b !>PCMILS�'LIOJ�;^RPbX^] �NB�&FIIL�MF;<���@LIG�!�NI�'

/.%�7!9�3/,)$�2#�3,!"�$%3)'.�NI�"3�����������=�Q�!.!,93)3

>`XVX]PbTS�U ^\�A22#!�f[a�^]�23����������������!(((�120�U `�A22

�30!.�� ,%&40d

!#4)/.3 < ÔÔ�Ô

�Q �('

E %(�%'

$%3)'. S "!(�

0a % (

0a� 0a�b^_

4/0�34%%, 4 �� ����� 40a�_`^d %$% 0a��_`^d

"4-�34%%, 4 �� ����� 40a��_`^d $Ô" 0a�_`^d

3(%!2 d �#!'

dR �Ô$& �

� � ;X]

$%&,%#4)/. ;�S #"�'&& 0[[^eTS

�#(%#+3 ��0a IE

S��f IE

\Pf�B IE

REINFORCED CONCRETE COUNCIL

<PST�Qg 3PbT ?PVT

LGQ .IP��� ���2WTRZTS ATdXaX^] 9^Q�=^

=BA � 2��

#%.42% 2)'(4&"

& �" %(�%

!� �(

&$�%

"!(� "!(�

&& &%$

#"Ô 0a�

�� ����� 4 �� �����#$( 0a�_`^d ( Ô

�� ����� 4 �� �����( Ô 0a��_`^d #$(

�#$!

�%!"

Za�]^b�`TÓcX`TS � �

#Ô�''" IE

IE IE

IE IE

IE IE

�0a�X]R`TPaTS�Qg��"��

�30!.�� ,%&40d

!#4)/.3 < %(�%

�Q �(

E $$�!Ô

$%3)'. S "!(�

0a &%$

0a� 0a�b^_

4/0�34%%, 4 �� ����� 40a�_`^d ( Ô 0a��_`^d

"4-�34%%, 4 �� ����� 40a��_`^d #$( 0a�_`^d

3(%!2 d �" "

dR �%!" �

� � ;X]

$%&,%#4)/. ;�S #"�&"& 0[[^eTS

�#(%#+3 ��0a IE

S��f IE

\Pf�B IE

#%.42% 2)'(4&"

""�' $'�&

�(" �((

#(�#

"" � "!(�

#"Ô Ô#Ô

#"Ô 0a�

�� ����� 4 �� �����#&& 0a�_`^d Ô%Ô

�� ����� 4 �� �����#$( 0a��_`^d #&&

�!&(

�Ô"#

Za�]^b�`TÓcX`TS � �

Ô$�'! IE

IE IE

IE IE

IE IE

41

Page 44: User Guid

42

Using continuous beam analysis, this spreadsheet analysesand designs up to six spans of ribbed slab to BS 8110. Thereis user input on each of the first three sheets and choice ofreinforcement for each span is implicit.

MAIN!This single sheet consists of the main inputs which shouldbe self-explanatory.

The number of spans is altered by entering or deleting dataunder L (m). Unwanted data cells are ‘greyed’ out. The useof C, K or F can alter the characteristics of the end supportsfrom cantilever to knife-edge to fixed. Extraneous data ishighlighted in red or by messages in red. Under OperatingInstructions a number of checks are carried out and anyproblems are highlighted.

For the purposes of defining load the section underconsideration is assumed to be 1.00 m wide. It will be seenfrom Bar! that moments per metre are converted tomoments per rib, and calculations of reinforcement areasrequired etc., are based on moments and shear per rib. Greatcare should be taken to ensure this sheet is completedcorrectly for the case in hand. It may prove prudent to writeexpected values of bending moments at each support downbefore progressing to ACTIONS!

Combo-boxes to the right under Operating Instructionsdefine minimum bar sizes to be used (e.g. at supportsbetween ribs) and whether the user wants to use links ornot. If links are required these may be either designed ornominal links; the centres of nominal links can be changed.

Towards the bottom of the sheet a simplistic loading diagramis given to aid data checking. At the bottom of the sheet,support reactions are given.

ACTIONS!This sheet shows bending moment and shear force diagramsfrom the analysis undertaken in Analysis! The user is requiredto input desired amount of redistribution to the initialmoments in line 26. Cell L14 allows three types of distributionaccording to the user’s preferences. See Redistribution underAssumptions made on page 17.

At some future stage might it be possible in the spreadsheetto summarise reinforcement and where and why failureshave occurred.

SPANS!In SPANS! the user is required to choose top, bottom andlink reinforcement for each span. The amounts of bendingand shear reinforcement required and checks are derivedfrom detailed calculations in Bar! Unwanted cells are ‘greyed’out.

The reinforcement diameter specified for a support carriesthrough both sides of the support, i.e. the diameter specifiedfor the right hand support of a span carries over to the lefthand support of the next span. It should be noted thathogging moment is checked both at the centre of support(solid section) and the solid/rib intersection (ribbed section).As the moments at the solid/rib intersection each side ofthe support may differ, it may be possible to obtain a designgiving different numbers of bars each side of the support.Practicality should dictate that the maximum number of barsat each support is used for detailing.

Hogging moments at ¼ span positions within a span arechecked and are used in the determination of top steel inspans.

WEIGHT!WEIGHT! Gives an estimate of the amount of reinforcementrequired in one direction of the slab per rib and per squaremetre. Simplified curtailment rules, as defined in BS 8110:Part 1, Clause 3.12, are used in the determination of lengthsof bars. The figures should be treated as approximateestimates only as they cannot deal with the effects ofdesigners’ and detailers’ preferences, rationalisation, etc, etc.They do not allow for reinforcement in supporting beamsor for mesh.

Analysis!This sheet details the moment distribution analysis carriedout. It is not necessarily intended for printing out, otherthan for checking purposes.

Bar!This sheet shows design calculations, complete withreferences to BS 8110. It is not necessarily intended forprinting out other than for checking purposes. In spans,service stress, fs, may be reduced to satisfy deflection criteria.In many instances, minima of 1.0 or 0.0001 have been usedto avoid problems with division by zero.

Graf!This sheet comprises data for graphs used on other sheets,particularly in ACTIONS! It is not necessarily intended forprinting out other than for checking purposes.

RCC32 Ribbed Slabs (A & D).xls

S L A B S R C C 3 2–

Page 45: User Guid

43

M A I NS L A B S R C C 3 2– –

�? `^YT Rb 3 JL?;>MB? ? NM �NI �"3 ��� � �REINFORCED CONCRETE

COUNCIL�2 [XT]b !>PCMILS�' LIOJ �<PST�Qg �3PbT ? PVT

�;^RPbX^] �L>�& FIIL�M F;< U ^\�! �b �ÔP LGQ ���!OA��� ��

A81143 �B;01B�b �1B�'! ! )! ((&��0]P[gaXa���3 TaXV]� �2 WTRZTS ATdXaX^] �9^Q�=^

> `XVX]PbTS�U`^\��A2 2 #"�f [a �^]�23�����������������! (((�120�U^`�A22 =BA � 2��

�,/# !4)/.Bc__^`ba�U ^\�V XS� ! b �V XS ÔP �

�-!4% 2)!,3 # /6% 23 ��b �[X]Za��^ �XU�]^�[X]Za��b �`T X]U�

URc #Ô =�\\� W�PVV " \\ C^_�R^dT ` " \\

Ug $% =�\\� γm ! � Ô abTT [ 1b\�R^dT ` " \\

Ugd $% =�\\� γm ! �Ô R^]R`TbT BXST �R^dT ` " \\

3T]aXbg "#�% Z=�\� �=^`\P[�eT XVWb�R^]R`TbT� 2)"3a[PQ�ST_bW��WU ! \\

�3 0 !.3 3 IFC>��\\� AXQ�e XSbW ! Ô \\

,��\ � (��\\� ,?@N 2 CABN 2 T]b Ta ( \\

B?0=�! � %�Ô "&Ô $Ô ! ! � ! �X] ! bP_T `

B?0=�"� &� "&Ô ! ! ! ! � 3 50 0 /243B?0=�#� &�Ô "&Ô ! ! $Ô � 3 OJJILN�.I 4SJ?B?0=�$� � ! :

B?0=�Ô� � $ 4

B?0=�%� � : �]XUT���2 �P]bX[TdT`��^`�4�]RPab T�

�,/!$ ).'D3;a��Z=�\������? ;a��Z=�\�����? ^aXbX^]��\�3 ?F@ !>>�$ ?;> )GJIM?> 0 IM CNCIH 3 ?F@ !>>�$ ?;> )GJIM?> 0 IM CNCIH

3 J;H�� 7?CABN ,I;> ,I;> @LIG�F?@N 3 J;H�� 7?CABN ,I;> ,I;> @LIG�F?@ND3;� #�(# "�Ô $� llll D3; llll

?;�! � llll '�Ô ! � �$Ô ?;�! lll

?;�"� llll ?;�" lll

3 J;H�� l l l U 3 J;H�� l l l U

D3;� $�! ( "�Ô $� llll D3;

?;�! � llll '�Ô ! � ! �$Ô ?;�! lll

?;�"� llll ?;�" lll

3 J;H�� l l l U 3 J;H�� l l l U

D3;� #�'" "�Ô $� llll D3; llll

?;�! � llll ?;�! llll

?;�"� llll ?;�" llll

�,/!$ ).' �0 !44% 2. GCH G;R

3403 ! ! �$

8<?>B43 ! �%

�,/!$ ).' �$ )!' 2!-

� �;�2% !# 4)/.3 ��Z=�\�

3 50 0 /24� � � � � � � �

2 WP`PRbT XabXR�3 TPS "#�$ Ô&�( $'� "#�' l l l

<Pf�8\_^aTS ! "�' "(�% "(�# ! &�Ô l l l

<X]�8\_^aTS �'�' &�Ô Ô�# �(� l l l

<0G �D;C8<0C4 � Ô#�# ! "'�Ô ! ! $� %! �# l l l

43

Page 46: User Guid

44

A C T I O N SS L A B S R C C 3 2– –

�? `^YTRb 3 JL?;>MB?? NM �NI�"3 ��� � ��2 [XT]b !>PCMILS�' LIOJ <PST�Qg 3PbT ?PVT

�;^RPbX^] �L>�& FIIL�M F;<���@LIG�� �NI��; LGQ !OA��� ��A81143�B;01B�b �1B�'! ! )! ((&��0]P[gaXa���3TaXV]� 2 WTRZ TS ATdXaX^] 9^Q�=^

>`XVX]PbTS�U`^\��A22#"�f [a�^]�23�����������������! (((�120�U^`�A22 =BA � 2��

�"% .$ ).' �-/-% .4�$ )!' 2!-3 ��Z=\�\�

� % F;MNC=�-IG?HNM �; � 2?>CMNLC<ON?>�% HP?FIJ? �;

350 0/24�.I � � � � � � �4 [PabXR�<� � ' �! %'�$ 'Ô�( l l Z=\�\

ATSXab XQcbTS�<� � &"�! %'�$ &#� l l Z=\�\

�Q� ! � �( ! � �'Ô l l l

ATSXab XQcbX^]� ! � � � � ! Ô� �

3 0!.�.I � � � � � �4 [PabXR�<� Ô(�%" $'�&Ô $$�! # l l l

ATSXab XQcbTS�<� Ô&�$ $Ô�%Ô Ô � " l l l

�Q� �(%# �(#% ! �! ## �E0;D4 � �E 0;D4� �E 0;D4�

�3 (% !2�&/2# % �$ )!' 2!-3 ��Z=�\�

REINFORCED CONCRETE COUNCIL

�'

�%

�$

�"

"

$

%

'

!

Ô ! ! Ô " "Ô

�'

�%

�$

�"

"

$

%

'

!

Ô ! ! Ô " "Ô

� % F;MNC=�3 B?;LM �; � 2?>CMNLC<ON?>�3 B?;LM �;

3 0!.�.I � � �4[PabXR�E � Ô$�! %#�# %&�Ô Ô&�" Ô%�% %#�

ATSXab XQcbTS�E � Ô#�# %"�! %&�$ Ô&�$ Ô%�% %! �#

3 0!.�.I � � �4[PabXR�E � l l l l l l

ATSXab XQcbTS�E � l l l l l l

�'

�%

�$

�"

"

$

%

'

Ô ! ! Ô " "Ô�'

�%

�$

�"

"

$

%

'

Ô ! ! Ô " "Ô

44

Page 47: User Guid

45

S P A N SS L A B S R C C 3 2– –

�? `^YTRb 3 JL?;>MB?? NM �NI �"3 ��� � �REINFORCED CONCRETE

COUNCIL�2 [XT]b !>PCMILS�' LIOJ <PST�Qg 3PbT ?PVT

�;^RPbX^] �L>�& FIIL�M F;<���@LIG�� �NI��; LGQ ���!OA��� ��

A 81143�B;01B�b �1B�'! ! )! ((&��0]P[gaXa���3TaXV 2WTRZ TS ATdXaX^] 9^Q�=^

>`XVX]PbTS�U`^\��A22#"�f [a�^]�23�����������������! (((�120�U^`�A22 =BA � 2��

�3 0 !.�� ,% & 4 # % .42% 2)' (4!# 4)/.3 < Z=\�\ � Ô&�$ &"�!

�Q ! � �(% �(

$ % 3 )' . S \\ "$#� "#(� "#(�

0a \\� Ô! ( %Ô#

0a� \\� 0a�C "! ' 0a�

4/0 �34% % , ��4 � � �LC< ��4 � � �LC< ��4 �� �LC<��$�C'�QTbeTT] ��$�C'�QTbeTT]

0a�_`^d \\� $"& 0a�C�_`^d $ " 0a�_`^d '"(

"4-�34% % , ��4 � � �LC< ��4 �� �LC< ��4 � � �LC<0a��_`^d \\� $ " 0a�_`^d %"' 0a��_`^d ""%

3(% !2 E Z=�\ Ô#�"% E %"� (

d =�\\� �&"Ô d ! � ! #

dR =�\\� �&(' ;X]Z�� % dR �(#Ô

,).+3 � �4����� ���� �4����� ���@IL����$ % &,% # 4)/. ;�S "&�! (& 0[[^eTS #'�%#& IE

�# (% # +3 � �0a IE IE IE

1P`�� ���R^dT` IE IE IE

1P �a_PRX]V IE IE IE

3 Xab�b �[X]Z IE IE IE

�3 0 !.�� ,% & 4 # % .42% 2)' (4!# 4)/.3 < Z=\�\ &"�! $�% %'�$

�Q �( �($ ! �

$ % 3 )' . S \\ "#(� "#(� "#(�

0a \\� %Ô# $! # %! '

0a� \\� 0a�C ! $( 0a�

4/0 �34% % , ��4 �� �LC< ��4 � � �LC< ��4 �� �LC<��$�C'�QTbeTT] ��$�C'�QTbeTT]

0a�_`^d \\� '"( 0a�C�_`^d ""% 0a�_`^d '"(

"4-�34% % , ��4 � � �LC< ��4 �� �LC< ��4 � � �LC<0a��_`^d \\� ""% 0a�_`^d %"' 0a��_`^d ""%

3(% !2 E Z=�\ %&�$$ E Ô&�$"

d =�\\� ! �! ## d �( '

dR =�\\� �(#Ô ;X]Z�� % dR �(#Ô

,).+3 �4����� ���@IL���� �4����� ���� �$ % &,% # 4)/. ;�S "(�"'( 0[[^eTS $$�! '" IE

�# (% # +3 � �0a IE IE IE1P`�� ���R^dT` IE IE IE1P �a_PRX]V IE IE IE

3 Xab�b �[X]Z IE IE IE

45

Page 48: User Guid

46

S P A N SS L A B S R C C 3 2– –

�?`^YTRb 3JL?;>MB??NM�NI�"3������2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] �L>�&FIIL�MF;<���@LIG���NI��;

2)""%$�3,!"3�NI�"3������������!H;FSMCM��$?MCAH�

>`XVX]PbTS�U`^\��A22#"�f[a�^]�23�����������������!(((�120�U `�A22

�30!.�� ,%&4 #%.42%!#4)/.3 < Z=\�\ %'�$ /R^[�UPRT Ô �

�Q !� !�!#

$%3)'. S \\ "#(� "#%�Ô

0a \\� %!' $Ô&

0a� \\� 0a�C !!'

4/0�34%%, ��4 �� �LC< ��4 ����$�C'�QTbeTT]

0a�_`^d \\� '"( 0a�C�_`^d ""%

"4-�34%%, ��4 �� �LC< ��4 ��0a��_`^d \\� ""% 0a�_`^d $(!

3(%!2 E Z=�\ Ô%�Ô'

d =�\\� �''(

dR =�\\� �(#Ô [X]Z� %

,).+3 � �4��������$%&,%#4)/. ;�S #!�&!" 0[[^eTS #'�$&#

�#(%#+3 ��0a IE IE

1P`�����R^dT` IE IE

1P`�a_PRX]V IE IE

3Xab�b^�[X]Z IE IE

REINFORCED CONCRETE COUNCIL

<PST�Qg 3PbT ?PVT

LGQ .IP��� ���

2WTRZTS ATdXaX^] 9^Q�=^

=BA � 2��

2)'(4&#�

�'Ô

"#(�

%%!

0a� $

�LC< ��4 �� �LC<��$�C'�QTbeTT]

0a�_`^d '"(

�LC< ��4 �� �LC<0a��_`^d " !

E %!�"%

d !�""!

dR �(#Ô

� �4��������@IL����IE

IE

IE

IE

IE

46

Page 49: User Guid

47

RCC33.xls analyses and designs bays of simple rectangularflat slabs to BS 8110: Part 1. The spreadsheet uses sub-frameanalysis with pattern loading to calculate a bending momentenvelope. This envelope may be subjected to redistribution.

For a complete rectangular flat slab the user is expected touse the spreadsheet at least four times (internal bay(s) x - x,internal bay(s) y - y, edge bay(s) x - x and edge bay(s) y - y).Punching shear should be checked using RCC13.xls.

The spreadsheet does not currently allow for holes or drops(maybe next time!). If holes are considered critical then theuser is directed towards using RCC21.xls (sub-frame analysis)and allowing for holes in breadths used. See also Clause 3.7.5.The single load case of all spans loaded (Clause 3.5.2.3) isnot used. Beyond panel aspect ratios of 1.5 considerationmight be given to the appropriateness of using other formsof analysis (e.g. grillage or finite element).

The example emulates the design used on the in-situ buildingof the European Concrete Building Project (ECBP) at BRECardington, (albeit that on the ECBP fck = 30 N/mm2 i.e.fcu = 37 N/mm2 and fy = 500 N/mm2 were used).

MAIN!This sheet provides the main inputs to the spreadsheet(although other inputs occur in other sheets).

Most inputs are (we hope) self-explanatory. LEGEND! shouldhelp with definition of dimensions, e.g. edge distance C isactually from centreline of column to edge of slab. Cover isdefined as being to the layer under design. The layering isset at T1 - B1 (& T2 - B2) although T1 - B2 might be deemedmore appropriate (e.g. with prefabricated mats).

The number of spans is altered by entering data in theappropriate cells. Unwanted data cells are ‘greyed’ out. Theuse of C, K, F or P can alter the characteristics of a supportfrom Cantilever to Knife-edge to Fixed to Pinned. Extraneousdata is highlighted in red or by messages in red. UnderOperating Instructions a number of checks are carried outand problems found are highlighted. At the bottom of thesheet a simplistic loading diagram is given to aid datachecking. Great care should be taken to ensure that thissheet is completed correctly for the case in hand. It mayprove prudent to estimate values for bay width bendingmoments at each support by hand before progressing toACTIONS!

Cantilevers less than 1.00 m should be described as enddistances (rather than cantilevers; otherwise certain logicregarding breadth of effective moment transfer strip, be (seeBS 8110: Part 1, Figure 3.13), goes wrong). End distancesequivalent to the half width of the column should be usedto define slabs whose edge is flush with the outside of the

column. On edge columns, be restricts Mt max which in itselfrestricts the amount of moment transferred into columnsabove and below.

Load input should define the loads on the slab only. Acombo-box is used to switch between the internal or edgebays. If EDGE is chosen, cells H14:I14 and E16:G16 becomeoperative and information about the perimeter load alongthe edge and the distance of the edge from the centreline isrequired as input. Perimeter loading is assumed to be deadload.

Cell L51 gives an estimate of reinforcement requirementsfor the element considered in the direction considered (notboth directions).

It will be noted that the example assumes the reinforcementis in the second layer; therefore warnings concerning covergreater than 40 mm should not be of too much concern.

The spreadsheet takes automatic measures to ensuredeflection criteria are met. It may be argued that in thisinstance, with equal spans in the two directions, thesemeasures are unwarranted in that deflection criteria willhave been met in the orthogonal T1/B1 layer.

To the right under Operating instructions a number of checksare carried out. Box markers indicate where checks have beencarried out and proved satisfactory.

ACTIONS!This sheet shows bending moment and shear force diagramsfrom the analysis undertaken in Analysis! The user is requiredto input the desired amount of redistribution to the initialmoments in line 26. Cell L14 allows three types of distributionaccording to the user’s preference.

The sheet also provides output reactions and columnmoments. Using the value of Veff for punching shear obviatesthe need to use the 1.15, 1.25 and 1.4 factors in Clause 3.7.6.2to determine Veff from Vt.

SPANS!SPANS! details the amounts of reinforcement requiredderived from detailed calculations in Bar!

LEGEND!LEGEND! gives an explanation of the dimensions used inMAIN! and for the analysis and design.

WEIGHT!WEIGHT! gives an estimate of the amount of reinforcementrequired in one direction of the slab for the internal or endbays considered. Simplified curtailment rules, as defined in

RCC33 Flat Slabs (A & D).xls

S L A B S R C C 3 3–

Page 50: User Guid

48

Clause 3.12, are used to determine lengths of bars. Thefigures should be treated as approximate estimates only asthey cannot deal with the effects of designers’ and detailers’preferences, ‘rationalisation’, the effects of holes etc, etc.They do not allow for punching shear links or link carrierbars.

Analysis!This sheet details the moment distribution analysis carriedout but is not necessarily intended for printing out otherthan for checking purposes. It is derived from RCC21.xls.

Bar!This sheet shows design calculations, complete withreferences to BS 8110. It is not necessarily intended forprinting out other than for checking purposes.

Hogging moments at ¼ span positions within a span arechecked and are used in the determination of top steel inspans.

Graf!This sheet comprises data for graphs used on other sheets,particularly in ACTIONS!

S L A B S R C C 3 3–

Page 51: User Guid

49

M A I NS L A B S R C C 3 3– –

�?`^YTRb 3JL?;>MB??NM�NI�"3������REINFORCED CONCRETE

COUNCIL�2[XT]b !>PCMILS�'LIOJ �<PST�Qg �3PbT �?PVT

�;^RPbX^] %#"0�4SJC=;F�&FIIL @LIG�ALC>M ! NI $ LGQ ���/=N��� ��

&,!4�3,!"�!.!,93)3��$%3)'.�NI�"3����������� �2WTRZTS ATdXaX^] �9^Q�=^

>`XVX]PbTS�U ^\�A22##�f[a�^]�23�����������������������!(((�120�U `�A22 =BA � 2��

-!4%2)!,3 URc $ =�\\� W�PVV " \\ #/6%23 GG 4/�,!9%2

Ug[ $% =�\\� γa !� Ô abTT[ C^_�R^dT` "Ô !

Ugd $% =�\\� γR !�Ô R^]R`TbT 1b\�R^dT` "Ô !

�30!.3 ,��\� '%/-%429

B?0=�!� &�Ô 1Pg�bg_T 8=C4A=0; '�'Ô Z=�\�^cbaXST�ac__^`ba�!���$

B?0=�"� &�Ô B[PQ�ST_bW��W "Ô \\

B?0=�#� &�Ô ?P]T[�eXSbW��Q &Ô \\ ,/!$).'�0!44%2.

B?0=�$� GCH G;R

B?0=�Ô� 4]S�SXabP]RT !"Ô U`^\�ac_b�! 3403 !� !�$

B?0=�%� 4]S�SXabP]RT !"Ô U`^\�ac_b�$ 8<?>B43 !�%

�3500/243 !"/6%��\� (��\\� "��\\� %H>�#IH> "%,/7��\� (��\\� "��\\� %H>�#IH>

Bc__^`b�! #�&Ô "Ô $ 5 #�&Ô "Ô $ 5

Bc__^`b�" #�&Ô $ $ 5 #�&Ô $ $ 5

Bc__^`b�# #�&Ô $ $ 5 #�&Ô $ $ 5

Bc__^`b�$ #�&Ô "Ô $ 5 #�&Ô "Ô $ 5

Bc__^`b�Ô

Bc__^`b�%

Bc__^`b�&

0%2)-%4%2�,/!$3�RWP`PRbT`XabXR

�,/!$).' D3;a��Z=�\������?;a��Z=�\�����?^aXbX^]��\�

$?;> )GJIM?> 0IMCNCIH ,I;>?> $?;> )GJIM?> 0IMCNCIH ,I;>?>

3J;H�� ,I;> ,I;> @LIG�F?@N ,?HANB 3J;H�� ,I;> ,I;> @LIG�F?@N ,?HANB

D3; &�Ô #�Ô lllll lllll D3; lllll lllll

?;�! lllll ?;�! lllll

?;�" lllll ?;�" lllll

?P`b�D3; ?P`b�D3;

3J;H�� 3J;H��

D3; &�Ô #�Ô lllll lllll D3; lllll lllll

?;�! lllll ?;�! lllll

?;�" lllll ?;�" lllll

?P`b�D3; ?P`b�D3;

3J;H�� 3J;H��

D3; &�Ô #�Ô lllll lllll D3; lllll lllll

?;�! lllll ?;�! lllll

?;�" lllll ?;�" lllll

?P`b�D3; ?P`b�D3;

�,/!$).'�$)!'2!-

! $

49

Page 52: User Guid

50

A C T I O N SS L A B S R C C 3 3– –

�?`^YTRb 3JL?;>MB??NM�NI�"3������

�2[XT]b !>PCMILS�'LIOJ�;^RPbX^] %#"0�4SJC=;F�&FIIL��@LIG�ALC>M�!�NI�$

&,!4�3,!"�!.!,93)3��$%3)'.�NI�"3�����������

>`XVX]PbTS�U`^\�A22##�f[a�^]�23�����������������������!(((�120�U^`�A22

�"%.$).'�-/-%.4�$)!'2!-3��Z=\�

<PST�Qg 3PbT ?PVT

LGQ ���/=N��� ��

2WTRZTS ATdXaX^] 9^Q�=^

=BA � 2��

REINFORCED CONCRETE COUNCIL

%F;MNC=�-IG?HNM

�%

�$

�"

"

$

%

'

!

Ô ! !Ô " "Ô

2?>CMNLC<ON?>�%HP?FIJ?

�%

�$

�"

"

$

%

'

Ô ! !Ô " "Ô

� � � � � � �

!"'�" &! �$ &! �$ !"'�" l l l

!"'�" Ô%'�$ Ô%'�$ !"'�" l l l

!� �' �' !� l l l

" � � " � �

!% !%

� � � � � �

Ô !� " #"'�'' Ô !� " l l l

Ô" �!& "' �%& Ô" �!& l l l

!� #' �'Ô# !� #' l l l

=�

4[PabXR�<�

ATSXab`XQcbTS�<�

�Q�

ATSXab`XQcbX^]�

4]S�ac__^`b�`TX]U����\\

4[PabXR�<�

ATSXab`XQcbTS�<�

�Q�

�3(%!23�&/2#%�$)!'2!-3��Z=

3500/24�.I�

30!.�.I�

%F;MNC=�3B?;LM

30!.�.I � �

4[PabXR�E #'(�' Ô#!�& $Ô"�'

ATSXab`XQcbTS�E #($�! Ô!"�& $Ô"�'

30!.�.I � �

4[PabXR�E l l l

ATSXab`XQcbTS�E l l l

�2%!#4)/.3��Z=�

3500/24� � � �0;;�B?0=B�;>0343� Ô �( (%Ô�Ô (%Ô�Ô

>33�B?0=B�;>0343� Ô "�! &""�$ &""�$

4E4=�B?0=B�;>0343� "" �$ &"&�& &"&�&

ETUU�U^`�_c]RWX]V %"&�& ! Ô(�# ! Ô(�#

2WP`PRbT`XabXR�3TPS "$'� $Ô'�" $Ô'�"

2WP`PRbT`XabXR�8\_^aTS (%�' " "�Ô " "�Ô

�#/,5-.�-/-%.43��Z=\� � � �

!,,�30!.3 0Q^dT Ô#�# �$Ô�( $Ô�(

,/!$%$ 1T[^e Ô#�# �$Ô�( $Ô�(

/$$�30!.3 0Q^dT Ô(�& �! &�! ! &�!

,/!$%$ 1T[^e Ô(�& �! &�! ! &�!

%6%.�30!.3 0Q^dT !'� $ �! �$ �!

,/!$%$ 1T[^e !'� $ �! �$ �!

�%

�$

�"

"

$

%

Ô ! !Ô " "Ô

2?>CMNLC<ON?>�3B?;LM

� �

$Ô"�' Ô#!�& #'(�'

$Ô"�' Ô!"�& #($�!

� �

l l l

l l l

� � � �Ô �(

Ô "�!

"" �$

%"&�&

"$'�

(%�'

� � � �

�Ô#�#

�Ô#�#

�Ô(�&

�Ô(�&

�!'�

�!'�

�%

�$

�"

"

$

%

Ô ! !Ô " "Ô

50

Page 53: User Guid

51

S P A N SS L A B S R C C 3 3– –

�? `^ YTRb 3 JL?;>MB? ? NM �NI �" 3 ��� � ��

�2 [XT ]b !>PCMILS�' LIOJ <PST�Qg 3PbT ? PVT

�;^RPbX^] % # "0 �4SJC=;F�& FIIL��@LIG�ALC>M �!�NI�$ LGQ !OA��� ��& ,!4�3 ,!" �!.!,93 )3 ��$ % 3 )' .�NI�" 3 ��� � �� � ���� 2 WTRZ TS ATdXaX^] 9^Q�=^

> `XVX]PbTS�U`^\�A22##�f [a�^]�23�����������������������! (((�120�U^`�A22 =BA � 2��

�3 0 !.�� ,% &4 # % .42% 2 )' (4!# 4)/.3 �Q ! � ! � #' �'

1T %Ô #&Ô

C^bP[�< Z=\ &(�( Ô" �" $' �"

<b�\Pf Z=\ ! '#�% ! Ô(�Ô

-)$ $ ,% �3 42 )0 F XSbW \\ %'Ô #&Ô #&Ô

< Z=\ "�# "#$�! ! " �!

S \\ "! (� "! Ô� "! & �

0a \\��\ $ %(' #Ô$

0a�ST U[TRbX^] \\��\ 'Ô! #Ô$

0 LIPC>? �4� ��������4� 0 LIPC>? �4���������" � 0 LIPC>? �4� ��������4�0a�_`^d \\��\ #$' '(' #%%

C^_�abTT [ 0 LIPC>? �4� ��������4�3T U[TRbX^] ;�S�, &�Ô ��"! Ô� �,�#$�''$�+�"%� �f�! �$%%�f�! � Ô �f� �(�,�#%� #' /+

�0a�X]R`TPaTS�Q g�"! �(�� �U^ �STU[TRbX^]�

# /,5-.�3 42 )0 F XSbW \\ %Ô #&Ô #&Ô

< Z=\ &(�( "'%�! #% �"

S \\ "! & � "! Ô� "! & �

0a \\��\ ! $ # 'Ô# ! &Ô

0a�ST U[TRbX^] \\��\ ! ! ($ ! &Ô

0 LIPC>? �4� ����� ���4� 0 LIPC>? �4���������" � 0 LIPC>? �4� ����� �������4�0a�_`^d \\��\ ! % ' ! "Ô& ! " %

C^_�abTT [ 0 LIPC>? �4� ��������4�3T U[TRbX^] ;�S�, &�Ô ��"! Ô� �,�#$�''$�+�"%� �f�! �$Ô$�f�! � Ô �f� �(�,�#Ô�&"( /+

�0a�X]R`TPaTS�Q g�$ � �� �U^ �STU[TRbX^]�

# (% # +3 � �0a IE IE IEBX]V [g�`T X]U `RTS IE IE IE\Pf�B IE IE IE

REINFORCED CONCRETE COUNCIL

�3 0 !.�� ,% &4 # % .42% 2 )' (4!# 4)/.3 �Q �' �'Ô# �'

1T #&Ô #&Ô

C^bP[�< Z=\ $' �" "' �& $' �"

<b�\Pf Z=\ ! Ô(�Ô ! Ô(�Ô

-)$ $ ,% �3 42 )0 F XSbW \\ #&Ô #&Ô #&Ô

< Z=\ ! " �! ! "%�# ! " �!

S \\ "! & � "! & � "! & �

0a \\��\ #Ô$ #&# #Ô$

0a�ST U[TRbX^] \\��\ #Ô$ $#!

0 LIPC>? �4� ��������4� 0 LIPC>? �4� ��������" � 0 LIPC>? �4� ��������4�0a�_`^d \\��\ #%% $$& #%%

C^_�abTT [ 0 LIPC>? �4� ��������4�3T U[TRbX^] ;�S�, &�Ô ��"! &� �,�#$�Ô%"�+�"%� �f�! �$%$�f�! � Ô �f� �(�,�#Ô�(& /+

�0a�X]R`TPaTS�Q g�! ��� �U^ �STU[TRbX^]�

# /,5-.�3 42 )0 F XSbW \\ #&Ô #&Ô #&Ô

< Z=\ #% �" ! Ô$�$ #% �"

S \\ "! & � "! Ô� "! & �

0a \\��\ ! &Ô $% ! &Ô

0a�ST U[TRbX^] \\��\ ! &Ô Ô&

0 LIPC>? �4� ����� �������4� 0 LIPC>? �4���������" � 0 LIPC>? �4� ����� �������4�0a�_`^d \\��\ ! " % Ô&! ! " %

C^_�abTT [ 0 LIPC>? �4� ��������4�3T U[TRbX^] ;�S�, &�Ô ��"! Ô� �,�#$�''$�+�"%� �f�! �$"#�f�! � Ô �f� �(�,�#$�(&$ /+

�0a�X]R`TPaTS�Q g�"#�'�� �U^ �STU[TRbX^]�

# (% # +3 � �0a IE IE IEBX]V [g�`T X]U `RTS IE IE IE\Pf�B IE IE IE

51

Page 54: User Guid

52

S P A N SS L A B S R C C 3 3– –

�? `^YTRb 3 JL?;>MB?? NM �NI �" 3 ��� � ��

�2 [XT]b !>PCMILS�' LIOJ <PST�Qg 3PbT ?PVT

�;^RPbX^] % # "0 �4SJC=;F�& FIIL��@LIG�ALC>M �!�NI�$ LGQ !OA��� ��& ,!4�3 ,!" �!.!,93 )3 ��$ % 3 )' .�NI�"3 ��� � �� � ���� 2WTRZ TS ATdXaX^] 9 Q�=^

>`XVX]PbTS�U`^\�A22##�f [a�^]�23�����������������������! (((�120�U^`�A22 =BA � 2��

�3 0 !.�� ,% &4 # % .42% 2 )' (4!# 4)/.3 �Q �' ! � #' ! �

1T #&Ô %Ô

C^bP[�< Z=\ $' �" Ô" �" &(�(

<b�\Pf Z=\ ! Ô(�Ô ! '#�%

-)$ $ ,% �3 42 )0 F XSbW \\ #&Ô #&Ô %'Ô

< Z=\ ! " �! "#$�! "�#

S \\ "! &� "! Ô� "! (�

0a \\��\ #Ô$ %(' $

0a�ST U[TRbX^] \\��\ #Ô$ 'Ô!

0 LIPC>?�4� ��������4� 0 LIPC>? �4���������" � 0 LIPC>?�4� ��������4�0a�_`^d \\��\ #%% '(' #$'

C^_�abTT [ 0 LIPC>? �4� ��������4�3TU[TRbX^] ;�S�, &�Ô ��"! Ô� �,�#$�''$�+�"%� �f�! �$%%�f�! � Ô �f� �(�,�#%� #' /+

�0a�X]R`TPaTS�Q g�"! �(�� �U^ �STU[TRbX^]�

#/,5-.�3 42 )0 F XSbW \\ #&Ô #&Ô %Ô

< Z=\ #% �" "'%�! &(�(

S \\ "! &� "! Ô� "! &�

0a \\��\ ! &Ô 'Ô# ! $ #

0a�ST U[TRbX^] \\��\ ! &Ô ! ! ($

0 LIPC>? �4� ����� �������4� 0 LIPC>? �4���������" � 0 LIPC>?�4� ����� ���4�0a�_`^d \\��\ ! " % ! "Ô& ! % '

C^_�abTT [ 0 LIPC>? �4� ��������4�3TU[TRbX^] ;�S�, &�Ô ��"! Ô� �,�#$�''$�+�"%� �f�! �$Ô$�f�! � Ô �f� �(�,�#Ô�&"( /+

�0a�X]R`TPaTS�Q g�$ � �� �U^ �STU[TRbX^]�

# (% # +3 � �0a IE IE IEBX]V[g�`T X]U `RTS IE IE IE\Pf�B IE IE IE

REINFORCED CONCRETE COUNCIL

52

Page 55: User Guid

53

The spreadsheet designs multiple-span rectangular orflanged beams using sub-frame analysis to derive momentsand shears. The intention is to provide the design and analysisof up to six spans of continuous beams with or withoutcolumns above and below. Spans may incorporatecantilevers, fixed ends or knife-edge supports. There arethree main sheets: MAIN!, ACTIONS! and SPANS!

MAIN!This sheet contains user input of materials, frame geometryand load data.

Input data is blue and underlined. New data may be inputby overwriting default values or by entering values in ‘greyedout’ cells. Entering a value of 5.0 in cell C18 will clear a lineof data in both the span and support data ready for input.Guidance on input for the type of section and type of endcondition of the support is given under OperatingInstructions.

The sheet has been set up with as many ‘carry throughs’ aspossible, i.e. input cells are made equal to preceding inputcells to make the inputting of regular beams easier. InputtingC18 as “= C17” will insert 6.00 in the remaining spans: it willalso remove the grey conditional background to theremaining spans, supports and loads and allow data entry.Deleting C18, indeed C19, will blank out remaining spans,etc. Generally, values in red or red backgrounds indicateeither incorrect or excess data. For instance, if knife-edgesupports are required, enter ‘K’ in cells C24, C25 etc. Thiswill elicit red data to the right, which needs to be clearedmanually.

Do not copy and paste input values as this can corruptformatting (copy and “paste values only” is OK).

‘Rebar layering’ refers to whether there are beams in theother direction. Answering yes drops by one bar diameterthe steel at the supports. For instance when using splice barsat the support, bars in the other direction have to be avoided- and allowed for in the design.

With respect to cantilevers, design for bending caters formoments at the face of support; design for deflectionconsiders the cantilever from the centre line of support. Inbeam-to-beam situations the width of support can be inputas being very small to avoid under-design in bending.

The example is taken from Designed and detailed (15). In orderto reflect this publication, the spreadsheet has been set upwith the beams being considered as rectangular in both theanalysis and design. The analysis in the spreadsheet mimicsDesigned and detailed, but as the spreadsheet considers therectangular section for design, more reinforcement isrequired particularly in the span. Some economy would have

been gained by considering the beams as T sections ratherthan rectangular (192 kg/m3 c.f. 222 kg/m3). The spreadsheetnotes that cover to the top exceeds 40 mm. In this case, thecrack width should normally be checked.

ACTIONS!ACTIONS! Includes bending moment and shear forcediagrams, summaries of moments and shears and user inputfor amounts of redistribution. users should ensure that theamounts of redistribution are always considered as thereare no default values.

SPANS!This sheet designs reinforcement for bending in spans andsupports, and for shear in the spans.

User input is required for the diameters of bending and shearreinforcement and for the number of legs of links in eachspan. Some intuition may be required to obtain sensible andrational arrangements of reinforcement. In order todiscourage the use of second layers of reinforcement, theinput cells for diameters of reinforcement in second layersare nominally protected.

Support moments (including cantilever moments) areconsidered at the face of the support. This may lead tounequal amounts of reinforcement being designed for eachside of the support (see Bar!). Usually, the detailer wouldbe expected to detail the larger amount of reinforcement:however where different section occur either side of asupport, the detailer should be briefed as to the designer’sdetailed requirements.

Non-existent spans are blanked out.

Besides the limit of maximum modification factor fordeflection = 2.0, an additional limit of maximum allowablearea of steel to comply with deflection criteria, Asdef, = 2 xAsreqd, has been imposed.

Weight!This sheet estimates the weight of reinforcement in the beamwhen designed according to normal curtailment rules asdefined in BS 8110. Workings are shown on the right handside of the sheet. The estimate may be printed out usingFile/print or the print button on the normal toolbar. It shouldbe recognised that different engineers’ and detailers’interpretations of these clauses, and different projectcircumstances and requirements will all have a bearing onactual quantities used.

Analysis!This sheet shows the moment distributions used in theanalysis of the beam: it is not intended for formal printing.

RCC41 Continuous Beams (A & D).xls

B E A M S R C C 4 1–

Page 56: User Guid

54

It will be seen that the loads are considered initially as 1.0gkover all spans then as (gfg - 1.0)gk + gfqqk over alternate spans.

Bar!Intended mainly for first time users and young engineers,this sheet gives further details of the calculations summarisedin SPAN! Support moments are considered at faces ofsupports; checks at ¼ span relate to hogging and any topsteel required is provided in the span.

Graf!This sheet provides data for the charts in MAIN! andACTIONS!: it is not intended for formal printing.

B E A M S R C C 4 1–

Page 57: User Guid

55

M A I NB E A M S R C C 4 1– –

�?`^YTRb 3JL?;>MB??NM�NI�"3�����

�2[XT]b !>PCMILS�'LIOJ �<PST�Qg �3PbT �BWTTb�=^

�;^RPbX^] $$��-;CH�<?;G�'LC>M�#�NI�( @LIG�ALC>���NI�� LGQ ���/=N��� ��

#/.4).5/53�"%!-��!H;FSMCM��$?MCAH��NI�"3����������� �2WTRZTS �ATdXaX^] �9^Q�=^

>`XVX]PbTS�U`^\�A22$!�f[a�^]�23�������������������������!(((�120�U^`�A22 =BA � 2��

�,/#!4)/. Bc__^`ba�U`^\�V`XS� ! b^�V`XS #

�-!4%2)!,3 #/6%23��b^�P[[�abTT[�

URc $ =�\\� W�PVV " \\ C^_�R^dT` "Ô \\

Ug[ $% =�\\� γs !� Ô 1b\�R^dT` $ \\

Ugd "Ô =�\\� γc !�Ô BXST�R^dT` #Ô \\

�30!.3 ,��\� (��\\� <Q��\\� B@��\\� 4SJ? <@��\\� ,/!$).'�0!44%2.B?0=�!� '� Ô # !&Ô A # GCH G;R

B?0=�"� %� Ô # !&Ô A # 3403 ! !�$

B?0=�#� 8<?>B43 !�%

B?0=�$� 2%"!2�,!9%2).'B?0=�Ô� Bc__^`b�abTT[

B?0=�%� X]�P[b�[PgT`�. H

�3500/243 !"/6%��\� (��\\� "��\\� %H>�#IH> "%,/7��\� (��\\� "��\\� %H>�#IH>

Bc__^`b�! #�Ô # # 5 $� # # ?

Bc__^`b�" #�Ô # # 5 Ô� # # ?

Bc__^`b�# #�Ô # # 5 $� # # ?

Bc__^`b�$

Bc__^`b�Ô

Bc__^`b�%

Bc__^`b�&

REINFORCED CONCRETE COUNCIL

�,/!$).' D3;a��Z=�\�����?;a��Z=�����?^aXbX^]��\�

$?;> )GJIM?> 0IMCNCIH ,I;>?> $?;> )GJIM?> 0IMCNCIH ,I;>?>

3J;H�� ,I;> ,I;> @LIG�F?@N ,?HANB 3J;H�� ,I;> ,I;> @LIG�F?@N ,?HANB

D3;� "Ô�' " � lllll lllll D3; lllll lllll

?;�!� lllll ?;�! lllll

?;�"� lllll ?;�" lllll

?P`b�D3;� ?P`b�D3;

3J;H�� 3J;H��D3;� "�' " � lllll lllll D3; lllll lllll

?;�!� lllll ?;�! lllll

?;�"� lllll ?;�" lllll

?P`b�D3;� ?P`b�D3;

3J;H�� 3J;H��D3;� lllll lllll D3; lllll lllll

?;�!� lllll ?;�! lllll

?;�"� lllll ?;�" lllll

?P`b�D3;� ?P`b�D3;

�,/!$).'�$)!'2!-

� �

�2%!#4)/.3��Z=�

3500/24� � � � � � � �0;;�B?0=B�;>0343� "Ô%�% Ô"(�% !%&�$

>33�B?0=B�;>0343� "Ô%�% $!#�# "(�(

4E4=�B?0=B�;>0343� &'�! #%Ô�! !&!�(

2WP`PRbT`XabXR�3TPS ("�& " (�# Ô(�"

2WP`PRbT`XabXR�8\_^aTS &(�# !$&�' ÔÔ�%

55

Page 58: User Guid

56

A C T I O N SB E A M S R C C 4 1– –

�? `^ YT Rb 3 JL? ;>MB? ? NM �NI �" 3 ��� � � REINFORCED CONCRETE COUNCIL

�2 [XT ]b !>PCM ILS�' LIOJ <PST�Qg 3PbT ?PVT

�; ^RPbX^] $ $ ��-;CH�<? ;G�' LC>M �# �NI �(���@LIG�ALC>�� �NI �� LGQ ���!OA��� ��

#/.4).5/53 �" % !-��!H;FSM CM ��$ ?M CAH��NI�" 3 ��� � ��� ���� 2WTRZ TS ATdXaX^] 9^Q�=^

> `XV X]PbTS�U`^\�A22$! �f [a�^]�23�������������������������! (((�120�U^`�A22 =BA � 2��

�" % .$ ).' �-/-% .4�$ )!' 2!-3 ��Z=\�

� % F;M NC=�-IG?HNM � � 2?>CM NLC<ON?>�% HP? FIJ? �

3 50 0 /24�.I� � � � � � � �4 [PabXR�<� ! (#�! $ ! �& '%�" l l l Z=\�\

ATSXab XQcbTS�<� ! Ô$�Ô "'! �" '%�" l l l Z=\�\

�Q � �' �& ! � l l l l

AT SXab XQcbX^]� " � � # � � � �

3 0 !.�.I� � � � � � �4 [PabXR�<� "&%�Ô" ! Ô"�&Ô l l l l

ATSXab XQcbTS�<� #"'�(& ! $%�! " l l l l

�Q � ! �! ( �(Ô& l l l l

�3 (% !23 ��Z=�

� % F;M NC=�3 B?;LM � � 2?>CM NLC<ON? >�3 B?;LM �

�$

�#

�"

�!

!

"

#

Ô ! ! Ô

�$

�#

�"

�!

!

"

#

Ô ! ! Ô

�$

�#

�"

�!

!

"

#

$

Ô

Ô ! ! Ô

�$

�#

�"

�!

!

"

#

$

Ô ! ! Ô

3 0 !.�.I � � �4 [PabXR�E "Ô"�( # �# "Ô"�$ ! ' �$ l l

ATSXab XQcbTS�E "Ô%�% "''�# "$! �# ! & ! �( l l

� � � �4 [PabXR�E l l l l l l

ATSXab XQcbTS�E l l l l l l

� � � � � � �!,,�3 0 !.3 0Q^dT ! '�# �#Ô�" �#%�

,/!$ % $ 1T [^e &! �! �! '�Ô �"#�%

/$$ �3 0 !.3 0Q^dT ! ! %�% �%Ô�! "�$

,/!$ % $ 1T [^e &%�Ô �#$�" ! �%

% 6% .�3 0 !.3 0Q^dT #"�' ! %�% �Ô"�

,/!$ % $ 1T [^e "! �Ô '�& �#$�"

�# /,5-.�-/-% .43 �

56

Page 59: User Guid

57

S P A N SB E A M S R C C 4 1– –

�?`^YTRb 3JL?;>MB??NM�NI�"3����� REINFORCED CONCRETE COUNCIL

�2[XT]b !>PCMILS�'LIOJ <PST�Qg 3PbT ?PVT

�;^RPbX^] $$��-;CH�<?;G�'LC>M�#�NI�(���@LIG�ALC>���NI�� LGQ ���/=N��� ��

#/.4).5/53�"%!-��!H;FSMCM��$?MCAH��NI�"3����������� 2WTRZTS ATdXaX^] 9^Q�=^

>`XVX]PbTS�U`^\�A22$!�f[a�^]�23�������������������������!(((�120�U^`�A22 =BA � 2��

�30!.�� ,%&4 #%.42% 2)'(4!#4)/.3 < Z=\ !!%�& #"(� "Ô �"

�Q �' !�!( �&

$%3)'. S \\ $##� $#"� $!Ô�

0a \\� %Ô% "!'' !%!&

0a� \\� '

4/0�34%%, ;PgT`�! � 4 �� � 4 �� � 4 ��;PgT`�"

0a�_`^d \\� ($" 0a��_`^d $ " 0a�_`^d "$!#

"4-�34%%, ;PgT`�! � 4 �� � 4 �� � 4 ��;PgT`�"

0a��_`^d \\� ($" 0a�_`^d "$!# 0a��_`^d ('"

$%&,%#4)/. ;�S !'�Ô!( 0[[^eTS "$�!$( �

3(%!2 E Z= "!%�( ,CHE�� "$(�'

d =�\\� !�%& !" "� &

dR =�\\� �Ô"& .IGCH;F �&#!

,).+3 2���������@IL����� 2�������� 2���������@IL�����[TVa =^ " " "

#(%#+3 ��0a IE IE IE

2^dT` IE IE IE

\X]�B IE IE IE

\Pf�B IE IE IE

;X]Za

<PX]�QP`a

\Pf�E IE IE

3TU[TRbX^] IE

IE

IE

IE

IE

IE

IE

�30!.�� ,%&4 #%.42% 2)'(4!#4)/.3 < Z=\ "%"�' !$%�! %!�"

�Q �'! �(% !�

$%3)'. S \\ $!Ô� $#Ô�Ô $#(�

0a \\� !&$" '# ##Ô

0a� \\�

4/0�34%%, ;PgT`�! � 4 �� � 4 �� � 4 ��;PgT`�"

0a�_`^d \\� "$!# 0a��_`^d ('" 0a�_`^d $ "

"4-�34%%, ;PgT`�! � 4 �� � 4 �� � 4 ��;PgT`�"

0a��_`^d \\� ('" 0a�_`^d ('" 0a��_`^d $ "

$%&,%#4)/. ;�S !#�&&& 0[[^eTS #"�% ' �

3(%!2 E Z= " "�' ,CHE�� !#!�&

d =�\\� !�%"( !" !�

dR =�\\� �&#! .IGCH;F �#(Ô

,).+3 2���������@IL����� 2�������� 2���������@IL�����[TVa =^ " " "

#(%#+3 ��0a IE IE IE

2^dT` IE IE IE

\X]�B IE IE IE

\Pf�B IE IE IE

;X]Za

<PX]�QP`a

\Pf�E IE IE

3TU[TRbX^] IE

IE

IE

IE

IE

IE

IE

57

Page 60: User Guid

58

W E I G H TB E A M S R C C 4 1– –

�?`^YTRb 3JL?;>MB??NM�NI�"3�����

�2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] $$��-;CH�<?;G�'LC>M�#�NI�(���@LIG�ALC>���NI��

#/.4).5/53�"%!-��!H;FSMCM��$?MCAH��NI�"3�����������

>`XVX]PbTS�U`^\�A22$!�f[a�^]�23�������������������������!(((�120�U^`�A22

�!002/8)-!4%�7%)'(4�I@�2%).&/2#%-%.4,I=;NCIH .I 4SJ? $C;

�4/0�34%%, Bc__^`b�! # C "

B_P]�! " C !%

Bc__^`b�" # C #"

B_P]�" " C "Ô

Bc__^`b�# " C !%

REINFORCED CONCRETE COUNCIL <PST�Qg 3PbT ?PVT

LGQ ���.IP��� ��

2WTRZTS ATdXaX^] 9^Q�=^

=BA � 2��

,?HANB 5HCN�QN 7?CABN

"(Ô "�$%% "!�'

� �

$&&Ô !�Ô&' !Ô�!

� �

$" %�#!# &(�Ô

� �

Ô%Ô #�'Ô# $#�Ô

� �

"""Ô !�Ô&' &�

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� � �"/44/-�34%%, Bc__^`b�! # C "

B_P]�! # C #"

Bc__^`b�" " C "Ô

B_P]�" " C "Ô

Bc__^`b�# " C !%

,).+3 B_P]�! $# A !"

B_P]�" "" A !"

35--!29 a_PRT`a�]^b�X]R[cSTS

!! "�$%% '�! � �

&%Ô %�#!# !$$�( � �

"' #�'Ô# "!�% � �

Ô%Ô #�'Ô# $#�Ô � �

!Ô"Ô !�Ô&' $�' � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

!$ �''' Ô#�$ � �

!$ �''' "&�# � � � � � � � � � � � � � � � � � �

C^bP[�`TX]U^`RT\T]b�X]�QPg��ZV� $&!

ATX]U^`RT\T]b�ST]aXbg��ZV�\�� "!�

58

Page 61: User Guid

59

A N A L Y S I SB E A M S R C C 4 1– –

&CR?>�%H>�-IG

?HNM

30!.

��30

!.��

30!.

��30!

-CH�FI;

>,

2,

2,

2,

#;HN

'"Ô�%

$%$�$

5$,

!#&�%

!#&�%

&&�$

&&�$

0,��

�38E� �

�38E� �

�38E� �

0,��

�38E� �

�38E� �

�38E� �

J;LN�5$,

�38E� �

�38E� �

�38E� �

&%-

!#&�%

!#&�%

&&�$

&&�$

,CP?�FI;>

#;HN

!#Ô$�"$

&%!�&%

5$,

""Ô�&!

""Ô�&!

!"%�(%

!"%�(%

0,��

�38E� �

�38E� �

�38E� �

0,��

�38E� �

�38E� �

�38E� �

J;LN�5$,

�38E� �

�38E� �

�38E� �

&%-

""Ô�&!

""Ô�&!

!"%�(%

!"%�(%

-IG

?HN�$

CMNLC<

ONCIH

(C#IF

3504

��,I#IF

(C#IF

3504

��,I#IF

-CH�FI

;>�!#&�%

!#&�%

�&&�$

#&�#&

&Ô�&

"$�Ô#

�(�%#

�!(�Ô!

�"%� !

�Ô� %

�(�&Ô

#&�'Ô

�"#�((

"�%Ô

Ô�#&

!�&$

�"�""

�$�$(

�Ô�((

�!�!%

�"�"Ô

"�%'

$� #

�%!

!�"$

�$

�!� &

�"�!'

�"�(

� �Ô%

�!� (

�%"

�(#

�#

�%

�!(

� �"Ô

� �Ô

� �%&

� �!#

� �"Ô

�#

�$Ô

� &

�!$

� $

� �!"

� �"$

� �#"

� � %

� �!"

� &

�!

� #

� &

� "

� � #

� � %

� � &

� � !

� � #

� #

� Ô

� !

� "

� � !

� � #

� � $

� � !

3OG

$!� $

�%&�(&

"%�(#

�!#�##

!Ô"�!Ô

�!#!�'#

�&�

$CMNLC<

ONCIH�&;

=NILM

3504��

3504��

5J�=I

F,I

�=IF

2,

5J�=I

F,I

�=IF

!�Q

!�@

8�<;L

)%&Ô

%&Ô

#!"Ô

#!"Ô

%&Ô

%&Ô

3NC@@H?MM

!("'Ô&!$#

!"%Ô%"Ô

#( %"Ô

#( %"Ô

!("'Ô&!$#

! !"Ô

3OG

&! $$%$"�(

!�4� (

&;=NIL

�"&!%

�!&'"

�ÔÔ !

�#"$

�!%

� '$

3504��

3504��

,5J

�=IF

,I�=I

F2

,5J

�=IF

,I�=I

F!�Q

!�@

8�<;L

�38E� �

�38E� �

�38E� �

)�38E� �

�38E� �

�38E� �

3NC@@H?MM

3OG

�4�

�4�

&;=NIL

!�

!�

3504��

,5J

�=IF

,I�=I

F!�Q

0;

LNC;F�5

$,�@;

=NILM

!�@

8�<;L

�38E� �

;

)�38E� �

<

3NC@@H?MM

3OG

�4�

&;=NIL

�?`^YTRb

B_`TPSaWTTba�b^�1B�'!!

�;^RPbX^]

3�3)�<PX]�QTP\�6`XSa�2�b^�7���U`^\�V`XS�!�b^�#

2>=C8=D>DB�140<��0]P[gaXa���3TaXV]��b^�1B�'!! )!((&�

>XVX]P

bTS�U^

\�A22

$!�f[a�^]�23������������������������

�!(((

�120

�U`�A

22

!.!,93)3

-CH�FI;

>!�

f�STPS�[^PS

,CP?�FI;>

�$

f�STPS�[^PS��

!�%f�X\_^aTS�[^PS

�CPQ[T�"�!�

!.!

,93)3�)

3504

2,

5J�=I

F,I

�=IF

2!Ô

�38E� �

#!"Ô

#!"Ô

%&Ô

%&Ô

�38E� �

Ô" '#####�#

Ô" '#####�#

!("'Ô&!$"�(

!"%Ô%"Ô

'�4� '

�$#"

�%!

�""Ô

�!Ô %

3504

��2

,5J

�=IF

,I�=I

F2

�38E� �

�38E� �

�38E� �

�38E� �

�38E� �

�38E� �

�4�

!�

��

��

!��

30!

��30

!��

2,

2,

2 �

CIF

3504�

,IIF

CIF

3504

��&&�$

!&�&&

$&�'

!!�%%

!#�

"�'

'� %

!�%

"� �

�%

!�'%

�$Ô

!�$Ô

�##

�""

�##

� '

�"!

� Ô

�!%

� $

�!

� "

� $

� !

� "

� !

�!#�%$

""�Ô(

�'�(Ô

SQ

\e

9Q

A%'

3" �

d�((

(C#IF

3504

��,I#IF

(C#IF

3504

��,I#IF

(C#IF

3504

��,I#IF

3NC@@H?MM

3OG

�4�

&;=NIL

&CR?>�%H>�-IG

?HNM

30!.��

30!

Min

loa

d

,2

,

#;HN

'"Ô�%

$%$�$

5$,

!#&�%

!#&�%

&&�$

0,��

0,��

J;LN�5$,

&%-

!#&�%

!#&�%

&&�$

,CP?�FI

;>

#;HN

!#Ô$�"$

&%!�&%

Page 62: User Guid

60

B A RB E A M S R C C 4 1– –

?`^YTRb���[ RPbX^] B_`TPSaWTTba�b^�1B�'!! �)�3�3)�<PX]�QTP\�6`XSa�2�b^�7�)�U`^\�V`XS�!�b^�#��� 30!. �

2>=C8=D>DB�140<��0]P[gaXa���3TaXV]��b �1B�'!! )!((&���>`XVX]PbTS�U`^\�A22$!�f[a�^]�23�������������������������!(((�120�U^`�A22

B_P] '� �\ W Ô C^_�R^dT` #& \\�b^�\PX]�abTT[ 9^Q�=^ A%'

2 QTP\ Qe # 1b\�R^dT` Ô" \\�b^�\PX]�abTT[ Qg `\e

WU !&Ô BXST�R^dT` $& \\�b^�\PX]�abTT[ 3PbT !#�>Rb�((

�-!).�34%%, ,%&4 ���, 30!. 2)'(4 1B'!! �ATU

<�2; Z=\ !Ô$�Ô "'!�"

<�UPRT Z=\ !!%�& % �( #"(� "Ô �"

�Q �' �& !�!( �&

S \\ $##� $ÔÔ� $#"� $!Ô�

QU \\ # � # � # � # � #�$�!�Ô

:� �!#" �! $ �!Ô% �! $ 5XV�#�#

FTQ�<`Ta Z=\ "(&� "Ô(�$ #$'�( "!Ô�' 5XV�#�#

5[P]VT�<`Ta Z=\ lll lll #"#�! lll 5XV�#�#

: � Ô" � "$ �!$& �!"! #�$�$�$

h \\ $ %�$ $#"�# #$#�# #Ô(�$ #�$�$�$

f \\ Ô(�! Ô �% !(&�" !"#�Ô #�$�$�$

S� \\ ($� %'� $Ô� (%�Ô

]Tb�UaR =�\\� � � $" �" !#Ô�# 5XV�#�#

4fRTaa�< Z=\ � � � #$�Ô

0a��`TÓ \\� '

Uab =�\\� $#'�! $#'�! $#'�! $#'�! 5XV�#�#

0a�`TÓ \\� %Ô% #"! "!'' !%!&

Qe�Q lll lll !� lll

<X]�� � �!#� �!#� �!#� �!#� CPQ[T�#�"Ô

<X]�0a \\� !(Ô !(Ô !(Ô !(Ô

�$%&,%#4)/.Ua =�\\� "%%�& "##�& "(#�& 4Ó]�'

1PaT�`PbX^ "%� ! � #�$�%�#�$

CT]a�<^S �' �' CPQ[T�#�!

2^\_�<^S !�! !�" CPQ[T�#�!!

?T`\�;�S "$�! ('�% #�$�%�#

0RbcP[�;�S IE !'�Ô IE � #�$�Ô�!

�4%.3)/.�34%%,0a \\� %Ô% "!'' !%!&

��! \\ IE " IE #" IE #"

��" \\

<Pf�=^�[PgT` $ # #

=^�! # # #

, \\� ($" "$!# "$!#

=^�" IE IE IE

0a�_`^d \\� ($" "$!# "$!#

,�� � IE �&"% IE !�'%" IE !�(#'

2[TP`�SXab \\ &#� ÔÔ� ÔÔ� QTbeTT]�QP`a

<X]�B \\ IE "Ô� IE #"� IE #"� #�!"�!!�!

<Pf�B \\ IE !&%�" IE " !�! IE !% �! CPQ[T�#�"'

�#/-02%33)/.�34%%,ATÓcX`TS \\� &"$ #"# ' CPQ[T�#�"Ô

��! \\ IE " IE !% IE "Ô

��" \\

<Pf�=^�[PgT` $ Ô $

=^�! # " "

, ($" $ " ('"

=^�" IE IE IE

0a��_`^d \\� ($" $ " ('"

,�� � IE �&"% IE �#! IE �&'( �

2[TP`�SXab \\ &#� !&$� !Ô%� QTbeTT]�QP`a

<X]�B \\ IE "Ô� IE "Ô� IE "Ô� #�!"�!!�!

�3(%!2E�Pb�R[ Z= "Ô%�% "''�#

E�Pb�S Z= "!%�( "$(�' #�$�Ô�!

d =�\\� !�%& "� & 4Ó]�#

dR =�\\� �Ô"& .IGCH;F �&#! CPQ[T�#�'

�d�dR�Qd =�\\ #$"�' !" � #'"�% CPQ[T�#�&

;X]Z�� \\ IE !" IE !" IE !" #�!"�&�!

;TVa IE " IE " IE "

/ \\ !Ô& #"$ !$! #�!"�&�!

0SYcab�b^ \\ !Ô # !"Ô

U^ ��D3;�^][g� \\ !((( lll "!%Ô U`^\�R[

U^ ��eXbW�?;� \\ !((( lll �=�0 ��,��

0SYcab�b^ \\ !(Ô lll "!"Ô U`^\�UPRT

0a�3Xab \\ IE (#� IE '&� IE '&� #�$�Ô�Ô

0a��3Xab \\ IE &#� IE � IE � #�!"�&�"

Page 63: User Guid

61

G R A FB E A M S R C C 4 1– –

Proj

ect

Spr

eads

heet

sto

BS

811

0Lo

cati

onD

&D:M

ain

beam

Grid

sC

toH

,fr

omgr

id1t

o3

CON

TIN

UO

US

BEA

M(A

naly

sis

&D

esig

n)to

BS

811

0:19

97

Orig

inat

edfr

omRC

C41.x

lson

CD©

199

9B

CAfo

rRC

C

LOA

DIN

GD

IAG

RA

M14

.39

BEA

M0

140

0S

UPPO

RTS

00

88

1414

1414

-57.

650

.38

-72

50.3

8-5

7.58

50.3

8-1

4.4

0D

UDL

00

88

814

1414

1414

140

25.8

25.8

025

.825

.80

00

00

LUD

L25

.845

.845

.825

.845

.845

.825

.80

00

0D

PUD

L0

00

08

88

814

45.8

45.8

45.8

45.8

45.8

45.8

45.8

45.8

0L

PUD

L45

.845

.845

.845

.845

.845

.845

.845

.80

PL1

00

88

1414

1414

45.8

45.8

45.8

45.8

00

00

45.8

45.8

45.8

45.8

00

00

PL2

00

88

1414

1414

45.8

45.8

45.8

45.8

00

00

45.8

45.8

45.8

45.8

00

00

1414

140

00

1414

140

00

00

014

1414

1414

1414

1414

1414

00

00

00

00

00

00

00

00

00

00

00

14 0 0 14 0 0

MO

MEN

TD

IAG

RA

MS

SPA

N1

X0

00

.40

.81.2

1.62

2.4

2.8

3.2

3.6

M(e

)a

ll0

179

.58

7.0

35.

497

-65.

1-1

25-1

73.7

-212

-239

-255

-26

0M

(e)

odd

019

3.1

97.

3512

.53

-61.4

-124

-176

.6-2

18-2

48-2

68

-276

M(e

)ev

en0

54.3

422

.63

-4.9

5-2

8.4

-47.

7-6

2.9

2-7

4-8

0.9

-83.

8-8

2.4

Bea

m0

00

00

00

00

00

M(r

)a

ll0

154.

557

.26

-29

-10

4-1

69

-222

.6-2

65

-29

7-3

18-3

28M

(r)

odd

015

4.5

57.2

6-2

9-1

04

-16

9-2

22.6

-26

5-2

97

-318

-328

M(r

)ev

en0

65.

2136

.03

10.9

7-9

.96

-26

.8-3

9.4

4-4

8-5

2.4

-52.

7-4

8.9

70

%m

ax

013

5.2

68

.158

.76

8-1

9.9

-33.

4-4

4.0

5-5

1.8-5

6.7

-58

.6-5

7.7

70

%m

in0

38.0

415

.84

-3.4

6-4

5.6

-87.

4-1

23.6

-152

-174

-18

7-1

93

Low

erbo

und

00

0-2

9-1

04

-16

9-2

22.6

-26

5-2

97

-318

-328

Up

per

boun

d0

154.

56

8.15

10.9

70

00

00

00

Bea

m0

00

00

00

00

00

L04

40

.84

44

44

44

SPA

N2

Loca

lX0

0.3

0.6

0.9

1.21.5

1.82.

12.

42.

7X

88

.38

.68

.99

.29

.59

.810

.110

.410

.7M

(e)

all

348

.127

5.4

208

.914

8.5

94.

1946

.05

4.0

4-3

1.8-6

1.6-8

5.2

M(e

)od

d25

0.1

215.

318

2.9

152.

812

59

9.5

176

.35

55.5

237

.01

20.8

3M

(e)

even

229

.816

4.4

105.

151

.91

4.8

82

-36

.02

-70

.8-9

9.4

-122

-138

Bea

m0

00

00

00

00

0M

(r)

all

281.2

211.9

148

.79

1.64

40.7

1-4

.08

6-4

2.8

-75.

3-1

02

-122

M(r

)od

d28

1.224

4.9

210

.917

9.2

149

.912

2.8

98

.1375

.75

55.6

837

.94

M(r

)ev

en28

1.221

3.2

151.4

95.

62

46.0

22.

554

-34.

8-6

6-9

1.1-1

107

0%

ma

x24

3.6

192.

814

6.2

106

.98

7.49

69

.66

53.4

538

.87

25.9

114

.58

70

%m

in16

0.8

115.

173

.55

36.3

43.

417

-25.

21-4

9.5

-69

.6-8

5.3

-96

.8Lo

wer

boun

d0

00

00

-25.

21-4

9.5

-75.

3-1

02

-122

Up

per

boun

d28

1.224

4.9

210

.917

9.2

149

.912

2.8

98

.1375

.75

55.6

837

.94

Bea

m0

00

00

00

00

0L0

33

33

33

1.83

33

atco

lfac

e6

6.4

6.8

7.2

7.6

80

.157.

85

-62.

68

.50

19

0.4

618

3.3

287.

140

1.714

3.5

357.

5-9

8.4

-30

.648

.04

137.

623

8.1

349

.415

5.9

306

.412

.1442

.35

76.6

911

5.2

157.

720

4.5

41.9

718

6.5

00

00

00

00

-159

-92.

9-1

5.7

72.3

517

1.328

1.211

6.7

238

.7-1

59-9

2.9

-15.

772

.35

171.3

281.2

116

.723

8.7

60

.86

93.

5913

0.5

171.4

216

.626

5.8

53.7

824

6.9

8.4

96

29.6

46

3.32

128

.320

128

1.210

9.1

250

.2-6

8.9

-21.4

33.6

28

0.6

111

0.4

143.

129

.38

130

.5-1

59-9

2.9

-15.

70

00

29.3

813

0.5

60

.86

93.

5913

0.5

171.4

216

.628

1.211

6.7

250

.20

00

00

00

08

86

.88

88

4.5

4.8

5.1

5.4

5.7

60

.155.

85

12.5

12.8

13.1

13.4

13.7

14-9

8.2

-78

.9-5

3.4

-21.9

15.8

259

.64

311

36.9

6-2

7.5

-27.

5-2

5.1

-20

.4-1

3.3

-3.9

723

2.4

-8.9

4-1

08

-81.3

-48

.6-9

.835

.148

6.2

196

.359

.90

00

00

00

0-1

15-9

2.2

-63.

5-2

8.6

12.4

859

.64

245.

835

.29

-19

.8-2

1.2-2

0.4

-17.

3-1

1.8-3

.97

262.

8-8

.16-9

5-7

1-4

0.9

-4.6

537

.71

86

.224

6.4

61.1

9-1

9.3

-19

.2-1

7.6

-6.8

624

.66

0.3

421

7.7

41.9

3-7

5.5

-56

.9-3

7.4

-15.

3-9

.33

-2.7

813

7.4

-6.2

6-1

15-9

2.2

-63.

5-2

8.6

-11.8

-3.9

713

7.4

-8.16

00

00

37.7

18

6.2

262.

86

1.19

00

00

00

00

66

65.

46

6

GR

AP

HD

AT

AI

1414

14-1

4.4

00

1414

1414

140

00

00

00

00

014

1414

140

00

00

00

014

1414

00

00

00

1414

140

00

00

0

SPA

N3

Loca

lX0

00

00

00

00

0X

1414

1414

1414

1414

1414

M(e

)a

ll0

00

00

00

00

0M

(e)

odd

00

00

00

00

00

M(e

)ev

en0

00

00

00

00

0B

eam

00

00

00

00

00

M(r

)a

ll0

00

00

00

00

0M

(r)

odd

00

00

00

00

00

M(r

)ev

en0

00

00

00

00

07

0%

ma

x0

00

00

00

00

07

0%

min

00

00

00

00

00

Low

erbo

und

00

00

00

00

00

Up

per

boun

d0

00

00

00

00

0B

eam

00

00

00

00

00

L00

00

00

00

00

0

00

00

00

0.15

014

1414

1414

140

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

0

00

00

014

1414

1414

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

0

44.

44.

85.

25.

6-2

54-2

38-2

10-1

72-1

23-2

74-2

60

-236

-20

1-1

55-7

7-6

7.4

-53.

7-3

5.9

-13.

90

00

00

-327

-315

-29

3-2

59-2

15-3

27-3

15-2

93

-259

-215

-40

.9-2

8.8

-12.

67.

776

32.2

5-5

3.9

-47.

2-3

7.6

-25.

1-9

.76

-19

2-1

82

-16

5-1

41-1

09

-327

-315

-29

3-2

59-2

150

00

7.77

632

.25

00

00

06

88

88

33.

33.

63.

94.

211

11.3

11.6

11.9

12.2

-10

3-1

14-1

19-1

18-1

116

.96

4-4

.58

-13.

8-2

0.7

-25.

3-1

49-1

53-1

51-1

42-1

280

00

00

-136

-144

-146

-142

-131

22.5

29

.421

-1.3

6-9

.81

-15.

9-1

23-1

30-1

30-1

24-1

134.

874

-3.2

1-9

.66

-14.

5-1

7.7

-10

4-1

07

-10

5-9

9.7

-89

.8-1

36-1

44-1

46-1

42-1

3122

.52

9.4

210

00

00

00

03

.66

66

6

Mad

eby

rmw

Job

No

R68

Dat

e3

0-N

ov-9

9

45.8

45.8

PL2

00

45.8

45.8

45.8

45.8

MO

MEN

TD

IAG

RA

MS

SPA

N1

X0

00

.4M

(e)

all

017

9.5

87.

03

M(e

)od

d0

193.

19

7.35

M(e

)ev

en0

54.3

422

.63

Bea

m0

00

M(r

)a

ll0

154.

557

.26

M(r

)od

d0

154.

557

.26

M(r

)ev

en0

65.

2136

.03

70

%m

ax

013

5.2

68

.157

0%

min

038

.04

15.8

4Lo

wer

boun

d0

00

Up

per

boun

d0

154.

56

8.15

Bea

m0

00

L04

4SP

AN

2

Loca

lX0

0.3

X8

8.3

M(e

)a

ll34

8.1

275.

4

Page 64: User Guid

62

This spreadsheet designs post-tensioned slab and beamelements in accordance with BS 8110: Part 1, 1997. In essencethe spreadsheet checks a number of parameters: stresses attransfer, stresses in service, moments of resistance at ULS,shear, vibration, deflection, neutral axis depth, andreinforcement service stress. These checks are shown inSUMMARY!

The spreadsheet is set out in several layers.

• MATDATA! Defines load cases, various options andmaterial properties.

• SUMMARY! Summarises the design, analysis, checksand outputs from the rest of the spreadsheet.

• DETAILS! Shows the workings for the momentdistribution for the various load cases, profiles,prestress losses and checks in some detail.

• DEFLECT! Shows workings for deflection at 1/20 pointsalong each span.

• Graf! Provides the data for the graphs, and valuesgenerated are used for checking.

Users are referred to Post-tensioned concrete floors – DesignHandbook(14), and Post-tensioned concrete floors(16) forfurther details of methods and values used.

A maximum of three spans may be considered. Cantileversare not available. Shortening is calculated in the lossessection, but is not used to modify column moments. Theeffects of restraint to both columns and prestress in themember must be considered. The spreadsheet considers onedirection at a time only.

MATDATA!The first sheet includes all the general and material inputdata used in the subsequent sheets. Load combinations andload factors are defined. The input under Options shouldbe self-explanatory. The choices have implications on thedesign as shown below.

• Stressing ends determines where prestressing lossesoccur

• Prestressing system – Specifying unbonded or bondedchanges prestress loss calculations. Prestress losses tendto be higher with bonded tendons as wobble factorsand coefficients of friction are higher but using severalstrands in a single duct can lead to overall economy,especially in more heavily loaded beams.

• Commonly 70% to 75% is taken for initial estimates forjacking force/final force. This quantity is calculated atDetails!N68:N69 and has to be re-specified in Details!line 68 to be within 5 % of that calculated.

• With respect to allowable flexural tensile stresses inprestressed beams (and slabs), BS 8110: Part 1, definesthree classes (see Clause 4.3.4.3). These classesdetermine the limits of tensile stress. For example see

BS 8110: Part 1, Clause 4.1.3, which also allows 5.0N/mm2

tensile strength for C40 concrete. For Class 3, which isgenerally used for internal environments, cracking isallowed either up to 0.1 mm or, more usually, to 0.2 mm.

• Slab or Beam varies shear requirements and determineswhether nominal top bonded reinforcement is includedin the spans or not. Nominal top steel is included inmid-span of beams. If slabs are specified, the user maychoose to use nominal top steel to overcome hoggingmoments in the spans. Invoking the nominal bondedreinforcement in mid-span should overcome mostproblems with hogging in, say, dissimilar spans of slabs.Slabs requires a second input; type of slab altersparameters used in checking vibration.

• Normal curtailment rules for bonded reinforcement arenot necessarily satisfactory for post-tensioned slabs andbeams. Nonetheless the spreadsheet assumes thatcurtailment occurs at 0.3 x span.

With regard to concrete, the usual minimum strength usedin prestressing is 40 N/mm2. The minimum allowable strengthat transfer (i.e. when the tendons are initially stressed), fci,is 25 N/mm2. Ambient temperatures during curing may betaken as 15oC for a UK summer, but otherwise may bedependent upon curing/insulation regimes. Typically, long-term Relative Humidity may be taken as 45% indoors, or85% outdoors for the UK. Other data used in thedetermination of various concrete factors, e.g. determinationof creep factors, is shown on the right hand side of the sheet.These factors are case specific and have been derived fromthe best available data for the various parameters shown.The formulae for calculating creep factors and free shrinkagestrain are from C&CA paper TDH 2391(17), and use thefollowing factors.

• Kb is a factor depending on the composition of theconcrete,

• Kc is an environmental factor,

• Kd is a maturity factor,

• Ke is an effective member thickness factor, and

• Kt covers the development of the deferred deformationwith time.

Factors used in the derivation of material data are shownon the next page as screen dump from the right hand sideof this sheet.

Details of strand used in the UK are given at the bottom ofthe sheet. Users should ensure that their chosen strand isreadily available. Post-tensioned concrete floors(16) givestypical values for m (coefficient of friction), K (wobblefactors), Rel% (relaxation) and draw-in (mm) in Tables 2.6and 7.1.

It is usually assumed that working loads are applied at aconcrete age of 60 days (user input). The quasi-permanent

RCC42 Post-tensioned Slabs & Beams (A & D).xls

B E A M S R C C 4 2–

Page 65: User Guid

63

imposed load should be assessed from the y2 factor in EC2,which is usually 20% of imposed load for dwellings, 30%for offices and stores, and 60% for parking. (One never takes100%, as y2 adjusts for the very different f (creep) values.Hence 30% is appropriate for more or less permanentlyloaded structures: the high value for parking is tocompensate for long-term dynamic effects.)

Factors used in thederivation of material data

B E A M S R C C 4 2–

1B�'!! �CPQ[T�$�"�

# #�' #�" $'

$ Ô Ô

Ô Ô�'

1.271 1.267 !�"Ô' !�"$( !�"$Ô !�"#Ô !�""Ô !�"! !�!(Ô !�!'Ô

Maturity Curve # $ Ô % & ' ( ! !! !"

0 0.8 1 1.5 2 2.5 3 4 5 6 7

0.8 0.2 0.5 0.5 0.5 0.5 1 1 1 1 1

30 0 2.6 4.5 7.9 10.3 12.2 13.7 16.2 18 19.5 20.6

40 0 5.2 7.8 12.2 15.5 18.1 20.1 23.2 25.5 27.3 29

50 0 11.4 12.7 18.1 22.2 25.1 27.3 31.1 33.7 35.8 37.8

60 0 13.7 15.2 21.7 26.6 30.1 32.8 37.3 40.4 43 45.4

40 0 5.2 7.8 12.2 15.5 18.1 20.1 23.2 25.5 27.3 2950 0 11.4 12.7 18.1 22.2 25.1 27.3 31.1 33.7 35.8 37.840 0 5.2 7.8 12.2 15.5 18.1 20.1 23.2 25.5 27.3 29

Longterm fcu inf Et inf40 28.00

EARLY STRENGTH LATE STRENGTH1 4 0.8 5.8 40 60 0 100

40 23.2 25.5 2.3 25.04 40 38.9 40 1.1 38.90

Kc = Relative Humidity factor# #Ô $ $Ô Ô ÔÔ % %Ô & &Ô ' 'Ô#�" #�!# #� Ô "�(Ô "�'Ô "�&& "�%Ô "�Ô "�# "�!# !�( !�&

50 55 2.85 2.77 0.08 0 2.850

Kd = Ambient factor# ( "! $" '$ "& Ô$ ! '

% !" "! $" !'% "& Ô$

!�' !�% !�$ !�" ! �&Ô �%Ô �Ô

120 120 1.6 1.4 0.2 30 1.5501500 1860 1 0.75 0.25 660 0.911 1.000

Kb = Cement Content & W/C Ratio factor �$ �Ô �% �& �'

" �Ô �' !� " !�"'# �& �( !�!& !�$' !�'"

$ �'# !�!& !�%# "�! "�ÔÔ

Ô �(& !�$Ô " "�ÔÔ #�! 0.5300 0.7 0.9 1.17 1.48 1.82 0.981400 0.83 1.17 1.63 2.1 2.55 1.308

0.739 0.981 1.308 1.666 2.039 0.327 1.145

Ke = Effective Thickness factor $ %�Ô $ %�Ô �38E� �

Ô ! !Ô " "Ô # #Ô $ $Ô Ô

! !�" ! �($ �'Ô �&(Ô �&Ô �&## �&" �& ( �&

B_P]�! 400 450 0.72 0.709 0.011 6.5 0.719B_P]�" 400 450 0.72 0.709 0.011 6.5 0.719B_P]�# #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

εc = Free Shrinkage Strain

$ $Ô Ô ÔÔ % %Ô & &Ô ' 'Ô ( (Ô

$" $ Ô #' #% ## # Ô "&Ô "$# " Ô !%" !!Ô Ô'�Ô

50 55 380 360 20 0 380

Ke factor for Shrinkage Ô ! !Ô " "Ô # #Ô $ $Ô Ô

! !�# !� Ô �( & �' �&! �%Ô �Ô'& �ÔÔ �Ô!# �Ô

B_P]�! 400 450 0.55 0.513 0.037 6.5 0.548B_P]�" 400 450 0.55 0.513 0.037 6.5 0.548B_P]�# #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Ultimate Shrinkage Strain - Bending0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

� �"% �"% �"% �"% �"% �"% �"% �"% �"% �"% �"%

:_ �($!' �($!' �($!' �($!' �($!' �($!' �($!' �($!' �($!' �($!' �($!'εcs " '�( " '�( " '�( " '�( " '�( " '�( " '�( " '�( " '�( " '�( " '�(

\ "#�# #( 4R�"' "' � "�#$%" 4R '�#%&& :a�, "#�&Ô

Ultimate Shrinkage Strain - PrestressB_P]�! B_P]�" B_P]�#

� �# �# �#

:_ �(##Ô �(##Ô �(##Ôεcs " &�! " &�! �38E� �

!�!& !�!% !�!$Ô !�!! !� &Ô

!# !$ !Ô !% !&

8 9 10 13 16

1 1 3 3 4

21.7 22.6 23.2 25.2 26.5

30.4 31.3 32.2 34.5 36.1

39.2 40.3 41.3 43.9 45.5

47 48.4 49.6 52.7 54.6

30.4 31.3 32.2 34.5 36.139.2 40.3 41.3 43.9 45.530.4 31.3 32.2 34.5 36.1

( (Ô ! !�Ô !�"Ô !

!

:b

�(#!$#

\XR`^ab`PX]

Page 66: User Guid

64

SUMMARY!The first page (top part of the sheet entitled SUMMARY!)shows input for the sub-frame analysis, i.e. dimensions andloads.

Input should be fairly self explanatory. It should be notedthat H is in the plane of the screen and b, bw etc. at rightangles to the plane of the screen. Several warnings are givenunder Operating Instructions; conditional formatting of cellsflags incorrect data.

Supports can be made to be knife-edge by inputting K incolumn D: remote ends of columns can be either F for fixed,or P for pinned. The line can be left blank. A support width(h below) can be used in conjunction with a ‘K’ support sothat design moments are used at the support face.

Data under ‘Normal Direction’ is used for the vibrationchecks. The number of bays affects possible modes ofvibration, which is checked in accordance with CS TR43 (14).The vibration response factors calculated are accordance withSteel Construction Institute(18) and Concrete Societyguidelines.

Vibration should not be a problem in post-tensioned slabsand beams. Normally, vibration response factors of 12 areused for very busy offices, 8 for normal offices, or 4 for highspecification offices or laboratories where vibration is critical.

Loads are characteristic and are for the whole bay width(not expressed as kN/m2 – unless a 1 m bay width is being

analysed). The self-weight is a user input. The constructionload is intended to be that required to be applied duringtransfer (usually 1.5 kN/m2). However, designers shouldconsider the load history of the slab to ensure worst casesare checked, e.g. temporary loads while casting floors above.Bay widths in the normal direction do not affect the loadingunless, of course, the user chooses to introduce a suitablerelationship (in the loads input).

The current configuration is shown in a chart. This gives ascale representation of the spans, supports, loads and anidealised cross section of each member. Charts also showrepresentations of the tendon profiles and equivalent loadsused in the analysis. For the tendons, a reversed parabolicprofile is used but minimum lengths of straight tendon areused at the supports as recommended by Khan (16). Serviceequivalent loads are shown: those at transfer may be viewedat DETAILS!B361:N372.

The next page (SUMMARY ii) as shown below is the nub ofthe spreadsheet: it has a number of key inputs and outputs.These include inputs of PI / Pj (initial force/ jacking force),Pf / Pj (final force/ jacking force), number and height oftendons, and amounts of bonded reinforcement (some ofthe inputs are necessary to avoid circular arguments).

As it is the nub of this spreadsheet the source of any failuresor missing information (e.g. no tendons or no tendon heightspecified) will become apparent in SUMMARY ii. It issuggested that users may wish to create a second windowof this part of the spreadsheet (Window/ New Window/Arrange).

B E A M S R C C 4 2–

Extract from SUMMARY ii

BD<<0AH�XX)�CT]S^]a���Q^]STS�`TX]U^`RT\T]b

��P��4%.$/.3 ?Y�, !# �Z= ?U�?X�, ( � � ?U�?Y�, ' � � �Z=

=^�^U�BCA0=3B 3OJN�� 3J;H�� 3OJN�� 3J;H�� 3OJN�� 3J;H�� 3OJN��ATR^\\T]STS "# "# "# "Ô "Ô "Ô

5M? �� �� �� �� �� �� � � �ATR^\\T]S�S�WTXVWb "(Ô $ $

7TXVWb�\\ # $ $' $' $ # #

;T]VbW�Bb`PXVWb�\\ !Ô !Ô !Ô

f�b^�\Pf�BPV�\\ Ô#!! & %

?X�Z= "&%Ô "&Ô( "&Ô& "&Ô& "&Ô( "&%Ô

1P[P]RT�;^PS�Z= "&'� #&!�# #Ô$�" "%!�" � �

?U�Z= "Ô ! "$(% "$(# "$(# "$(% "Ô !

1P[P]RT�;^PS�Z= "Ô!�Ô ##Ô�' #" �$ "#%�" � �

�#(%#+3 %&&)#)%.#9CT]S^]a��P� /+

Bb`TaaTa�Pb�b`P]aUT`��Q� /+Bb`TaaTa�X]�aT`dXRT��R� /+

D;B�<>A��S� /+BWTP`��T� /+

EXQ`PbX^]��U� /+3TU[TRbX^]��V� /+

=Tcb`P[�PfXa�ST_bW����� /+ATQP`�ab`Taa����� /+

�',/"!,�34!453

"(Ô

�6!,)$�$%3)'.

$'Ô

##�

(�

#%�

('�

(Ô�

' �

(!�

&$�

( �

� $"� '#�

V

U

T

S

R�C�

R�2�

Q�C�

Q�2�

P

!"Ô�

Page 67: User Guid

65

With regard to Tendons the spreadsheet automaticallycalculates the number of tendons for each span using analgorithm. The algorithm uses either the maximum of themedian stress levels, or the maximum permitted. Thespreadsheet calculates the minimum number of strandsrequired so that permissible concrete tensions are notexceeded at either the initial or final stage. Thus the numbersof tendons are then shown as recommended values, andthe user can override them if required. Once the number oftendons for each span has been fixed, the program attemptsto find an optimum single level of initial prestress for allstrands (this often appears to be the maximum permissible).If the minimum force required generates excessivecompressive stresses, the section is deemed to have failed.

Tendons are assumed to be level through supports andfollow a parabolic profile between. The points of inflectionare taken to be at 1/10 of the clear span points.

Besides number of tendons, the main user control is to adjustthe value of Pf / Pi. This adjusts the number of tendons. Onewould rarely need to adjust tendon heights.

The checks carried out are listed below.

• Tendons (a)

• Stresses at transfer (b)

• Stresses in service (c)

• ULS MOR (d)

• Shear (e)

• Vibration (f)

• Deflection (g)

• Neutral axis depth

• Rebar stress

In the spreadsheet, those that are unsatisfactory arehighlighted and directions are given for further information.

There are also two charts. The ‘efficiency’ chart gives theuser an idea of how hard the section is working or how farit is out. The second chart, ultimate limit state momentenvelope and moments of resistance (capacity), should beused in conjunction with choosing amounts of bondedreinforcement.

The third page (SUMMARY iii) shows stresses at transfer andin service in both tabular and chart form. It should be notedthat, in keeping with current practice, moments areconsidered at the face of columns. Thus peak moments arenot necessarily at column centrelines and moments mightbe different each side of an internal column. Definition oftendon height is theoretically for the whole of the profileat supports. The convention used in the stress charts is:

• Red squares – tension, blue circles – compression

• Solid markers – bottom, hollow markers – top

• Dotted lines – permissible stresses

The fourth page (SUMMARY iv) gives details of shearenvelopes, vibration and deflection together with supportreactions and column moments.

DETAILS!Over nine pages, DETAILS! shows detailed calculationsregarding section properties, distribution factors, momentdistribution used for the sub-frame analysis, profilingconstants, pre-stressing losses, balanced loads, ULS momentand shear checks, and finally vibration.

DEFLECT!The deflection sheet gives details of calculations dealing withdefections. The sheet entitled Graf! shows graph dataextracted from each sheet.

TYPICALC!This sheet is intended to illustrate typical calculations for aparticular point in a span in order to show how all the criteriaare satisfied. The sheet illustrates the transfer and servicestress checks and the calculation of Moment of Resistancecarried out in tabular form in Graf! The point chosen is at ¼span and is highlighted in Graf!

Graf!Graf! provides the data for the charts of the configurationand loads, tendon profile, equivalent loads, ULS momentsand capacities, shear envelopes, deflections, stresses attransfer and stresses in service within SUMMARY! Each chartis plotted at 1/20 points along each span. Many values withinGraf! are used and checked for being minima or maxima forthe various criteria. For instance it may be here that problemswith hogging moments are found.

B E A M S R C C 4 2–

Page 68: User Guid

66

M A T D A T AB E A M S R C C 4 2– –

�? `^YT Rb 3 JL? ;>M B? ? NM �NI �" 3 ��� � � REINFORCED CONCRETE COUNCIL

�2 [XT]b !>PCMILS�' LIOJ <PST�Qg 3PbT ? PVT

�;^RPbX^] ,?P? F�����" ?;G�IH�' LC>�� 2-7 �� �3 ?J��� ��

0 /3 4�4% .3 )/.% $ �!.!,93 )3 ��$ % 3 )' .�NI�"3 ��� � ��� ��� 2 WTRZ TS ATdXaX^] 9^Q�=^

>`XV X]PbTS�U`^\�A22 $"�f [a �^]�23��������������������������������! (((�A22 =BA � 2��

�0 /3 4�4% .3 )/.% $ �!.!,93 )3 ��$ % 3 )' .�NI �" 3 ��� � ��� �������' % .% 2!,�$ !4!

�,/!$ �# /-" ).!4)/.3 ./4% 38]XbXP[�_`Tab Taa���>F ���R^]abcRbX^]�[^PS�^]�P[[�a_P]a 8=? DC�8B�D=34A;8=43 �

8=8C 80; 8]XbXP[�_`Tab Taa���>F ���R^]abcRbX^]�[^PS�^]�^SS�a_P]a

8]XbXP[�_`Tab Taa���>F ���R^]abcRbX^]�[^PS�^]�T dT ]�a_P]a

5 X]P[�_`Tab Taa���STPS���X\_^aTS�[^PS�^]�P[[�a_P]a

5 8=0; 5 X]P[�_`Tab Taa���STPS���X\_^aTS�[^PS�^]�^SS�a_P]a

5 X]P[�_`Tab Taa���STPS���X\_^aTS�[^PS�^]�T dT ]�a_P]a

5 X]P[�_`Tab Taa���UPRb `T S�STPS�P]S�X\_^aTS�[^PS�^]�P[[�a_P]a

D;C8<0C4 5 X]P[�_`Tab Taa���UPRb `T S�STPS���UPRb `T S�X\_^aTS�[^PS�^]�^SS�a_P]a

5 X]P[�_`Tab Taa���UPRb `T S�STPS���UPRb `T S�X\_^aTS�[^PS�^]�T dT ]�a_P]a

3 45;42 C8>= 5 X]P[�_`Tab Taa���STPS���# � �X\_^aTS�[^PS�^]�^SS�a_P]a

�,/!$ �&!# 4/23 GCH G;R 6)"2!4)/.3403 � ! ! �$ ; X\XbX]V �`T _^]aT �UPRb `�, '

8<?>B43 � ! �%

�/0 4)/.3 Bb TaaX]V �4]Sa 1 �; ��A ��1�? `T ab T aa�agabT\ D �D ��1� 0aac\T �" � �\Pf�`TSXab XQcbX^]

9PRZX]V�5�ab T]VbW �& 1B�'! ! �2 [Paa # �2 [PcaT �$�! �#� �

B[PQ �^`�QTP\ 1 �1�^`�B�\XbX]V�R`PRZ �e XSbW �" \\ �

8]�a[PQa��]^\X]P[�b _�Q^]STS�`T X]U `RT\T]b�X]�a_P]. H �H�^`�=*�caT �H�U `�SXaaX\X[P`�a_P]a�

B[PQ �bg_T B �B�^[XS���A �XQQTS�^`��F �PUU[T ��ac__^`bTS�Qg�QTP\3 P\_X]V ��ζ �"� �b �'� � Ô�

�-!4% 2)!,# /.# 2 % 4% URc�, $ 4R"'�, "' σc = ! #�" σt = Ô� c]\^SXUXT S

0b�SPga $�' URX�, "Ô� $ 4RX�, "! �&" σic = ! � " σit = #�" c]\^SXUXT S

2 T\T]b�R^]bT ]b ## F �2 �`PbX^ �ÔÔ >? 2 �^`�A7?2 �. > ? 2 �

0dT�P\QXT]b�Sc`X]V�Rc`X]V�, ! Ô�2 ;^]VbT `\�A �7�� Ô γm = ! �Ô

3 42!.$ U_c�, ! '% 0_��\\ ��,! ��, �! $ : �, � !

4_�, ! (Ô AT [�� �, " 3 `Pe �X], % 3 T_bW�b �ab P]S�RT ]b T �, $

2 % "!2 Ug�, $% #/6% 2 3 C^_ 1^bb \ BXST a

γ\ = ! � Ô b �[X]Za "Ô "Ô "Ô

5A0<4B�0A4 �0BBD<43 �C> �14 �

3 ,3 ��3 ,3 ��5,3 ��5,3 ��5,3 ��3 ,3 ��

3 ,3 ��3 ,3 ��3 ,3 ��3 ,3 ��

�,/!$ ).' �3 % 15% .# ? T`\P]T]b�[^PSa�U �� �PaaTaa\ # � ^U�8\_^aTS�Xa�_T `\P]T]b

,I;> ��!A? @=ON % N � % =Z =�\ � SPga =�\\ � Z=�\\ � 2 `TT_ Z =�\\ �

! #�'! $�' "Ô� $ "! �&" #�%$ $�%'

$"� % #'�( "&�Ô$ "�! $ '�&'

(�% ��,��

%Ô�$! � � "Ô�Ô( "�$Ô &�$!

��./4% 3 �IH�-!4% 2)!,3

��" 2)4)3 (�,/7�2% ,!8!4)/.�3 42!.$

4SJ? $ C; !L?; "L?;ECHA 7?CABN 2% ,!8!4)/.�;N����@JOBbP]SP`S ! �" ! #( ! %& ! � ( " $ % ' !

! "�Ô (# ! && �&# ! �' #�Ô Ô�! &�Ô ! �&

Bc_T ` ! Ô�& ! Ô ! && ! �! '

! "�( ! ! '% �&'Ô

2 ^\_PRb ! Ô�" ! %Ô ! '" ! �"(Ô

! "�& ! ! " ! '% �'(

0\QXT]b��2

AT [PfPbX^]

2 ><18=43

>e]�eT XVWb

0__[XT S�STPS

@cPaX�? T `\P]T]b�8\_^aTS

66

Page 69: User Guid

67

B E A M S S U M M A R Y iR C C 4 2– –

�? `^ YT Rb 3 JL? ;>MB? ? NM �NI �" 3 ��� � � REINFORCED CONCRETE COUNCIL

�2 [XT ]b !>PCMILS�' LIOJ <PST�Qg 3PbT ? PVT

�; ^RPbX^] ,? P? F�����" ? ;G�IH�' LC>�� 2-7 �� �3 ?J��� ��

0 /3 4�4% .3 )/.% $ �!.!,93 )3 ��$ % 3 )' .�NI�" 3 ��� � �� � ��� 2 WTRZ TS AT dXaX^] 9^Q�=^

> `XVX]PbTS�U`^\�A22$"�f [a�^]�2 3��������������������������������! (((�A22 =BA � 2��

BD<<0AH�8�)�3 X\T]aX^]a�P]S�; ^PSa

�3 0 !.3 ,�\ (�\\ <Q�\\ B@�\\ 3 ?=NCIH <@�\\ .I�";SMB? 0=�! ! "� Ô"Ô ! ' " C # Ô

B? 0=�" ! "�Ô Ô"Ô ! ' " C # Ô

B? 0=�#

�3 5 0 0 /243 !"/ 6% �\ (�\\ " �\\ % H>�# IH> "% ,/7 �\ (�\\ " �\\ % H>�# IH>BD? ? > A C �! $� # % 5

BD? ? > A C �" $� # % 5

BD? ? > A C �# :

BD? ? > A C �$

�# /.& )' 52!4)/.

�,/!$ ).' D3 ;alZ=�\ ��RWP`����? ;alZ=��RWP`����? ^aXbX^]l\

!JJFC?> )GJIM ?> 0 IM CNCIH ,I;>?> !JJFC?> )GJIM ?> 0 IM CNCIH ,I;>?>

3 0 !.�� /7 $ ?;> ,I;> @LIG�F? @N ,?HANB 3 0 !.�� /7 $ ?;> ,I;> @LIG�F? @N ,?HANBD3 ; � ! #�'! $"� #"� lllll lllll D3 ; � lllll lllll

? ; �! � lllll ? ; �! � lllll

? ; �"� lllll ? ; �"� lllll

? P`b�D3 ; � ? P`b�D3 ; �

# IHM NLO=NCIH� lllll lllll ! '� lllll lllll # M NL=NCIH� llll llll lllll lllll

3 0 !.��D3 ; � ! #�'! $"� #"� lllll lllll

? ; �! � lllll

? ; �"� lllll ' ,/"!,�3 4!453? P`b�D3 ; �

# IHM NLO=NCIH� lllll lllll ! '� lllll lllll

./2-!,�$ )2 % # 4)/ .

140<�ac__^`bX]V �B^ [XS�B[PQ �b �1B'! ! �2 [Paa�#�� �"�\\�R`PRZ �e XSbW���URc�,�$ ��

Bb T aaTS�U ^\ �1^bW�4 ]Sa

"!9�7 )$ 4(�G%�

%�

�6!,)$ �$ % 3 )' .

�4% .$ /.�0 2/& ),% ������������WT XVWba�b �ab P]S�RT ]b T )�aT T �WT XVWba�a_T RXUXT S�c]ST �C 4=3 > =B�QT [^e �

�% 1 5 )6!,% .4�,/!$ 3 �X]�aT `dXRT

#

$#$

#

$'

! '(�Z= �\

�Z= �\

"(! �Z= �\#" �Z= �\

"$ �Z= �\

�Z= �\�%! �Z= �\ �Ô%�Z= �\

�Z= �\

�"

�!

!

"

#

$

67

Page 70: User Guid

68

B E A M S S U M M A R Y i iR C C 4 2– –

�? `^ YT Rb 3 JL? ;>M B? ? NM �NI �" 3 ��� � � REINFORCED CONCRETE COUNCIL

�2 [XT ]b !>PCMILS�' LIOJ <PST�Qg 3PbT ? PVT

�;^RPbX^] ,? P? F�����" ? ;G�IH�' LC>�� 2-7 �� �3 ?J��� ��

0 /3 4�4% .3 )/.% $ �!.!,93 )3 ��$ % 3 )' .�NI�" 3 ��� � �� � ��� 2 WTRZ TS ATdXaX^] 9^Q�=^

> `XVX]PbTS�U`^\�A22$"�f [a�^]�23��������������������������������! (((�A22 =BA � 2��

BD<<0AH�XX)�CT ]S^]a�� �Q^]STS�`T X]U `RT\T]b

��P��4% .$ /.3 ? Y�, ! # �Z= ? U�? X�, ( � � ? U�? Y�, ' � � �Z=

=^�^U�BCA0=3B 3 OJN�� 3 J;H�� 3 OJN�� 3 J;H�� 3 OJN�� 3 J;H�� 3 OJN��ATR^\\T]STS "# "# "# "Ô "Ô "Ô

5 M? �� �� �� �� �� �� � � �AT R^\\T]S�S�WT XVWb "(Ô $ $

7T XVWb�\\ # $ $' $' $ # # ;T ]VbW�Bb PXVWb�\\ ! Ô ! Ô ! Ô f�b �\Pf�BPV�\\ Ô#! ! & %

? X�Z= "&%Ô "&Ô( "&Ô& "&Ô& "&Ô( "&%Ô 1P[P]RT �;^PS�Z= "&'� #&! �# #Ô$�" "%! �" � �

? U�Z= "Ô ! "$(% "$(# "$(# "$(% "Ô ! 1P[P]RT �;^PS�Z= "Ô! �Ô ##Ô�' #" �$ "#%�" � �

�# (% # +3 % & & )# )% .# 9CT]S^]a��P� /+

Bb TaaTa�Pb�b P]aUT `��Q � /+Bb T aaT a�X]�aT `dXRT ��R� /+

D;B�<> A ��S� /+BWTP`��T � /+

E XQ `PbX^]��U� /+3 T U[T RbX^]��V� /+

=Tcb P[�PfXa�ST _bW����� /+ATQP`�ab T aa����� /+

�' ,/"!,�3 4!453

"(Ô

�6!,)$ �$ % 3 )' .

$'Ô

##�

(�

#%�

('�

(Ô�

' �

(! �

&$�

( �

� $"� '#� ! "Ô�

V

U

T

S

R�C�

R�2�

Q�C�

Q�2�

P

�2% ).& /2# % -% .4 8]_cb�Q^]ST S�`T QP`�P``P]VT\T]b��Bc__^`b�Q P`a�RcbPX[TS�Pb� �#;�

3 OJN�� 3 J;H�� 3 OJN�� 3 J;H�� 3 OJN�� 3 J;H�� 3 OJN��<PX]�QP �� � ! % " ! " " ! %

=^ " " " " "

� �$"%� �%%Ô� �"#(� � � � �

;X]Z �� �, !

=^�^U�[T Va� ' ' ' ' ' ' ' ' '

��S��5 ,3 �-/-% .43F XbW�Q ^]STS�`T X]U `RT\T]b

3 OJN�� 3 J;H�� 3 OJN�� 3 J;H�� 3 OJN�� 3 J;H�� 3 OJN��<c $"�& ! Ô""�! ! Ô#! �& ! Ô "�" ! &%Ô�" ! ! �Ô � � �

<>A ! #%"�( "$(Ô�$ ""Ô"�& ""Ô"�& ! '! Ô�! ! %'! �# � � �

�%%Ô� �%%Ô�

"

"

"

"

5,3 �-/-% .4�% .6% ,/ 0 % �-/2

�#

�"

�!

!

"

#

68

Page 71: User Guid

69

B E A M S S U M M A R Y i i iR C C 4 2– –

��R��342%33%3�CH�3%26)#%

3OJN�� 3J;H�� 3OJN�� 3J;H��

CT]S^]�WTXVWb "'%�' $ �Ô $%"�# $%"�$ $ �&

?U "Ô !�! "$(Ô�( "$(#�# "$(#�# "$(%�!

<Pf�2^\_`TaaX^] #�Ô# Ô�Ô% ! �$( ! �%! %�'!

<Pf�CT]aX^] � �"�## �$�$! �$�Ô! �#�(Ô

342%33%3�).�3%26)#%

Ô

!

"

2^\�C^_ 2^\�1b\ CT]�1b\�f�$ CT]�C^_�f�$

3OJN�� 3J;H�� 3OJN��

"'Ô�" � � �

"Ô !�! � � �

$� % � � �

� �$ � � �

2^\�;X\Xb CT]�;X\Xb�f�$ 2^[�RT]b`Ta

�?`^YTRb 3JL?;>MB??NM�NI�"3�����

�2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] ,?P?F�����"?;G�IH�'LC>��

0/34�4%.3)/.%$�!.!,93)3��$%3)'.�NI�"3����������

> XVX]PbTS�U ^\�A22$"�f[a�^]�23��������������������������������!(((�A22

BD<<0AH�XXX�BCA4BB4B

��Q��342%33%3�;N�42!.3&%2�

3OJN�� 3J;H�� 3OJN�� 3J;H��

CT]S^]�WTXVWb "'%�' $!�' $%"�# $%"�$ $!�(

?X "&%$�( "&Ô(�! "&Ô%�% "&Ô%�% "&Ô(�"

<Pf�2^\_`TaaX^] #�!# &�$( %�"& %� ' &�Ô!

<Pf�CT]aX^] � �!�%( �"�&Ô �"�Ô �!�&

342%33%3�!4�42!.3&%2

"

$

%

'

!

!"

!$

!%

!'

2^\�C^_ 2^\�1b\ CT]�1b\�f�$ CT]�C^_�f�$

REINFORCED CONCRETE COUNCIL

<PST�Qg 3PbT ?PVT

2-7 ���.IP��� ��

2WTRZTS ATdXaX^] 9^Q�=^

=BA � 2��

3OJN�� 3J;H�� 3OJN��

"'Ô�" � � �

"&%$�( � � �

"�(" � � �

� � � �

2^\�;X\Xb CT]�;X\Xb�f�$ 2^[�RT]b`Ta

69

Page 72: User Guid

70

B E A M S S U M M A R Y i vR C C 4 2– –

�? `^ YT Rb 3 JL? ;>M B? ? NM �NI �" 3 ��� � � REINFORCED CONCRETE COUNCIL

�2 [XT ]b !>PCM ILS�' LIOJ <PST �Qg 3PbT ? PVT

�;^RPbX^] ,? P? F�����" ? ;G�IH�' LC>�� 2-7 �� �3 ? J��� ��

0 /3 4�4% .3 )/.% $ �!.!,93 )3 ��$ % 3 )' .�NI�" 3 ��� � �� � ��� 2 WTRZ TS ATdXaX^] 9^Q�=^

> `XVX]PbTS�U`^\�A22$"�f [a�^]�23��������������������������������! (((�A22 =BA � 2��BD<<0AH�Xd��T ��3 (% !2 ; X]Z �� �, !

3 J;H�� 3 J;H�� 3 J;H��;T Ub A XVWb ;T Ub A XVWb ;T Ub A XVWb

E %#%� ''"�! (! (�# %&&�( � �

R`PRZT S. = H H = = =

E R ! #(%�' &#%�' &Ô&�# ! #(%�' � �

=^ �^ U�[T Va ' ' ' ' ' '

; X]Z �a_PRX]V ��� ��� ��� ��� � �

��U��6 )" 2!4)/. 3 J;H�� 3 J;H�� 3 J;H��AT a_^]aT �UPRb ` �%" �&# �

> : > : > :

5 ,3 �3 ( % !2 �% .6% ,/0 %

%Ô �Ô

�( ! �$

� �

(#'�&

�%&&�(

�! Ô

�!

�Ô

Ô

!

! Ô

��V���$ % & ,% # 4)/.

B_P]�! �,�! \\��+�$' > : B_P]�"�,�! %�$\\��+�Ô > :

� �

�3 5 0 0 /24�2% !# 4)/.3 3 OJN�� 3 OJN�� 3 OJN�� 3 OJN��D;B�$ %Ô �Ô ! '$ �" %&&�( � E.

D;B�Ô %ÔÔ�$ ! #%"�! "#"� � E.

D;B�% ! ((�! ! $ (�# %&&�( � E.

3403 "&$�$ ' #�' "'(� � E.

8<? > B43 ! $&� $'$�$ ! Ô"�% � E.

�# /,5-.�-/-% .43 3 OJN�� 3 OJN�� 3 OJN�� 3 OJN��D;B�$� !<IP? � � � � E.G

" ? FIQ � � � � E.G

D;B�Ô� !<IP? � � � � E.G

" ? FIQ � � � � E.G

D;B�%� !<IP? � � � � E.G

" ? FIQ � � � � E.G

-!8�$ % & ,% # 4)/.3

(�" &�(

�! %�

�(�'

�"

�! Ô

�!

�Ô

Ô

!

! Ô

C`P]aUT ` 5X]P[ 2^[�R T]b Ta I T `^�Pf Xa�

70

Page 73: User Guid

71

B E A M S T Y P I C A L CR C C 4 2– –

�?`^YTRb 3JL?;>MB??NM�NI�"3����� REINFORCED CONCRETE COUNCIL

�2[XT]b !>PCMILS�'LIOJ <PST�Qg 3PbT ?PVT

�;^RPbX^] ,?P?F�����"?;G�IH�'LC>�� 2-7 ���.IP��� ��

0/34�4%.3)/.%$�!.!,93)3��$%3)'.�NI�"3���������� 2WTRZTS ATdXaX^] 9^Q�=^

>`XVX]PbTS�U`^\�A22$"�f[a�^]�23��������������������������������!(((�A22 =BA � 2��

490)#!,�#!,#5,!4)/. 1B�'!!

U^`�B_P]�!�Pb�#�% �\�U`^\�2�;�^U�;7�ac__^`b ATUT`T]RT

2[Paa�#�CTT�aTRbX^]������W�,�Ô"Ô�\\����Qe�,�!' �\\�������WU�,�" �\\���QU�,# �\\�

0R�,�!!'Ô \\"����I�b^_�,�!" � 4%�\\���P]S�I�Q^bb^\�,�(#�#4%�\\�

�CT]S^]a�P`T�c]Q^]STS��0_�,�! \\"��U_c�,�!�'% �=�\\"�P]S�&�(�\\�U`^\�a^UUXbT

CWT`T�P`T�"$�bT]S^]a��YPRZTS�b^�!�# "�=�\\��^`�& � ��U_c

?`Tab`Taa�[^aaTa�Pb�bWXa�aTRbX^]�P`T��"�Ô �&�Z=�Pb�b`P]aUT`�P]S��"�"#&�!�Z=�[^]VbT`\

�Q��3NL?MM?M�;N�NL;HM@?L $�#�Ô

<�,�#($�$�Z=\�W^VVX]V��P]S�_`Tab`TaaX]V�U^`RT�,�"�&%!�!�Z=

�+�! � "�=�\\��P[[^eTS

�+�#� �=�\\��P[[^eTS

<Pf�R^\_`TaaX^]��Q^bb^\��,�<�I���?�0�,�#($�$4#���(#�#���"�&%!�!���!!'Ô�,�%�Ô%�=�\\�

<Pf�bT]aX^]��Q^bb^\��,�<�I���?�0�,��!Ô'�#4#���(#�#���"�&%!�!���!!'Ô�,� �(%�=�\\�

�R��3NL?MM?M�CH�M?LPC=? $�#�$

<�,�$ ��Z=\�aPVVX]V��P]S�_`Tab`TaaX]V�U^`RT�,�"�$(&��Z=

�+�!#�##�=�\\��P[[^eTS

�+�$�&#�=�\\��P[[^eTS

�S��-/2�;N�OFNCG;N?�FCGCN�MN;N? $�#�&

<�,�!�#'"�&�Z=\�aPVVX]V��P]S�_`Tab`TaaX]V�U^`RT�,�"�$(&��Z=

U_Q��c]Q^]STS�

4Ó�Ô"

<>A�,��#� "%�&���Ô"Ô���&Ô�(���! &� #���"����"�&Ô"�%�f��$' ���! &� #���"�����! 4Ó�Ô!

<Pf�R^\_`TaaX^]��b^_��,�$ �$%4%���!" � 4%���"�$(&�Ô4#���!!'Ô4#�,�Ô�$$�=�\\�

<Pf�bT]aX^]��Q^bb^\��,�$ �$%���(#�#���"�$(&����!!'�,�"�!'�=�\\�

U_T�,�! �f�"�$(&����"$���! �,�!� $ �%�=�\\�

ATX]U^`RT\T]b�S�,�$' �\\

A_�,�!'% �f�! �f�"$���$ ���# ����Ô"Ô���&Ô�'%��,� � '#

U_T�U_c�,�!� $ �%���!'% �f�!� Ô�,� �Ô'&

C^bP[�bT]aX[T�U^`RT�,�#� "%�&���"�&Ô"�%�,�Ô�&&(�$�Z=

2^\_`TaaX^]�Q[^RZ�ST_bW��S]�,�! ����&&(�$��� �$���$ ���# �,�! &� #�\\

�,�"�#&!�$�Z=\�-�!�#'"�&�^Z

;bT�,�!"�"Ô �\\

,�!� $ �%���& �f��Ô"Ô���&Ô�'%����!"�"Ô ��!���!�&�f� � '#��,�!�"%!�!�=�\\�

CT]S^]�U^`RT�,�!�"%!�!�f�"$�f�! ���! �,�#� "%�&�Z=

ATQP`�U^`RT�,�$% ���!� Ô�f�%�"'#���! �,�"�&Ô"�%�Z=

71

Page 74: User Guid

72

B E A M S D E T A I L SR C C 4 2– –

�? `^ YT Rb 3 JL? ;>M B? ? NM �NI �" 3 ��� � �

�2 [XT ]b !>PCM ILS�' LIOJ <PST �Qg 3PbT ? PVT

�; ^ RPbX^ ],? P? F�����" ? ;G�IH�' LC>�� 2-7 �� �3 ? J���

0 /3 4�4% .3 )/.% $ �!.!,93 )3 ��$ % 3 )' .�NI�" 3 ��� � �� � ��� 2 WTRZ TS A T dXa X^] 9^Q �=^

> `XVX]PbTS�U`^\�A22$"�f [a �^] �23��������������������������������! (((�A22 =BA �

$ % 4!),% $ �# !,# 5,!4 )/ .33 % # 4)/.�0 2/0 % 24)% 3

3 OJN�� 3 J;H�� 3 OJN�� 3 J;H�� 3 OJN�� � �5 [P]VT �P`T P��0 U "$ "$

F T Q �P`T P��0e ($Ô ($Ô

C^bP[�P`TP��0R ! ! 'Ô ! ! 'Ô

5 [P]VT �HU ! !

F T Q �He "%"�Ô "%"�Ô

Σ = Ac.Yt "�&4� ' "�&4� '

Hb ""(�Ô( ""(�Ô( �

HQ "(Ô�$! "(Ô�$! �

8U $�'4� ( $�'4� (

8e "�#4�! "�#4�!

Σ = I xx "�'4�! "�'4�!

Ib ! �"4� ' ! �"4� '

IQ (�#4� & (�#4� &

T\ $�Ô( "ÔÔ�$! ! '$�Ô( ! '$�Ô( "ÔÔ�$! $�Ô( # � � �������

Bb ! � $Ô �! �Ô"! "�'"" "�'"" �! �Ô"! ! � $Ô � � �

BQ �($" $�"$$ �! �#$Ô �! �#$Ô $�"$$ �($" � � �

$ )3 42 )" 5 4)/.�& !# 4/23

3 50 4�� 3 50 4�� 3 50 4�� 3 50 4��

5J�=IF ,I�=IF 2 , 5J�=IF ,I�=IF 2 , 5J�=IF ,I�=IF 2 , 5J�=IF ,I�=IF8 ! �#Ô4 � ( "�&%4 �! "�&%4 �! ! �#Ô4 � ( "�&%4 �! "�&%4�!

BbXUU]Taa #�#'4 � ' "�#4 � ( "�#4 � ( #�#'4 � ' "�"4 � ( "�"4 � (

Bc\ "�%#4 � ( $�'$4 � ( "�"4 � (

5 PRb ` ������ ��� ��� ����� � ������ ������ ������ ������ � ����� ������ ������ ������ � ����� ������ ������

0 ;LNC;F�5 $ ,�@;=NILM� � �

;

<

REINFORCED CONCRETE COUNCIL

��

2��

& )8% $ �% .$ �-/-% .433 0 !.�� 3 0 !.�� 3 0 !.�� !0 0 ,)% $ �$ % !$ 3 0 !.�� 3 0 !.��

, 2 , 2 , 2 , 2 , 2 , 2

2 P]b (($� ! &'�% � 2 P]b # "$� #"'! �# �

D3 ; ! %Ô�& ! %Ô�& ! &(�' ! &(�' � � D3 ; Ô $� Ô $� Ô$%�( Ô$%�( � �

? ; �! � � � � �3 8E � � �3 8E � � ? ; �! � � � � �3 8E � � �3 8E � �

? ; �" � � � � �3 8E � � �3 8E � � ? ; �" � � � � �3 8E � � �3 8E � �

_P`b�D3 ; � � � � � � _P`b�D3 ; � � � � � �

54< � ���� � ���� � ���� � ���� ��� ��� 54< ����� ����� ����� ����� ��� ���)-0 / 3 % $ # / .3 42 5# 4)/ .

2 P]b "# $� "Ô � � 2 P]b ! "(%� ! $ %�# �

D3 ; #'$� #'$� $! %�& $! %�& � � D3 ; "! %� "! %� "#$�$ "#$�$ � �

? ; �! � � � � �3 8E � � �3 8E � � 54< �� ��� �� ��� ����� ����� ��� ���? ; �" � � � � �3 8E � � �3 8E � �

_P`b�D3 ; � � � � � �

54< ����� ����� �� ��� �� ��� ��� ���

-/-% .4�$ )3 42 )" 54)/.( C# IF 3 50 4�� ,I# IF ( C# IF 3 50 4�� ,I# IF ( C# IF 3 50 4�� ,I# IF ( C# IF 3 50 4�� ,I# IF

�! %Ô�& ! %Ô�& � �

� ! $$�$ "! �" � �&'�% �&Ô�Ô �! ! �% � � � � � � �

�#(�# &"�" � �#& �& � �

� #$�# Ô� � �#$�# �#"�( �Ô� � #&�& � � � � �

�! & �! ! & �! ! '�( �! %�Ô � �

� ! $�( "�" � �! & �! �! %�$ �"�Ô � ! %�Ô � � � � �

�'�Ô & �Ô '�" �'�" � �

� & �Ô ! �! � �& �Ô �&�" �! �! � '�" � � � � �

�#�& #�& $�! �#�% � �

� #�" �Ô � �#�& �#�% � �Ô � #�% � � � � �

�! �( ! �% ! �' �! �' � �

� ! �% �" � �! �% �! �% � �" � ! �' � � � � �

� �' �' �( � �' � �

� �& �! � � �' � �' � �! � �' � � � � �

Σ ��� ����� ���� ��� � ���� �� ���� ��� �� ��� ��� ��� ��� ��� ��� ���

3 0 !.��/7.�7 % )' (4

/7.�7 % )' (4

/ $ $ �3 0 !.3

72

Page 75: User Guid

73

B E A M S D E T A I L SR C C 4 2– –

�? ` YT Rb 3 JL?;>MB?? NM �NI �"3 ��� � �

�2 [XT]b !>PCMILS�' LIOJ <PST �Qg 3PbT ?PVT

�;^RPbX^],?P? F�����"?;G�IH�' LC>�� 2-7 �� �3 ?J���

POST-TENSIONED ANALYSIS & DESIGN to BS 8110:1997 2WTRZ TS ATdXaX^] 9^Q�=^

>`XVX]PbTS�U`^\�A22$"�f [a�^]�23��������������������������������! (((�A22 =BA �

34C08;43�2 0;2 D;0C 8> =B�XX

(C#IF 3504�� ,I# IF (C#IF 3504�� ,I# IF (C# IF 3504�� ,I#IF (C# IF 3504�� ,I# IF

�! &(�' ! &(�'

� � � � 'Ô�# '! �( ! "�Ô � �! &(�' � � � � �

$"�& � �'(�( $! � � �

� �#&�" �Ô�Ô � $"�& $! � %�# � �$! � � � � � �

"! �# �! '�% �" �Ô " �Ô � �

� �! '�% �"�& � ! '�Ô ! &�' "�& � �" �Ô � � � � �

(�# �(�# �! �" '�( � �

� �'�! �! �" � (�# '�( ! �$ � �'�( � � � � �

$�% �$� �$�Ô $�Ô � �

� �$� � �% � $� #�( �% � �$�Ô � � � � �

"� �"� �"�" ! �( � �

� �! �' � �# � "� ! �( �# � �! �( � � � � �

! � � �( �! � ! � � �

� � �( � �! � �( �' �! � �! � � � � � �

Σ ��� � ��� �� ��� ��� � ���� �� �� �� ���� ��� ��� ��� ��� ��� ��� ���

)-0/3% $ �#'$� #'$� � �

� ##$�' $(�" � �! '"�# �! &Ô� �"%�' � � � � � � �

�(! �! ! %&�$ � �'&�Ô � �

� &(�Ô ! ! �& � �&(�Ô �&%�# �! ! �& � '&�Ô � � � � �

�#(�& #(�& $#�& �#'�! � �

� #$�% Ô�! � �#(�% �#'� �Ô�' � #'�! � � � � �

�! (�' ! &�# ! (�! �! (� � �

� ! &�# "�Ô � �! &�# �! %�% �"�Ô � ! (� � � � � �

�'�% '�% (�Ô �'�# � �

� &�Ô ! �! � �'�% �'�# �! �# � '�# � � � � �

�$�# #�' $�! �$�! � �

� #�' �% � �#�' �#�% � �% � $�! � � � � �

�! �( ! �( "�! �! �' � �

� ! �% �" � �! �( �! �' � �# � ! �' � � � � �

Σ ��� ����� ���� ��� ����� ���� �� ����� ��� ��� ��� ��� ��� ��� ���

REINFORCED CONCRETE COUNCIL

��

2��

/7.�7% )' (4

% 6% .�30!.3

/$ $ �30!.3

)-0/3% $ �$! %�& $! %�& �

� � � � ! (&�' ! '(�' "(�! � �$! %�& � � � � �

('�( � �" '�# ($�( � �

� �'%�" �! "�& � ('�( ($�( ! $�Ô � �($�( � � � � �

$(�$ �$#�! �$&�Ô $&�Ô � �

� �$#�! �%�# � $#� $! �# %�# � �$&�Ô � � � � �

"! �Ô �"! �% �"#�& " �% � �

� �! '�& �"�' � "! �Ô " �% #�" � �" �% � � � � �

! �& �(�$ �! �# ! �# � �

� �(�$ �! �$ � (�# (� ! �$ � �! �# � � � � �

$�& �$�& �Ô�" $�Ô � �

� �$�! � �% � $�& $�Ô �& � �$�Ô � � � � �

"�# �"� �"�" "�" � �

� �"� � �# � "� ! �( �# � �"�" � � � � �

Σ ��� ���� ����� ��� ����� ���� �� ���� ��� ��� ��� ��� ��� ��� ���

�Ô $� Ô $� � �

� $#(�$ %$�% � �"#(�" �""(�% �#Ô�" � � � � � � �

�! ! (�% "! (�& � �! ! $�' � �

� ! $�# ! Ô�# � �! $�# �! �! �! Ô�# � ! ! $�' � � � � �

�Ô"�! Ô"�! Ô&�$ �Ô �! � �

� $Ô�Ô %�& � �Ô"� �$(�( �&�% � Ô �! � � � � �

�"%� ""�& "Ô� �"Ô� � �

� ""�& #�# � �""�& �"! �' �#�# � "Ô� � � � � �

�! ! �# ! ! �# ! "�Ô �! �( � �

� (�( ! �Ô � �! ! �# �! �' �! �& � ! �( � � � � �

�Ô�& $�( Ô�$ �Ô�$ � �

� $�( �& � �$�( �$�& � �& � Ô�$ � � � � �

�"�Ô "�Ô "�& �"�$ � �

� "�! �# � �"�Ô �"�$ � �$ � "�$ � � � � �

Σ ��� ����� ���� ��� ����� ��� ��� ����� ��� ��� ��� ��� ��� ��� ���

% 6% .�30!.3

!00,)$ �$ % !$

/$ $ �30!.3

73

Page 76: User Guid

74

B E A M S D E T A I L SR C C 4 2– –

�? `^ YT Rb 3 JL? ;>M B? ? NM �NI �" 3 ��� � �

�2 [XT ]b !>PCM ILS�' LIOJ <PST �Qg 3PbT ? PVT

�; ^RPbX^],? P? F�����" ? ;G�IH�' LC>�� 2-7 �� �3 ? J���POST-TENSIONED A NA LYSIS & DESIGN to BS 8110:1997 2 WT R Z TS A T dXa X^] 9^Q �=^

> `XV X] PbT S�U`^\�A2 2 $"�f [a �^] �2 3��������������������������������! (((�A2 2 =BA �

3 4 C 08;43 �2 0;2 D;0C 8> =B�XXX

( C# I F 3 50 4�� ,I# I F ( C# I F 3 50 4�� ,I# I F ( C# I F 3 50 4�� ,I# I F ( C# I F 3 50 4�� ,I# I F

�Ô$%�( Ô$%�( �

� � � � "Ô(�% "$(�" #'�! � �Ô$%�( � � � � �

! "(�' � �"&#�$ ! "$�% � �

� �! ! #�" �! %�% � ! "(�' ! "$�% ! (�! � �! "$�% � � � � �

%$�( �Ô%�% �%"�# %"�# � �

� �Ô%�% �'�# � Ô%�$ Ô$�" '�# � �%"�# � � � � �

"'�" �"'�# �#! �! "& �! � �

� �"$�% �#�% � "'�" "& �! $�! � �"& �! � � � � �

! $�! �! "�# �! #�Ô ! #�Ô � �

� �! "�# �! �' � ! "�# ! ! �' ! �' � �! #�Ô � � � � �

%�! �%�! �%�' Ô�( � �

� �Ô�# � �' � %�! Ô�( �( � �Ô�( � � � � �

#�! �"�& �"�( "�( � �

� �"�& � �$ � "�& "�% �$ � �"�( � � � � �

Σ ��� �� �� ��� �� ��� ����� ���� �� ���� ��� ��� ��� ��� ��� ��� ����"! %� "! %� � �

� ! ''�# "& �& � �! "�Ô �('�$ �! Ô�! � � � � � � �

�Ô! �# ($�" � �$(�" � �

� $$�& %�% � �$$�& �$"�( �%�% � $(�" � � � � �

�""�# ""�# "$�% �"! �Ô � �

� ! (�Ô "�( � �""�# �"! �$ �#�# � "! �Ô � � � � �

�! ! �! (�& ! �& �! �& � �

� (�& ! �$ � �(�& �(�# �! �$ � ! �& � � � � �

�$�( $�( Ô�# �$�& � �

� $�" �% � �$�' �$�% � �& � $�& � � � � �

�"�$ "�! "�# �"�# � �

� "�! �# � �"�! �"� � �# � "�# � � � � �

�! �! ! �! ! �" �! � � �

� �( �! � �! �! �! � � �" � ! � � � � � �

Σ ��� ����� ���� ��� � ���� �� ���� ����� ��� ��� ��� ��� ��� ��� ���

REINFORCED CONCRETE COUNCIL

��

2��

!0 0 ,)$ �$ % !$

% 6% .�3 0 !.3

#/.3425#4)/.�/$$�30!.3

�"#$�$ "#$�$

� � � � ! ! ! �" ! %�' ! %�# � �"#$�$ � � � � �

ÔÔ�% � �! ! & �" Ô#�$ � �

� �$'�Ô �& �! � ÔÔ�% Ô#�$ '�" � �Ô#�$ � � � � �

"& �' �"$�" �"%�& "%�& � �

� �"$�" �#�% � "$�" "#�" #�% � �"%�& � � � � �

! "�! �! "�! �! #�# ! ! �% � �

� �! �Ô �! �Ô � ! "�! ! ! �% ! �' � �! ! �% � � � � �

%� �Ô�# �Ô�' Ô�' � �

� �Ô�# � �' � Ô�# Ô� �' � �Ô�' � � � � �

"�% �"�% �"�( "�Ô � �

� �"�# � �# � "�% "�Ô �$ � �"�Ô � � � � �

! �# �! �! �! �# ! �# � �

� �! �! � �" � ! �! ! �! �" � �! �# � � � � �

Σ ��� � ��� �� ��� ��� � ���� �� ���� �� �� ��� ��� ��� ��� ��� ��� ���

% ,!3 4)# �3 5 0 0 /24�-/-14 5> A4 �4 @ D 8E 0;4 =C �;> 03 8=6 �#�"�! �"�"�

3 5 0 4�� 3 50 4�� 3 50 4�� 3 50 4��,% & 4 2 )' (4 ,% & 4 2 )' (4

B;B�! $%�! Ô'"�' Ô'(�" � � �

B;B�" Ô(�% $! %� #(! �# � � �

B;B�# %�Ô $! (�& $Ô#�& � � �

B;B�$ ! "& �" ! % '�' ! %"%�& � � �

B;B�Ô ! Ô! �# ! #! "�$ ! "&$�' � � �

B;B�% Ô%�' ! #! '�( ! #'Ô�& � � �

B;B�& ! "� ! ! (�$ ! ! #(�$ � � � ! ! �(( ! ! (�$

D ;B�! ! '& �$ "#%(�% "#(Ô�( � � � <X]�[^PS ! � f�ST PS

D ;B�" "$"�% ! %''�Ô ! Ô'& �Ô � � � <Pf�[^PS �$ f�ST PS�� ! �% f�X\ _^aTCPQ [T �"�! �

D ;B�# "Ô�& ! & #�Ô ! '$"�" � � �

2% $ )3 42 )" 5 4)/. " � �#�"�"�! �

�Q �� ' � �Q �� ! ! �

<Pf�< ! ($�! ! (! %�& � �

D ;B�! ! ($�! ! (! %�& ! (! %�& � � �

D ;B�" ! ($�! ! 'Ô& �$ ! &$%�# � � �

D ;B�# "'�" ! '&#�( ! (! %�& � � �

#/.3425#4)/.��%6%.�30!.3

74

Page 77: User Guid

75

B E A M S D E T A I L SR C C 4 2– –

�? ` YTRb 3 JL?;>MB?? NM �NI �"3 ��� � �

�2 [XT ]b !>PCMILS�' LIOJ <PST�Qg 3PbT ?PVT

�;^RPbX^],?P? F�����" ?;G�IH�' LC>�� 2-7 �� �3 ?J���

POST-TENSIONED ANALYSIS & DESIGN to BS 8110:1997 2WTRZ TS ATdXaX^] 9^Q�=^

>`XVX]PbTS�U`^\�A22$"�f [a�^]�23��������������������������������! (((�A22 =BA �34C08;43�2 0;2 D;0C 8> =B�Xd

4/4!,�,/!$ 33 J;H�� 3 J;H��

5$ , 0,� 0 ,� J;LN�5$ 5$ , 0,� 0 ,� J;LN�5$ 5$ , 0,� 0 ,� J;LN�5$B;B�! #'! �& � � � #(&�% � � � � � � �

B;B�" #'! �& � � � ! &"�% � � � � � � �

B;B�# ! %Ô�& � � � #(&�% � � � � � � �

B;B�$ ! Ô#�& � � � ! (&�% � � � � � � �

B;B�Ô ! Ô#�& � � � %(&�% � � � � � � �

B;B�% %%(�& � � � ! (&�% � � � � � � �

B;B�& &'$�( � � � '! &�% � � � � � � �

D;B�! ! ÔÔ! �( � � � ! %! %�% � � � � � � �

D;B�" ! ÔÔ! �( � � � %(&�% � � � � � � �

D;B�# %%(�& � � � ! %! %�% � � � � � � �

3 50 0 /24�3 (% !23 145>A4 �4@D 8E 0;4=C�;>03 8=6

3J;H�� 3 J;H�� 3J;H��B;B�! ! $%�! "#Ô�% "$Ô�( ! Ô! �% � �

B;B�" ! %! �! "" �Ô ! ! &�% ÔÔ� � �

B;B�# $'�$ ! ! &�# "#Ô�! ! %"�Ô � �

B;B�$ $ #�$ %Ô �# %&'�( $! '�& � �

B;B�Ô $# �! %"#�% $Ô �' "$%�' � �

B;B�% ""(�& $$ � %Ô(�% $#&�( � �

B;B�& # '�Ô $&%�$ $((�( #! &�% � �

D;B�! %#"�$ (! (�Ô (%! �% %ÔÔ� � �

D;B�" %#&�$ (! $�% $''�Ô " (�! � �

D;B�# ! '! � $''�% (%! �% %ÔÔ� � �

REINFORCED CONCRETE COUNCIL

��

2��

3 ,3 �3 0 !.�-/-%145>A4 �4@D8E 0;4=C�;>03 8=63 0 !.�� ,?@N ����� 0,� ����� 0,� ����� 2 CABN ,I;>CHAM

% F;M NC=�6 B;B�# $'�$ $'�$ $'�$ ! ! ! &�# ! #�'! � � �

B;B�Ô $# �! $# �! $# �! ! %"#�% '&�'! � � �

8�<;L B;B�# � � � � #�Ô % ! "

B;B�Ô � � � � $�'(' <0G

3 J;H�- B;B�# %�Ô �%�Ô �%�Ô �%�Ô �%�Ô &'�$ $! (�& &'�$

B;B�Ô ! Ô! �# �! Ô! �# �! Ô! �# �! Ô! �# �! Ô! �# ( "� ! #! "�$ ( "� Pb $�'('

3 0 !.��

% F;M NC=�6 B;B�" ! ! &�% ! ! &�% ! ! &�% ! ÔÔ� ! #�'! � � �

B;B�% %Ô(�% %Ô(�% %Ô(�% ! $#&�( '&�'! � � �

8�<;L B;B�" � � '�Ô! ' ! "�Ô

B;B�% � � &�Ô! " <0G

3 J;H�- B;B�" #(! �# �#(! �# �#(! �# �#(! �# �#(! �# ! (�Ô � ! (�Ô

B;B�% ! #'Ô�& �! #'Ô�& �! #'Ô�& �! #'Ô�& �! #'Ô�& ! ("�! � ! ("�! Pb &�Ô! "

3 0 !.��

% F;M NC=�6 B;B�# � ! � ! � ! � � � � �

B;B�Ô � ! � ! � ! � � � � �

8�<;L B;B�# � � �

B;B�Ô � � � <0G

3 J;H�- B;B�# � � � � � � � �

B;B�Ô � � � � � � � � Pb �

4% .$ /.3 ��P�1`TPZX]V�[^PS�, ! '%� 0aac\T ! $�" Z=�\Pf�_T �ab P]S

3OJN�� 3 J;H�� 3 OJN�� 3J;H�� 3 OJN�� � �? U\X] ! #( �& ""(Ô�" "Ô#"�& ! (Ô(�% �Ô#! $� � � "Ô#"�& \X]

? U\Pf ������ "&"&�( Ô! %�" Ô ! %�( "'! ! �& ������ � � � "&"&�( \Pf

<8= ""(Ô�" "Ô#"�& �

<0G "&"&�( >: "'! ! �& >: � >: ! $�" ? U�_T �ab P]S

"# "Ô ! �""Ô

"$ "$ <Pf�<8=�)<X]�<0G ��, �( '

ATR^\\�TS�WT XVWba $ $ <P`VX]��<X])<Pf�+�! �

0RbcP[�=c\QT`

TR^\\�TS�=c\QT

75

Page 78: User Guid

76

B E A M S D E T A I L SR C C 4 2– –

�? `^ YT Rb 3 JL? ;>MB? ? NM �NI �" 3 ��� � �

�2 [XT ]b !>PCMILS�' LIOJ <PST�Qg 3PbT ? PVT

�;^RPbX^],?P? F�����" ? ;G�IH�' LC>�� 2-7 �� �3 ?J���

POST-TENSIONED ANALYSIS & DESIGN to BS 8110:1997 2 WTRZ TS A TdXaX^] 9^Q�=^

> `XVX]PbTS�U`^\�A22$"�f [a�^]�23��������������������������������! (((�A22 =BA �34C08;43 �2 0;2 D;0C 8> =B�d

0 2/& ),).' 3 J;H�� 3 J;H�� �P ! Ô ! !

G � �%(" �$ (!

H �! �&Ô' �! �'$%

I �(! # �'(''

Q Ô! %! %'Ô%

R ! Ô ! "Ô

]T b�; ! ! & ! "#Ô

g! "% $$

g# $$ "%

0! �Ô4 � Ô �%4 � Ô

0" ! 4 � Ô ! 4 � Ô

0# �%4 � Ô �$4 � Ô

g�P " &�! #%(�$ �

g�R #%(�$ " �' �

0 2% 3 42% 3 3 �,/3 3 % 3 ? Y�, ! # �Z= 0_�, ! ;b�\Pf�, "$%Ô B?0= No ;T]VbW 0E 64

3 OJN�� 3 J;H�� 3 OJN�� 3 J;H�� 3 OJN�� � � 24 "$%Ô

5A 82 C 8> =�� �F > 11;4 0 246500]V[T θ �! ! �! #Ô �! "' � (Ô � � 0 ! "#

f �[T Ub Ô! %! ! ! & ! ! & ! 'ÔÔ% "$ Ô "$ Ô "$ Ô "$ Ô 24 "$%Ô

%'Ô% ! "#Ô ! "#Ô ! "#Ô ! "#Ô 0 12650 0 ! "%Ô

f � XVWb "$ Ô ! '''( ! "#Ô ! "#Ô Ô$($ 0 "$%Ô

"$ Ô ! '''( ! "#Ô ! "#Ô Ô$($ 0 12650! ! & %Ô#( 0

Cum θ lef t �" " �$&! �$&! �&"& �(! & �(! & �(! & �(! &

� �"Ô& �$$% �$$% �$$% �$$%

� � �

um θ r ight �(! & �&! Ô �$$% �$$% �! '( � � �

�(! & �&! Ô �$$% �$$% �! '(

�$&! �"%(

U`^\ �[T Ub � ! "�% "##�# "##�# #Ô$�$ $$! �& $$! �& $$! �& $$! �&

� � � � � �

REINFORCED CONCRETE COUNCIL

��

2��

!

"

#

"$%Ô

3 42% 3 3 ).' �,% .' 4(3Bb T aaTS�U`^\�1> C7�T ]Sa

"$%Ô

� � � � � �

� � � � � � � � �

Bc\ � ! "�% "##�# "##�# #Ô$�$ $$! �& $$! �& $$! �& $$! �&

U`^\ � XVWb $$! �& #Ô �% ""Ô�" ""Ô�" ('�$ � � � �

� � � � � �

� � � � � �

� � � � � � � � �

Bc\ $$! �& #Ô �% ""Ô�" ""Ô�" ('�$ � � � � Deanna Tr oi ’ s Table

;^aa "" �' ""%�% ""(�" ""(�" ""%�$ "" �' � � � f or Bonded Tendons

3A0F �8= � I ? X

f �[T Ub # Ô$%! ! " ! "# ! (! Ô% "$%Ô "$%Ô "$%Ô "$%Ô � ' ! """& ! ! ! �! ! �;T Ub

# &! Ô% ! "%Ô ! "%Ô ! "%Ô ! "%Ô 0.0000 0 0.0 "�;T Ub

� � #�;T Ub

f � XVWb "$#Ô ! (! '( ! "%Ô ! "#Ô Ô$($ � � ! �A XVWb

"$#Ô ! (! '( ! "%Ô ! "#Ô Ô$($ 0.0007 12522 111.5 "�A XVWb

! " %'#( # � � #�A XVWb

? f�[T Ub��1� "%&! �! "&%'� "'( �( "%%Ô�Ô "%%Ô�Ô "%%Ô�Ô "%%Ô�Ô "%%Ô�Ô "%%Ô�Ô

? f� XVWb��1� "%&%�# "%&%�# "%&%�# "'(&�Ô "&&$�& "%&%�# � � �

;^aa ! ! #�( ! ! #�( ! ! #�( ! ! #�( ! ! #�( ! ! #�( � � �

4 ;0BC 82 �;> BB

;^aa "Ô�! "Ô�! "Ô�! "Ô�! "Ô�! "Ô�! � � �

Σ losses #Ô(�( #%Ô�% #%'�" #%'�" #%Ô�$ #Ô(�( � � �

)HCNC;F�& IL= ���� ���� ���� ���� ���� ���� � � �A4;0G 0C8>=

;^aa ÔÔ�# ÔÔ�" ÔÔ�! ÔÔ�! ÔÔ�" ÔÔ�# � � �

B7A 8=:064

;^aa (%�( (%�( (%�( (%�( (%�( (%�( � � �

2 A44?

;^aa ! ! ! �% ! ! ! �$ ! ! ! �# ! ! ! �# ! ! ! �$ ! ! ! �% � � �

Σ losses "%#�' "%#�Ô "%#�# "%#�# "%#�Ô "%#�' � � �

& CH;F�& IL= ���� ���� ���� ���� ���� ���� � � �

76

Page 79: User Guid

77

B E A M S D E T A I L SR C C 4 2– –

�? `^ YT Rb 3 JL? ;>M B? ? NM �NI �" 3 ��� � ��2 [XT ]b !>PCM I LS�' LI OJ <PST �Qg 3 PbT ? PVT

�; ^ RPbX^ ],? P? F�� ���" ? ;G�I H�' LC> �� 2-7 �� �3 ? J���POST-TENSIONED A NA LYSIS & DESIGN to BS 8110:1997 2 WT RZ T S A T dXa X^] 9^Q �= ^

> `XV X]PbT S�U`^\�A2 2$"�f [a �^] �2 3 ����� ������ ������� ������ ��������! (((�A2 2 =BA �3 4 C 08;4 3 �2 0;2 D ;0C 8> =B �d X

" !,!.# % �,/ !$ 33 OJN�� 3 J;H�� 3 OJN�� 3 J;H�� 3 OJN�� � �

; T Ub A XV Wb ; T Ub A XV Wb ; T Ub A XV Wb ; T Ub A XV Wb ; T Ub A XV Wb

g! "% "% $$ $$ $$ $$ "% "%

P ! Ô ! Ô ! Ô ! Ô ! ! ! ! ! "Ô ! "Ô

Q Ô! %! Ô! %! %Ô#( %Ô#( %'Ô% %'Ô% Ô$($ Ô$($ 8= 8C 80 ; �? A 4 B C A 4 BB

E ! �,��F T "&'� # #& ! �# #Ô$�! ( "%! �! % � �

D 3 ; "%$�' �%& �% �%& �% #Ô#�% #""� �%! �Ô %! �Ô " '�( � � � � 5 8= 0; �? A 4 B C A 4 BB

E ! �,��F T "Ô! �$' ##Ô�'$ #" �#% "#%�"# � �

D 3 ; "#(�Ô �%! �" �%! �" #! (�( "(! �" �ÔÔ�& ÔÔ�& ! '(� � � � �

" !,!.# % �,/ !$ 3 J;H�� 3 J;H�� �; T Ub A XV Wb ; T Ub A XV Wb ; T Ub A XV Wb

P�; �#$# �$% �

Q �; �"& ! �## �!

UPRb ` �! #" � ÔÔ �! # � &# � '! � (

5 4 < �X �$$! �( �! 'Ô� �Ô&%�( �#"$�! � �

5 4 < �U �#((�& �! %& �# �Ô"! �' �"(#�" � �

P�; �$Ô& �#$ �'

Q �; �%& ! �&# �Ô

UPRb ` � & # �! # � ÔÔ �! #" � (' � ('

5 4 < �X �#"$�# �Ô'! �" �! &(�Ô �$#"�# � �

5 4 < �U �"(#�# �Ô"Ô�& �! %"�# �#(! � � �

P�; � '' � '' �3 8E � �

Q �; � Ô% � Ô% �3 8E � �

UPR b ` � $( � $ � $( � # �3 8E � � �3 8E � �

5 4 < �X ! %#�# ! ! �& "! Ô�& ! Ô�Ô � �

5 4 < �U ! $& �& ! �% ! (Ô�! ! $� � �

P�; � '' �! �3 8E � �

Q �; �($$ �(Ô �3 8E � �

UPR b ` � $ � $( � # � $$ �3 8E � � �3 8E � �

5 4 < �X ! Ô�& "! '� ! �! ! $"�# � �

5 4 < �U ! $�" ! (& �" (�! ! "'�& � �

C> C0; B & % -�C ������ ������ ������ ������ ��� ���& % -�@ ���� �� ������ ������ ���� �� ��� ���

REINFORCED CONCRETE COUNCIL

��

2��

A 867 C �

4 =3

2 4 = CA4 �; 4 5 C

4 �A 867 C

; 4 5 C �4 =3

" !,!.# % �,/ !$ �-/-% .4�$ )3 42 )" 5 4)/ .( C# IF 3 50 4 �� ,I# I F ( C# I F 3 5 0 4�� ,I# I F ( C# I F 3 50 4 �� ,I# I F ( C# I F 3 5 0 4�� ,I# IF

). )4 )!, Ô'& �# �Ô#%�Ô Ô# �% �Ô('�% � �

� �Ô! "� �&Ô�" � "�' "�& �$ � Ô('�% � � � � �

! �$ �"Ô%� "((�# ! �# � �

� �! �" � �" � �" �Ô �! (�& �#� � �! �# � � � � �

�! �# � �% � �& �(�( � �

� (� ! �# � �% �% �! � (�( � � � � �

�# $�Ô $�( �# � �

� � �# � � �$�Ô �$�# � �& � � �# � � � � �

�"�" � �! � �! �" �! � �

� ! �( �# � �! �! � � "�! � � � � �

�! ! � ! �! �! � �

� � �! � � �! � � �( � �! � � �! � � � � �

� �Ô � � � �Ô � �

� �$ �! � � � � � �Ô � � � � �

Σ ��� ���� ����� ��� ��� �� � �� ��� ���� ��� ��� ��� ��� ��� ��� ���"]S�g�< � %! �! �%! �! � �# �( # $�" � � ! " �& � � � ������ �

& ).!, Ô#! �" �$'Ô�" $&(�( �Ô$! �$ � �

� �$%#�! �%'�! � "�Ô "�$ �$ � Ô$! �$ � � � � �

! �# �"#! �% "& �& ! �" � �

� �! �! � �" � �! '�% �! & �' �"�& � �! �" � � � � �

�(�# � �Ô � �% �'�( � �

� '�! ! �" � �Ô �Ô �! � '�( � � � � �

�# $�! $�Ô �# � �

� � �" � � �$� �#�( � �% � � �# � � � � �

�"� � �! � �! �! �( � �

� ! �' �# � �! �! � � ! �( � � � � �

�! �( ! � �! � �

� � �! � � � �( � �' � �! � � �! � � � � �

� �$ � � � �$ � �

� �$ �! � � � � � �$ � � � � �

Σ ��� ���� ����� ��� ������ ����� ���� ��� ��� ��� ��� ��� ��� ���"]S�`g�< � ÔÔ�# �ÔÔ�# � �"&"�" "&Ô�! � � ! ! �Ô � � � � �

77

Page 80: User Guid

78

B E A M S D E T A I L SR C C 4 2– –

�? `^ YTRb 3 JL? ;>MB? ? NM �NI �"3 ��� � �

�2 [XT ]b !>PCMILS�' LIOJ <PST �Qg 3PbT ? PVT

�;^RPbX^],?P? F�����" ?;G�IH�' LC>�� 2-7 �� �3 ?J���

POST-TENSIONED ANALYSIS & DESIGN to BS 8110:1997 2 WTRZ TS ATdXaX^] 9^Q�=^

> `XVX]PbTS�U`^\�A22$"�f [a�^] �23��������������������������������! (((�A22 =BA �34C08;43 �2 0;2 D;0C 8> =B�d XX

3 50 0 /24�-/-%F 8C7�4@D8E 0;4=C�;>03 8=6

3 50 4�� 3 50 4�� 3 50 4�� 3 50 4��,% & 4 2)' (4 ,% & 4 2)' (4

B;B�! �"& �& �""&�Ô �""$�# � � �

B;B�" �! $�" �#($�" �$""�" � � �

B;B�# �%&�# �#( �Ô �#Ô(�( � � �

B;B�$ % �Ô '&Ô�( '( �' � � �

B;B�Ô '$�Ô Ô&(�Ô Ô#(� � � �

B;B�% �(�( Ô'%� %$(�' � � �

B;B�& #Ô�" #&%�% $ #�% � � �

D;B�! ! "& �# ! ! '#�( ! ! ' �( � � �

D;B�" ! "& �# ! ! "$�Ô ! ! �$ � � �

D;B�# �#'�Ô ! ! $! � ! ! ' �( � � �

3 403 "Ô�% &Ô �# &Ô'�& ! ! �Ô � �

8<?>B43 $%�$ Ô'%�# Ô("�' � � �

3 50 0 /24�3 (% ! F 8C7�4@D8E 0;4=C�;>03 8=6

3 J;H�� 3 J;H�� ���B;B�! ! %%�! �" � "! �% "" �% "�# ! && � � � �

B;B�" ! '! �! �" � " �% ("�" "Ô�# ' �# � � �

B;B�# %'�$ �" � (&�# " (�& "Ô�# ! '& �' � � �

B;B�$ $"! �$ �! '� ! %#"�" %Ô%� ""�( $$! �% � � �

B;B�Ô $$'�! �! '� ! % Ô�Ô $"&�' ""�( "%(�& � � �

B;B�% "$&�& �! '� ! $"! �( %#%�& ""�( $% �( � � �

B;B�& #"%�% �! '� ! $Ô'�# $&&� ""�( #$ �% � � �

D;B�! %Ô �Ô �! '� ! ( ! �$ (#'�& ""�( %&&�( � � �

D;B�" %ÔÔ�$ �! '� ! '(%�Ô $%Ô�% ""�( "#"� � � �

D;B�# ! ((�! �! '� ! $& �% (#'�& ""�( %&&�( � � �

3 403 "&$�$ #(Ô�" $ '�% "'(� � �

8<?>B43 ! $&� "#&� "$&�$ ! Ô"�% � �

4;0BC82

D;B�! %! "�" �! '� ! (#(�& (&&� ""�( %#(�% � � �

D;B�" %&#�% �! '� ! '&'�$ $Ô"�( ""�( "$$�& � � �

D;B�# "! #�! �! '� ! $Ô%�% (#"�' ""�( %'#�( � � �

REINFORCED CONCRETE COUNCIL

��

2��

!$ *53 4% $ �3 0 !.�-/-% .43 ,I;>CHAM

3 J;H�� ,?@N ����� 0 ,� ����� 0 ,� ����� 2 CABN 5$ , 0 ,� 0 ,� J5$ , ! "

6 B;B�! ! %%�! ! %%�! ! %%�! ! "! Ô�% #! �' � � �

B;B�" ! '! �! ! '! �! ! '! �! ! " �% #! �' � � �

B;B�# %'�$ %'�$ %'�$ ! (&�# ! #�' � � �

B;B�$ $"! �$ $"! �$ $"! �$ ! %#"�" '&�' � � �

B;B�Ô $$'�! $$'�! $$'�! ! % Ô�Ô '&�' � � �

B;B�% "$&�& "$&�& "$&�& ! $"! �( ÔÔ�' � � �

B;B�& %Ô�$ � � �

D;B�! %Ô �Ô %Ô �Ô %Ô �Ô ! ( ! �$ ! "(�# � � �

D;B�" %ÔÔ�$ %ÔÔ�$ %ÔÔ�$ ! '(%�Ô ! "(�# � � �

D;B�# ! ((�! ! ((�! ! ((�! ! $& �% ÔÔ�' � � �

8<;L B;B�! � � � � Ô�"""

B;B�" � � � � Ô�%($

B;B�# � � � � $�(Ô#

B;B�$ � � � � $�'

B;B�Ô � � � � Ô�! $

B;B�% � � � � $�$#(

D;B�! � � � � Ô� #

D;B�" � � � � Ô� %'

D;B�# � � � � #�Ô%'

- B;B�! �! Ô�! ! Ô�! ! Ô�! ! Ô�! ! Ô�! $$'�& "'! �' - 8�<;L 4�B? CABNB;B�" �! �Ô ! �Ô ! �Ô ! �Ô ! �Ô Ô! & �" ! ! Ô�! Ô! & �" \Pf������/Ô�%($ $! �'

B;B�# �Ô$�& Ô$�& Ô$�& Ô$�& Ô$�& ""$� ! ! '�' ""$� \X]�������/$�(Ô# $! �%

B;B�$ &! �( �&! �( �&! �( �&! �( �&! �( (#(�Ô ! ##%�%

B;B�Ô (%� �(%� �(%� �(%� �(%� ! $&�& ! $ �" ! $&�& \Pf������/Ô�! $ $ �Ô

B;B�% ! �Ô �! �Ô �! �Ô �! �Ô �! �Ô Ô$'�$ ! $%�& Ô$'�$ \X]�������/$�$#( $(�#

D;B�! ! #'�' �! #'�' �! #'�' �! #'�' �! #'�' ! $(&�! ! %$$�Ô

D;B�" ! #'�' �! #'�' �! #'�' �! #'�' �! #'�' ! Ô""�! ! Ô'Ô�" ! Ô""�! \Pf������/Ô� %' $ �&

D;B�# �"& � ( "&� ( "&� ( "&� ( "&� ( #'"�"& ������ #'"�# \X]�������/#�Ô%' &&�"

78

Page 81: User Guid

79

B E A M S D E T A I L SR C C 4 2– –

�? ` YTRb 3JL?;>MB??NM �NI�"3 ��� � �

�2 [XT]b !>PCMILS�' LIOJ <PST�Qg 3PbT ?PVT

�;^RPbX^],?P?F�����"?;G�IH�' LC>�� 2-7 �� �3 ?J���

POST-TENSIONED ANALYSIS & DESIGN to BS 8110:1997 2WTRZTS ATdXaX^] 9 Q�=^

>`XVX]PbTS�U`^\�A22$"�f [a�^]�23��������������������������������! (((�A22 =BA �

34C08;43�20;2D;0C8>=B�dXXX ,I;>CHAM

3J;H�� ,?@N ����� 0,� ����� 0,� ����� 2CABN 5$ , 0,� 0,� J5$, ! "�Ô

6 B;B�! "" �% "" �% "" �% ! ! &&� #! �' � � �

B;B�" ("�" ("�" ("�" ! ' �# ! #�' � � �

B;B�# " (�& " (�& " (�& ! ! '&�' #! �' � � �

B;B�$ %Ô%� %Ô%� %Ô%� ! $$! �% '&�' � � �

B;B�Ô $"&�' $"&�' $"&�' ! "%(�& ÔÔ�' � � �

B;B�% %#%�& %#%�& %#%�& ! $% �( '&�' � � �

B;B�& %Ô�$ � � �

D;B�! (#'�& (#'�& (#'�& ! %&&�( ! "(�# � � �

D;B�" $%Ô�% $%Ô�% $%Ô�% ! "#"� ÔÔ�' � � �

D;B�# (#'�& (#'�& (#'�& ! %&&�( ! "(�# � � �

8<;L B;B�! � � � � %�(#Ô

B;B�" � � � � %�%'"

B;B�# � � � � %�Ô($

B;B�$ � � � � &�$&!

B;B�Ô � � � � &�%%&

B;B�% � � � � &�"Ô!

D;B�! � � � � &�"Ô'

D;B�" � � � � '�#$#

D;B�# � � � � &�"Ô'

- B;B�! "'Ô �"'Ô �"'Ô �"'Ô �"'Ô $' ! # - 8�<;L 4�B?CABNB;B�" '& �'& �'& �'& �'& ""! ! # Ô$"� \Pf������/%�Ô($ $! �(

B;B�# ! $( �! $( �! $( �! $( �! $( Ô$" ! # ""! � \X]�������/%�%'" $! �"

B;B�$ ! #Ô" �! #Ô" �! #Ô" �! #Ô" �! #Ô" ! (( ! !

B;B�Ô ! �! �! �! �! %$ ! ! ! ! ('� \Pf������/&�"Ô! $ �&

B;B�% ! ! ! ! �! ! ! ! �! ! ! ! �! ! ! ! �! ! ! ! ! ! (' ! ! %$ �$ \X]�������/&�%%& $$�(

D;B�! ! %$" �! %$" �! %$" �! %$" �! %$" ! &%Ô ! !

D;B�" ! $&! �! $&! �! $&! �! $&! �! $&! $&! ! ! ! &%Ô�" \Pf������/&�"Ô' $ �&

D;B�# ! %$" �! %$" �! %$" �! %$" �! %$" ! &%Ô ! ! $& �' \X]�������/'�#$# Ô(�(

,I;>CHAM

REINFORCED CONCRETE COUNCIL

��

2��

� ,?@N ����� 0,� ����� 0,� ����� 2CABN 5$ , 0,� 0,� J5$,

6 B;B�! � ! � ! � ! � � � � �

B;B�" � ! � ! � ! � � � � �

B;B�# � ! � ! � ! � � � � �

B;B�$ � ! � ! � ! � � � � �

B;B�Ô � ! � ! � ! � � � � �

B;B�% � ! � ! � ! � � � � �

B;B�& � � � �

D;B�! � ! � ! � ! � � � � �

D;B�" � ! � ! � ! � � � � �

D;B�# � ! � ! � ! � � � � �

8<;L B;B�! � � � � �

B;B�" � � � � �

B;B�# � � � � �

B;B�$ � � � � �

B;B�Ô � � � � �

B;B�% � � � � �

D;B�! � � � � �

D;B�" � � � � �

D;B�# � � � � �

- B;B�! ������ - 8�<;L 4�B?CABNB;B�" ������ � \Pf������/ � �

B;B�# ������ � \X]�������/ � �

B;B�$

B;B�Ô � \Pf������/ � �

B;B�% � \X]�������/ � �

D;B�!

D;B�" � \Pf������/ � �

D;B�# � \X]�������/ � �

79

Page 82: User Guid

80

B E A M S D E T A I L SR C C 4 2– –

�? ` YTRb 3 JL?;>MB??NM �NI�"3 ��� � �

�2 [XT ]b !>PCMILS�' LIOJ <PST�Qg 3PbT ?PVT

�;^RPbX^],?P? F�����"?;G�IH�' LC>�� 2-7 �� �3 ?J���

POST-TENSIONED ANALYSIS & DESIGN TO BS 8110 2WTRZ TS ATdXaX^] 9^Q�=^

>`XVX]PbTS�U`^\�A22$"�f [a�^]�23��������������������������������! (((�A22 =BA $ ;N?34C08;43�2 0;2 D;0C8> =B�Xf

��S��5,3 �-/-% .4 3OJN�� �AXVWb ;TUb A XVWb ;T Ub A XVWb ;T Ub

$"�& ! Ô#! �& ! Ô "�" ! ! �Ô � �

# � $' � $' � # � � �

! $" ! #( ! #( ! $"

# � $' � $' � # � � �

$'"� $' � $' � $' � � �

�" & �! "( �! "( �" & � �

�Ô'' �Ô'% �Ô'% �Ô'' � �

C01;4 �$�$ ! P �( ! � ! � �( � �

! Q �(" ! ! �("

"P �'% �(& �(& �'%

"Q �'' �(( �(( �''

! %! % ! &Ô' ! &Ô' ! %! %

! ! Ô# ! "Ô# ! "Ô# ! ! Ô#

"&%' # & # & "&%'

$ "!

! &%! �& "&Ô"�% "&Ô"�% "&Ô"�% "&Ô"�% �

$Ô# Ô&% Ô&% ÔÔ"! "&Ô#

! #(�' ! &&�' ! &&�' ! & �$ � �

$#' $#' $#' $#'

"# �! #(! �! #(! �! "! $�' � �

$! "�! #(! �! #(! �! #($�' � �

! #%"�( ""Ô"�& ""Ô"�& ! %'! �# � �

! &&! ! &&!

A410A �5>A2 4 "&Ô"�%

0a

# &# # &$

(( �(

! "'!U_Q�c]Q^]STS

$ %Ô

! '! Ô�!

$$%�&

$$%�$

! �

%"'#

C4=3>=�5>A2 4

S] ! &�( &Ô�#

C> C0;�C4=B8>= Ô'"%

%"'# ""%"%"'#

! �

! �

! �

! "'!

� &&

! ""Ô

A_ � &&

U_T�U_c

U_Q�Q^]STS

�Ô'& �Ô'&

! �

! �

! �

! �

;bT

Sb $'$�#

; b "$�Ô

! ""Ô

$'$�#

! $ ! $

"7X]VTa "

� "$�Ô

C4=3>=�74 867C

3J;H�� �3OJN�� 3 OJN��

! &%Ô�"

U_T

REINFORCED CONCRETE COUNCIL

��

2��

34B86=�<><4=C

$ �& $ �& �

3J;H��

! Ô""�!

S` $' � $'$� �

<>A

Ib

I`

$# �#

$"%�!

BbTT [�ab Taa $#' $#'

"$(Ô�$

��T��3 (% !2 Ub�, ! �Ô! '

;T Ub A XVWb ;TUb A XVWb ;T Ub A XVWb

E %#%� ''"�! (! (�# %&&�( � �

<c $"�& ! Ô#! �& ! Ô "�" ! ! �Ô � �

< "! ! �( Ô& �" Ô& �" "! ! �( � �

2 `PRZTS�. = H H = = =

D=2 A02 :43 UR_ "�! ! ! "�! $ "�! $ "�! ! ! � �

E R^ ! #(%�' ! #(Ô�& ! #(Ô�& ! #(%�' � �

2 A02 :43 0_a "# "# "Ô "Ô

0a %#"! 'Ô'# '&'# '&'#

S $! Ô�' $' � $' � " (� � �

0a� �'$Ô �((# ! � ! & "�##Ô � �

U_T �U_c �$! ! �#Ô �#%" �#%# � �

dR �ÔÔÔ �Ô'Ô �Ô( �(! Ô � �

E R` #$&(�# &#%�' &Ô&�# ������ � �

E R ! #(%�' &#%�' &Ô&�# ! #(%�' � � ;X]Za��`TÓcX`TS

0ad�Bd ! �%$# ! �%$# ! �%$# ! �%$# � �

Bd #&Ô #&Ô #&Ô #&Ô

�U��6)"2!4)/. ]f�, "

]g�)�[g Ô %� Ô %� � :WP]�F X[[XP\a�AT U

8f�)�8g #4�! "4� ( #4�! "4� ( �2 ^]R`TbT �B^RXTbg�<TbW^S�

λx : λy ! �(#$ Ô�! & "� ! Ô $�(%# � � �(�'�

Zf�)�Zg ! �"%& ! � #& ! �"$% ! � $! � � �(�(� �(�! �

ω %Ô�$! Ô$�Ô! %Ô�$! Ô$�Ô! � �

δx : δy ! � $ ! %�$& ! %�$! ! %�$& � �

U�f�)�U�g Ô�Ô& Ô�'$ Ô�$& $�Ô' � � �(�! ! �

UQf�)�UQg Ô�Ô& Ô�'$ Ô�$& $�Ô' � � �(� ! "� �(� ! #�

Uf�)�Ug Ô�Ô& Ô�'$ Ô�$& $�Ô' � � �(�! $�

=f�)�=g ! �#'' "� #% ! �$ $ ! �((Ô ! � ! � �(� ! &� �(� ! '�

2 f�)�2 g "ÔÔ�" "Ô �( "Ô%�% #'! �% � � �(�! (�

Af�)�Ag �#& �"% �#% �#& � � �(�" �

A �(�"! �

�%" �&# �

3J;H�� 3J;H��

3J;H�� 3J;H�� �

80

Page 83: User Guid

81

B E A M S D E F L E C TR C C 4 2– –

Pro

jec

tS

pre

ad

sh

ee

tsto

BS

81

10

Clie

nt

Ad

vis

ory

Gro

up

Lo

ca

tio

nL

ev

el

2-

Be

am

on

Gri

d7

DE

FL

EC

TIO

NC

AL

CU

LA

TIO

NS

PO

ST

-TE

NS

ION

ED

AN

AL

YS

IS&

DE

SIG

Nto

BS

81

10

:19

97

Ori

gin

ate

dfr

om

RC

C4

2.x

lso

nC

19

99

RC

C

SP

AN

1A

s(b

)=

62

83

d=

48

0h

=5

25

bw

=1

80

0b

f=

30

00

hf

=2

00

Dis

tan

ce

05

25

10

50

16

50

22

50

28

50

34

50

40

50

46

50

52

50

58

50

64

50

70

50

Ele

me

nt

b2

63

52

55

63

60

06

00

60

06

00

60

06

00

60

06

00

60

06

00

d'

43

43

43

43

43

43

43

43

43

43

43

43

43

As

(t)

40

21

40

21

40

21

40

21

40

21

40

21

40

21

.24

02

1.2

40

21

.24

02

1.2

40

21

.24

02

1.2

40

21

.2T

RA

NF

OR

ME

DS

EC

TIO

NP

RO

PE

RT

IES

at

TR

AN

SF

ER

E=

21

.72

m=

9.2

1m

-1

=8

.21

A1

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

SA

.Yt

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

8Y

t2

34

.91

23

4.9

12

34

.91

23

4.9

12

34

.91

23

4.9

12

34

.91

23

4.9

12

34

.91

23

4.9

12

34

.91

23

4.9

12

34

.91

Yb

29

0.0

92

90

.09

29

0.0

92

90

.09

29

0.0

92

90

.09

29

0.0

92

90

.09

29

0.0

92

90

.09

29

0.0

92

90

.09

29

0.0

9Ix

x3

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

TR

AN

FO

RM

ED

SE

CT

ION

PR

OP

ER

TIE

S-

LO

NG

TE

RM

E=

7.4

1m

=2

6.9

9m

-1

=2

5.9

9A

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

6S

A.Y

t4

E+

08

4E

+0

84

E+

08

4E

+0

84

E+

08

4E

+0

84

E+

08

4E

+0

84

E+

08

4E

+0

84

E+

08

4E

+0

84

E+

08

Yt

24

4.3

12

44

.31

24

4.3

12

44

.31

24

4.3

12

44

.31

24

4.3

12

44

.31

24

4.3

12

44

.31

24

4.3

12

44

.31

24

4.3

1Y

b2

80

.69

28

0.6

92

80

.69

28

0.6

92

80

.69

28

0.6

92

80

.69

28

0.6

92

80

.69

28

0.6

92

80

.69

28

0.6

92

80

.69

Ixx

4E

+1

04

E+

10

4E

+1

04

E+

10

4E

+1

04

E+

10

4E

+1

04

E+

10

4E

+1

04

E+

10

4E

+1

04

E+

10

4E

+1

0T

RA

NF

OR

ME

DS

EC

TIO

NP

RO

PE

RT

IES

-IM

PO

SE

DE

=2

7.5

4m

=7

.26

m-

1=

6.2

6A

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

6S

A.Y

t3

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

Yt

23

3.7

12

33

.71

23

3.7

12

33

.71

23

3.7

12

33

.71

23

3.7

12

33

.71

23

3.7

12

33

.71

23

3.7

12

33

.71

23

3.7

1Y

b2

91

.29

29

1.2

92

91

.29

29

1.2

92

91

.29

29

1.2

92

91

.29

29

1.2

92

91

.29

29

1.2

92

91

.29

29

1.2

92

91

.29

Ixx

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

0D

EF

LE

CT

ION

Sa

tT

RA

NS

FE

R

M(S

LS

3)

77

.47

3.8

-6.5

-13

2.6

-23

9.2

-32

6.5

-39

4.4

-44

2.9

-47

2.1

-48

1.8

-47

2.2

-44

3.2

-39

4.8

1/R

1E

-07

1E

-07

-9E

-09

-2E

-07

-3E

-07

-5E

-07

-6E

-07

-6E

-07

-7E

-07

-7E

-07

-7E

-07

-6E

-07

-6E

-07

Lo

ad

3E

-05

6E

-05

-5E

-06

-1E

-04

-2E

-04

-3E

-04

-3E

-04

-4E

-04

-4E

-04

-4E

-04

-4E

-04

-4E

-04

-3E

-04

Lo

ad

xd

ist

0.0

03

80

.02

94

-0.0

06

-0.1

89

-0.4

66

-0.8

06

-1.1

78

-1.5

53

-1.9

01

-2.1

9-2

.39

2-2

.47

5-2

.41

En

ds

lop

e-0

.00

2S

pa

nd

0-1

.07

-2.1

7-3

.43

-4.6

1-5

.68

-6.5

7-7

.26

-7.7

2-7

.93

-7.9

0-7

.61

-7.1

0C

an

td

0-1

2.2

3-1

2.8

0-1

3.4

6-1

4.0

5-1

4.5

1-1

4.8

1-1

4.9

0-1

4.7

6-1

4.3

7-1

3.7

4-1

2.8

5-1

1.7

4d

0-1

.07

-2.1

7-3

.43

-4.6

1-5

.68

-6.5

7-7

.26

-7.7

2-7

.93

-7.9

0-7

.61

-7.1

0D

EF

LE

CT

ION

S-

LO

NG

TE

RM

M(S

LS

7)

13

.01

37

.31

77

.51

74

.71

70

.41

64

.51

57

.11

48

.31

37

.81

25

.91

12

.49

7.5

81

.01

/R4

E-0

85

E-0

76

E-0

76

E-0

76

E-0

75

E-0

75

E-0

75

E-0

75

E-0

74

E-0

74

E-0

73

E-0

73

E-0

7L

oa

d1

E-0

50

.00

02

0.0

00

30

.00

03

0.0

00

30

.00

03

0.0

00

30

.00

03

0.0

00

30

.00

02

0.0

00

20

.00

02

0.0

00

2L

oa

dx

dis

t0

.00

15

0.1

24

20

.34

41

0.5

67

60

.75

49

0.9

23

31

.06

76

1.1

82

31

.26

21

1.3

01

51

.29

52

1.2

37

81

.12

38

En

ds

lop

e0

.00

24

Sp

an

d0

1.2

42

.35

3.4

24

.28

4.9

55

.42

5.7

05

.81

5.7

65

.56

5.2

24

.77

Ca

nt

d0

7.5

88

.40

9.1

39

.65

9.9

81

0.1

11

0.0

59

.82

9.4

28

.88

8.2

07

.41

d0

1.2

42

.35

3.4

24

.28

4.9

55

.42

5.7

05

.81

5.7

65

.56

5.2

24

.77

DE

FL

EC

TIO

NS

-IM

PO

SE

D

M(S

LS

5-7

)-3

1.2

92

7.6

98

0.5

11

33

.30

17

8.0

42

14

.71

24

3.3

12

63

.85

27

6.3

32

80

.75

27

7.1

02

65

.38

24

5.6

01

/R-4

E-0

83

E-0

89

E-0

82

E-0

72

E-0

73

E-0

73

E-0

73

E-0

73

E-0

73

E-0

73

E-0

73

E-0

73

E-0

7L

oa

d-1

E-0

52

E-0

55

E-0

59

E-0

50

.00

01

0.0

00

20

.00

02

0.0

00

20

.00

02

0.0

00

20

.00

02

0.0

00

20

.00

02

Lo

ad

xd

ist

-0.0

01

0.0

09

0.0

55

90

.15

52

0.2

82

60

.43

17

0.5

92

20

.75

39

0.9

06

61

.03

99

1.1

43

71

.20

76

1.2

21

6E

nd

slo

pe

0.0

01

2S

pa

nd

00

.63

1.2

51

.93

2.5

63

.10

3.5

63

.91

4.1

64

.28

4.2

94

.18

3.9

5C

an

td

01

0.1

51

0.3

31

0.5

01

0.6

11

0.6

41

0.5

91

0.4

31

0.1

69

.78

9.2

78

.65

7.9

1d

00

.63

1.2

51

.93

2.5

63

.10

3.5

63

.91

4.1

64

.28

4.2

94

.18

3.9

5

Ma

de

by

Da

teP

ag

e

RM

W0

1-S

ep

-99

Ch

ec

ke

dR

evi

sio

nJ

ob

No

ch

g-

bd

3/1

2=

2E

+1

07

65

08

25

08

85

09

45

01

00

50

10

65

01

11

75

11

70

06

00

60

06

00

60

06

00

56

35

25

26

34

34

34

54

54

54

54

54

54

02

1.2

40

21

.26

28

36

28

36

28

36

28

36

28

36

28

3

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

23

4.9

12

34

.91

23

2.2

22

32

.22

23

2.2

22

32

.22

23

2.2

22

32

.22

29

0.0

92

90

.09

29

2.7

82

92

.78

29

2.7

82

92

.78

29

2.7

82

92

.78

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

1E

+0

61

E+

06

2E

+0

62

E+

06

2E

+0

62

E+

06

2E

+0

62

E+

06

4E

+0

84

E+

08

4E

+0

84

E+

08

4E

+0

84

E+

08

4E

+0

84

E+

08

24

4.3

12

44

.31

23

6.7

23

6.7

23

6.7

23

6.7

23

6.7

23

6.7

28

0.6

92

80

.69

28

8.3

28

8.3

28

8.3

28

8.3

28

8.3

28

8.3

4E

+1

04

E+

10

4E

+1

04

E+

10

4E

+1

04

E+

10

4E

+1

04

E+

10

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

23

3.7

12

33

.71

23

1.6

42

31

.64

23

1.6

42

31

.64

23

1.6

42

31

.64

29

1.2

92

91

.29

29

3.3

62

93

.36

29

3.3

62

93

.36

29

3.3

62

93

.36

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

-32

7.1

-23

9.9

-13

3.4

-7.5

13

7.8

30

2.4

40

4.3

40

5.0

-5E

-07

-3E

-07

-2E

-07

-1E

-08

2E

-07

4E

-07

6E

-07

6E

-07

-3E

-04

-2E

-04

-1E

-04

-6E

-06

0.0

00

10

.00

02

0.0

00

30

.00

02

-2.1

67

-1.7

14

-1.0

02

-0.0

61

.17

54

2.5

63

53

.35

66

1.7

00

7-1

E-0

3-6

.38

-5.5

0-4

.48

-3.4

0-2

.32

-1.3

0-0

.54

0-1

0.4

3-8

.94

-7.3

3-5

.65

-3.9

7-2

.35

-1.0

70

-6.3

8-5

.50

-4.4

8-3

.40

-2.3

2-1

.30

-0.5

40

62

.94

3.4

22

.3-0

.3-2

4.4

-50

.0-1

26

.2-3

08

.62

E-0

71

E-0

77

E-0

8-9

E-1

0-8

E-0

8-2

E-0

7-4

E-0

7-1

E-0

60

.00

01

9E

-05

4E

-05

-5E

-07

-5E

-05

-9E

-05

-2E

-04

-3E

-04

0.9

47

90

.70

47

0.3

69

4-0

.00

5-0

.45

8-0

.93

4-2

.30

9-2

.85

50

.00

06

4.2

23

.60

2.9

32

.24

1.5

40

.87

0.3

30

6.5

35

.56

4.5

53

.51

2.4

81

.47

0.6

30

4.2

23

.60

2.9

32

.24

1.5

40

.87

0.3

30

21

7.7

61

81

.86

13

7.8

98

5.8

52

5.7

5-4

2.4

1-1

08

.67

-18

1.1

03

E-0

72

E-0

72

E-0

71

E-0

73

E-0

8-5

E-0

8-1

E-0

7-2

E-0

70

.00

02

0.0

00

11

E-0

46

E-0

52

E-0

5-3

E-0

5-7

E-0

5-6

E-0

51

.17

53

1.0

58

50

.84

78

0.5

63

60

.17

98

-0.2

94

-0.7

38

-0.6

22

0.0

00

93

.63

3.2

12

.71

2.1

61

.57

0.9

70

.45

07

.08

6.1

55

.14

4.0

72

.97

1.8

60

.90

03

.63

3.2

12

.71

2.1

61

.57

0.9

70

.45

0

RE

INF

OR

CE

DC

ON

CR

ET

EC

OU

NC

IL

85

R6

8

81

Page 84: User Guid

82

D E F L E C TB E A M S R C C 4 2– –

Pro

jec

tS

pre

ad

sh

ee

tsto

BS

81

10

Clie

nt

Ad

vis

ory

Gro

up

Lo

ca

tio

nL

ev

el

2-

Be

am

on

Gri

d7

DE

FL

EC

TIO

NC

AL

CU

LA

TIO

NS

(ii)

PO

ST

-TE

NS

ION

ED

AN

AL

YS

IS&

DE

SIG

Nto

BS

81

10

:19

97

Ori

gin

ate

dfr

om

RC

C4

2.x

lso

nC

19

99

RC

C

SP

AN

2A

s(b

)=

22

62

d=

48

4h

=5

25

bw

=1

80

0b

f=

30

00

hf

=2

00

Dis

tan

ce

05

50

11

00

17

25

23

50

29

75

36

00

42

25

48

50

54

75

61

00

67

25

73

50

Ele

me

nt

b2

75

55

05

88

62

56

25

62

56

25

62

56

25

62

56

25

62

56

25

d'

45

45

45

45

45

45

45

45

45

45

45

45

45

As

(t)

62

83

62

83

62

83

62

83

62

83

62

83

62

83

.26

28

3.2

62

83

.26

28

3.2

62

83

.26

28

3.2

62

83

.2T

RA

NF

OR

ME

DS

EC

TIO

NP

RO

PE

RT

IES

at

TR

AN

SF

ER

E=

21

.72

m=

9.2

1m

-1

=8

.21

A1

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

SA

.Yt

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

8Y

t2

25

.77

22

5.7

72

25

.77

22

5.7

72

25

.77

22

5.7

72

25

.77

22

5.7

72

25

.77

22

5.7

72

25

.77

22

5.7

72

25

.77

Yb

29

9.2

32

99

.23

29

9.2

32

99

.23

29

9.2

32

99

.23

29

9.2

32

99

.23

29

9.2

32

99

.23

29

9.2

32

99

.23

29

9.2

3Ix

x3

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

TR

AN

FO

RM

ED

SE

CT

ION

PR

OP

ER

TIE

S-

LO

NG

TE

RM

E=

7.4

1m

=2

6.9

9m

-1

=2

5.9

9A

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

6S

A.Y

t3

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

Yt

21

8.7

92

18

.79

21

8.7

92

18

.79

21

8.7

92

18

.79

21

8.7

92

18

.79

21

8.7

92

18

.79

21

8.7

92

18

.79

21

8.7

9Y

b3

06

.21

30

6.2

13

06

.21

30

6.2

13

06

.21

30

6.2

13

06

.21

30

6.2

13

06

.21

30

6.2

13

06

.21

30

6.2

13

06

.21

Ixx

4E

+1

04

E+

10

4E

+1

04

E+

10

4E

+1

04

E+

10

4E

+1

04

E+

10

4E

+1

04

E+

10

4E

+1

04

E+

10

4E

+1

0T

RA

NF

OR

ME

DS

EC

TIO

NP

RO

PE

RT

IES

-IM

PO

SE

DE

=2

7.5

4m

=7

.26

m-

1=

6.2

6A

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

6S

A.Y

t3

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

Yt

22

6.6

32

26

.63

22

6.6

32

26

.63

22

6.6

32

26

.63

22

6.6

32

26

.63

22

6.6

32

26

.63

22

6.6

32

26

.63

22

6.6

3Y

b2

98

.37

29

8.3

72

98

.37

29

8.3

72

98

.37

29

8.3

72

98

.37

29

8.3

72

98

.37

29

8.3

72

98

.37

29

8.3

72

98

.37

Ixx

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

0D

EF

LE

CT

ION

Sa

tT

RA

NS

FE

R

M(S

LS

2)

43

5.9

43

4.7

33

1.9

16

6.7

20

.2-1

07

.7-2

16

.9-3

07

.5-3

79

.5-4

32

.8-4

67

.5-4

83

.5-4

80

.91

/R7

E-0

77

E-0

75

E-0

73

E-0

73

E-0

8-2

E-0

7-3

E-0

7-5

E-0

7-6

E-0

7-7

E-0

7-7

E-0

7-7

E-0

7-7

E-0

7L

oa

d0

.00

02

0.0

00

40

.00

03

0.0

00

22

E-0

5-1

E-0

4-2

E-0

4-3

E-0

4-4

E-0

4-4

E-0

4-4

E-0

4-5

E-0

4-5

E-0

4L

oa

dx

dis

t0

.02

49

0.1

98

50

.32

38

0.2

71

40

.04

48

-0.3

02

-0.7

37

-1.2

26

-1.7

37

-2.2

36

-2.6

91

-3.0

68

-3.3

35

En

ds

lop

e-1

E-0

3S

pa

nd

0-0

.61

-1.4

5-2

.58

-3.8

1-5

.06

-6.2

4-7

.29

-8.1

6-8

.81

-9.2

0-9

.32

-9.1

5C

an

td

0-2

8.9

6-2

8.4

8-2

8.1

1-2

7.8

4-2

7.5

8-2

7.2

6-2

6.8

1-2

6.1

8-2

5.3

3-2

4.2

2-2

2.8

3-2

1.1

6d

0-0

.61

-1.4

5-2

.58

-3.8

1-5

.06

-6.2

4-7

.29

-8.1

6-8

.81

-9.2

0-9

.32

-9.1

5D

EF

LE

CT

ION

S-

LO

NG

TE

RM

M(S

LS

7)

-33

2.7

-12

9.7

-34

.61

0.3

51

.48

8.7

12

2.2

15

1.9

17

7.7

19

9.8

21

8.0

23

2.5

24

3.1

1/R

-1E

-06

-5E

-07

-1E

-07

4E

-08

2E

-07

3E

-07

4E

-07

6E

-07

7E

-07

7E

-07

8E

-07

9E

-07

9E

-07

Lo

ad

-3E

-04

-3E

-04

-7E

-05

2E

-05

0.0

00

10

.00

02

0.0

00

30

.00

03

0.0

00

40

.00

05

0.0

00

50

.00

05

0.0

00

6L

oa

dx

dis

t-0

.04

6-0

.14

4-0

.08

20

.04

08

0.2

77

20

.60

54

1.0

09

21

.47

21

.97

76

2.5

09

53

.05

14

3.5

86

94

.09

96

En

ds

lop

e0

.00

21

Sp

an

d0

1.2

82

.74

4.4

66

.15

7.7

89

.27

10

.60

11

.70

12

.55

13

.11

13

.36

13

.28

Ca

nt

d0

53

.61

52

.64

51

.58

50

.50

49

.36

48

.08

46

.63

44

.96

43

.04

40

.83

38

.31

35

.46

d0

.01

.32

.74

.56

.27

.89

.31

0.6

11

.71

2.6

13

.11

3.4

13

.3D

EF

LE

CT

ION

S-

IMP

OS

ED

M(S

LS

4-7

)-4

60

.7-3

67

.5-2

81

.0-1

91

.1-1

09

.8-3

7.3

26

.48

1.4

12

7.6

16

5.1

19

3.9

21

3.9

22

5.1

1/R

-6E

-07

-4E

-07

-3E

-07

-2E

-07

-1E

-07

-5E

-08

3E

-08

1E

-07

2E

-07

2E

-07

2E

-07

3E

-07

3E

-07

Lo

ad

-2E

-04

-2E

-04

-2E

-04

-1E

-04

-8E

-05

-3E

-05

2E

-05

6E

-05

1E

-04

0.0

00

10

.00

01

0.0

00

20

.00

02

Lo

ad

xd

ist

-0.0

21

-0.1

35

-0.2

21

-0.2

51

-0.1

97

-0.0

85

0.0

72

40

.26

19

0.4

71

40

.68

84

0.9

00

51

.09

51

1.2

59

8E

nd

slo

pe

-2E

-04

Sp

an

d0

-0.0

30

.09

0.3

60

.72

1.1

31

.55

1.9

72

.35

2.6

62

.90

3.0

43

.09

Ca

nt

d0

11

.56

11

.14

10

.79

10

.54

10

.33

10

.15

9.9

59

.71

9.4

19

.04

8.5

78

.00

d0

-0.0

30

.09

0.3

60

.72

1.1

31

.55

1.9

72

.35

2.6

62

.90

3.0

43

.09

Ma

de

by

Da

teP

ag

e

RM

W0

1-S

ep

-99

Ch

ec

ke

dR

evi

sio

nJ

ob

No

ch

g-

bd

3/1

2=

2E

+1

07

97

58

60

09

22

59

85

01

04

75

11

10

01

17

25

12

35

06

25

62

56

25

62

56

25

62

56

25

31

34

54

54

54

54

54

54

54

56

28

3.2

62

83

.26

28

36

28

36

28

36

28

36

28

36

28

3

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

22

5.7

72

25

.77

22

5.7

72

25

.77

22

5.7

72

25

.77

22

5.7

72

25

.77

29

9.2

32

99

.23

29

9.2

32

99

.23

29

9.2

32

99

.23

29

9.2

32

99

.23

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

21

8.7

92

18

.79

21

8.7

92

18

.79

21

8.7

92

18

.79

21

8.7

92

18

.79

30

6.2

13

06

.21

30

6.2

13

06

.21

30

6.2

13

06

.21

30

6.2

13

06

.21

4E

+1

04

E+

10

4E

+1

04

E+

10

4E

+1

04

E+

10

4E

+1

04

E+

10

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

1E

+0

61

E+

06

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

3E

+0

83

E+

08

22

6.6

32

26

.63

22

6.6

32

26

.63

22

6.6

32

26

.63

22

6.6

32

26

.63

29

8.3

72

98

.37

29

8.3

72

98

.37

29

8.3

72

98

.37

29

8.3

72

98

.37

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

3E

+1

03

E+

10

-45

9.6

-41

9.7

-36

1.1

-28

3.9

-18

8.1

-73

.66

.70

.0-7

E-0

7-6

E-0

7-5

E-0

7-4

E-0

7-3

E-0

7-1

E-0

71

E-0

87

E-2

1-4

E-0

4-4

E-0

4-3

E-0

4-3

E-0

4-2

E-0

4-7

E-0

56

E-0

62

E-1

8-3

.45

8-3

.40

6-3

.14

3-2

.63

9-1

.85

9-0

.77

10

.07

41

3E

-14

-0.0

02

-8.7

0-7

.97

-7.0

0-5

.82

-4.4

7-3

.01

-1.5

00

-19

.21

-16

.98

-14

.51

-11

.83

-8.9

7-6

.01

-3.0

00

-8.7

0-7

.97

-7.0

0-5

.82

-4.4

7-3

.01

-1.5

00

24

9.9

25

3.0

25

2.2

24

7.6

23

9.2

22

7.0

16

3.2

0.0

9E

-07

9E

-07

9E

-07

9E

-07

9E

-07

8E

-07

6E

-07

1E

-20

0.0

00

60

.00

06

0.0

00

60

.00

06

0.0

00

50

.00

05

0.0

00

44

E-1

84

.57

32

4.9

91

25

.33

73

5.5

95

5.7

48

15

.78

02

4.3

89

45

E-1

40

.00

44

12

.85

12

.06

10

.91

9.3

97

.52

5.3

12

.77

03

2.2

52

8.6

92

4.7

72

0.4

81

5.8

41

0.8

55

.54

01

2.8

12

.11

0.9

9.4

7.5

5.3

2.8

0.0

22

7.6

22

1.3

20

6.3

18

2.5

15

0.0

10

8.8

58

.80

.03

E-0

73

E-0

73

E-0

72

E-0

72

E-0

71

E-0

77

E-0

81

E-2

10

.00

02

0.0

00

20

.00

02

0.0

00

10

.00

01

8E

-05

4E

-05

3E

-19

1.3

82

1.4

49

31

.44

92

1.3

69

11

.19

67

0.9

19

40

.52

46

4E

-15

0.0

01

3.0

22

.85

2.5

72

.20

1.7

31

.20

0.6

10

7.3

26

.53

5.6

44

.65

3.5

82

.43

1.2

30

3.0

22

.85

2.5

72

.20

1.7

31

.20

0.6

10

RE

INF

OR

CE

DC

ON

CR

ET

EC

OU

NC

IL

86

R6

8

82

Page 85: User Guid

83

Conventional column load take downs by hand can be time-consuming. This spreadsheet emulates conventional columndesign to BS 8110(2) by providing on separate sheets: loadtake down from inputs of location, dimensions, levels andloads to give design axial loads and moments per floor.RCC51.xls is intended as a stand-alone column designspreadsheet for use when a sub-frame analysis is notavailable or is unwarranted. As in COLUMN! withinRCC11.xls, this spreadsheet determines the area of steelrequired (As).

The spreadsheet is set up in such a way that one column size(input in CDES!) is used throughout the height of the columnlocation and that the critical section for design occurs whereaxial load is at its maximum.

The example is based on Designed and detailed (15) but differsin several respects:

• Seven storeys used in the example rather than three (inorder to demonstrate automatic input adequately)

• No special account taken of roof loadings (in order todemonstrate automatic input adequately)

• All columns are taken as 4.00 m long (again, in order todemonstrate automatic input adequately)

• Load distribution according to BS 8110: Part 1, Clause3.8.2.3, i.e. reaction factors of ½ are used for loadsfrom adjacent spans rather than results of analysis orusing shear force factors from BS 8110: Part 1 Tables 3.5and/or 3.12.

• No double counting of floor slabs due to allowances forfloor slabs in design of, therefore reactions from, edgebeams spanning parallel to floor slab span.

As a default the level with maximum axial load withconcurrent maximum moment, i.e. the bottom level, ischosen for consideration in DESMMNTS! (derivation ofdesign moments) and CDES! (design). The user mayinvestigate other levels by choosing the appropriate level inthe combo-box on the right hand side of CDES!.

Unbraced columns may be designed, but the spreadsheetdemands some input of applied moment in LOADTD! in theappropriate axis. If the column is unbraced then it must bepart of a stability frame – if only nominally – with momentsthat should be input as applied moments in LOADTD!

LOADTD!Input is self explanatory but, in order to facilitate use of thisspreadsheet, some degree of automation has beenintroduced. It is vital that input data is hand checked toensure the loads are described properly. It is also advisedthat a clean version of the spreadsheet should be used foreach column analysed and designed (i.e. reload the basespreadsheet each time).

Please note when inputting a location for numberedgridlines to start with an apostrophe, i.e. use !2 - 3 (otherwise2 - 3 will give the result of -1!). Cantilevers may be dealtwith by inputting no beam on the appropriate axis butinputting additional loads and moments (under ‘At columnposition, other applied loads (e.g. loads from cantilevers)’).Note that, so far as the column is concerned, cantilevermoments will relieve (or even exceed fixed end) beammoments and should be specified as negative moments.

As explained under Operator Instructions deleting a levelwill ‘grey out’ subsequent columns and set spans to 0.0 m.Enter data (and delete any subsequent hatches, #####) orequate cells to previous cells (avoid copying cells across) toget up to 10 levels of load take down. Deleting or setting avalue of 0 in columns G to P will ‘grey out’ values to theright, which will be set at 0.0. Generally, input values arecarried through to the right. Red figures or red backgroundsmean inconsistent or incorrect data entries. Overwrite ifincorrect.

Slab spans may be parallel to x or y, or two-way spanning.Troughed slabs may be modelled by using the toppingthickness for the slab and adding widths of ribs within a bayto the width of the beam.

Some input (highlighted in magenta) defaults to values fromother sheets. For instance column dimensions are input inCDES! The user may immediately see whether the design isviable or not and change dimensions accordingly. These cellsare not protected so can be overwritten: beware.

For troughed slabs use topping thickness and aggregatewidth of ribs with width of beam.

Reduction factors for live load to according to BS 6399: Part1(19) Clause 5.2 are automatically applied to axial load unlessspecified otherwise.

DESMMNTS!The basic design procedure is covered in BS 8110: Part 1Clause 3.8. In order to determine design moments severalinputs are required:

• Values of b for braced and unbraced columns, seeClause 3.8.1.6 and Table 3.19 as shown below andTable 3.20 as shown on next page

C O L U M N S R C C 5 1–

RCC51 Column Load Take-down & Design.xls

Table 3.19 Values of b for braced columns

End condition End condition at bottomat top 1 2 31 0.75 0.80 0.902 0.80 0.85 0.953 0.90 0.95 1.00

Page 86: User Guid

84

• Whether the column is braced or un-braced – seeBS 8110: Part 1, Clause 3.8.1.5.

• In order to evaluate Nuz and thus K accurately, an initialassessment of the area of reinforcement, As, is required.An indication of the probable percentage ofreinforcement is given (automation of this figurewould cause a circular reference error in thespreadsheet). If As is set at 0% then effectively K = 1,which is conservative (see BS 8110: Part 1, equation 33and definitions under Clause 3.8.1.1).

CDES!As in COLUMN! within RCC11.xls, this sheet designssymmetrical rectangular columns where both axial load, N,and design moment, Mx or My (see BS 8110: Part 1, Clause3.8.2, 3 and 4) have been calculated from previous sheets.CDES! iterates x/h to determine where the neutral axis lies.The sheet includes stress and strain diagrams to aidcomprehension of the final design (please refer to notesregarding COLUMN! in RCC11.xls).

The spreadsheet is set up in such a way that one column size(input in CDES!) is used throughout the height of the columnlocation and that the critical section for design occurs whereaxial load is at its maximum. Other levels can be investigatedby choosing the appropriate level from the combo-boxlocated under Operating Instructions. Always ensure thatthe size of column designed is correct for the level underconsideration.

For simplicity, where three or more bars are required in thetop and bottom of the section, a (rotationally) symmetricalarrangement of reinforcement is proffered, i.e. top and

bottom reinforcement with additional side bars. Theargument goes that using the critical axis method of BS 8110to determine areas of steel in bi-axially bent columns impliesthat the bars are in the corners of the element. Therefore‘additional’ side bars help ensure this is so. Counter-arguments suggest these additional bars are unnecessary.Bresaler’s load contour check [(Mx / Mux)

a + (My / Muy)a < 1.0,

where a = 2/3 + 5N/3Nuz], used in CP 110(20) is not adopted inthis spreadsheet but may be investigated using RCC53.xls.

The use of T40s in such small columns would not normallybe advocated. However, the choice of T32s would lead tothe use of either 6T32s (5.6%, OK) or, using the (rotationally)symmetrical arrangement, 8T32 (7.7%, no good). Referenceto RCC53.xls. suggests that 6T32 would satisfy Bresaler’s loadcontour check. The use of C45 concrete would make 4T32ssufficient.

Some input (highlighted in magenta) defaults to values fromother sheets. These cells are not protected so can beoverwritten: beware.

Ltdcalcs!This sheet shows workings for the load take-down and isnot necessarily intended for printing out other than forchecking purposes. Load distribution works according to BS8110: Part 1, Clause 3.8.2.3 – “…axial force in a column maybe calculated on the assumption that beams and slabstransmitting force into it are simply supported”.

Stiffs!This sheet shows workings for beam and column stiffnessesand is not necessarily intended for printing out other thanfor checking purposes.

In the determination of section properties, beams areconsidered full height – beam widths are deducted fromslab widths. Moment distribution works according to BS8110: Part 1, Clause 3.2.1.2.5 – “… beams possess half theiractual stiffness”.

Table 3.20 Values of b for unbraced columns

End condition End condition at bottomat top 1 2 31 1.20 1.30 1.502 1.30 1.50 1.803 1.60 1.80 --4 2.20 -- --

Essentially:

Condition 1 – column monolithically connected tobeam at least as deep as the column in the planeconsidered (or foundation specifically designed formoment)

Condition 2 – column monolithically connected tobeams or slabs shallower than the column in the planeconsidered

Condition 3 – column connected to members whichwill provide some nominal restraint

Condition 4 – column unrestrained

C O L U M N S R C C 5 1–

Page 87: User Guid

85

L O A D T DC O L U M N S R C C 5 1– –

�? ` YTRb 3JL?;>MB??NM �NI�"3 ��� � ��

�2 [XT]b !>PCMILS�' LIOJ <PST�Qg 3PbT ?PVT

�;^RPbX^] % >A? �#IFOGH�"� ���������;ECH�NI�$ $ � LGQ � �3 ?J���

2WTRZTS ATdXaX^] 9 Q�=^> XV X]PbTS�U ^\�A2 2 Ô! �f[a �^]�2 3�������������������������! (((�12 0�U `�A2 2 =BA �

).054 ! �"

,I=;NCIH % >A?�# IFOGH�"� ���������;ECH�NI�$ $ � g R^]R`TbT�ST]aXbg��Z=�\#

"$�

gUVZ ! �$

/LC?HN;NCIH 0�1 f f 1�2 ���7 gUÓZ ! �%

g

]�P

,?P?F & % Ô $ # " !

$ CG?HMCIHMB_P]a 2 [�b �2 [ 0�1 \ Ô� Ô� Ô� Ô� Ô� Ô� Ô�

1�2 \ Ô� Ô� Ô� Ô� Ô� Ô� Ô�

! �" \ '� '� '� '� '� '� '�

]�P \ �

B[PQ bWXRZ]Taa��a^[XS� \\ ! &Ô ! &Ô ! &Ô ! &Ô ! &Ô ! &Ô ! &Ô

a_P]�SX`TRbX^]��88�b ��f��g�^ �Q f f f f f f f

1TP\a eXSbW 0�1 \\ # # # # # # #

ST_bW�^�P 0�1 \\ #Ô #Ô #Ô #Ô #Ô #Ô #Ô eXSbW 1�2 \\ # # # # # # #

ST_bW�^�P 1�2 \\ #Ô #Ô #Ô #Ô #Ô #Ô #Ô

eXSbW ! �" \\ # # # # # # # ST_bW�^�P ! �" \\ Ô Ô Ô Ô Ô Ô Ô

eXSbW ]�P \\

2 ^[c\]�QT[^e �R^[�PQ^dT�

7��[[�b �gg� \\ # # # # # # #

1��[[�b �ff� \\ # # # # # # #

7T XVWb��U[��b �U[^^ �� \ � $� $� $� $� $� $� $�

;TdT [ & % Ô $ # " !

,I;>M� �RWP`PRbT XabXR�c]^�B[PQ �X]R�aeb�� VZ Z=�\" � � � � � � �

ÓZ Z=�\" $� $� $� $� $� $� $�

1TP\a �aeb�� VZ Z=�\ X]R[cSTS X]R[cSTS X]R[cSTS X]R[cSTS X]R[cSTS X]R[cSTS X]R[cSTS X]R[cSTS X]R[cSTS X]R[cSTS

[X]T �[^PSa���TfbP�^dT �a[PQ�[^PSa�P]S�QTP\�aT [U�eT XVWb�

0�1 VZ Z=�\ Ô� Ô� Ô� Ô� Ô� Ô� Ô�

ÓZ Z=�\ �

1�2 VZ Z=�\ Ô� Ô� Ô� Ô� Ô� Ô� Ô�

ÓZ Z=�\ �

! �" VZ Z=�\ �

ÓZ Z=�\ �

]�P VZ Z=�\ �

ÓZ Z=�\ �

2��

��

REINFORCED CONCRETE COUNCIL

#/,5-.�,/!$�4!+%�$/7.��$%3)'.�&/2�39--%42)#!,,9�2%).&/2#%$�2%#4��#/,5-.3�"%.4�!"/54�47/�!8%3�4/�"3��� � ��� ���

0b�R^ [c\]�_^aXbX^] ��^bWT`�P__[XTS�[^PSa��TV�[^PSa�U ^\�RP]bX[TdT`a�

6Z Z=��RWP � �

@Z Z=��RWP � �

<ff Z=\��c[b� �

<gg Z=\��c[b� �

;^PSa�_T`�U[^^`

5[^^` 6Z Z= ! $ �& ! $ �& ! $ �& ! $ �& ! $ �& ! $ �& ! $ �&

5[^^` @Z Z= ' � ' � ' � ' � ' � ' � ' �

2 ^[c\]�QT [^e 6Z Z= '�% '�% '�% '�% '�% '�% '�%

/54054 2 ^[c\]�[TdT [ &�b �% %�b �Ô Ô�b �$ $�b �# #�b �" "�b �! 1T[^e �!

2 c\c[PbXdT�[^PSa�X]�R^[c\] �

6Z Z= ! $(�# "('�% $$&�( Ô(&�" &$%�Ô '(Ô�' ! $Ô�!

@Z Z= ' � ! % � "$ � #" � $ � $' � Ô% �

@Z�`TS] UPRb ` ! � �( �' �& �% �% �%@Z�`TS� Z= ' � ! $$� ! ("� ""$� "$ � "''� ##%�

= Z= ##& %$' (#$ ! ! ($ ! $"( ! &! Ô " !

<^\T]ba�X] �R^ [c\]

PQ^cb�f �f <ff b _ Z=\ ! #$�% ! '�% ! '�% ! '�% ! '�% ! '�% ! '�%PQ^cb�g�g <gg b _ Z=\ ! �Ô ! �# ! �# ! �# ! �# ! �# ! �#

<ff Q^bb \ Z=\ ! '�% ! '�% ! '�% ! '�% ! '�% ! '�%<gg Q^bb \ Z=\ ! �# ! �# ! �# ! �# ! �# ! �#

85

Page 88: User Guid

86

D E S M N T SC O L U M N S R C C 5 1– –

�?`^YTRb 3JL?;>MB??NM�NI�"3������

�2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] %>A?�#IFOGH�"����������;ECH�NI�$$�

>`XVX]PbTS�U`^\�A22Ô!�f[a�^]�23�������������������������!(((�120�U `�A22

).054 ,I=;NCIH�� 4SVT�2^[c\]�1!���������PZX]�b^�3�3�,?P?F�=IHMC>?L?>� 1^bb^\��<Pf�=� /LC?HN;NCIH

$CG?HMCIHM PQ^cb�f�f PQ^cb�g�g

W��[[�b^�gg� \\ # � 0�1 f

Q��[[�b^�ff� \\ � #

[^��R[TP`�WTXVWb� \\ #Ô #%Ô

� dP[cT �( �(Ô

#IFOGH�JLIJ?LNC?M

1`PRTS�^`�D]Q`PRTS. 1�^`�D 1 1 URc

Ug

�,I;>M R^dT`�b^�[X]Z

0fXP[ = Z= " ! � <Pf�aXhTS�\PX]�QP`

<^\T]ba b^_ Z=\ ! '�% !�# ?`^QPQ[T�_T`RT]bPVT��0a

Q^bb^\ Z=\ � � [X]Z�SXP\TbT`

/540543TaXV]�R`XbT`XP

= Z=\ " !

M Z= ! (�

PQ^cb G�G

#/,5-.�,/!$�4!+%�$/7.��$%3)'.�&/2�39--%42)#!,,9�2%).&/2#%$�2%#4��#/,5-.3�"%.4�!"/54�47/�!8%3�4/�"3����������

<PST�Qg 3PbT ?PVT

LGQ ���.IP���

2WTRZTS ATdXaX^] 9^Q�=^

=BA �

!�"

g��

f 1�2 7

g��

]�P

$%

\\ #

\\ $

� "� �

\\ !

REINFORCED CONCRETE COUNCIL

��

2��

02 &

B ] ] ] ]

\\ #!Ô #$%&�Ô 3 �\ \ � �

B ! �Ô !!�Ô% "�! ��

\ � � � \ !Ô� !Ô� \

3 � \ � � B f\ \

\ � B B

�f f �g g ] ]

] ]

� g � � Ô� \ # �

� � � � \

\\ "$ "$

"" $�! "" $�!

%# � %# � "C;RC;F�<?H>CHA: �!" �!"

�� � � � � � � \\ "$ "$

� % �! $

\\ #�# $�

\ � �

4Ó �#" #Ô� � �

� \ ! \ � �

\ %Ô�" � -;RCGOG�>?MCAH�G

� , � � � -" \ %Ô�" � = ! �%� �#

� , � � � -# %Ô�" �

,

3 �\ \ � � � \

" \ ! �% !�#

� \ %Ô�" �

!� �" \ � �

\ \ # � �

f\ \ \ ! �% !�#

�R^]b� PQ^cb�f�f PQ^cb�g�g

`�c]Q`PRTS�R^[c\]a

Z=\ ]�P ]�P

Z=\ ]�P ]�P

Z=\ ]�P ]�P

Z=\ ! '�% !�#

PQ^cb�f�f PQ^cb�g�g

BW^`b

1`PRTS 1`PRTS

<f�W� �$Ô#

<g�Q � Ô

[�SX`TRbX^] G�G

=�QWURc �%$

� �#

GIG?HN�

# �"$ �"$ �!�#

Z=\ ! (� �

86

Page 89: User Guid

87

C D E SC O L U M N S R C C 5 1– –

�? ` YTRb 3JL?;>MB??NM �NI�"3 ��� � ��

�2 [XT]b !>PCMILS�' LIOJ <PST�Qg 3PbT ?PVT

�;^RPbX^]% >A?�# IFOGH�"� ���������;ECH�NI�$ $ � LGQ � �3?J���

2WTRZTS ATdXaX^] 9 Q�=^

=BA �

).054 ;TdT[�STaXV]TS)� 1^bb \��<Pf �=�

0fXP[�[^PS��= " ! Z = URc #Ô =�\\�

<^\T]b��< ! (� Z =\ Ug $% =�\\�

PQ^cb G �G PfXa Ugd $% =�\\�

7TXVWb��W��[[�b �gg��;� �b �ff� # \\ γm ! � Ô abTT[

1`TPSbW��Q��[[�b �ff� # \\ γm ! �Ô R^]R TbT

<Pf�QP �SXP\TbT` $ \\ ;X]Z�� ! \\

R^dT ��b �[X]Z� # \\

#!,#5,!4)/.3U ^\�<��� 0a�,�i<��� �%&URc�Q�SR�W�"���SR�"�k�J�W�"�S����UaR�Uab��V\L�U ^\�=��� 0a�,��=��� �%&URc�Q�SR�V\�����UaR���Uab� 0a�,�0ab�,�0aR)���SR,\X]�W� �(f���

S��, % \\ �%&URc�V\�, ! �% =�\\�

S�, "$ \\ Ug�V\�, $#'�! =�\\�

R XbXRP[�PQ^cb�G �G �PfXa) ����W, # \\

Q, #$ \\

U ^\�XbT`PbX^]��]TcbP[�PfXa�ST_bW��f��,��� "Ô#�% \\

SR ""'�" \\

�%&�URc�Q�SR�V\ ! & �# Z =

BbTT[�R^\_�abPX] � "%&BbTT[�bT]a�abPX] � � ! (

BbTT[�abTaa�X]�R^\_��UPRT��UaR $#' =�\\" �2 ^\_��abTaa�X]� T X]U��BbTT [�abTaa�X]�bT]aX[T �UPRT��Uab �#& =�\\" �CT]aX[T �abTaa�X]� T X]U��

U ^\�<��0a�,� ! (Ô' \\"

U ^\�=��0a�,� ! (Ô& \\" /+��

REINFORCED CONCRETE COUNCIL

��

2��

2>;D<=�;>03�C0:4�3>F=���34B86=�5>A�BH<<4CA820;;H �A48=5>A243�

A42C��2>;D<=B�14=C�01>DC�CF>�0G 4B�

Originated from RCC51.xls on CD © 1999 BCA for RCC

0a�`TÓ�S�,�! (Ô&\\��C�1)��� 02/6)$ % ��4���XT�"C$ �C�1����"Ô! $\\�C�1�����Ô�Ô(� �^�P���/ ! ' �RR��

;X]Za�)�� 02/6)$ % �4� ��������

>:

�! Ô�%�=�\\�

PQ^cb�G �G �PfXa

=^bTa

Bb TaaTa�X]�=�\\"

2^\_`TaaX ]���dT

3NL?MM�>C;AL;G

$#'

#&

3NL;CH�>C;AL;G

� "%&

� ! (

� #Ô

� � %$

87

Page 90: User Guid

88

This spreadsheet generates axial load:design momentinteraction charts for symmetrically reinforced rectangularcolumns. It checks the capacity of the columns with variousarrangements of reinforcement against input load cases ofaxial load and uniaxial bending

Within RCC11.xls, COLUMN! allows the user to determinethe area of steel required from inputs of axial load andmoment about the x - x axis. Another approach, adopted inBS 5400(21) and CP 110(20) and more suited to the grouping ofcolumns on particluar projects and adopted here byRCC52.xls, is to give an interaction chart. This shows axialload against moment for symmetrical sections of specifiedsize, strength and reinforcement. It works on the premiseof calculating the moment and axial load capacities of asection with assumed amounts of reinforcement andassumed neutral axis depth. Iterations of neutral axis depthgive data for the Axial load:Moment interaction chart forthe specified section. The spreadsheet also checks thereinforcement required for input load cases. The user maytry different arrangements of reinforcement.

RCC52.xls assumes that the moments input in the load caseshave already been adjusted, if necessary, for bi-axial bending.For many side and all corner columns, there is no choice butto design for bi-axial bending, and the method given inClause 3.8.4.5 must be adhered to, i.e. RCC53.xls should beused.

MAIN!Main! contains all input and output data,

Bending is assumed to be about the x - x, i.e. horizontalaxis, and the input moment is assumed to be the maximumdesign moment as defined in BS 8110 i.e. including Madd etcand in the correct orientation.

Where more than two bars are required per face, the usermay choose to specify a similar arrangement of bars on theside faces in order to avoid confusion in detailing and fixing.In this respect, there is also a question regarding design. Toan extent all columns are bi-axially bent and BS 8110 directsthat bi-axially bent columns are effectively designed aboutone axis only (by adding moment in the critical direction toaccount for moment in the non-critical direction). Byimplication the second axis is not designed specifically. Onereason for adding side bars (when three, four or more barsare required T & B) in square(ish) sections, is to ensure thatthe second axis is catered for. Ideally with BS 8110, theresultant axis should be found and calculations doneaccordingly. But this presumes that the arrangement of barsis known to start with. With BS 5400 and CP 110 checks arecarried out on a chosen section about both axes. Bi-axiallybent columns are dealt with in RCC53.xls

The chart shows lines for 0.1fcuAc and Mmin. The user shouldbe aware that all load cases should be within the boundariesof these lines.

Calcs!Calcs! Shows the derivation of the charts where momentcapacity is calculated at intervals of neutral axis depth fromn.a. depth for N = 0 to n.a. depth for N = Nbal, then atintervals from n.a. depth for N = Nbal to n.a. depth for N = Nuz.

Cases!Cases! identifies the smallest bar diameter that satisfies eachof the load cases.

C O L U M N S R C C 5 2–

RCC52 Column Chart Generation.xls

Page 91: User Guid

89

M A I NC O L U M N S R C C 5 2– –

�? `^YTRb 3 JL?;>MB?? NM �NI�"3 ��� � ��REINFORCED CONCRETE

COUNCIL

�2 [XT]b !>PCMILS�' LIOJ <PST�Qg 3PbT ?PVT

�;^RPbX^] # IFOGHM��;N�!� ��!��?N= 2-7 ���!OA��� ��

2WTRZ TS ATdXaX^] 9^Q�=^

>`XVX]PbTS�U`^\��A22Ô"�f [a ��^]�23��������������������! (((�120�U^`�A22 =BA � 2��

�-!4% 2)!,3URc #Ô =�\\� γm ! � Ô abTT[ 2 ^dT` # \\

Ug $% =�\\� γm ! �Ô R^]R`TbT W�PVV " \\

�3 % # 4)/.W # \\

Q # \\ 8 8 B8=6;4 �0G 8B

e XbW # QP`a�_T`�UPRT 14=3 8=6

0[[�QP`a�X] # eXST�UPRTa

�"!2�!22!.' %-% .434SJ? ";L�� !M=�� ,CHE�� ";L�=�= .<;F��Z=� .OT��Z=� # B?=EMC $ '�#' ! ( � � �

C #" Ô�#% ' (%� &! Ô� #$$Ô�%

C "Ô #�"& ' ((�Ô & #�# "%Ô! �#

C " "� ( % ! $� & #�$ "" #�#

C ! % ! �#$ % ! %� & ! �" ! (! %�%

C ! " �&Ô % ! '� & �% ! %(#�&

#/,5-. #(!24 &/2 3 9--% 42)#!,,9 2% ).&/2#% $ 2% #4!.' 5,!2#/,5-.3 �"% .4�!"/54�4(% �8�8�!8)3 �4/ �"3 ��� � ��� ���

.�-�).4% 2!# 4)/.�# (!24�@IL�����R�����=IFOGH��AL;>? �# �������GG�=IP?L�;H>���<;LM �IH�����GG�@;=?M

!M=������IEIEIEIEIE

+% 9

�4��

�4��

�4��

�4� �

�4� �

�,/!$ # !3 % 3 ,I;>�=;M ? .��Z=� -R��Z=\� ,I;>�=;M? .��Z=� -R��Z=\�

0! �b _ Ô " ��4�� $ ! Ô ! Ô ��4��0! �Q^b ! 'Ô ! ��4�� Ô ! ! Ô ��4��0"�Q^b # Ô .I�& CN % ! Ô ��4� �

Ô

! 'Ô

#

! Ô

! !

<�\ X]

�! URc0R

Ô

!

! Ô

"

#

$

Ô ! ! Ô " "Ô # -/-%.4�-R�Z=\

!8)!,�#/-02%33)/.���.��

�Z=

89

Page 92: User Guid

90

RCC53.xls generates column design charts for symmetricallyreinforced rectangular columns bent about two axes andchecks input load cases.

RCC53.xls also gives interaction charts, showing axial loadagainst moment for the critical axis for symmetricalrectangular sections of specified size, strength andreinforcement arrangement. The user may try differentarrangements of reinforcement. It also provides designs forinput load cases, which are plotted on the relevant x- or y-axis chart.

RCC53.xls takes account of any side-bars.

Philosophy of design for bi-axially bent columns

When preparing this spreadsheet, there was some discussionabout the interpretation of BS 8110 with respect to bi-axiallybent columns and the provision of side bars.

For simplicity, where three or more bars are required in thetop and bottom of the section, it appears to be commonpractice, in small- to medium-sized columns at least, toprovide a (rotationally) symmetrical arrangement ofreinforcement, i.e. to provide additional side bars. Theargument goes that using the critical axis method of BS 8110to determine areas of steel in bi-axially bent columns impliesthat the bars are in the corners of the element. Therefore‘additional’ side bars help ensure that this is so.

There is a counter argument to suggest that the designprocedure for bi-axially bent columns in BS 8110 makes theprecaution of adding additional side bars unnecessary.

Rafiq(22) argues that the Bresaler’s load contour check, asused in CP 110(20) should be adopted to ensure a safe designfor biaxially bent columns otherwise designed to BS 8110,as shown below.

(Mx/Mux)a + (My /Muy)

a < 1.0, where a = 2/3 + 5N/3Nuz

The project’s Advisory Group requested that this checkshould be included in the spreadsheets for biaxially bentcolumns.

MAIN!MAIN! contains all input data and gives designs for the inputload cases.

Guidance for the input is given within the spreadsheet butusers should be familiar with BS 8110: Part 1, Clause 3.8.There is a facility to input up to six user-specified load cases.The input moments under LOADCASES are the initial endmoments due to ultimate design loads as defined in BS 8110about the appropriate axes. The spreadsheet calculates thethe additional design ultimate moment induced bydeflection of column (Madd,), the critical direction for bi-axialbending and the design moment.

CHARTS!CHARTS! shows two charts, one chart for when Mxx is criticaland one for when Myy is critical. These Axial load:Momentinteraction charts for the specified section also show relevantinput load cases. The load cases are identified by axial loadonly (a quirk of Excel!).

The charts show lines for 0.1 fcuAc and Mmin (i.e. eminN). Theuser should be aware that all load cases should be withinthe boundaries of these lines. Due to a quirk in Excel, loadcases can any be identified by axial load, N, on the charts.

Xcal! and Ycal!These sheets show the derivation of the charts wheremoment and axial load capacity is calculated at intervals ofneutral axis depth (in intervals from n.a. depth for N = 0 ton.a. depth for N = Nbal, then in intervals from n.a. depth forN = Nbal to n.a. depth for N = Nuz.).

Cases!Cases! identifies the smallest bar diameter that satisfies eachof the load cases. Clause 3.8.3.2 is included for both directions(columns K & L) and the spreadsheet decides which axis isdominant.

C O L U M N S R C C 5 3–

RCC53 Column Design.xls

Page 93: User Guid

91

M A I NC O L U M N S R C C 5 3– –

�? `^YT Rb 3 JL?;>MB?? NM �NI �"3 ��� � ��REINFORCED CONCRETE

COUNCIL�2 [XT ]b !>PCMILS�' LIOJ <PST�Qg �3PbT �? PVT

�;^RPbX^] ' LIOH>�@FIIL�=IFOGHM ��;N�" � ��"��? N= 2-7 ���!OA��� ��

2 WTRZ TS �ATdXaX^] �9^Q�=^

>`XVX]PbTS�U`^\�A22Ô#�f [a ��^]�23�����������������������������! (((�120�U^`�A22 =BA � 2��

�-!4% 2)!,3URc #Ô =�\\� γm, steel ! � Ô 2 ^dT �b �[X]Z # \\

Ug $% =�\\� γm, conc ! �Ô W�PVV " \\

�3 % # 4)/.W $ \\

Q # \\

e XbW # QP`a�_T �# �UPRT 8 8P]S # QP`a�_T �$ �UPRT

XT ��$ �f�# �R^[c\]a�e XbW�'�QP`a������������

�2% 3 42!).43 4IJ "NG,I��\\� # IH>CNCIH # IH>CNCIH "L;=?>� � ,?��\\� 3 F?H>?LH?M M 3 N;NOM

G �0G 8B� #% 5 5 = ! �" $#" ;Tf�W�, ! �' # IFOGH�CMH�0G 8B� #% 5 5 = ! �" $#" ;Tg�Q�, ! $�$ 3,% .$ % 2

�,/!$ # !3 % 3 !8)!, 4/0 �-/-% .43 ��Z=\� "4-�-/-% .43 ��Z=\�

.��Z=� -�CR -�CS -�CR -�CS1! #Ô ( � "Ô� ( � "Ô�

1" # ' � % � ' � % �

;^PSRPaT �# ! ! � #Ô� ! � #Ô�

;^PSRPaT �$ ! " Ô � ! Ô � Ô � ! Ô �

;^PSRPaT �Ô Ô "" � ( � "" � ( �

;^PSRPaT �% "Ô #Ô� "Ô� #Ô� "Ô�

�"!2�!22!.' %-% .43 "!2 �# % .42% 3 ��\\�";L � !M= �� ,CHE�� ����&;=? ����&;=? .OT��Z=� # B?=EMC $ '�#' ! ( ! $ !M=������ ����� ������C #" Ô�#% ' (% ! $% $Ô($ IEC "Ô #�"& ' ! ! Ô #Ô#Ô IEC " "� ( % ! $ ! Ô$ "(#' IEC ! % ! �#$ % ! % ! Ô% "ÔÔ% IEC ! " �&Ô % ! ' ! Ô' ""Ô' IE

�$ % 3 )' .�-/-% .43 ��Z= 8�!8)3 9�!8)3 # /-").% $+ -�;>> -R -�;>> -S !RCM -� 2% "!2 G;R�6�

1! �"(& "$�" ! ! $�" #"�# Ô&�# G ! #'�$ ��4�� ('�(

1" �$#" # �# ! ! �# $ �$ ! �$ H ! "#�( ��4�� ! ! �&

;^PSRPaT �# �(%Ô ""�Ô ! ""�Ô # � %Ô� G ! '&�( ��4�� &"�$

;^PSRPaT �$ �("! "�' &�' #$�$ ! '$�$ H "" �# ��4�� ! ! �

;^PSRPaT �Ô ! � ! ! �& "#! �& ! Ô�% ! Ô�% G #Ô(�Ô .I�& CN (&�#

;^PSRPaT �% �#(Ô "#�! Ô'�! # �& ÔÔ�& H %'�$ ��4�� '&�Ô

B44�2 70A CB�> = �=4G C �B744C

3 9--% 42)#!,,9 2% ).&/2#% $ 2% #4!.' 5,!2 #/,5-. $% 3 )' .� "% .4!"/54�47/�!8% 3 �4/�"3 ��� � ��� ���

91

Page 94: User Guid

92

C H A R T SC O L U M N S R C C 5 3– –

�? `^YTRb 3 JL?;>MB?? NM �NI �"3 ��� � ��REINFORCED CONCRETE

COUNCIL�2 [XT]b !>PCMILS�' LIOJ �<PST�Qg �3PbT �?PVT

�;^RPbX^] ' LIOH>�@FIIL�=IFOGHM��;N�" � ��"��? N= 2-7 ���!OA��� ��

�2 WTRZ TS �ATdXaX^] �9 Q�=^

>`XVX]PbTS�U`^\�A22Ô#�f [a��^]�23�����������������������������! (((�120�U^`�A22 =BA � 2��

.�-�CHN?L;=NCIH�=B;LN��-R�=LCNC=;F$ �f�# �R^[c\]��W�f�Q���V`PST �2 #��# �\\�R^dT`

+% 9

�4��

�4��

�4��

�4� �

�4� �

3 9--% 42)#!,,9 2% ).&/2#% $ 2% #4!.' 5,!2 #/,5-. $% 3 )' .�"% .4�!"/54�47/�!8% 3 �4/�"3 ��� � ��� ���

!

Ô

<f �\X]

�! URc0R

Ô

!

! Ô

"

#

$

Ô

! " # $ Ô -R��E.G

!8)!,�,/!$��.�

Z=��

.�-�CHN? L;=NCIH�=B;LN��-S�=LCNC=;F$ �f�# �R^[c\]��W�f�Q���\^\T]b�PQ^cb�gg�PfXa���6`PST �2 #��# �2 ^dT`

+% 9

�4��

�4��

�4��

�4� �

�4� �

#

! "

<g�\X]

�! URc0R

Ô

!

! Ô

"

#

$

Ô

Ô ! ! Ô " "Ô #

-S��E.G

!8)!,��E.

92

Page 95: User Guid

93

This spreadsheet designs simple retaining basement wallsand is intended for walls up to 3.5 m high. It is based oncomplying with BS 8002: 1994(4) and BS 8004: 1986(23). It mayalso be used to design walls to comply with CECP 2(6) and BS8007(5). The spreadsheet has been developed with both theBS 8002 and the conventional (CECP 2) methods in mind. Onbalance, the spreadsheet provides reasonable flexibility andin doing so, encourages the designer to employ his/her ownengineering judgement and interpretation of the codes.

The spreadsheet is intended to cover only short walls and tohelp ‘general’ engineers who, from time to time, designretaining walls as part of a wider interest in structures, ratherthan the specialists. The 3.5 m wall height is an arbitrarylimit set for a short wall which is intended to cover over90% of the cases encountered in ‘general’ structural designs.Although many of the design principles still apply to higherwalls, criteria such as wall movements and the validity ofthe assumptions made (e.g. no wall friction) require furtherconsideration and investigation.

The effects of compaction pressures can be generated usingidealised imposed / surcharged loads. Residual lateralpressure calculations were considered to be too complicatedto be covered in the spreadsheet.

Many cells are referred to in formulae by names; for example,DATA!C24 is given the name H which is used in formulae atM50:N50, Diagrams!D146:D150, etc. A list of names andwhere they are defined can be seen by referring to Insert\Name\ Define in Excel.

Input is required on three sheets.

The spreadsheet is laid out in a very similar manner toRCC62.xls.

DATA!This single sheet consists of the main inputs.

Most inputs, which are in blue and underlined, should beself-explanatory. The top diagram defines most inputparameters. A simplistic diagram shows the geometry of asection of the wall and base.

The spreadsheet is based on a number of assumptions, whichshould be assessed as being true or erring on the safe side ineach case. These assumptions are:

• Wall friction is zero

• Minimum active earth pressure = 0.25qH

• Granular backfill is used

• The spreadsheet is not intended for walls over 3.5 mhigh

STABILITY! details other assumptions, i.e:

• The wall idealised as a propped cantilever (i.e. pinnedat top and fixed at base)

• The wall is braced

• Maximum slenderness of wall is limited to 15, i.e.[ 0.9 x (He - Tb/2)/Tw < 15 ]

• Maximum ultimate axial load on wall is limited to 0.1fcu

times the wall cross-sectional area

• Design span = Effective wall height = He - (Tb/2)

• -ve moment is hogging (i.e. tension at external face ofwall)

• +ve moment is sagging (i.e. tension at internal face ofwall)

• ‘ Wall MT ‘ is maximum +ve moment on the wall

• Estimated lateral deflections are used for checking thePD effects.

Factors for gf can be set at 1.4 or 1.6 in accordance with BS8110 or may be set to 1. The designer has, and should have,the final decision and responsibility to select the load factorshe or she feels are suitable to the design conditions. UnderOperating Instructions a number of checks are carried outand problems highlighted.

An estimate of reinforcement per metre length of wall andbase is given.

Further details about DATA! can be seen under thedescription for RCC62.xls.

STABILITY!STABILITY! calculates the overturning and restoringmoments, sliding and resisting forces on a section togetherwith ground bearing pressures and factors of safety. Failuresare highlighted.

Factors of safety against overturning and sliding are requiredas input. As noted in the sheet, wall and/ or surcharge loadsmay have stabilising effects. By using the boxes in column Lthe user should toggle between maximum and minimumvalues to ascertain worst case(s) (perhaps this will beautomated some time).

In the case of sliding, where sliding resistance of the basealone is insufficient, the user may choose, outside of thespreadsheet, to rely on a propping force through thebasement slab.

DESIGN!The first page of this sheet tabulates moments and shears.

Input of eccentricity of vertical load, reinforcement diametersand centres is required for main bending steel on both

RCC61 Basement Wall.xls

W A L L S R C C 6 1–

Page 96: User Guid

94

internal and external faces and for transverse reinforcement.The spreadsheet works on the principle of checking aproposed section and reinforcement arrangement ratherthan proposing an arrangement of reinforcement.

The second page details the design of both outer and innerparts of the base. Again, the spreadsheet works on theprinciple of checking a proposed section, and input of bothreinforcement diameter and centres is required for bothmain bending and transverse reinforcement.

WEIGHT!This sheet shows the build up to the estimate ofreinforcement weight given. The figures should be treatedas approximate estimates only as they cannot deal with theeffects of designers’ and detailers’ preferences,rationalisation, etc.

Diagrams!Diagrams! shows data for the charts used in other sheetsbut is not necessarily intended for printing out other thanfor checking purposes.

Crack width!This sheet shows calculations to determine crack widths inthe wall. It is not necessarily intended for printing out, otherthan for checking purposes.

W A L L S R C C 6 1–

Page 97: User Guid

95

D A T AW A L L S R C C 6 1– –

�? `^YTRb 3 JL? ;>MB?? NM �NI �"3 ��� � ��? N=

�2 [XT]b !>PCMILS�' LIOJ �<PST�Qg �3PbT �?PVT

�;^RPbX^] ' LC>�FCH? �� L= ���!OA��� � ���2 WTRZTS �ATdXaX^] �9^Q�=^

>`XVX]PbTS�U`^\���A22%! �1PaT\T]b�F P[[�f [a ��^]�23�������! (((�120�U^`�A22 =BA 2��

�)$ % !,)3 % $ �3 425# 452% �;H>�&/2# % �$ )!' 2!-3 $ % 3 )' .�3 4!453 �� 6!,)$

�$ )-% .3 )/.3�\\�7�, #Ô 1�, #Ô Ce�, ""Ô

7e �, 18�, ! Ô CQ�, #Ô

7T �, "Ô

�-!4% 2)!,�0 2/0 % 24)% 3URc�, #Ô =�\\

" γ\�, ! �Ô R^]R`T bT

Ug�, $% =�\\" γ\�, ! � Ô abTT [

2 ^dT �b �bT]aX^]�`T X]U `RT\T]b��R^��, $ \\

<Pf��P[[^ePQ[T �STaXV]�ac UPRT �R`PRZ �e XSbW��F ��, �# \\

2 ^]R`T bT �ST]aXbg�, "$� Z=�\# 7;FF�' ?IG?NLS

�3 /),�0 2/0 % 24)% 33TaXV]�P]V[T �^U�X]b�[�U XRbX^]�^U�`T bPX]TS�\Pb�[��� ��, # STV`TT

3TaXV]�R^WTaX^]�^U�`TbPX]TS�\Pb�[��2 ���, Z=�\" �> ][g�V`P]c[P �QPRZUX[[�R^]aXST`TS��XT ��2 ��,� �

3T]aXbg�^U�`TbPX]TS�\Pb�[�����, " Z=�\#

BcQ\T`VTS�3T]aXbg�^U�`TbPX]TS�\Pb�[��Óa���, ! #�## Z=�\# �ST UPc[b,"�#�^U�Ó���^][g�P__[g�eWT]�7e �-

3TaXV]�P]V[T �^U�X]b�[�U XRbX^]�^U�QPaT �\Pb�[��� Q��, " STV`TT , " �

3TaXV]�R^WTaX^]�^U�QPaT �\Pb�[��2 Q���, Z=�\" !3 3 5-04)/.33T]aXbg�^U�QPaT �\Pb�[��ÓQ���, ! Z=�\# P��F P[[�U XRbX^]�Xa�hT `^

0[[^ePQ [T �V`^aa�V`^c]S�QTP X]V�_`Taac`T ��61?��, ! Ô Z=�\" Q��<X]X\c\�PRbXdT �TP`bW�_`Taac`T �,� �"ÔÓ7

�,/!$ ).' 3 ��OH@;=NIL?>� R��6`P]c[P �QPRZUX[[

Bc`RWP`VT �[^PS����[XdT ��B@:��, ! Z=�\" W��3TaXV]�]^b�X]bT ]STS�U �e P[[a�^dT �#��\�WXVW�

Bc`RWP`VT �[^PS����STPS��B6:��, ! Z=�\"

;X]T �[^PS������[XdT ��;@:��, ! Ô Z=�\

;X]T �[^PS������STPS��;6:��, " Z=�\

3 XabP]RT �^U�[X]T �[^PS�U ^\�eP[[��G ��, "Ô \\

F P[[�[^PS������[XdT ��F @:��, Ô Z=�\

F P[[�[^PS������3 TPS��F 6:��, Ô Z=�\

REINFORCED CONCRETE COUNCIL

1PaT\ T ]b�e P[[�ST aXV]�b �1B'! ! )! ((& ��1B' ")! (($��1B�' $)! ('%�T bR�

�,!4% 2!,�&/2# % 3 :^����, �Ô ST UPc[b�:^�,��! �B8=�� ��, �Ô

:PR����, ! �$! ,�":^ ��

&IL=?��E.� ,?P?L�;LG��G� γ U� 5FNCG;N?��&IL=?���E.��?4��,��� #! �"Ô ;4 �,�� �'## ! �$ $#�&Ô

?B�6:���,�� ! "�Ô ;B�,�� ! �"Ô ! �$ ! &�Ô

?B�@: ���,�� ! "�Ô ;B�,�� ! �"Ô ! �% " �

?;�6:���,�� ! � ;;�,�� "�"( ! �$ ! $�

?;�@: ���,�� &�Ô ;;�,�� "�"( ! �% ! "�

?F ��,�� � ;F �,�� � ! �$ �

4IN;F ����� � �����

;;

;F

;4 ;

B

�B ��B �X]�Z=�\6: @:"

�; ��; �X]�Z=�\6: @:

F ��F �X]�Z=�\6: @:

G

1!

CF

CQ

1

7F

74 7

?`^_�Qg�6 c]S�5[ ^4GC4A=0;

F0C4A

10B4<4=C

95

Page 98: User Guid

96

S T A B I L I T YW A L L S R C C 6 1– –

���������������������������

�? `^ YTRb 3 JL?;>MB? ? NM �NI �" 3 ��� � ��? N=

�2 [XT ]b !>PCMILS�' LIOJ �<PST�Qg �3PbT �?PVT

�;^RPbX^] ' LC>�FCH? �� L= ���!OA��� � ��

" ;M ?G?HN�Q;FF�>?M CAH�NI�" 3 �� � �� � �����" 3 ������ ���� �" 3 ������� ����?N= �2 WTRZ TS �A TdXaX^] �9^Q�=^

> `XV X]PbTS�U`^\���A22%! �1PaT\T]b�F P[[�f [a��^]�23�������! (((�120�U^`�A22 =BA � 2��

�% 84% 2.!,�3 4!" ),)49 3 4!" ),)49�# (% # +�� /+

�!.!,93 )3 ���!MMOGJNCIHM ��.IN?M

! ��F P[[�XSTP[XaTS�Pa�P�_`^__TS�RP]bX[T dT ���X�T ��_X]]TS�Pb�b _ �P]S�UXfTS�Pb�QPaT ��

"��F P[[�Xa�Q`PRTS�

#��<PfX\c\�a[T ]ST`]Taa�^U�eP[[�Xa�[X\XbTS�b �! ��X�T �J� �(��7T �CQ�"��Ce �+�! �L

$��<PfX\c\�D [bX\PbT �PfXP[�[^PS�^]�eP[[�Xa�[X\XbTS�b � �! URc�bX\Ta�bWT �eP[[�R`^aa�aTRbX^]P[�P`TP

��3 TaXV]�B_P]��4 UUTRbXdT �eP[[�WT XVWb��,�7T ����CQ �"�

%����dT �\^\T]b�Xa�W^VVX]V���X�T ��bT]aX^]�Pb�T fbT `]P[�UPRT �^U�eP[[��

������dT �\^\T]b�Xa�aPVVX]V���X�T ��bT ]aX^]�Pb�X]bT `]P[�UPRT �^U�eP[[��

&����F P[[�<C ����Xa�\PfX\c\��dT �\^\T]b�^]�bWT �eP[[�

'��4abX\PbTS�[PbT`P[�ST U[T RbX^]a�P`T �caTS�U �RWTRZ X]V�bWT �?∆ �T UUTRb��

��5.& !# 4/2% $ �,/!$ 3 �!.$ �& /2# % 3

&IL=? ,?P?L�;LG ";M ?�-4� 7;FF�-4� 2 ?;=NCIH�;N 2 ?;=NCIH�;N % M NCG;N?>�% F;M NC=�

,;N?L;F�& IL=?� �E.� NI�<;M ?��G� �E.G� �E.G� ";M ?��E.� 4IJ��E.� ��$ ?@F?=NCIH�∆ ��GG��

?4 ��,� "%�(' �&' �! ! �$% $�"& "$�! $ "�'$ �"

?B�6:���,� ! ! �%" ! �! % �Ô�&" "�( (�"' "�#Ô �"

?B�@:���,� ! ! �%" ! �! % �Ô�&" "�( (�"' "�#Ô �!

? ;�6:���,� ! � "�! " �Ô�"Ô Ô�&( Ô�"" $�&' �#

? ;�@: ���,� & �Ô "�! " �#�($ $�#$ #�(! #�Ô( �!

?F ��,� � � � � � � �

4IN;F� ����� ������ ���� � �� ��� � ���� ���

��' 2/5.$ �" % !2).' �& !),52%,/!$ �# !3 % ��� F P[[�; ^PS <0G !

CPZ X]V�\^\T]ba�PQ^cb�RT]bT �^U�QPaT ��P]bXR[^RZe XaT ����� Bc`RWP`VT < 8=

6?LNC=;F�&/2# % 3 ���E.� ,?P?L�;LG��G� -IG?HN��E.G�

F P[[�[^PS�, ! ! �$( ! $'�&Ô

F P[[��ae ��, ! &� ! ! �$( "�#

1PaT �, "(�$ � �

4P`bW�, %�$Ô ! �%' ! �'

F PbT`�, � ! �%' �

Bc`RWP`VT �, ! �Ô ! �%' "�Ô!

; X]T �[^PS�, " � � �

∑ �6�, � ����� ∑ �-P�, � �����

<><4=C�ScT �b �;0C4A0;�5> A2 4B��-I��, �""�$" Z=\

REINFORCED CONCRETE COUNCIL

A4BD;C0=C�<><4=C���-�����-P���-I��, ! %$�(Ô Z=\

42 2 4=CA 82 8CH�5A><�10B4 �2 4=CA4 ���-���6��, �(Ô \

<0G 8<D<�6A>BB�140A8=6�?A4BBDA4 ��, � ����� Z=�\" ��� �� /+

��3 ,)$ ).' �!4�"!3 % �caX]V�^dT `P[[�UPRb �^ U�aPUTbg�X]abTPS�^U�_P`bXP[�aPUT bg�UPRb `� 5 �> �B��, ! �Ô

BD<�^U�;0C4A0;�5> A2 4B��? ��, Ô! �'" Z=

10B4 ��5A 82 C 8>=��5Q ��,�����E �C0=�Q���1�2 Q����, �%#�$% Z=

& ;=NIL�I@�3 ;@? NS���& <���0 ��� � ��� ��� ��� & !),����<ON

NB? L? @IL? ��,!4% 2!,�2% 3 )3 4!.# % �NI�<? �JLIPC>?>�<S�"!3 % -% .4�3 ,!" ������� �����E.

140A8=6�?A4BBDA4��Z=�\��

Ô

!

"

� #�Ô

96

Page 99: User Guid

97

D E S I G NW A L L S R C C 6 1– –

���������������������������

�? `^YT Rb 3 JL?;>MB?? NM �NI�"3 ��� � ��? N=

�2 [XT]b !>PCMILS�' LIOJ �<PST�Qg �3PbT �? PVT

�;^RPbX^] ' LC>�FCH? �� L= ���!OA��� � ��

";M ?G?HN�Q;FF�>?M CAH�NI�" 3 �� � ��� �����"3 ������ ���� �"3 ������� ����?N=� �2 WTRZTS �ATdXaX^] �9^Q�=^

>`XV X]PbTS�U`^\���A22%! �1PaT\T]b�F P[[�f [a��^]�23�������! (((�120�U^`�A22 =BA � 2��

�3 425# 452!,��$ % 3 )' .3 ���OFNCG;N? � $ % 3 )' .�# (% # +3 �� /+1B'! !

��7!,,���J? L�G?NL? �F? HANB�� `T UT `T]RT

0G 80;�;>03�2 0?02 8CH���; X\XbTS�b � �! URc���, ������ Z= ���� �� /+ #�$�$�!

& IL=?� γ U�� 5FNCG;N? 5FN� �-IG?HN 5FN��3 B?;L� 5 FN� �3 B?;L�

,;N?L;F�&IL=? �E.� & IL=?��E.�;N�<;M ? ��E.G;N�<;M? ��E.� ;N�NIJ��E.�

?4 ��, "%�(' ! �$ #&�&& �! %� $ ##�&( #�('

?B�6:���, ! ! �%" ! �$ ! %�"& �'� ! "�(( #�"'

?B�@:���, ! ! �%" ! �% ! '�% �(�! Ô ! $�'Ô #�&Ô

?;�6:���, ! � ! �$ ! $� �&�#Ô &�# %�&

?;�@:���, &�Ô ! �% ! "� �%�# %�"% Ô�&$

?F ��, � ! �$ � � � �

4IN;F�� ����� ����� ������ ���� � �����

��$ ?M CAH�"?H>CHA�-IG?HNM

>]�8=C4A=0;�UPRT �ScT �b �[PbT`P[�U `RTa��< X]b�, "&�&% Z=\

�> ]�4G C4A=0;�UPRT �ScT �b �[PbT`P[�U `RTa��< Tf b�, �$%�'$ Z=\

4RRT]b XRXbg�^U�0G 80;�;>03B�, ! "Ô \\

�;0C4A0;�345;42 C 8>=����∆ ���, �' \\

3cT �b �TRRT]b XRXbg�^U�PfXP[�[^PSa��< TRR�, ('�$ Z=\

3cT�b �?∆ �T UUT Rb��<_�, �%& Z=\

C^bP[�<\b�^]�8=C4A=0;�UPRT ��< X]b� �Ô<TRR�<_��, ���� Z=\

C^bP[�<\b�^]�4G C4A=0;�UPRT ��<Tf b� �Ô<TRR��, ����� Z=\

REINFORCED CONCRETE COUNCIL

�! �Ô Ô

�%&

! �##

"�

"�%%

#�##

+��QPaT����������F0;;��\�����������b_�-

4G C ���<><4=C ��Z =\ ����8=C

% 84% 2.!,�&!# % ).4% 2.!,�&!# % �

7!,,�2% ).&/2# %-% .4��� <X]��0a�, "(# "(# \\"

CPQ [T �#�"Ô

φ , "Ô " \\

RT]b Ta�, ""Ô ����� ""Ô ����� \\���� /+ #�! "�! ! �"�& �Q �

0a�, "! '" ����� ! #(% ����� \\"

/+-/-% .4�I@�2 % 3 )3 4!.# % �� S�, ! &"�Ô ! &Ô \\

�h�, ! $" ! ÔÔ \\ #�$�$�$

�0a��, \\"

#�$�$�$

<`Ta�, � ���� ������� ���� ������� Z=\ /+

"!3 % �I@�7!,, 4/0 �I@�7!,,

3(% !2 �2% 3 )3 4!.# % � 0a�, "! '" φ , ! " / ""Ô�\\� Ô # \\"�\

! 0a�QS�, ! �"%� , �"(�

dR�, �($ �Ô& =�\\"

CPQ [T �#�'

E `Ta�, � ���� ������ � � ���� ������� Z= /+ �#���"

�# 2!# +�7 )$ 4(�4/ �"3����� G �, &'�Ô% \\ εm = � Ô" 1B' &

=> C4 )CT\_����aW X]ZPVT � 0R �, ! ! ! �%Ô \\ F �, ���� �������GG /+ 0__ ��1�"

T UUT Rba ]^b�X]R[cSTS

�2% ).&/2# %-% .4�3 5--!29�@IL�7!,,4SJ? φ =?HNL?M !M -CH� �!M

\\ \\ \\"

\\"

4G C4A=0;�502 4�� C " ""Ô ! #(% "(# /+8=C4A=0;�502 4�� C "Ô ""Ô "! '" "(# /+CA0=BE 4AB4�� C ! ""Ô #$( "(# /+

97

Page 100: User Guid

98

D E S I G NW A L L S R C C 6 1– –

�? `^YT Rb 3 JL?;>MB? ? NM �NI�"3 ��� � ��? N=�2 [XT]b !>PCMILS�' LIOJ �<PST�Qg �3PbT �? PVT

�;^RPbX^] ' LC>�FCH? �� L= ���!OA��� � ��

" ;M ?G?HN�Q;FF�>?M CAH�NI�" 3 �� � ��� �����" 3 ������ ���� �" 3 ������� ����?N=� �2 WTRZTS �ATdXaX^] �9^Q�=^

>`XVX]PbTS�U`^\���A22%! �1PaT\T]b�F P[[�f [a��^]�23�������! (((�120�U^`�A22 =BA � 2��

�/54% 2�"!3 % ���J? L�G? NL? �F?HANB�� 1B'! !

�γ U�, ! �Ô �0BBD<43� `T UT `T]RT

D [b��BWTP`�, ! �#Ô Z= �0C�S�U ^\�502 4 �^U�F 0;;�

D [b��<C��, ! �%% Z=\ C4=B8> =���1> CC><�502 4

"/44/-�2% ).&/2# %-% .4�� <X]��0a�, $ÔÔ \\" CPQ [T �#�"Ô

φ�, ! " \\

RT]b Ta�, ""Ô \\���� ����� /+0a�, Ô # \\

" ����� /+

-/-% .4�I@�2% 3 )3 4!.# % �� S�, # $ \\

I�, "'( \\ #�$�$�$

�0a��, \\"

<`Ta�, ����� Z=\ ��� ��� /+

3(% !2 �2% 3 )3 4!.# % � ! 0a�QS�, �"(�

dR�, �$" =�\\" CPQ [T �#�'

E `Ta�, � ����� Z= ��� ���� /+ �#���"

# (% # +�# 2!# +�7 )$ 4(�).�!# # /2$ !.# % �7 )4(�"3������G �, % �%( \\ εm = � � ! %% 1B' &

0R`�, ! ! Ô�Ô$ \\ F �, ����� \\ ������ /+ 0__ ��1�"

�)..% 2�"!3 % ���J? L�G? NL? �F?HANB��D [b��BWTP`�, �&! �$ Z= �0C�S�U ^\�502 4 �^U�F 0;;�

D [b��<C����, $(�&& Z=\ C4=B8> =���1> CC><�502 4

"/44/-�2% ).&/2# %-% .4�� <X]��0a�, $ÔÔ \\" CPQ [T �#�"Ô

φ�, ! " \\

RT]b Ta�, ""Ô \\���� ����� /+0a�, Ô # \\

" ����� /+

-/-% .4�I@�2% 3 )3 4!.# % �� S�, # $ \\

I�, "'( \\

�0a��, \\"

<`Ta�, ����� Z=\ ������� /+ #�$�$�$

3(% !2 �2% 3 )3 4!.# % � ! 0a�QS�, �! &�

dR�, �$" =�\\" CPQ [T �#�'

E `Ta�, � ����� Z= ���� ��� /+ �#���"

# (% # +�# 2!# +�7 )$ 4(�).�!# # /2$ !.# % �7 )4(�"3������

G �, % �%( \\ εm = � � ## 1B' &

0R`�, ! ! Ô�Ô$ \\ F �, ����� \\ ������ /+ 0__ ��1�"

REINFORCED CONCRETE COUNCIL

�2% ).&/2# %-% .4�3 5--!29�@IL�"!3 %4SJ? φ =?HNL?M !M -CH� �!M

\\ \\ \\"

\\"

C>? �� C ! " ""Ô Ô # $ÔÔ /+1> CC><�� C ! " ""Ô Ô # $ÔÔ /+

CA0=BE 4AB4 �� C ! " ""Ô Ô # $ÔÔ /+

98

Page 101: User Guid

99

RCC62.xls designs simple retaining walls with stems up to3.0 m high. The spreadsheet has been developed with boththe BS 8002 and the conventional (CECP 2) methods in mind.On balance, the spreadsheet provides reasonable flexibilityand, in doing so, encourages the designer to employ theirown engineering judgement and interpretation of the codes.It is based on complying with BS 8002: 1994(4) and BS 8004:1986(23). It may also be used to design retaining walls tocomplying with CECP 2(6) and BS 8007(5).

The spreadsheet is intended to cover only short walls and tohelp ‘general’ engineers who, from time to time, designretaining walls as part of a wider interests in structures ratherthan the specialists. The 3.0 m wall height is an arbitrarylimit set for short wall which is intended to cover over 90%of the cases encountered in general structural designs.Although many of the design principles still apply to higherwalls, criteria such as wall movements and the validity ofthe assumptions made (e.g. no wall friction) require furtherconsideration and investigation. For instance, with referenceto pressures, the engineer is expected to judge betweenusing the default of ka (active coefficient) or inputting alarger figure relating to ko (at rest coefficient).

The effects of compaction pressures can be generated usingidealised imposed/ surcharged loads. Residual lateral pressurecalculations were considered to be too complicated to becovered in the spreadsheet.

Stability analysis is done about the toe of the base. (Stabilityanalysis taken about toe of nib is ignored; the nib is a sectionsticking down from general level of the base, and stabilityanalysis about its toe gives strange answers). Global slopestability checks are not undertaken in the spreadsheet andshould be addressed using other means.

Input is required on three sheets.

Many cells are referred to in formulae by names; for instanceDATA!C23 is given the name H which is used in formulae atC56:D60, Diagrams!D88:D137, etc. The spreadsheet is laidout in a very similar manner to RCC61.xls.

DATA!This single sheet consists of the main inputs. Most inputs,which are in blue and underlined, should be self-explanatory.The top diagram defines most input parameters.

The designer should determine the ‘Design Soil Parameters’based on the combinations in BS 8002 which will give theworst credible loads i.e. the design values should be the lowerof (a) the peak strength reduced by a mobilisation factor or(b) the critical state strength.

As default values, the earth pressure coefficients arecalculated using the simplified Rankine’s formula for smooth

vertical walls based on values of the design soil parameters.Alternatively, the engineer can enter his or her owncoefficients to suit the conditions of the design byoverwriting the default values.

Maximum earth pressure occurs during service and not atultimate limit state, as at ultimate limit state the actual earthpressure will be less. BS 8002(4) also uses a mobilisation factoron soil parameters, increasing load on the active side of thewall and reducing soil resistance on the passive side. In sodoing, the code recommends that no further partial loadfactors are necessary in design of the structure. The aboveare not entirely compatible with BS 8110: Part 1, Table 2.1,nor to our knowledge have they been fully accepted by thegeneral practising engineer. Many designers do seem to usethe BS 8002 mobilisation factor as well as the traditionalsafety factors. Therefore the built-in partial load factors maybe changed. Factors can be set at 1.4 or 1.6 in accordancewith BS 8110 or may be set to 1.0. The designer has, andshould have the final decision and responsibility to selectthe load factors he or she feels are suitable to the designconditions.

BS 8002 suggests that no additional factors of safety arerequired in checking of external stability (i.e. overturningand sliding) provided that the structure is in equilibriumand the ‘worst credible loads’ are used in the design.

For the calculation of bearing pressures, all partial loadfactors are switched to unity and the design checks are basedon allowable ground bearing pressure, i.e. the permissiblestress approach. The bearing pressure is then factored upwith the partial load factors adopted from above for thedesign of concrete base. Bearing pressure is calculated usingthe concept of ‘no tension’ equilibrium, i.e. triangular stressblocks are used when eccentricity is outside the middle third.

BS 8002 has minimum surcharge and minimum unplannedexcavation depth requirements. However in the spreadsheet,the surcharge loads are set as input data. The minimum 10kN/m2 limit in BS 8002 has not been used with theunderstanding that the BS 8002 committee is consideringreducing the 10 kN/m2 to 6 kN/m2 for 3 m high walls.

The spreadsheet is based on a number of assumptions whichshould be assessed as being true or erring on the safe side ineach case. These are:

• Wall friction is zero

• Minimum active earth pressure = 0.25qH. A minimumactive pressure of 0.25H (made to be a function of soilproperty rather than an arbitrary value equivalent toapprox. 5 kN/m3 per m height) to cover conditionsregarding tension cracks. However, this does notcomply with BS 8002, which recommends that fullhydrostatic pressure is used. As the majority of small

RCC62 Retaining Wall.xls

W A L L S R C C 6 2–

Page 102: User Guid

100

retaining walls have granular backfills, the cohesionvalue of retaining soil has been ‘locked’ to zero.

• Granular backfill is used. Even a small value of effectivecohesion, c´, can significantly reduce active pressures.However, to acknowledge the fact that many retainingwalls are built with granular backfill for drainage andto err on the side of caution, the spreadsheet assumesonly cohesionless materials.

• The spreadsheet does not include checks on rotationalslide/slope failure.

• The spreadsheet does not include checks on the effectsof seepage of ground water beneath the wall.

• The spreadsheet does not include checks on deflectionof the wall due to lateral earth pressures.

• The spreadsheet is not intended for walls over 3.0 mhigh.

Many engineers have reservations about including the effectof passive pressure in front of the wall and a warningmessage has been used to help ensure that passive pressureis considered only if it can be guaranteed that there will beno future excavation in front of the wall.

Under Operating Instructions a number of checks are carriedout and problems are highlighted.

Kp is calculated using base material properties. Lever arm ofpassive reaction is measured from bottom base leveldownward. In the calculation of passive force, cohesion ofthe base material is also taken into consideration.

STABILITY!STABILITY! calculates the overturning and restoringmoments, sliding and resisting forces on a section togetherwith ground bearing pressures and factors of safety. Failuresare highlighted.

Required Factors of safety against overturning and slidingare required as input. In some circumstances, some loadsmay have stabilising effects. By using the check boxes toswitch loads off and on, worse cases should be investigatedby hand.

For stability calculations, overall factor of safety is usedinstead of partial safety factors and fill on the external faceof the wall is ignored.

All loads are assumed to be static loads. Dynamic loads /vibration are not covered. However, at the discretion of thedesigner, dynamic effects may be modelled by factoring upstatic loads.

The equation for sliding assumes that passive pressure actswithout movement. The user may consider that the situationis better modelled by applying a partial safety factor topassive pressure at cell K39.

Idealisation, rounding errors and assuming a triangularpressure diagram (which is not strictly correct) may lead totheoretical inaccuracies. Moments at the top of the wall maybe small to the point of being indistinguishable on theBending Moment Diagram – a problem of scale.

An estimate of reinforcement per metre length of wall isgiven.

DESIGN!The first page of this sheet summarises the checks carriedout for moment resistance, shear resistance, crack width andminimum reinforcement requirements.

Input of both reinforcement diameter and centres is requiredboth for main bending steel and for transverse and secondaryreinforcement: the spreadsheet works on the principle ofchecking a proposed section and reinforcement arrangementrather than proposing an arrangement of reinforcement.

The second page details the design of both outer and innerparts of the base. Again, the spreadsheet works on theprinciple of checking a proposed section and input of bothreinforcement diameter and centres is required for bothmain bending and transverse reinforcement.

WEIGHT!This sheet shows the build up to the estimate ofreinforcement weight given. The figures should be treatedas approximate estimates only as they cannot deal with theeffects of designers and detailers preferences,‘rationalisation’, etc.

Diagrams!Diagrams! shows data for the charts used in other sheetsbut is not necessarily intended for printing out other thanfor checking purposes.

Crack width!This sheet shows calculations to determine crack widths inthe wall.

This check is included so the spreadsheet can also be usedfor design of water-retaining structures to BS 8007. Forexample a water tank may be looked at by setting Hw withinDATA! to the water level of the tank, switching soilproperties to 0 and crack width, at DATA!F31, to 0.3 mm.The crack width check to BS 8007 is the same as that to BS8110.

W A L L S R C C 6 2–

Page 103: User Guid

101

D A T AW A L L S R C C 6 2– –

�?`^ YT Rb3 JL?;>MB??NM �NI�"3 ��� � �? N=

�2 [XT]b !>PCMILS�' LIOJ <PST�Qg 3PbT ?PVT

�;^RPbX^] ' LC>�FCH? �� L= ���!OA��� � ��

2% 4!).).' �7!,,�>?M CAH�NI�" 3 ��� � ��� �����" 3 ������� ���� �" 3 ������� ����?N=� 2WTRZTS ATdXaX^] 9^Q�=^

>`XVX]PbTS�U`^\��A22%"�f [a ��^]�23�������������������! (((�120�U^`�A22 =BA 2��

�)$ % !,)3 % $ �3 425# 452% �;H>�&/2# % �$ )!'2!-3 $ % 3 )'.�3 4!453 � 6!,)$

�F 0A=8=6�)

�?PaaXdT �_`Taac`T�aW^c[S�

�^][g�QT �R^]aXST`TS�XU�Xb

�RP]�QT�VcP`P]bTTS�bWPb

�bWT`T�e X[[�QT �]^�Ucbc`T

�TfRPdPbX^]�X]�U ^]b�^U

�bWT �eP[[�

�$ )-% .3 )/.3 ��\\�

7�, #" 1�, "&Ô Ce�, "Ô

7e�, ! 18�, ! CQ�, $

7_�, " 1=�, C=�,

7]�,

�-!4% 2)!,�02/0% 24)% 3URc�, #Ô =�\\� γ\�, ! �Ô R^]R`TbT

Ug�, $% =�\\� γ\�, ! � Ô abTT [

R^dT �b �bT]aX^]�abTT [�, Ô \\

<Pf�P[[^ePQ[T �STaXV]�ac UPRT�R`PRZ�e XSbW��F ��, �# \\

2 ^]R`TbT�ST]aXbg�, "$ Z=�\�

�3/),�02/0 % 24)% 3 7;FF�' ?IG?NLS3TaXV]�P]V[T �^U�X]b�[�U XRbX^]�^U�`TbPX]TS�\Pb�[��� ��, # STV`TT

3TaXV]�R^WTaX^]�^U�`TbPX]TS�\Pb�[��2 ���, Z=�\� �>][g�V`P]c[P �QPRZUX[�R^]aXST`TS���2 ��,�hT ` �

3T]aXbg�^U�`TbPX]TS�\Pb�[�����, " Z=�\�

BcQ\T`VTS�3T]aXbg�^U�`TbPX]TS�\Pb�[��Óa���, ! #�## Z=�\� JSTUPc[b,"�#�Ó�� ][g�P__[g�eWT]�7e� ! #�##

3TaXV]�P]V[T �^U�X]b�[�U XRbX^]�^U�QPaT �\Pb�[���Q��, " STV`TT !335-04)/.3

3TaXV]�R^WTaX^]�^U�QPaT�\PbT XP[��2 Q���, ! Z=�\� P��F P[[�U XRbX^]�Xa�hT `

3T]aXbg�^U�QPaT �\PbT XP[��ÓQ���, ! Z=�\� Q��<X]X\c\�PRbXdT �TP`bW�_`Taac`T �,� �"ÔÓ7

0[[^ePQ[T �V` aa�V` c]S�QTP X]V�_`Taac`T��61?��, " Z=�\� R��6`P]c[P �QPRZUX[[

�,/!$ ).' 3 Bc`RWP`VT �[^PS����[XdT ��B@:��, ! Z=�\� T�3^Ta�]^b�X]R[cST�TUUTRb�^U�aTT_PVT �^U�V` c]S

Bc`RWP`VT�[^PS����STPS��B6:��, ! ����ePbT �QT]TPbW�bWT�eP[[�

; X]T �[^PS����[XdT ��;@:��, ! Ô Z=�\ U�3^Ta�]^b�X]R[cST�STU[TRbX^]�RWTRZ�^U�eP[[�ScT �b �

;X]T �[^PS����STPS��;6:��, " Z=�\ ���[PbT `P[�TP`bW�_`Taac`Ta

3 XabP]RT �^U�[X]T �[^PS�U ^\�eP[[��G ��, ! \\ W��3TaXV]�]^b�X]bT]STS�U �eP[[a�^dT �#� �\�WXVW�

REINFORCED CONCRETE COUNCIL

S�3^Ta�]^b�X]R[cST�RWTRZ�^U�`^bPbX^]P[�a[XST �a[^_T �UP

�,!4% 2!,�&/2# % 3 ��OH@;=NIL?>� :P�, �## J�STUPc[b�ZP�,��! �B8=�����! �B8=����L��� �##

:_�, "� $ J�STUPc[b�Z_�,��! �B8=��Q���! �B8=��Q�"� $

:_R�, "�'% J�STUPc[b�Z_R�,�"Z_ ��L��,� "�'%

:PR�, ! �! Ô J�"ZP �Ô�L

&IL=? ,?P?L�;LG -IG?HN�;<ION�4/% γ U & OFN� -OFN

��Z=� ��\� ��Z=\� ��Z=� �Z=\�

?4�,� #$�! " ;4 �, ! � %& #%�$! ! �$ $&�&& Ô �(&

?B�6:��,� ! �%& ;B�, ! �% ! &� & ! �$ ! $�(# "#�'(

?B�@:��,� ! �%& ;B�, ! �% ! &� & ! �% ! &� & "&�#!

?;�6:��,� %�%& ;;�, "�#% ! �&$ ! �$ (�## ""� #

?;�@:��,� � ;;�, "�#% ! ! �' ! �% '� ! '�'(

?F �,� � Ô ;F �, � # � ! �$ � & �

C^bP[ ���� � ����� ���� � � ���� �??�,� �%�! " �;?�7=��, �! � �% ! � �%�! " � �%

Bc`RWP`VT�B ��B �X]�Z=�\6: @:"

;X]T�;^PS�; ��; �X]�Z=�\6: @:

G

1!

1= C=

CF

1

7F

7]

CQ

;?

7?

;;

;B

;F

7

;4

F0C4A

101

Page 104: User Guid

102

S T A B I L I T YW A L L S R C C 6 2– –

�?`^YTRb 3JL?;>MB??NM�NI�"3�����?N=�2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] 'LC>�FCH?��

2%4!).).'�7!,,�>?MCAH�NI�"3������������"3������������"3�����������?N=�

>`XVX]PbTS�U`^\��A22%"�f[a��^]�23�������������������!(((�120�U^`�A22

�%84%2.!,�34!"),)49

��/6%2452.).'�;<ION�4/%��caX]V�^dT`P[[�UPRb^`�^U�aPUTbg�X]abTPS�^U�_P`bXP[�aPUTbg�UPRb^`�

/P?LNOLHCHA ,;N?L;F�&/2#%��E.� ,?P?L�;LG��G� -IG?HN-IG?HNM�� ?4�,� #$�!" ;4�,� !� & #%�

?B�6:��,� ! �%& ;B�,� !�% !&�

?B�@:��,� ! �%& ;B�,� !�% !&�

?;�6:��,� %�%& ;;�,� "�#% !�

?;�@:��,� � ;;�,� "�#% !!�'

?F�,� � Ô ;F�,� � # �

∑ ?�,������

?_�,� �%�!" �;?�7=��,� �! � �%

∑ <^�,�

�2?MNILCHA�� 6?LNC=;F�&/2#%���E.� ,?P?L�;LG��G� -IG?HN

-IG?HNM�� FP[[�,� !%�' !�!# !'�(

1PaT�,� "%�$ !�#' #%�

=XQ�,� � � �

4P`bW�,� '$� "� !%'

FPbT`�,� � "� �

�Bc`RWP`VT�,� # � "� % �

���;X]T�[^PS�,� #Ô� "�"Ô &'�

∑ E�,� ������ ∑ <`�,�

<PST�Qg 3PbT ?PVT

L= ���.IP��� ���

2WTRZTS ATdXaX ] 9^Q�=^

=BA � 2��

34!"),)49�#(%#+3�� /+

5�>�B��, !�Ô

,/!$).'�/04)/.N��E.G� ������aT[TRb�R`XbXRP[�[^PS�R^\QX]PbX^]�

�$ �40AC7

&

&

&$

'

% FP`]X]V)

�����

N��E.G�

(

�#

'�

�&Ô

������

REINFORCED CONCRETE COUNCIL

D]ST`�a^\T�

R^]SXbX^]a�ac`RWP`VT���[X]T�

[^PSa�\Pg��WPdT�abPQX[XaX]V�

TUUTRba�^]�bWT�ab`cRbc`T��

P]S��Xb�Xa�`TR^\\T]STS�bWPb�

abPQX[Xbg�RWTRZa�aW^c[S�P[a^�

QT�RP``XTS�^cb��eXbW^cb�

bWTaT�[^PSa�

�36�4.�

3/�*.�

3/�4.�

�36�*.�

3:

á

-L���-I����� ���� ������ /+

5�>�B��, !�Ô

ATS�]�UPRb^`�U^`�_PaaXdT�U^`RT�, !�

S���0L���0����� ���� ������ /+

eXaT������)

Z=\

Z=\

\

Z=�\� ����� /+

&;=NIL�I@�3;@?NS���-

��3,)$).' �caX]V�^dT`P[[�UPRb^`�^U�aPUTbg�X]abTPS�^U�_P`bXP[�aPUTbg�UPRb^`�

Bc\�^U�;0C4A0;�5>A24B���? ���,�� ����� Z=

?0BB8E4�5>A24��?_�f�ATScRbX^]�UPRb^`��!���,� �%�!" Z=

10B4��5A82C8>=���∑�E�C0=�Q���1�2Q����,� �(&�$% Z=Bc\�^U�5>A24B�A4B8BC8=6�B;838=6��?`��,�� ������� Z=

&;=NIL�I@�3;@?NS

��'2/5.$�"%!2).'�&!),52CPZX]V�\^\T]ba�PQ^cb�RT]b`T�^U�QPaT��P]bXR[^RZe

6?LNC=;F�&/2#%3���E.� ,?P?L�;LG��G� ����������-IG?HN��E.G�

FP[[�, !%�' �"Ô $�"

1PaT�, "%�$ � �

=XQ�, � !�#' �

4P`bW�, '$� � �%# �Ô"�Ô

FPbT`�, � � �%# �

Bc`RWP`VT, # � � �%# �!'�&Ô

;X]T�[^PS�, #Ô� � �'' �# �%#

∑ E�,� ������ ∑ <d�,� ������

<^\T]b�ScT�b^�;0C4A0;�5>A24B���<^ ���,�� �����

ATac[bP]b�<^\T]b��<��,��<d���<^ ���,�� �����

4RRT]b`XRXbg�U`^\�QPaT�RT]b`T��<���E��,� �

CWT`TU^`T��<0G8<D<�6`^aa�1TP`X]V�?`Taac`T��6A?���,� ��

"%!2).'�02%3352%��+.�G��

Ô

!

2.75 0.00

102

Page 105: User Guid

103

D E S I G NW A L L S R C C 6 2– –

���������������������������

�? ` YTRb 3 JL?;>MB?? NM �NI�"3 ��� � �? N=�2 [XT]b !>PCMILS�' LIOJ Made by Date Page

�;^RPbX^] ' LC>�FCH? �� L= ���!OA��� � ��

2% 4!).).' �7!,,�>?M CAH�NI�"3 ��� � ��� �����"3 ������� ���� �"3 ������� Checked Revision Job No

>`XVX]PbTS�U`^\��A22%"�f [a��^]�23�������������������! (((�120�U^`�A22 =BA � 2��

�3 425# 452!,��$ % 3 )' .3 ���OFNCG;N? � $ % 3 )' .�# (% # +3 �� /+

��7!,,���J? L�G?NL? �F?HANB��

&IL=? ,?P?L�;LG -IG?HN γ U 6�OFN -�OFN

�Z=� �\� �Z=\� �Z=� �Z=\�

40AC7�� "%� # �(# "$�# ! �$ #%�$Ô #$� "

BDA2 70A64�6:��� (�## ! �$ ! #� & ! �$ ! #� & ! '�"(

BDA2 70A64�@:��� (�## ! �$ ! #� & ! �% ! $�(# " �(!

;8=4�;> 03�6:��� %�%& ! �(% ! #� & ! �$ (�## ! '�#

;8=4�;> 03�@:��� � ! �(% (�' ! �% '� ! �%(

F 0C4A �� �$Ô � � ! �$ �%# �

4IN;F�� ����� ����� ����� � �����1B'! !

`T UT `T ]RT

-!).�2 % ).&/2# %-% .4��<X]��0a�, #"Ô \\

"CPQ [T �#�"Ô

φ�, ! % \\

RT]b Ta�, ! "Ô \\���� ����� /+ #�! "�! ! �"�&�Q �

0a_`^d�, ! % ' \\"

����� /+

-/-%.4�I@�2% 3 )34!.# % ��S�, ! (" \\

h�, ! %(�$% \\ #�$�$�$

0a��, \\"

<`Ta�, � � ���� Z=\ ��� ����� /+

3(% !2 �2% 3 )34!.# % �! �0a�QS�, �'$�

dR�, �' =�\\"

CPQ [T �#�'

E `Ta�, � ����� Z= ������� /+ #���"

5FNCG;N?�"?H>CHA�-IG?HN�$ C;AL;G

REINFORCED CONCRETE COUNCIL

Ô ! ! Ô

�Ô%

! �! "

! �%'

"�"$

"�'

< b

ase

W

AL

L (

m)

t

op

>

<><4=C ��:=\ �

��# (% # +�# 2!# +�7)$ 4(�).�!# # /2$ !.# % �7)4 G �, &�"! \\

0R �, &&�"& \\

εm = � ! %#% 1B' &

F �, ���� \\ ������ /+ 0__��1�"

��2% ).&/2# %-% .4�35--!29�@IL�7!,,

4SJ? φ # ?HNL?M !M -CH��!M\\ \\ \\

"\\

"

E 4AC82 0;�4G C��502 4 � C ! " #(# #"Ô /+E 4AC82 0;�8=C��502 4 � C ! % ! "Ô ! % ' #"Ô /+

CA0=BE 4AB4� C ! " #(# #"Ô /+

103

Page 106: User Guid

104

D E S I G NW A L L S R C C 6 2– –

�? ` YTRb 3 JL?;>MB?? NM �NI�"3 ��� � �? N=�2 [XT]b !>PCMILS�' LIOJ Made by Date Page

�;^RPbX^] ' LC>�FCH? �� L= ���!OA��� � � �

2% 4!).).' �7!,,�>?M CAH�NI�"3 ��� � ��� �����" 3 ������� ���� �" 3 ������� Checked Revision Job No

> `XVX]PbTS�U`^\��A22%"�f [a��^]�23�������������������! (((�120�U^`�A22 =BA � 2��

�/54% 2 �"!3 % ���J? L�G? NL? �F? HANB�� 1B'! !

γ U �, ! �$% �ST UPc[b�,�c[b�\b���]^]�UPRb `TS�\b���� ! �$% `T UT `T]RT

E �c[b�, '%�&( Z=

<�c[b�, Ô#�%$ Z=\ �C4=B8>=���1> CC><�502 4�

"/44/-�2 % ).&/2# %-% .4�� <X]��0a�, Ô" \\" CPQ [T �#�"Ô

φ�, ! " \\

RT]b Ta�, " \\���� ����� /+ #�! "�! ! �"�&�Q �

0a_`^d�, Ô%Ô \\" ����� /+

-/-% .4�I@�2% 3 )3 4!.# % �� S�, #$$ \\

h�, #"%�' \\ #�$�$�$

0a��, \\"

<`Ta�, ����� Z=\ ������� /+

3 (% !2 �2 % 3 )3 4!.# % � ! �0a�QS�, �! %�

dR�, �$ =�\\" CPQ [T �#�'

E `Ta�, � ����� Z= ������� /+ #���"

# (% # +�# 2!# +�7 )$ 4(�).�!# # /2$ !.# % �7 )4(�"3������

G �, %'�$( \\ εm = � � &% 1B' &

0R �, ! '�%! \\ F �, ���� � \\ ������ /+ 0__��1�"

�)..% 2 �"!3 % ���J? L�G? NL? �F? HANB��E �c[b�, '! �" Z=

<�c[b��, '(�$% Z=\ �C4=B8>=���C> ? �502 4�

4/0 �2% ).&/2# %-% .4�� <X]��0a�, Ô" \\" CPQ [T �#�"Ô

φ�, ! % \\

RT]b Ta�, ! Ô \\���� ����� /+ #�! "�! ! �"�&�Q �

0a_`^d�, ! #$ \\" ����� /+

-/-% .4�2 % 3 )3 4!.# % �� S�, #$" \\

h�, #"#�"" \\ #�$�$�$

0a��, \\"

<`Ta�, � ����� Z=\ ������� /+

REINFORCED CONCRETE COUNCIL

3 (% !2 �2 % 3 )3 4!.# % � ! �0a�QS�, �#(�

dR�, �Ô$ =�\\" CPQ [T �#�'

E `Ta�, � ����� Z= ���� ��� /+ #���"

# (% # +�# 2!# +�7 )$ 4(�QLN�"3 ������ �CT\_T`Pbc`T �P]S�aW X]ZPVT �T UUT Rba�]^b�X]R[cSTS�

G �, ((� # \\ εm = � """ 1B' &

0R �, '%�'! \\ F �, ���� \\ ������ /+ 0__��1�"

�2% ).&/2# %-% .4�3 5--!29�@IL�"!3 %

4SJ? φ # ?HN?LM !M -CH��!M

\\ \\ \\"

\\"

C> ? ��34B86=�� C ! % ! Ô ! #$ Ô" /+1> CC><��34B86=�� C ! " " Ô%Ô Ô" /+

CA0=BE 4AB4 � C ! " " Ô%Ô Ô" /+

104

Page 107: User Guid

105

RCC71.xls designs simply supported flights and landings toBS 8110. Input is required on two sheets.

FLIGHT!This single sheet consists of the input and main output. Inputsare in blue and underlined and most should be self-explanatory.

Only simply supported spans are catered for. If flights arecontinuous with floors, the user should specify continuitysteel over supports as appropriate. Calculations are doneper metre width of flight. Input loads are assumed to becharacteristic and acting vertically. They should account forany undercuts. Self-weight, moments and reactions arecalculated automatically. The area of steel required, Asreq,may be automatically increased to increase modificationfactors and satisfy deflection criteria. Where the stair flightoccupies more than 60% of the span an increase in allowablespan to depth ratios of 15% is included in accordance withClause 3.10.2.2. Nominal top reinforcement may be specifiedin order to help overcome deflection problems. Dimensionsare not checked for compliance with Building Regulations.

Ultimate, characteristic dead and characteristic imposedreactions are given below the indicative diagram.

LANDING!Again, this single sheet consists of the input and main output.Input defauls in magenta have been derived from FLIGHT!but may be overwritten. Calculations are done per metrewidth of landing.

Inputs are underlined and most should be self-explanatory.As defaults, which can be overwritten, the material dataand characteristic flight reactions carry over from FLIGHT!Self-weight, moments and reactions are calculatedautomatically. The maximum width of landing over whichflight loads can be dispersed has been restricted to 1.8 m inthe spirit of Clause 3.10.1.3. Reactions are ultimate, bothtotal and per metre run. The area of steel required, As, canbe automatically increased to satisfy deflection criteria.

Dias!Dias! calculates the reinforcement sizes and reinforcementpercentages for deflection modification factors used inFLIGHT! and LANDING!

RCC71 Stair Flight & Landing - Single.xls

S T A I R S R C C 7 1–

Page 108: User Guid

106

F L I G H TS T A I R S R C C 7 1– –

�?`^YTRb 3JL?;>MB??NM�NI�"3������

�2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] 3IONB�3N;CL=;M? &,)'(434!)2�&,)'(43�!.$�,!.$).'3�NI�"3����������

>`XVX]PbTS�U ^\�1TbP�b`XP[�dT`aX^]�^U�A22&!�f[a��^]�23�������������!(((�120�U `�A22

�-!4%2)!,3URc #Ô =�\\� γm !�Ô R^]R`TbT

Ug $% =�\\� γm !� Ô abTT[

W�PVV " \\ 3T]aXbg "#�% Z=�\�

2^dT` "Ô \\ �=^`\P[�eTXVWb�R^]R`TbT� =

�$)-%.3)/.3 3?=NCIH;F�

P�, % \\ [P]SX]V�0�W�, !&Ô

Q�, "Ô \\ U[XVWb�ePXab�, "

R�, !" \\ [P]SX]V�1�W�, "

S�, �% \\

T�, �! \\

6^X]V�, "Ô \\ ;�, $#

AXaT�, !( \\�b^bP[ ! b`TPSa

AXaT�, !&# \\�TPRW�abT_ APZT�, #$�%$��

REINFORCED CONCRETE COUNCIL

�<PST�Qg �3PbT �?PVT

LGQ ���.IP��� ���

�2WTRZTS �ATdXaX^] �9^Q�=^

� 2��

<X]�QP`���, !

<Pf�QP`���, !%

^\X]P[�b^_�abTT[�. H

�%F?P;NCIH

=BA

�,/!$).'

8\_^aTS $� Z=�\� $&� ' Z=�\�c[b

5[XVWb�UX]XaWTa !�% Z=�\� �" �'&���!!�!%�

;P]SX]V�UX]XaWTa !�# Z=�\�

�$%3)'.

;0=38=6�0�� VZ�,�$�!#���!�# �,��$#�Z=�\� ]�,�!�$�f

5;867C�� VZ�,�&�&'���!�% �,�(�#'�Z=�\� ]�,�!�$�f

;0=38=6�2�� VZ�,�$�&"���!�# �,�%� "�Z=�\� ]�,�!�$�f

IT`^�aWTP`�Xa�Pb �%����$&� '���!%�' ���!(�Ô#�,�"�!Ô!�\�U`^\�[TUb

<�, $&� '�f�"�!Ô!���!%�' �f�"�!Ô!���!(�Ô#�f�!�ÔÔ!��"�,�$!�%$�Z=\�\

S�, " ���"���'�,�!%&�\\ :�, � $"&

02/6)$%��4����

4]WP]RTS�Qg�'����U^`�STU[

;�S�, $�# ��!%&�,�"Ô�&$(�+�" � �f�!�"Ô%�f�!� Ô �,�"%�#&Ô�P[[^eTS

b #&�'! �Z=�\�c[b

�!%�(!���'�'$�

f��$#���!�%�f�$� �,�!$� �Z=�\�

f�(�#'���!�%�f�$� �,�!(�Ô#�Z=�\�

f�%� "���!�%�f�$� �,�!$�'#�Z=�\�

\

0a ,�Ô((�\\��\

������" ,�%& �\\��\

U[TRbX^] 4���������4�CH�MJ;HS /+

,

2�

2�

;

>

?

< =

106

Page 109: User Guid

107

L A N D I N GS T A I R S R C C 7 1– –

�?`^YTRb 3JL?;>MB??NM�NI�"3������

�2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] 3IONB�3N;CL=;M? ,!.$).'34!)2�&,)'(43�!.$�,!.$).'3�NI�"3����������

>`XVX]PbTS�U ^\�1TbP�b`XP[�dT`aX^]�^U�A22&!�f[a��^]�23�������������!(((�120�U `�A22

�-!4%2)!,3URc #Ô =�\\� γm !�Ô R^]R`TbT

Ug $% =�\\� γm !� Ô abTT[

W�PVV " \\ 3T]aXbg "#�% Z=�\�

2^dT` "Ô \\ �=^`\P[�eTXVWb�R^]R`TbT� =

�$)-%.3)/.3

P�, !" \\ ST_bW��W�, !&Ô \\

Q�, !" \\ eXSbW��e�, !" \\

R�, "Ô \\

S�, !&Ô \\ ;�, # \\

REINFORCED CONCRETE COUNCIL

�<PST�Qg �3PbT �?PVT

LGQ ������ ���

�2WTRZTS �ATdXaX^] �9^Q�=^

=BA � 2��

<X]�QP`���, !

<Pf�QP`���, !%

^\X]P[�b^_�abTT[�. H

�,/!$).'

;0=38=6 8\_^aTS $� Z=�\� &(�# Z=�c[b

5X]XaWTa !�Ô Z=�\� %%�! Z=�\�c[b

B[PQ $�!# Z=�\� ]�,�!�$�f��%#���!�

AE KE

5[XVWb�;�`TPRbX^] " �'& !!�!% Z=�\ ]!�,��!�$�f�" �'&��

5[XVWb�<�`TPRbX^] !%�(! '�'$ Z=�\ ]"�,��!�$�f�!%�(!��

�$%3)'.

IT`^�aWTP`�Xa�Pb �%%�!!���"�Ô ����!$�"'���#(�"#���� �!&Ô�,�!�#%$�\�U`^

<�, %%�!!�f�!�#%$���!$�"'�f�!�#%$��"���#(�"#�f�!�!'(��"�,�$(�!�Z=

S�, !&���"���'�,�!$"�\\ :�, � %(%

02/6)$%4����4]WP]RTS�Qg�#�&���U^`�STU[

;�S�, #� ��!$"�,�"!�!"&�+�" � �f�!� !'�,�"!�$Ô �P[[^eTS

&$� Z=�c[b

b %!�% Z=�\�c[b

�%�f�$� �,�!$�"'�Z=�\�

��!�%�f�!!�!%��!�" �,�#(�"#�Z=�\�

��!�%�f�'�'$��!�" �,�#!�Ô!�Z=�\�

^\�[TUb

=\�\

0a ,�'%#�\\��\

������" ,�(!$�\\��\

U[TRbX^] 4���������4�CH�MJ;H

/+

,2� 2�

;

H� H�> >

<=

30-Aug-99 107

Page 110: User Guid

108

This spreadsheet designs the flights and landings of astaircase in a stair core to BS 8110. It is assumed that flightsare supported on the landings and that the landings aresimply supported on bearings at each end.

STAIRCORE!This single sheet consists of the input and main output. Inputsare in blue and underlined and most should be self-explanatory. Dimensions are not checked for compliancewith Building Regulations. Simple supports are assumed.Calculations are done per metre width of flight and landing.Input loads are assumed to be characteristic and actingvertically. They should account for any undercuts. All stairsare assumed to start from flight 1. Superfluous flights andlandings are blanked out. Self-weight, moments andreactions are calculated automatically. Where the stair flightoccupies more than 60% of the span an increase in allowablespan to depth ratios of 15% is included in accordance withClause 3.10.2.2 and, as with other spreadsheets, the area ofsteel required may be automatically increased to satisfydeflection criteria. Ultimate reactions per metre are given.

Dias!Dias! calculates the reinforcement sizes and reinforcementpercentages for deflection modification factors used inSTAIRCORE!

RCC72 Stairs & Landings - Multiple.xls

S T A I R S R C C 7 2–

Page 111: User Guid

109

S T A I R C O R ES T A I R S R C C 7 2– –

,

H�< =;

�?`^YTRb 3JL?;>MB??NM�NI�"3�������2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] .ILNB�3N;CL=;M?

2%).&/2#%$�#/.#2%4%�34!)2#!3%3�NI�"3����������

>`XVX]PbTS�U ^\�A22&"�f[a�^]�23��������������������������!(((�120�U `�A22

�-!4%2)!,3URc #Ô =�\\� γm !�Ô R^]R`TbT

Ug $% =�\\� γm !� Ô abTT[

W�PVV " \\ 3T]aXbg "#�% Z=�\�

2^dT` " \\ �=^`\P[�eTXVWb�R^]R`TbT�

$)-%.3)/.3 =^�^U�5[XVWba�, %

0�, !" \\ 1�, !Ô \\�QTP`X]V

2�, "Ô \\ 6^X]V�, "Ô \\

;!�, !" \\ 5!�, "Ô \\ ! �b`TPSa

;"�, !" \\ 5"�, "Ô \\ ! �b`TPSa

;#�, !" \\ 5#�, "Ô \\ ! �b`TPSa

;$�, !" \\ 5$�, "Ô \\ ! �b`TPSa

;Ô�, !" \\ 5Ô�, "Ô \\ ! �b`TPSa

;%�, &Ô \\ 5%�, "Ô \\ ! �b`TPSa

REINFORCED CONCRETE COUNCIL

�<PST�Qg �3PbT �?PVT

2-7 ���.IP��� ���

�2WTRZTS �ATdXaX^] �9^Q�=^

=BA � 2��

����������0F;HM

34/2%9 (%)'(4 2)3%23 2)3% 2!+%

,IQ?L #Ô \\ "" !Ô(�! \\ #"�Ô��

4SJC=;F #Ô \\ "" !Ô(�! \\ #"�Ô��

5JJ?L #Ô \\ "" !Ô(�! \\ #"�Ô��

�,/!$).' 8\_^aTS $� Z=�\�

5[XVWb�UX]XaWTa �Ô Z=�\�

;P]SX]V�UX]XaWTa !�# Z=�\�

&,)'(4��FPXab�, !Ô \\ P�, "�#Ô \

Q�, �% \

FPXab $�" ;�, "�(Ô \

BbT_a !�''

5X]XaWTa �Ô

%�Ô& Z=�\�

]!�, !�$f%�Ô&�!�%f$� !$�% Z=�\ ""� % Z=�\

�, !Ô�% Z=�\�

<�, ""� %�f�!�$!$���"�,�!�% �Z=\�\ S�, !"�\\

0a�, #% �\\� 02/6)$%���4���������" ,�#(#�\\� ;�S�,

&,)'(4��FPXab�, !Ô \\ P�, "�Ô \ Q�, �% \

;�, #�& \

FPXab $�"

BbT_a !�''

5X]XaWTa �Ô

%�Ô& Z=�\� ]"�, !Ô�% Z=�\� !(�Ô Z=�\

<�, !(�Ô �f���!�'Ô ��� �%"Ô���,�"#�'(�Z=\�\ S�, !"$�\\

0a�, ÔÔ&�\\� 02/6)$%���4���������" ,�( Ô�\\� ;�S�,

0a�X]R`TPaTS�Qg�Ô#�%���U^`�S

:�, � "'Ô

"#�% �+�"'�"!#�P[[^eTS /+

R�, �% \

!(�Ô Z=�\

:�, � $$$

"(�'#(�+�# �Ô'"�P[[^eTS /+

STU[TRbX^]

109

!

"

"

!

#

,;H>CHA��

,;H>CHA��&FCABN��

&�

&�

&FCABN��

&�,� ,�

"/44/-�34/2%9

,;H>CHA��

,;H>CHA��&FCABN��

&�,� ,�

4/0�34/2%9 !

"

"

!

#

!

"

"

!

#

&�

,;H>CHA��

,;H>CHA��

&FCABN��

� �

&�,� ,�

490)#!,�34/2%9

,

;H�<

Page 112: User Guid

110

S T A I R C O R ES T A I R S R C C 7 2– –

�?`^YTRb 3JL?;>MB??NM�NI�"3�������2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] .ILNB�3N;CL=;M?

2%).&/2#%$�#/.#2%4%�34!)2#!3%3�NI�"3����������

>`XVX]PbTS�U`^\�A22&"�f[a�^]�23��������������������������!(((�120�U `�A22

,!.$).'�� �������GW�, !Ô \\ ;�, "�' \

BT[U�eb #�Ô$ ]!�, !$�% �!�" �,� !"�!& Z=�\�

5X]XaWTa !�# ]"�, !(�Ô �!�" �,� !%�"Ô Z=�\�

$�'$ Z=�\� ]P�,�!�$f$�'$�!�%f$� �,� !#�!' Z=�\� #$�"#

<�, #%�&&�f�!�#! ���!!�#!���!"�#(�,�"$�$'�Z=\�\ S�, !"$�\\

0a�, Ô&!�\\� 02/6)$%���4���������" ,�%&(�\\� ;�S�,

0a�X]R`TPaTS�Qg� �(���U^`�ST

&,)'(4��FPXab�, !Ô \\ P�, "�Ô \ Q�, �% \

;�, #�& \

FPXab $�"

BbT_a !�''

5X]XaWTa �Ô

%�Ô& Z=�\� ]#�, !Ô�% Z=�\� !(�Ô

<�, !(�Ô �f���!�'Ô ��� �%"Ô���,�"#�'(�Z=\�\ S�, !"$�\\

0a�, ÔÔ&�\\� 02/6)$%���4���������" ,�( Ô�\\� ;�S�,

0a�X]R`TPaTS�Qg�Ô#�%���U^`�S

,!.$).'�� �������GW�, !Ô \\ ;�, "�' \

BT[U�eb #�Ô$ ]#�, !%�"Ô Z=�\�

5X]XaWTa !�# ]"�, !%�"Ô Z=�\�

$�'$ Z=�\� ]Q�, !#�!' Z=�\� #&�(Ô

REINFORCED CONCRETE COUNCIL

�<PST�Qg �3PbT �?PVT

2-7 ���.IP��� ���

�2WTRZTS �ATdXaX^] �9^Q�=^

=BA � 2��

Z=�\ #%�&& Z=�\

:�, � $ÔÔ

""�Ô'!�+�"Ô�%#(�P[[^eTS /+

TU[TRbX^]

R�, �% \

!(�Ô

:�, � $$$

"(�'#(�+�# �Ô'"�P[[^eTS /+

STU[TRbX^]

#&�(Ô

<�, #&�(�f�!�$ ���!"�(!���!$�!$�,�"%� '�Z=\�\ S�, !"$�\\

0a�, %!!�\\� 02/6)$%���4���������" ,�%&(�\\� ;�S�,

0a�X]R`TPaTS�Qg�#�$���U^`�ST

&,)'(4��FPXab�, !Ô \\ P�, "�Ô \ Q�, �% \

;�, #�& \

FPXab $�"

BbT_a !�''

5X]XaWTa �Ô

%�Ô& Z=�\� ]$�, !Ô�% Z=�\� !(�Ô

<�, !(�Ô �f���!�'Ô ��� �%"Ô���,�"#�'(�Z=\�\ S�, !"$�\\

0a�, ÔÔ&�\\� 02/6)$%���4���������" ,�( Ô�\\� ;�S�,

0a�X]R`TPaTS�Qg�Ô#�%���U^`�S

,!.$).'�� �������GW�, !Ô \\ ;�, "�' \

BT[U�eb #�Ô$ ]#�, !%�"Ô Z=�\�

5X]XaWTa !�# ]$�, !%�"Ô Z=�\�

$�'$ Z=�\� ]R�, !#�!' Z=�\� #&�(Ô

<�, #&�(�f�!�$ ���!"�(!���!$�!$�,�"%� '�Z=\�\ S�, !"$�\\

0a�, %!!�\\� 02/6)$%���4���������" ,�%&(�\\� ;�S�,

0a�X]R`TPaTS�Qg�#�$���U^`�ST

:�, � $'Ô

""�Ô'!�+�"#�'((�P[[^eTS /+

TU[TRbX^]

R�, �% \

!(�Ô

:�, � $$$

"(�'#(�+�# �Ô'"�P[[^eTS /+

STU[TRbX^]

#&�(Ô

:�, � $'Ô

""�Ô'!�+�"#�'((�P[[^eTS /+

TU[TRbX^]

110

,

H� H�H;

,

H�< =;

,

H� H�H<

,

Q�< =;

,

H� H�H=

Page 113: User Guid

111

S T A I R C O R ES T A I R S R C C 7 2– –

�?`^YTRb 3JL?;>MB??NM�NI�"3�������2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] .ILNB�3N;CL=;M?

2%).&/2#%$�#/.#2%4%�34!)2#!3%3�NI�"3����������

>`XVX]PbTS�U ^\�A22&"�f[a�^]�23��������������������������!(((�120�U^`�A22

&,)'(4��FPXab�, !Ô \\ P�, "�Ô \ Q�, �% \

;�, #�& \

FPXab $�"

BbT_a !�''

5X]XaWTa �Ô

%�Ô& Z=�\� ]Ô�, !Ô�% Z=�\� !(�Ô

<�, !(�Ô �f���!�'Ô ��� �%"Ô���,�"#�'(�Z=\�\ S�, !"$�\\

0a�, ÔÔ&�\\� 02/6)$%���4���������" ,�( Ô�\\� ;�S�,

0a�X]R`TPaTS�Qg�Ô#�%���U^`�S

,!.$).'�� �������GW�, !Ô \\ ;�, "�' \

BT[U�eb #�Ô$ ]Ô�, !%�"Ô Z=�\�

5X]XaWTa !�# ]$�, !%�"Ô Z=�\�

$�'$ Z=�\� ]S�, !#�!' Z=�\� #&�(Ô

<�, #&�(�f�!�$ ���!"�(!���!$�!$�,�"%� '�Z=\�\ S�, !"$�\\

0a�, %!!�\\� 02/6)$%���4���������" ,�%&(�\\� ;�S�,

0a�X]R`TPaTS�Qg�#�$���U^`�ST

REINFORCED CONCRETE COUNCIL

�<PST�Qg �3PbT �?PVT

2-7 ���.IP��� ���

�2WTRZTS �ATdXaX^] �9^Q�=^

=BA � 2��

R�, �% \

!(�Ô

:�, � $$$

"(�'#(�+�# �Ô'"�P[[^eTS /+

STU[TRbX^]

#&�(Ô

:�, � $'Ô

""�Ô'!�+�"#�'((�P[[^eTS /+

TU[TRbX^]

&,)'(4��FPXab�, !Ô \\ P�, "�Ô \ Q�, �% \

;�, #�$&Ô \

FPXab $�"

BbT_a !�''

5X]XaWTa �Ô

%�Ô& Z=�\� ]%�, !Ô�% Z=�\� !'�"$

<�, !'�"$�f���!�&%(��� �Ô'Ô���,�"!�%!�Z=\�\ S�, !"$�\\

0a�, Ô "�\\� 02/6)$%���4���������" ,�%&(�\\� ;�S�,

0a�X]R`TPaTS�Qg�"&� ���U^`�S

,!.$).'�� �������GW�, !Ô \\ ;�, "�' \

BT[U�eb #�Ô$ ]Ô�, !%�"Ô Z=�\�

5X]XaWTa !�# ]%�, !Ô�" Z=�\�

$�'$ Z=�\� ]T�, !#�!' Z=�\� #&�%Ô

<�, #&�%�f�!�#&&���!"�$(���!#�%(�,�"�%�Z=\�\ S�, !"$�\\

0a�, % �\\� 02/6)$%���4���������" ,�%&(�\\� ;�S�,

0a�X]R`TPaTS�Qg�"�&���U^`�STU

,!.$).'�� ��������GW�, !Ô \\ ;�, "�' \

BT[U�eb #�Ô$ ]%�, "&�%( Z=�\�

5X]XaWTa !�#

$�'$ Z=�\� ]U�, !#�!' Z=�\� "%�$%

<�, $#�%%�f�!�!!(���'�"Ô���!Ô�! �,�"Ô�Ô"�Z=\�\ S�, !"Ô�\\

0a�, Ô("�\\� 02/6)$%���4���������" ,�#(#�\\� ;�S�,

0a�X]R`TPaTS�Qg�!� ���U^`�STU

R�, �#&Ô \

" �&&

:�, � $ !

"'� "$�+�"(� &"�P[[^eTS /+

STU[TRbX^]

#%�((

:�, � $&&

""�Ô'!�+�"$�#$%�P[[^eTS /+

U[TRbX^]

$#�%%

:�, � $%&

""�$ �+�"#�#'#�P[[^eTS /+

U[TRbX^]

,

H�< =;

,

H�< =;

,

H� H�H>

,

H� H�H?

,

H�H@

111

Page 114: User Guid

112

This spreadsheet designs simple pad foundations from inputof material properties, dimensions and characteristic loadsand moments. Single column bases and combined, doublebases are catered for on separate sheets.

A diagram is provided to illustrate the dimensions: a chartshowing scale plan views is provided to help ensure grosserrors are avoided. The ‘efficiency’ diagrams are providedso that the user may gauge how hard the base is working inrespect to allowable increase in ground bearing pressure,bending and shear in the two axes together with a measureon punching shear capacity. If the design is invalid, this chartshould help identify the problem.

The spreadsheet does not allow for punching shear links –bending reinforcement is increased to ensure allowableshear, vc, is adequate. The user should note that punchingshear perimeters can jump from being rectangular to beingtwo- or three-sided, leading to unexpectedly large increasesin reinforcement for increases in base thickness. Informationfrom BS 8110: Part 1, Clause 3.7.7.8 and Figure 3.19 has yetto be fully incorporated in this spreadsheet.

Warnings are given if columns encroach within 100 mm ofan edge.

SINGLE!Suggestions are made, under the Operating Instructionscolumn, for the optimum plan size of the base.

Where two centres are given, e.g. 14 T16 @ 200 & 325 B2,the reinforcement is subject to BS 8110: Part 1, Clause 3.11.3.2and different centres are required, bars need to be groupedcloser in the central part of the base.

Det1!This sheet shows workings and is not necessarily intendedfor printing out other than for checking purposes.

Allowable bearing pressure is taken as an allowable increasein bearing pressure and density of concrete – density ofexcavated material (i.e. soil) is used in the calculations. Theprogram assumes that pads are embedded to depth H inthe soil. A 25% over-stress is allowed where load casesinclude wind loads.

Design moments are generally those at the face of thecolumn. Both sides of the column are checked for momentin each direction to ensure maxima are identified. Shearenhancement is allowed for both beam and punching shear.

Neither crack widths, factors of safety against sliding, norwater tables are catered for. Where resultant eccentricitiesare outside the base a warning message is given; the generalstatus message is updated as well. Factors of safety against

overturning are checked (minimum 1.5). Warnings are alsogiven at the onset of an uplift situation.

DOUBLE!In addition to graphs showing plan layout and ‘efficiency’,this sheet gives moment diagrams for the two principal axes.Design moments are taken at the edge of both columnsections

Suggestions are made, under the Operating Instructionscolumn, for the optimum plan size of the base andeccentricities given the column offsets from one another.

The user’s attention is drawn to the fact that the analysis isdone in two orthogonal directions. When columneccentricities are large in both directions the analysis maynot account adequately for local effects (e.g. bottomcantilever moments on two sides of each column – loads inopposite corners gives bottom moments of 0 kNm). In suchcases, it may be better to change the orientation of the basein such a way that eccentricity in one direction is minimal.Warnings about double eccentricities are given when thedistances between column centrelines exceed 15% of therelevant base dimension in each orthogonal direction.Comparison with FE analysis suggests this is reasonable solong as the base is thick and rigid.

Det2!This sheet shows workings and is not necessarily intendedfor printing out other than for checking purposes.

The notes for Det! above also apply.

Legends!This sheet shows dimensions, axes, corners and notationused.

Graf!This sheet comprises data for graphs for both SINGLE! andDOUBLE!

RCC81 Foundation Pads.xls

F O U N D A T I O N S R C C 8 1–

Page 115: User Guid

113

S I N G L EF O U N D A T I O N S R C C 8 1– –

�? `^ YT Rb 3 JL? ;>M B? ? NM �NI �" 3 ��� � �

�2 [XT ]b !>PCM I LS�' LI OJ Made by Date Page

�; ^ RPbX^ ] ,? P? F��� �" ;M ? �" � 2-7 ���!OA��� � � �

0 !$ �& / 5 .$ !4)/. �$ % 3 )' . �NI �" 3 ��� � �� � ���� Checked Revision Job No

> `XV X]PbTS�U`^\�A2 2 '! �f [a �^ ] �23�����������������������������������������! (((�120 �U^ `�A22 =BA � 2��

�-!4% 2 )!,3 UR c #Ô = �\\ � W�PV V " \\ γ c ! �Ô R^ ]R`T bT

Ug $% = �\\ � R^ d T ` Ô \\ γ s ! � Ô abT T [

3 T ]aXbXT a���2 ^ ]R `T bT "#�% Z= �\ � B^ X[ ! ' Z= �\ �

1T P`X]V �_ `T aac`T " Z= �\ ���]T b�P [[^ e PQ [T �X]R`T PaT �

�$ )-% .3 )/ .3 �\\��2 > ; D<=

; �, ## W�, ! "

1 �, ! ' Q �, "Ô

ST _bW�7 �, $Ô

T f �, T g�,

�# / ,5-.�2 % !# 4 )/ .3 �Z= ��Z=\ ��characteristic 0 FI N���b �aRP [T � + ? S

$ % !$ )-0 / 3 % $ 7 ).$

0f XP[��Z= �� ! ! � ! "'�

<f ��Z =\ �� �" �

<g��Z=\ ��

7f ��Z= ��

7g��Z= ��

�3 4!45 3 6!, )$ �$ % 3 )' .

�����10B4

REINFORCED CONCRETE COUNCIL

3 CHA F? �=I FOGH�<;M ? �

�" % !2 ).' �0 2 % 3 3 5 2 % 3 �Z= �\ �� characteris tic

2 > A=4 A � � � �

]^ �e X]S ! ('�& ! '%�Ô ! ('�& ! '%�Ô

e XbW�e X]S ! ('�& ! '%�Ô ! ('�& ! '%�Ô % @@C= C? H=S

�2 % ).& / 2 # % -% .4 � �

<ff �, "& Ô� Z=\ <gg�, "%'� Z=\

Q �, ! ' \\ Q �, ## \\

S �, #(" \\ S �, #&' \\

0a�, ! %'% \\� 0a�, ! & # \\�

0 2 / 6 )$ % ��4 � ��������" � 0 2 / 6 )$ % � ��4 � � �������" �0a�_ `^ d �, ! '! \\� 0a�_ `^ d �, " #% \\�

� �

�" % !-�3 (% !2E ff �, #"(�$ Z= �Pb�S �U`^\ �R^ [�UPRT E gg�, #%! �$ Z= �Pb�S �U`^\ �R^ [�UPRT

d �, �$%& = �\\� d �, �"( = �\\�

^ `�E ff �, ! #Ô�" Z= �Pb�"S �U`^\ �R^ [�UPRT ^ `�E gg�, #! �" Z= �Pb�"S �U`^\ �R^ [�UPRT

d �, �! (" = �\\� d �, � "Ô = �\\�

d R �, �$Ô! = �\\� d R �, �#(" = �\\�

�0 5 .# ( ).' �3 (% !2S �Pd T �, #'Ô \\ c�R `Xb�,� #% \\

0a�_ `^ d �, �"! � d �\ Pf �,� ! �$$! = �\\��Pb�R^ [�UPRT

d �, �#Ô = �\\� d R �, �$"$ = �\\�

��

� �

'#�

#&�

Ô"�

(#�

'$�

((�

� "Ô� Ô � &Ô� ! � !"Ô�

_c]RWX]V

d�gg

BWTP`�������������d�ff

�0a�0a_`^d��Uag

1T]SX]V������������Uaf

6`]S�1`V�?`Taac`T�

113

Page 116: User Guid

114

D O U B L EF O U N D A T I O N S R C C 8 1– –

�2 % ). & / 2 # % -% .41 b\ ��< f f �� $ Ô� Z =\ <gg �� "Ô! �&

Q �, # \\ Q �, #

S �, %(" \\ S �, %& %

0a�, ! $ % \\ � 0a�, '(Ô

0 2 / 6 )$ % �� ��4 � ��������" � � ��� ��4 � ��������" �0a�_ `^ d �, # ! % \\ � 0a�_ `^ d �, # ! %

C ^ _ ���< f f �� � Z =\ <gg �� �

S �, %(" \\ S �, %& %

0a�, \\ � 0a�,

0 2 / 6 )$ % ��� ��4 � ��������4 � �� ��4 � ��������4 �0a�_ `^ d �, # ! % \\ � 0a�_ `^ d �, # ! %

� �

" % !-�3 ( % !2 �

E f f �, ""'�% Z = �Pb�S E gg �, '& �#

d �, �! ! = �\\ � d �, � $#

^ `�E f f �, � Z = �Pb�"S ^ `�E gg �, �

d �, � = �\\ � d �, �

d R �, �#& " = �\\ � d R �, �#& Ô

0 5 .# ( ).' �3 ( % !2S �Pd T �, %'$ \\ c �R `Xb�, % \\

0a�_ `^ d �, �! $& � d\ Pf �, � �' $ = �\ \ ��Pb�R^ [�UPRT

d �, �! '# = �\\ � d R �, �#& # = �\ \ �

-S�$ C;A L;G

-R�$ C;A L;G

% @@C= C? H=S

��

-500

-400

-300

-200

-100

0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Mom ent C o lum ns Zero axis

-250

-200

-150

-100

-50

0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

�? `^ YT Rb 3 JL? ;>M B? ? NM �NI �" 3 ��� � �

�2 [XT ]b !>PCM I LS�' LI OJ M ade by Date Page

�; ^ RPbX^ ] " ;M ? �" ��" � # IG< CH? > �< ;M ? 2-7 ���!OA ��� � ��0 !$ �& / 5 .$ !4)/ . �$ % 3 )' . �NI �" 3 ��� � �� � ���� Checked Revis ion Job No

> `XV X] PbT S�U`^\ �A 2 2 '! �f [a �^] �2 3 ���������� ����� ���� ����� ����� ����� �������! (((�12 0 �U^ `�A 2 2 =BA � 2 ��

�-!4% 2 )!, 3 UR c #Ô = �\ \ � W �PV V " \\ γ c ! �Ô abT T [

Ug $% = �\ \ � R ^ d T ` Ô \\ γ s ! � Ô R^ ]R`T bT

3 T ]a XbXT a���2 ^ ]R `T bT "#�% Z = �\ � B^ X[ ! ' Z = �\ �

1 T P`X]V �_ `T aac `T ! "Ô Z = �\ ���]T b�P [[^ e PQ [T �

�# / ,5-. �2 % !# 4 )/ .3 �Z= � �Z=\ ��charac teris tic

# I FOGH�� ��`Wa� $ % !$ )-0 / 3 % $ 7 ).$ # I FOGH�� ��[Wa� $ % !$ )-0 / 3 % $ 7 ).$

0f XP[ ""Ô� ""Ô� ! ! " �Ô 0 f XP[ ""Ô� ""Ô� ! ! " �Ô

<f <f

<g <g Ô �

7 f 7 f

7 g 7 g "Ô�

�$ )-% .3 )/ .3 �\ \

; �, # W ! �, # W"�, # 1 �, # Q ! �, # Q "�, #

ST _ bW �7 �, & Ô

Σ T f �, # T f ! �, ! Ô T f" �, ! Ô

Σ T g �, ! T g! �, Ô T g" �, Ô

�3 4 !45 3

�" % !2 ).' �0 2 % 3 3 5 2 % 3 �Z= �\ �� characteris tic

# / 2 .% 2 � � � �

]^ �e X]S ! $�" ! $�" ! $�" ! $�"

e XbW �e X]S ! $$�Ô ! $$�Ô ! ! #�( ! ! #�(

0 ,/ 4 ���b �aRP [T �

REINFOR C ED C ON C R ETE C OU NC IL

C OLUMN 1 �`Wa� C OLUMN 2 ��[Wa�

6!, )$ �$ % 3 )' .

" !3 %

$(�

%�

!Ô�

&"�

%#�

("�

� !##�

_c]RWX]V

d�gg

BWTP`�������������d�ff

�0a�0a_`^d��Uag

1T]SX]V������������Uaf

6`]S�1`V�?`Taac`T�

1 1 4

Page 117: User Guid

115

Design is often undertaken using the moment and shearfactors taken from BS 8110: Part 1, Tables 3.5 and/or 3.12.This series of spreadsheets uses factors for moment and shearbased on these tables.

RCC91.xls designs simple one-way solid slabs to BS 8110. Forthree or more spans they use moment and shear factors fromTable 3.12. The use of these factors is governed by Clause3.7.2.7 (single load case and the conditions of Clause 3.5.2.3are met {bays > 30 m2, qk > 1.25 gk, qk > 5.0 kN/m2} and atleast three bays of approximately equal span (thecorresponding factors for beams also restrict use of thefactors to where spans differ by no more than 15% of themaximum span)). Where the relevant conditions are not met,users are directed towards RCC31.xls where continuous beamanalysis overcomes many of these caveats.

The design of single- and two-span slabs is also possible.The factors used for two-span slabs should be consideredsubject to the same conditions as for using the factors fromTable 3.12 of BS 8110.

MAIN!This single sheet consists of the input and main output. Initself it should prove adequate for the design of the simplestone-way solid slab designs. A nominal 1 m wide strip of slabis considered.

Inputs are underlined and most should be self-explanatory.End support condition determines the factors applied forbending. Simple charts show the spans, loads and indicativebending moments. The factors from Table 3.12 give rise to asingle load case that has been subject to 20% redistribution:a bending moment envelope is inappropriate and thediagram is therefore indicative only. The factors used aregiven in the table below.

The factors used are based on continuous end supports. Thetwo-span factors were derived by modelling the appropriatenumber of spans with a single loadcase of 4 kN/m dead and5 kN/m imposed and allowing any one span to be 15% lessthan the input length (strictly according to BS 8110 this isapplicable to beams only).

The area of steel required, As, may be automatically increasedto reduce service stress, fs, and to increase modificationfactors to satisfy deflection criteria. The option in line 42 tohave top steel in spans influences modification factors usedin deflection calculations.

As most contractors prefer prefabricated reinforcement matsmight be considered.

To the right of the sheet are calculations. An approximatereinforcement density is given.

Weight!Weight! gives an estimate of the amount of reinforcementrequired in a slab. Simplified curtailment rules, as definedin Clause 3.12 are used to determine lengths of bars. Thefigures should be treated as approximate estimates only asthey cannot deal with the effects of designers’ and detailers’preferences, rationalisation, the effects of holes etc, etc. Itexcludes supporting beams, trimming to holes etc. To theright of the sheet are calculations of length, etc.

Graf!This sheet comprises data for graphs used in MAIN! It is notnecessarily intended for printing out other than for checkingpurposes.

RCC91 One-way Solid Slabs (Tables).xls

T A B U L A R R C C 9 1–

Coefficient End End First int Interior Interiorsupports spans supports spans supports

Bending

Simple support 1 span 0.00 0.125 ~ ~ ~

2 span 0.00 0.086 0.100 ~ ~

3 span etc 0.00 0.075 0.086 0.063 (0.063)

Continous support 1 span 0.040 0.105 ~ ~ ~

2 span 0.040 0.066 0.100 ~ ~

3 span etc 0.040 0.075 0.086 0.063 (0.063)

Shear

1 span 0.50 ~ ~

2 span 0.46 0.60 ~

3 span ect 0.46 0.60 0.50

Bending moment and shear force coefficients

Page 118: User Guid

116

M A I NT A B U L A R R C C 9 1– –

�? `^YTRb 3 JL?;>MB?? NM �NI �"3 ��� � ���% # � REINFORCED CONCRETE COUNCIL

�2 [XT]b !>PCMILS�' LIOJ �<PST�Qg �3PbT �? PVT

�;^RPbX^] �L>�& FIIL�MF;< LGQ ���!OA��� � ��! �F 0H�B>;83 �2 >=2 A4C4 �B;01�34B86=�b �1B�'! ! )! ((&�CPQ �2 WTRZTS �ATdXaX^] �9^Q�=^

>`XVX]PbTS�U`^\�A22(! �f [a �^]�23�������������������������! (((�120�U^`�A22 =BA � 2��

�,/# !4)/. Bc__^`ba�U ^\�V XS� 0 b �V XS 5 3 4!4534]S�ac__^`b�R^]SXbX^]�Xa� 2 �2 �^]bX]c^ca�^ ��B�X\_[T 6!,)$ �$ % 3 )' .

�$ )-% .3 )/.3 -!4% 2)!,3=��^U�a_P]a =� # Ug =�\\� $% γs = ! � Ô

<Pf�B_P] \ &�" URc =�\\� #Ô γc = ! �Ô

CWXRZ]Taa��W \\ " 3T]aXbg Z=�\� "#�%

R^dT ` \\ " �=^`\P[�eT XVWb�R^]R`TbT �

�,/!$ ).'BT [U�F T XVWb Z=�\� $�&"

0SSXbX^]P[�3 TPS Z=�\� ! � C^bP[�3 TPS��VZ Z=�\� �&"

8\_^aTS�;^PS��ÓZ Z=�\� "�Ô ! & ! &3TaXV]�[^PS��]�, Z=�\� ! "� ! ' ?IG?NLS�;H>�,I;>CHA )H>C=;NCP? �" ?H>CHA �-IG?HN�$ C;AL;G

�-!).�3 4% % , % .$ % .$ & )234�).4 ).4% 2 )/2 ).4% 2.!, 1B�'! !

350 0/243 �0���5� 3 0!.3 3500/243 3 0!.3 3500/243 A TUT`T]RT

5PRb ` � $ � &Ô � '% � %# � CPQ [T �#�! "

< Z=\�\ "$�( $%�& Ô#�Ô #(�" � S \\ ! &Ô ! &" ! &$ ! &" �: � "# � $Ô � Ô! � #' � <�QS�URc

h ! %%�# ! %"�( ! %#�% ! %#�$ � 2 [PcaT �#�$�$�$

0a \\��\ #$" %Ô$ &$& Ô$' �

ATQP` C C C C �

� \\ ! ! % ! " ! % ! "

/ \\�R�R ""Ô ! Ô ! Ô ""Ô �

0a�_` d \\��\ #$( ! #$ &Ô$ '($ �

, � �! (( �&&( �$## �Ô" �

<Pf�B Ô#Ô Ô#" Ô#$ Ô#" � 2 [PcaT

acQR[PcaT �P� �P� �P� �P� � #�! "�! ! �"�&

�$ % & ,% # 4)/.Ua =�\\� # ! Ô # $ ! '' � 4Ó]�'

C^_�abTT [��_`^dXSTS � �QS

2 ^\_�<^S�UPRb ` ! � ! � CPQ [T �#�! !

CT]a�<^S�UPRb ` ! �%Ô! ! �%#" 4Ó]�&

?T`\�;�S $# 0a�Pcb �X]R`TPaTS $"�Ô 0a�Pcb �X]R`TPaTS CPQ [T �#�(

0RbcP[�;�S $! �' Qg�'%�� $! �' Qg�Ô%��

�!

�Ô

Ô

!

�$ )3 42)"54)/.�3 4% % , 0a�, �! #� , "% \\��\ CPQ [T �#�"Ô

? ` dXST ��C ! Pb��# ,��"%" \\��\

�3 (% !2 % .$ �3 50 0/24 & )2 34�).4�3 504 ).4% 2.!,�3 50 43E Z=�\ #(�' Ô! �( � CPQ [T �#�! "

0a�_` d � �#( �$## �

d =�\\� �"#! �"(' � TÓcPbX^]�#

dR =�\\� �%#' �%Ô( � CPQ [T �#�'

�/54054�3 5--!29% .$ % .$ & )234�).4 ).4% 2 )/2 ).4% 2.!,

3500/243 3 0!.3 3500/243 3 0!.3 3500/243 $ )3 42 )"54)/.0 2/6)$ % ��� 4� ��������4� 4� ����� ���"� 4� ����� ���4� 4� ��������"� 4� �������

�# (% # +3 10A�� B8=6;H 10A => �B740A ',/"!, �

+�2>E 4A A4 8=5>A243 B?02 8=6 345;42C8>= ;8=:B 34!453 �

/+ /+ /+ /+ /+ 6!,)$ �$ % 3 )'.

1 1 6

Page 119: User Guid

117

This spreadsheet designs simple single-, two-span andmultiple-span ribbed slabs to BS 8110: Part 1 using themoment and shear factors in, or in the case of single andtwo spans, consistent with Table 3.12 of BS 8110. The use offactors in Table 3.12 is governed by Clause 3.7.2.7 as follows.

• A single load case is assumed

• Conditions of 3.5.2.3 are met

bays > 30 m2,

qk >/ 1.25gk,

qk >/ 5.0 kN/m2 and

at least three bays are of approximately equal span

• The corresponding factors for beams also restrict use ofthe factors to where spans differ by no more than 15%of the maximum span.

The factors used for two-span slabs should be consideredsubject to these same conditions. They were derived bymodelling the appropriate number of spans with a singleload case of 4 kN/m2 dead and 5 kN/m2 imposed, and allowingany one span to be 15% less than the input length (strictlyaccording to BS 8110 this is applicable to beams only). Thefactors used are based on continuous end supports.

Where the relevant conditions are not met, users are directedtowards RCC32.xls where continuous beam type analysisovercomes many of these caveats.

MAIN!This single sheet consists of the input and main output. Initself it should prove adequate for the simplest ribbed slabdesigns. Inputs are underlined and most should be self-explanatory.

The option to have top steel in spans or not has bearings onwhether shear links can be accommodated and on deflectioncalculations. The option to have links, minimal (or nominal)links or no links is a matter of choice for the designer. Mostcontractors prefer to prefabricate reinforcement for ribbedslabs on the ground or off-site: this means at least nominallinks and nominal top steel are usually required.

• Designed links are taken to be those provided where (vc+ 0.4) < v < 0.8 fcu

0.5

• Minimal links are taken to be those that are required toprovide shear resistance for vc < v < (vc + 0.4)

• Nominal links are those used if required for temporarysupport only in areas where v < vc

Under Bending, the Width of solid from CL refers to thedistance between centre line of support and the rib/solidintersection. It determines where shear and, at internalsupports, hogging moment in ribs are checked. The userinputs preferred diameters of reinforcement in the rib. Atsupports, these bars usually need to be supplemented byintermediate bars to comply with either spacing rules or withhogging moments in the solid section of slab.

In spans, the area of steel required, As, may be automaticallyincreased to reduce service stress, fs, and to increasemodification factors to satisfy deflection criteria.

An approximate reinforcement density is given. It excludesmesh, supporting beams, trimming to holes etc.

Please note that the bending moment diagrams areindicative only. The factors from Table 3.12 give rise to asingle load case that has been subject to 20% redistribution:a bending moment envelope is inappropriate. The factorsused are given in the table below.

The factors used are based on continuous end supports. Thetwo-span factors were derived by modelling the appropriatenumber of spans with a single load case of 4 kN/m dead and5 kN/m imposed and allowing any one span to be 15% lessthan the input length (strictly according to BS 8110 this isapplicable to beams only).

DETAILS!DETAILS! gives two pages of detailed calculations andreferences to BS 8110 justifying the output in MAIN! Thissheet is intended as an explanation for the less experiencedengineers and may prove useful for checking purposes.

RCC92 Ribbed Slabs (Tables).xls

T A B U L A R R C C 9 2–

Coefficient End End First int Interior Interiorsupports spans supports spans supports

Bending 1 span 0.040 0.125 ~ ~ ~

2 span 0.040 0.086 0.100 ~ ~

3 span etc 0.040 0.075 0.086 0.063 (0.063)

Shear 1 span 0.50 ~ ~

2 span 0.46 0.60 ~

3 span etc 0.46 0.60 0.50

Bending moment and shear force coeficients

Page 120: User Guid

118

Maximum spacing, Smax, at supports is based on rib centres:usually two large bars are required in the top of the rib formoment at the rib/solid intersection and one, two or eventhree smaller bars (minimum T10) are required between toovercome spacing rules. Concentrating reinforcement withlarger bars in the top of the rib raises the percentage steelin the rib at the rib/solid interface, thereby maximising vcand reducing shear requirements.

In terms of curtailment, 50% of reinforcement for maximumsagging is taken as being As req’d for bending, i.e. excludingany extra for deflection, etc. Figure 3.25 refers to‘reinforcement for max. moment’. Ribbed slabs are taken asbeing “slabs” so the 40% rule is applied. It is usually assumedthat ‘ribs’ become ‘beams’ when they are at centres > 1.5 m.

Tapered links are assumed. Where required for shearresistance, links should be at maximum 0.75d centres.

Weight!Weight! gives an estimate of the amount of reinforcementrequired in a slab. Simplified curtailment rules, as definedin Clause 3.12 are used to determine lengths of bars. Thefigures should be treated as approximate estimates only asthey cannot deal with the effects of designers’ and detailers’preferences, rationalisation, the effects of holes etc, etc. Tothe right of the sheet are calculations of length etc.

Graf!This sheet comprises data for graphs used in MAIN!

T A B U L A R R C C 9 2–

Page 121: User Guid

119

M A I NT A B U L A R R C C 9 2– –

�? `^YTRb 3 JL?;>M B? ? NM �NI �"3 ��� � � REINFORCED CONCRETE COUNCIL �2 [XT]b !>PCMILS�' LIOJ �<PST�Qg �3PbT �? PVT

�;^RPbX^] �H>�& FIIL�M F;< LGQ ���!OA��� � ��

A81143 �B;01�34B86=�b �1B�'! ! )! ((&�caX]V�bPQ [T �#�! "�R^T UUXRX�2 WTRZTS �ATdXaX^] �9^Q�=^

>`XVX]PbTS�U`^\�A2 2("�f [a �^]�23��������������������������! (((�120 �U^`�A22 JL? FCG 2��

�,/# !4)/. Bc__^ba�U ^\�V XS� 0 b �V XS 5 3 4!453

6!,)$ �$ % 3 )' .�$ )-% .3 )/.3 -!4% 2)!,3

=��^U�a_P]a =� Ô XQ �e XSbW \\ ! Ô URc =�\\� #Ô γc = ! �Ô

<Pf�B_P] \ &�" XQ �RT]b Ta \\ &Ô Ug =�\\� $% γs = ! � Ô

ST_bW�^�P��W \\ # BXST �a[^_T ! �X] ! Ugd =�\\� "Ô 3T]aXbg Z=�\� "$�

b __X]V�ST_bW��WU \\ ! W�PVV \\ " �=^`\P[�e T XVWb�R^]R`TbT � �

C^_�abTT [�X]�a_P]a�. H C^_�R^dT ��b �[X]Za� \\ #Ô

<X]�=^�^U�QP`a _T � XQ " 1�B�R^dT ��b �[X]Za� \\ "Ô

DaT �; X]Za. H �H�Ta���= �^�^`��<�X]X\P[

�,/!$ ).'BT [U�F b Z=�\� $�

��3TPS Z=�\� ! �Ô

C^bP[�3TPS��VZ Z=�\� Ô�Ô

8\_^aTS�ÓZ Z=�\� Ô� ! & ! &3TaXV]�[^PS��]�, Z=�\� ! Ô�& ' ?IG?NLS�;H>�,I;>CHA )H>C=;NCP? �"?H>CHA�-IG?HN�$ C;AL;G �

=BA

Page 122: User Guid

120

D E T A I L ST A B U L A R R C C 9 2– –

�? ` YTRb 3JL?;>MB??NM �NI�"3 ��� � � REINFORCED CONCRETE COUNCIL

�2 [XT]b !>PCMILS�' LIOJ �<PST�Qg �3PbT �?PVT

�;^RPbX^] �H>�& FIIL�M F;<�����@LIG�ALC>M�!�NI�& LGQ ���!OA��� � �� �

A81143 �B;01�34B86=�b �1B�'! ! )! ((&�caX]V�bPQ [T �#�! "�R^T UUXRX�2 WTRZ TS �ATdXaX^] �9^Q�=^

> XVX]PbTS�U`^\�A22("�f [a�^]�23��������������������������! (((�120�U^`�A22 =BA JL? FCG 2�� �

�$ % 4!),% $ �# !,# 5,!4)/.3PdT �Qe \\ ! & � aT [U�eb Z=�\� #�$(XQ�P`TP \� �! ( 4�> �a^[XS Z=�\� �Ô"

C^bP[�BF Z=�\� $�

6Z�, #(�%# @Z�, #%� 5�, ! ! #� ' =�, ! Ô�& Ô Z=�\�e XSbW

�-!).�3 4% % , % .$ % .$ & )2 34�).4 ).4% 2 )/2 ).4% 2.!, 1B�'! !

3500/243 30!.3 3500/243 30!.3 3500/243 A T UT `T]RT

5PRb ` � $ � &Ô � '% � %# � %# CPQ [T �#�! "

<�\ Z=\�\ #"�% %! �! & � Ô! �# Ô! �# ��,��

<� XQ Z=\ "$�$" $Ô�' Ô"�Ô! #'�$& #'�$& ��,��

S \\ "Ô$ "Ô( "$( "%! "$(QU \\ &Ô &Ô &Ô &Ô &Ô : � �! #" �! ÔÔ' �! #" �! ÔÔ' �! #" #�$�$�$

F TQ�<>A Z=\ Ô �& %"�" $'�& %#�! $'�& 5XV �#�#

5[P]VT�<>A Z=\ ""#�Ô "$Ô�! "! $�' "$&�$ "! $�' ��,��

: � ! $$ � "% � #"# � "! Ô � "#% #�$�$�$

h \\ "$! �# "$%�! "#%�% "$'� "#%�% ��,��

f \\ "'�" "'�' "&�& "(� "&�& ��,��

S� \\ $! � $Ô� #&� $Ô� #%� ]Tb�UaR =�\\� � � � � � 5XV �#�#

4fRTaa�< Z=\ � � � � � 0a��`TÓ \\� \Pf�Uab =�\\� $#'�! $#'�! $#'�! $#'�! $#'�! 5XV �#�#

Uab�ST U[TRbX^] =�\\� ��� # '�' ��� #$%�' ���0a�`TÓ \\� "#! $"Ô Ô & #Ô$ #&!Qe�Q ��� �""%& ��� �""%& ���<X]�� �! #� �! '� �! #� �! '� �! #� CPQ [T �#�"Ô

<X]�0a \\� "(# (" "(# (" "(#

!N�% $ ' % �I@�3/ ,)$<�\ Z=\�\ "$�( `TaXScP[�abTT [ #'�! `TaXScP[�abTT [ "Ô� CPQ [T �#�! #

<� XQ Z=\ ! '�& �"%� "'�Ô �"%� \X]�� �"%� ! '�& ��,��

QU \\ ! Ô Ô& ! Ô 0a�`TaXS ! Ô : � ÔÔ" ! � '&& ! � �TfbP ! � Ô&%h \\ "#&�# # ""! �' " =^ " "#! �(f \\ #&�! "#% % �Ô ! Ô& 0a�_` d ! Ô& #'�

]Tb�UaR =�\\� � "Ô%�Ô #%�( 5XV �#�#

4fRTaa�< Z=\ � � � 0a��`TÓ \\�

Uab =�\\� $#'�! $#'�! $#'�!0a�`TÓ GG� ! ' "($ ! '$

�4% .3 )/.�3 4% % ,ATÓcX`TS \\� ! ' $"Ô "($ #Ô$ ! '$

� �X]� XQ IE ! IE " IE " IE ! % IE "

=^ # " " " "

0a�_` d \\� "#% %"' %"' $ " %"'

2 [TP �SXab \\ Ô$�$ Ô$�" (&�' %"�" (&�' QT be TT]�QP`a

<X]�B IE "Ô� IE "Ô� IE "Ô� IE "Ô� IE "Ô� #�! "�! ! �!

<Pf�B IE " �& IE ""%�& IE # � IE ! &$� IE # � #�! "�! ! �"�$

�# /-02% 3 3 )/.�3 4% % ,ATÓcX`TS ! & ! "& ! % CPQ [T �#�"Ô

� IE " IE ' IE ! " IE ' IE !

=^ " " " " "

0a��_ ` d \\� %"' ! ! ""% ! ! ! Ô&

,�� IE ! �$ÔÔ IE �""' IE �Ô#$ IE �""& IE �#&! �

2 [TP �SXab \\ ÔÔ�% ! "#� & �' ! "#� &$�% QT be TT]�QP`a

<X]�B IE "Ô� IE "Ô� IE "Ô� IE "Ô� IE "Ô� #�! "�! ! �!

1 20

Page 123: User Guid

121

D E T A I L ST A B U L A R R C C 9 2– –

�? ` YTRb 3JL?;>MB??NM �NI�"3 ��� � � REINFORCED CONCRETE COUNCIL

�2 [XT]b !>PCMILS�' LIOJ �<PST�Qg �3PbT �?PVT

�;^RPbX^] �H>�& FIIL�M F;<�����@LIG�ALC>M�!�NI�& LGQ ���!OA��� � �� �

A81143 �B;01�34B86=�b �1B�'! ! )! ((&�caX]V�bPQ [T �#�! "�R^T UUXRX�2 WTRZ TS �ATdXaX^] �9^Q�=^

> XVX]PbTS�U`^\�A22("�f [a�^]�23��������������������������! (((�120�U^`�A22 =BA JL? FCG 2�� �

% .$ % .$ & )2 34�).4 ).4% 2 )/2 ).4% 2.!, 1B�'! !

�$ % &,% # 4)/. 3500/243 30!.3 3500/243 30!.3 3500/243 A T UT `T]RT

Ua =�\\� "#$�" " &�$ ! $#�$ "& �! ( � 4Ó]�'

1PaT�`PbX^ " �' " �' #�$�%�#�$

CT]a�<^S ! �&(! ! �Ô(# CPQ [T �#�!

2 ^\_�<^S ! � &! ! � & CPQ [T �#�! !

?T`\�;�S #(�'($ #Ô�$%% #�$�%�#

0RbcP[�;�S "&�&(( IE "&�Ô'% IE #�$�Ô�!

0a�`TÓ�X]R`TPaTSQg ! &�'� ! "�%�

�2 )" �3 (% !2% .$ & )2 34�).4 ).4% 2.!,

3500/243 3 500/243 3500/2435PRb ` �$% �% �Ô CPQ [T �#�! "

E �\Pf Z=�\ Ô"� ! %&�'Ô Ô%�Ô$ ��,��

E � XQ Z=�\ #&�"$ $$�(( #%�Ô!

d =�\\� �'%"Ô ! � %# �'%"% 4Ó]�#

dR =�\\� �'(&Ô �( ' �( ' ./-).!, CPQ [T �#�'

�d�dR�Qd =�\\ %'� %'� %'� %'� CPQ [T �#�&

; X]Z�� IE % IE % IE % IE % #�! "�&�!

/ \\ ! (! ! '& ! '& ! (% B_PRX]V

PSYcab�b \\ ! &Ô ! &Ô ! &Ô ! &Ô B_PRX]V

U ` \\ &(Ô &Ô ��� U ^\ �a^ [XS

PSYcab�b \\ '&Ô ! &Ô ��� U ^\ �a^ [XS

0a�3 Xab IE ! # �' IE ! "! �' IE ! "! �' IE ! "Ô�$ /+ #�$�Ô�Ô

0a��3 Xab IE IE IE IE /+ #�! "�&�"

12 1

Page 124: User Guid

122

This spreadsheet designs simple rectangular flat slabs toBS 8110: Part 1 using moment and shear factors fromTable 3.12. The use of these factors is also governed byClause 3.7.2.7 as shown below.

• A single load case is assumed

• The conditions of 3.5.2.3 are met

bays > 30m2,

qk >/ 1.25gk,

qk >/ 5.0 kN/m2 andat least three bays are of approximately equal span

• The corresponding factors for beams also restrict use ofthe factors to where spans differ by no more than 15%of the maximum span.

Where the relevant conditions are not met, users are directedtowards RCC33.xls where sub-frame analysis overcomes manyof the caveats made in the code restricting the use of bendingmoment and shear factors from Table 3.12.

The spreadsheet does not currently allow for holes or drops.If holes are considered critical then the user is directedtowards using RCC21.xls (sub-frame analysis) and allowingfor holes in breadths used. Note should also be made ofClause 3.7.5. Punching shear can be checked using RCC13.xls.

It does not cater for single or two-span cases.

MAIN!This single sheet consists of the input and main output. Initself it should prove adequate for the simplest flat slabdesigns.

Most inputs should be self-explanatory. A location plan helpswith definition of dimensions. The number of spans is alteredby changing the number of grid line inputs: deleting theend grid line name will decrease the number of spans. Acombo-box is used to switch between the continuous andsimply supported end support/slab connection factors. Notethe effect on column transfer moments. Edge distance, C, isactually from centreline of column to edge of slab.

‘Double penult’ means penultimate in both directions, i.e.internal column of corner bay.

Please note that the bending moment diagrams areindicative only. The factors from Table 3.12 give rise to asingle load case that has been subject to 20% redistribution:a bending moment envelope is therefore inappropriate.

DETAILS!DETAILS! gives detailed calculations and references to BS8110 justifying the output in MAIN! This sheet is intendedas explanation for the less experienced engineers and mayprove useful for checking purposes.

Column transfer moments are limited to Mt max see Clause3.7.4.2 and equation 24

A basic deflection ratio of 26 x 0.9 (see Clauses 3.4.6.1 and3.7.8) is used in line 189 etc. Some engineers like to use ahigher basic deflection ratio (rather than 26 in the code) tooffset any potential problems with deflection of partitionsand especially of cladding.

Traditional shear links can be very time consuming on site,so in order to minimise the number of links the centres aremaximised at 0.75d (see line 226 et seq). Additional barsmay be necessary to act as carriers to these links if top andbottom bars cannot be arranged at the preferred spacings.Consideration should also be given to using proprietarysystems.

Weight!Weight! gives an estimate of the amount of reinforcementrequired in a slab. Simplified curtailment rules, as definedin Clause 3.12 are used to determine lengths of bars. Thefigures should be treated as approximate estimates only asthey cannot deal with the effects of designers’ and detailerspreferences’, rationalisation, the effects of holes etc, etc.Additional link carrier bars are not included

Xdia! And Ydia!In these sheets each bending moment is designed using adifferent size bar (with different effective depths, d). Thelargest bar (i.e. minimum number of bars) consistent withmaximum specified diameter and maximum spacing rules isidentified and used in DETAILS! Thus a least bars solution isgiven. The Xdia! and Ydia! pages find the maximum diameterthat can be used while complying with spacing rules. Thesheet finds which of Clause 3.12.11.2.7 (a) or (b) applies.This has quite a dramatic effect on rationality of the barsand spacings. A detailer can always reduce bar diametersand/or close-up spacing if he or she wishes provided thatoverall areas of steel are at least maintained.

RCC93 Flat Slabs (Tables).xls

T A B U L A R R C C 9 3–

Page 125: User Guid

123

M A I NT A B U L A R R C C 9 3– –

�? `^YTRb 3 JL?;>MB? ? NM �NI�"3 ��� � ��

�2 [XT]b !>PCMILS�' LIOJ �<PST�Qg �3PbT �?PVT

�;^RPbX^] % # "0 �4SJC=;F�@FIIL�NI�"3�� � � LGQ ���!OA��� � ��

3 )-0 ,)& )% $ �&,!4�3 ,!" �$ % 3 )' .�NI�"3 ��� � ��� ����# F����������4;<F? ��� � �� �2WTRZTS �ATdXaX^] �9^Q�=^

>`XVX]PbTS�U`^\�A22(#�f [a �^]�23������������������������������! (((�120�U^`�A22 � 2��

STATUS

LOCATION =B�6 XSa�^]�[X]Ta ! " # $

4F �6 XSa�^]�[X]Ta 0 1 2 3 4

COLUMNS )HN?LH;F % >A? # ILH?L

DIMENSIONS 8 9 ( \\ $ $ $

=��^U�a_P]a =� # $ a[PQ�ST_bW��W \\ "Ô " \\ $ "Ô "Ô

B_P]��; \ &�Ô &�$(( C^_�R^dT` \\ "Ô

4SVT �SXab��2 \\ ! "Ô ! "Ô 1b\�R^dT` \\ "Ô � �

4SVT�ac__^`ba�P`T � 2 >=C8=D>DB

MATERIALS %

URc =�\\� #& W�PVV " \\

Ug =�\\� $% γm ! � Ô abTT[

\Pf�QP �� \\ " γm ! �Ô R^]R`TbT

Ugd =�\\� "Ô 3T]aXbg "#�% Z=�\�

�=^`\P[�eT XVWb�R^]R`TbT �

LOADING

BT[U�F b Z=�\� Ô�( T X\�;^PS '�'Ô Z=�\

��3TPS Z=�\� ! �Ô

C^bP[�3TPS��VZ Z=�\� &�$ DEFLECTION CONTROL

8\_^aTS�ÓZ Z=�\� "�Ô <X]�� �b _�abTT [�X]�R^[�ab X_a �! # � !

3TaXV]�[^PS��] Z=�\� ! $�#% BP\T�X]�b _�^U�\XSS[T �ab X_a. =

U ^\�2 �;�R^[c\]

REINFORCED CONCRETE COUNCIL

=BA

6!,)$ �$ % 3 )' .

+���G �SX`TRbX^]���-

+���H�SXTRbX]���-

,?A?H>

)H>C=;NCP?�"?H>CHA�-IG?HNM ���8�$ CL?=NCIH��Z=\�_T �QPg� )H>C=;NCP?�"?H>CHA�-IG?HNM ���9�$ CL?=NCIH��Z=\�_T �QPg�

� � ! %

�-!).�3 4% % , ).4% 2.!,�# /,5-.�342 )0 3 -)$ $ ,% �3 42 )0 3 0% 2 )-% 4% 2 �# /,5-.�342 )0 3

�8�$ )2% # 4)/. < 2% "!2 < 2% "!2 < 2% "!2 �% .$ �3 50 0/243 �� �Ô&Ô ��4��������4� %�("$ � ��4� ��������4� �$! # ��4������ ���4�

% .$ �3 0!.3 �� #�&Ô � ��4���������"� #�&Ô � ��4���������"� "� � ��4������ ���"�

0 % .5,4)-!4% �3 50 0/243 �� #�&Ô � ��4���������������4� #�&Ô ��4� ��������4� "� � ��4������ ���������4�

).4% 2)/2�3 0!.3 �� #�&Ô ��4���������"� #�&Ô ��4���������"� "� ��4���������"�

).4% 2)/2�3 50 0/243 #�&Ô ��4���������������4� #�&Ô ��4� ��������4� "� ��4���������������4�

�9�$ )2% # 4)/.% .$ �3 50 0/243 �� �Ô&Ô ��4��������4� %�("Ô � ��4� ��������4� �$Ô ��4��������4�

% .$ �3 0!.3 �� #�&Ô � ��4������ ���"� #�&Ô! � ��4���������"� "� ���4��������"�

0 % .5,4)-!4% �3 50 0/243 �� #�&Ô � ��4������ ���������4� #�&Ô! ��4� ��������4� "� � � �4������ ���������4�

).4% 2)/2�3 0!.3 �� #�&Ô � ��4���������"� #�&Ô! � � �4���������"� "� � ��4������ ���"�

�3 (% !2 �c[bX\PbT� ' LC> 6N ,).+3 ,CHE�:IH?2?@ Z= !LL;HA?G?HN 7C>NB�(��R��"L?;>NB�"

8=C4A=0;�� .IH? � � # (% # +3?4=D;C8<0C4 �� # ��?N= '''�$ �2 � ����� ���%7 ! &'' ! &''

?4=D;C8<0C4 �� .IH? � � 10A�� �-�2 >E 4A /+3>D1;4�?4=D;C8<0C4 �� "��?N= (%(�" �2 � ����� ���%7 ! '"Ô ! '"Ô B8=6;H�A4 8=5>A2 43 /+

B834 �8=C4A=0;�� .IH? � � 10A�B?02 8=6 /+B834 �8=C4A=0;�� # � �?N= $&&�( �2 � ����� ���%7 (%( ! Ô#' 345;42 C8>= /+

?4=D;C8<0C4 �B834 �� !��?N= Ô"Ô�& �2 � ����� ���%7 ! $$ ! %'& B740A�;8=:B /+?4=D;C8<0C4 �B834 �� "� �?N= Ô"Ô�& �2 � ����� ���%7 ! ! Ô ! %#

2 >A=4A�� !� �?N= "'&�( �2����� ���%7 ("Ô &&Ô 6;>10;�BC0CDB� 6!,)$ �$ % 3 )' .

�%

�$

�"

"

$

%

�%

�$

�"

"

$

%

12 3

,R#

#

,R,S

,S

,S

,R

��IL�GIL?;JJLIRCG;N?FS�?KO;F�MJ;HM

(

"( "(

"

Page 126: User Guid

124

D E T A I L ST A B U L A R R C C 9 3– –

�?`^YTRb 3JL?;>MB??NM�NI�"3������ REINFORCED CONCRETE COUNCIL

�2[XT]b !>PCMILS�'LIOJ �<PST�Qg �3PbT �?PVT

�;^RPbX^] %#"0�4SJC=;F�@FIIL�NI�"3���� LGQ ���/=N��� ���

3)-0,)&)%$�&,!4�3,!"�$%3)'.�NI�"3�����������#F����������4;<F?������ �2WTRZTS �ATdXaX^] �9^Q�=^

>`XVX]PbTS�U`^\�A22(#�f[a�^]�23������������������������������!(((�120�U^`�A22 =BA � 2��

�$%4!),%$�#!,#5,!4)/.3 1B�'!!

ATUT`T]RT

�'%.%2!, X]bT`]P[�WR �$Ô! \ TSVT�WR �#Ô& \ R^`]T`�WR �#Ô& \ #�&�!�$

;f &�Ô \ ;g &�$(( \ <X]�0a #"Ô \\��\ #�&�!�!

�-!).�34%%,���8�$)2%#4)/.

%.$ %.$ 0%.5,4)-!4% ).4%2)/2 ).4%2)/2

3500/243 30!.3 3500/243 30!.3 3500/243

5 ' &�% ' &�% ' &�%

�!Ô5WR $#�"# Ô$�%' Ô$�%'

C^bP[�<c Z=\ !$&�Ô $Ô$�# $%%�" #'!�% #"%�( #�&�"�&

�).4%2.!,�#/,5-.�342)03

Q \ �Ô&Ô #�&Ô #�&Ô #�&Ô #�&Ô UXVa�#�!"�#�!#�

<c Z=\ !$&�Ô "$(�( #$(�& " (�( "$Ô�" #�&�"�!

S \\ "!Ô "!Ô "!Ô "!Ô "!Ô

:� �!Ô% �!Ô% �!Ô% �!Ô% �!Ô% #�$�$�$

: �!Ô � #( � ÔÔ � ## � #' #�$�$�$

h \\ !%(�% " $�# " !�! " $�# " $�# #�$�$�$

0a \\� !('% "&(" #(& "#$% "&$ #�$�$�$

0a�aWTP` \\� $$ !&%&

3TU�T]WP]RT\T]b !�"(# !�!'

0a�\X] \\� !('% #%! #(& "&%& "&$ bPQ[T�#�"Ô

� \\ " " " " "

=^�QP`a =^ & !" !# ( (

/ \\ &Ô # " $ #

��/ \\ l l $ l % #�&�#�!

0a�_`^d \\� "!(( #&& $ '$ "'"& "'"&

, \\��\ #'"Ô ! Ô ! '( &Ô$ &Ô$

, � !�&&( �$%' �Ô & �#Ô! �#Ô!

Ua =�\\� "&%�( ""&�! #&"�% "Ô$�$ #&!�Ô 4Ó]�'

<Pf�B \\ !%# $&! "%Ô %$Ô #'$ #�!"�!!�"�&

acQR[PcaT �Q� �Q� �Q� �P� �Q� #�!"�!!�"�&

�-)$$,%�342)03

Q \ %�("$ #�&Ô #�&Ô #�&Ô #�&Ô UXVa�#�!"�#�!#�

<c Z=\ #%�( " $�$ !!%�% !&!�& '!�& #�&�"�!

S \\ "!& "!Ô "!& "!Ô "!&

:� �!Ô% �!Ô% �!Ô% �!Ô% �!Ô% #�$�$�$

: � # � #" � !' � "& � !# #�$�$�$

h \\ " %�" " $�# " %�" " $�# " %�" #�$�$�$

0a \\� $ ' ""'Ô !"(! !(!( ( Ô #�$�$�$

3TU�T]WP]RT\T]b !�"(# !�!'

0a�\X] \\� ""Ô "(Ô$ !"(! ""%$ !"!( bPQ[T�#�"Ô

� \\ !% " !% " !%

=^�QP`a =^ !" ! & ' &

/ \\ Ô&Ô #Ô Ô"Ô $Ô Ô"Ô

0a�_`^d \\� "$!# #!$" !$ & "Ô!# !$ &

, \\��\ #$' '#' #&Ô %& #&Ô

, � �!%! �#( �!&# �#!" �!&#

Ua =�\\� Ô!�( ""#� #Ô!�Ô "#$�" "$%�Ô 4Ó]�'

<Pf�B \\ %Ô! %$Ô %Ô! %$Ô %Ô! #�!"�!!�"�&

acQR[PcaT �P� �P� �P� �P� �P� #�!"�!!�"�&

124

Page 127: User Guid

125

D E T A I L ST A B U L A R R C C 9 3– –

�? `^YTRb 3JL?;>MB?? NM �NI�"3 ��� � �� REINFORCED CONCRETE COUNCIL

�2 [XT]b !>PCMILS�' LIOJ �<PST�Qg �3PbT �?PVT

�;^RPbX^] % # "0 �4SJC=;F�@FIIL�NI�"3 �� � � LGQ ���!OA��� � ��3 )-0 ,)& )% $ �&,!4�3 ,!" �$ % 3 )' .�NI�"3 ��� � ��� ����# F��� �� �����4;<F? ��� � �� �2 WTRZ TS �ATdXaX^] �9^Q�=^

>`XVX]PbTS�U`^\�A22(#�f [a�^]�23������������������������������! (((�120�U^`�A22 =BA � 2��

�-!).�3 4% % ,���8�$ )2% # 4)/.��=IHNCHO?>

% .$ % .$ 0 % .5,4)-!4% ).4% 2 )/2 ).4% 2 )/2 1B�'! !

350 0 /243 3 0!.3 350 0/243 3 0!.3 350 0/243 A T UT `T]RT

�0 % 2 )-% 4% 2 �# /,5-.�342)0 35 Ô! �" Ô! �" Ô! �"

�! Ô5WR "&�#! "&�#! "&�#!<c Z=\ (#�" ! '$�' "$#�Ô ! Ô&�' ! &"�( #�& �"�!

Q \ �$! # "� "� "� "� UXVa�#�! "�#�! #�

S \\ "! Ô "! Ô "! Ô "! Ô "! Ô: � �! Ô% �! Ô% �! Ô% �! Ô% �! Ô% #�$�$�$

: �! #" � Ô$ � &! � $% � Ô! #�$�$�$

h \\ ! &%�% " ! �" ! (%�$ " #�# " "�" #�$�$�$

0a \\� ! " Ô " (% "'# ! &&" ! (Ô" #�$�$�$

0a�aWTP` \\� "! ! "$#& 3TU�T]WP]RT\T]b ! �&Ô% ! �$(Ô

0a�\X] \\� ! " Ô #%'! "'# "%Ô ! (Ô" bPQ[T �#�"Ô

� \\ " " " " " =^�QP`a =^ $ ! " ! ( &

/ \\ ! ! Ô ! "Ô " " ��/ \\ l l "Ô l $ #�& �#�!

0a�_`^d \\� ! "Ô& #&& #! $" "'"& "! ((, \\��\ # $% ! ''Ô ! Ô&! ! $! $ ! ! , � ! �$! & �'&& �&#! �%Ô' �Ô! !Ua =�\\� "($� ! & �Ô #$Ô�# ! ("�" #$ �# 4Ó] �'

<Pf�B \\ ! %# ##$ ! (' #(% "'& #�! "�! ! �"�&

acQR[PcaT �Q� �Q� �Q� �Q� �Q� #�! "�! ! �"�&

�-!).�3 4% % ,���9�$ )2% # 4)/.% .$ % .$ 0 % .5,4)-!4% ).4% 2 )/2 ).4% 2 )/2

350 0 /243 3 0!.3 350 0/243 3 0!.3 350 0/243C^bP[�<c Z=\ ! "! �# $Ô$�" $%%�" #'! �% #"%�(

�).4% 2.!,�# /,5-.�342 )0 3

Q \ �Ô&Ô #�&Ô #�&Ô #�&Ô #�&Ô UXVa�#�! "�#�! #�

<c Z=\ ! "! �# "$(�' #$(�% " (�( "$Ô�" #�& �"�!

S \\ ! (Ô ! (Ô ! (Ô ! (Ô ! (Ô: � �! Ô% �! Ô% �! Ô% �! Ô% �! Ô% #�$�$�$

: �! Ô � $& � %% � $ � $% #�$�$�$

h \\ ! Ô#�' ! '$�! ! &(�$ ! 'Ô�# ! '$�# #�$�$�$

0a \\� ! ' ! # (& $$$( "Ô'% # #% #�$�$�$

0a�aWTP` \\� $ $ ! &(% ! ! "(3TU�T]WP]RT\T]b ! �'&( ! �Ô&

0a�\X] \\� ! ' ! Ô'! ' $$$( $ % # #% bPQ[T �#�"Ô

� \\ " " " " " =^�QP`a =^ % ! ( ! Ô ! # !

/ \\ &Ô ! &Ô ! &Ô "&Ô "&Ô��/ \\ l l #Ô l ÔÔ #�& �#�!

0a�_`^d \\� ! ''Ô Ô(%( $&! " $ '$ #! $", \\��\ #"&' ! Ô(" ! "Ô& ! '( '#', � ! �%'! �'! % �%$Ô �ÔÔ( �$# Ua =�\\� "(#� ! Ô(�! #%! �( ! ($�" #& �$ 4Ó] �'

<Pf�B \\ ! %# #'Ô "! $ $%! #! $ #�! "�! ! �"�&

acQR[PcaT �Q� �Q� �Q� �Q� �Q� #�! "�! ! �"�&

125

Page 128: User Guid

126

D E T A I L ST A B U L A R R C C 9 3– –

�? `^YTRb 3JL?;>MB?? NM �NI�"3 ��� � �� REINFORCED CONCRETE COUNCIL

�2 [XT]b !>PCMILS�' LIOJ �<PST�Qg �3PbT �?PVT

�;^RPbX^] % # "0 �4SJC=;F�@FIIL�NI�"3 �� � � LGQ ���!OA��� � ��

3 )-0 ,)& )% $ �&,!4�3 ,!" �$ % 3 )' .�NI�"3 ��� � ��� ����# F��� �� �����4;<F? ��� � �� �2 WTRZ TS �ATdXaX^] �9^Q�=^

>`XVX]PbTS�U`^\�A22(#�f [a�^]�23������������������������������! (((�120�U^`�A22 =BA � 2��

�-!).�3 4% % ,���9�$ )2% # 4)/.��=IHNCHO?>

% .$ % .$ 0 % .5,4)-!4% ).4% 2 )/2 ).4% 2 )/2 1B�'! !

350 0 /243 3 0!.3 350 0/243 3 0!.3 350 0/243 A T UT `T]RT

�-)$ $ ,% �3 42 )0 3Q \ %�("Ô #�&Ô! #�&Ô! #�&Ô! #�&Ô! UXVa�#�! "�#�! #�

<c Z=\ # �# " $�$ ! ! %�Ô ! &! �& '! �& #�& �"�!

S \\ ! (& ! (Ô ! (& ! (Ô ! (&: � �! Ô% �! Ô% �! Ô% �! Ô% �! Ô% #�$�$�$

: � # � #( � "" � ## � ! Ô #�$�$�$

h \\ ! '&�" ! 'Ô�# ! '&�" ! 'Ô�# ! '&�" #�$�$�$

0a \\� #& "Ô! ( ! $"! "! ! % ((& #�$�$�$

3TU�T]WP]RT\T]b ! �'&( ! �Ô& 0a�\X] \\� ""Ô! $&#" ! $"! ##"" ! "! ( bPQ[T �#�"Ô

� \\ ! % " ! % " ! %=^�QP`a =^ ! " ! % ' ! ! &

/ \\ Ô&Ô ""Ô $Ô #"Ô Ô"Ô0a�_`^d \\� "$! # Ô "& ! % ' #$Ô% ! $ &

, \\��\ #$' ! #$ $"( ("! #&Ô, � �! && �%'& �"! ' �$&# �! ( Ua =�\\� $&� ! Ô#�& ##'�' ! '&�& "&! �Ô 4Ó] �'

<Pf�B \\ Ô(! $&# Ô(! Ô'Ô Ô(! #�! "�! ! �"�&

acQR[PcaT �P� �Q� �P� �P� �P� #�! "�! ! �"�&

�0 % 2 )-% 4% 2 �# /,5-.�342)0 35 Ô! �" Ô! �" Ô! �"

�! Ô5WR "&�#! "&�#! "&�#!<c Z=\ (#�" ! '$�& "$#�Ô ! ÔÔ�" ! &"�( #�& �"�!

Q \ �$Ô "� "� "� "� UXVa�#�! "�#�! #�

S \\ ! (Ô ! (Ô ! (Ô ! (Ô ! (Ô: � �! Ô% �! Ô% �! Ô% �! Ô% �! Ô% #�$�$�$

: �! $& � %% � '& � ÔÔ � %! #�$�$�$

h \\ ! Ô$�' ! &(�Ô ! &$� ! '"�" ! ' �% #�$�$�$

0a \\� ! #&$ "#$( #! ($ ! ($$ "! 'Ô #�$�$�$

0a�aWTP` \\� "#' ""# ! $! &3TU�T]WP]RT\T]b #�$"! "�$$(

0a�\X] \\� ! #&$ ' #$ #! ($ $&% "! 'Ô bPQ[T �#�"Ô

� \\ " " " " " =^�QP`a =^ Ô "% ! ! ! % &

/ \\ &Ô &Ô ! &Ô ! "&Ô��/ \\ l l #Ô l ÔÔ #�& �#�!

0a�_`^d \\� ! Ô&! '! %' #$Ô% Ô "& "! ((, \\��\ #$(! $ 'Ô ! &"' "Ô! $ ! ! , � ! �&( "� (Ô �''% ! �"'( �Ô%$Ua =�\\� "%'�" ''�" #Ô$�# ! ! '�% #' �' 4Ó] �'

<Pf�B \\ ! %# "&! ! Ô( #"& "## #�! "�! ! �"�&

acQR[PcaT �Q� �Q� �Q� �Q� �Q� #�! "�! ! �"�&

126

Page 129: User Guid

127

D E T A I L ST A B U L A R R C C 9 3– –

�? `^YTRb 3JL?;>MB?? NM �NI�"3 ��� � �� REINFORCED CONCRETE COUNCIL

�2 [XT]b !>PCMILS�' LIOJ �<PST�Qg �3PbT �?PVT

�;^RPbX^] % # "0 �4SJC=;F�@FIIL�NI�"3 �� � � LGQ ���!OA��� � ��

3 )-0 ,)& )% $ �&,!4�3 ,!" �$ % 3 )' .�NI�"3 ��� � ��� ����# F��� �� �����4;<F? ��� � �� �2 WTRZ TS �ATdXaX^] �9^Q�=^

>`XVX]PbTS�U`^\�A22(#�f [a�^]�23������������������������������! (((�120�U^`�A22 =BA � 2��

�$ % & ,% # 4)/.���8�$ )2% # 4)/.0 % 2 )-% 4% 2 ).4% 2.!, 0 % 2 )-% 4% 2 ).4% 2.!, 1B�'! !

% .$ �3 0!.3 % .$ �30 !.3 ).4% 2)/2 �3 0!.3 ).4% 2 )/2 �30 !.3 A T UT `T]RT

0a�`TÓ \\� #"#( Ô && "&#! $"%Ô0a�_`^d \\� Ô#$! %(! " $ '$ Ô#$!

Ua =�\\� ! '%� ""Ô�# " Ô�! "$$�( 4Ó] �'

:�PdT � $# � #Ô � #& � # 0a��_`^d \\� %& ! "Ô% %& ! "Ô%

! 0a��QS � � ' � &' � ' � &'2 ^\_�<^S ! � "% ! � "Ô ! � "% ! � "Ô 4Ó] �(

CT]a�<^S ! �Ô! ( ! �$(( ! �ÔÔ" ! �Ô! & 4Ó] �&

?T`\�;�S #%�$' #Ô�(% #&�"& #%�#( #�$�%�! �#�& �'

0RbcP[�;�S #$�'' #$�'' #$�'' #$�''0a�T]WP]RTS &Ô�%� "(�#� $(�Ô� ! '� �

�$ % & ,% # 4)/.���9�$ )2% # 4)/.0 % 2 )-% 4% 2 ).4% 2.!, 0 % 2 )-% 4% 2 ).4% 2.!,% .$ �3 0!.3 % .$ �30 !.3 ).4% 2)/2 �3 0!.3 ).4% 2 )/2 �30 !.3

0a�`TÓ \\� #% ' Ô%! % # " $& !0a�_`^d \\� ! %'! ! ((% %&Ô$ &Ô$

Ua =�\\� ! #�% ! Ô%�% ! #%�# ! (! �" 4Ó] �'

:�PdT � Ô# � $# � $$ � #%0a��_`^d \\� %& ! "Ô% %& ! "Ô%

! 0a��QS � � '( � '% � '( � '%2 ^\_�<^S ! � "( ! � "' ! � "( ! � "' 4Ó] �(

CT]a�<^S ! �%$# ! �%"! ! �%& ! �%! $ 4Ó] �&

?T`\�;�S #(�ÔÔ #'�(( $ �! ( #'�'" #�$�%�! �#�& �'

0RbcP[�;�S #'�$% #'�$% #'�$% #'�$%0a�T]WP]RTS "$"�! � '&�(� ! $$�(� Ô&� �

�0 5.# ().' �3 (% !2 $/5",% 3 )$ % 3 )$ %).4% 2.!, 0 % .5,4 0 % .5,4 ).4% 2.!, ).4% 2.!,

.IH? # ��?N= "��?N= .IH? # � �?N=E b Z= � '''�$ (%(�" � $&&�(

E TUU�E b Z= ! �! Ô ! �! Ô ! �! Ô ! �$ ! �$ bPQ[T �#�! #

PdT �S \\ " Ô� " Ô� " Ô� " Ô� " Ô� #�& �%�#

PdT �0a � �#( �$%' �Ô&% ! � (% ! �! &!

�;N�� ��>�@LIG�=IFOGH�@;=?7 \\ ! ! Ô ! ! Ô ! ! Ô %## %##1 \\ ! ! Ô ! ! Ô ! ! Ô '%Ô '%Ô #�& �& �%

c� \\ ! % ! % ! % ( ( #�& �& �%

d�\Pf =�\\� � #�! & #�#( � #�%! Ô 4Ó]�"&

E Z= � ! $�& ! (&�Ô � %Ô'� c \\ $ % $ % $ % "! # "! # #�& �& �%

d =�\\� � ! �" & ! �#! ( � ! �Ô &dR =�\\� �%"" �%%! �& ' �'&' �'(& 4Ó]�"'

;X]Za�. =^ HTa HTa =^ HTa bPQ [T �#�(

�,CHEM �;N����>��� ���> � � � � �Bd \\�4F ! Ô ! Ô ! Ô #�& �& �%

0ad�`TÓ \\� #"! % #&Ô' ! $$Ô #�& �& �Ô

C^bP[�c \\ % & % & #"#Ô� \\ ! " ! " !

=c\QT` $! $! ""0ad�_`^d \\� $%#& $%#& ! &"'

M IFP?�@IL�("�=LCN���P���P=�� #�& �& �%

7�R Xb \\ ! &'' ! '"Ô (%(1�R Xb \\ ! &'' ! '"Ô ! Ô#&

0SSXbX^]P[� �&ÔS�_T X\TbT a " " "

127

Page 130: User Guid

128

D E T A I L ST A B U L A R R C C 9 3– –

�?`^YTRb 3JL?;>MB??NM�NI�"3������ REINFORCED CONCRETE COUNCIL

�2[XT]b !>PCMILS�'LIOJ �<PST�Qg �3PbT �?PVT

�;^RPbX^] %#"0�4SJC=;F�@FIIL�NI�"3���� LGQ ���/=N��� ���

3)-0,)&)%$�&,!4�3,!"�$%3)'.�NI�"3�����������#F����������4;<F?������ �2WTRZTS �ATdXaX^] �9^Q�=^

>`XVX]PbTS�U`^\�A22(#�f[a�^]�23������������������������������!(((�120�U^`�A22 =BA � 2��

�05.#().'�3(%!2��=IHNCHO?> 3)$% 3)$% 1B�'!!

#/2.%2 0%.5,4 0%.5,4 ATUT`T]RT

!��?N= !��?N= "��?N=Eb Z= "'&�( Ô"Ô�& Ô"Ô�&

ETUU�Eb Z= !�"Ô !�$ !�$ bPQ[T�#�!#

PdT�S \\ " Ô� " Ô� " Ô� #�&�%�#

PdT�0a � !�% $ !�" % !�###

�;N����>�@LIG�=IFOGH7 \\ %## %## %##

1 \\ %## '%Ô '%Ô #�&�&�%

c� \\ Ô&Ô ( ( #�&�&�%

d�\Pf =�\\� #� #' #�(&' #�(&'

E Z= #Ô"�& &"Ô� &"$�(

c \\ !"%Ô "!# "!# #�&�&�%

d =�\\� !�#% !�%% !�%%

dR =�\\� �((% �( % �(#& 4Ó]�"'

;X]Za�. HTa HTa HTa bPQ[T�#�(

,CHEM�;N����>������> � � �

Bd \\�4F !Ô !Ô !Ô #�&�&�%

0ad�`TÓ \\� $#% "#$( " %& #�&�&�Ô

C^bP[�c \\ !'%&�Ô #"#Ô #"#Ô

� \\ ' !" !"

=c\QT` !# "" ""

0ad�_`^d \\� %Ô# "$'' "$''

MIFP?�@IL�("�=LCN���P���P=�� #�&�&�%

7�R`Xb \\ ("$ ! $# ! !Ô

1�R`Xb \\ &&$ !%'% !%# 0SSXbX^]P[� �&ÔS�_T`X\TbT`a " "

128

Page 131: User Guid

129

This spreadsheet designs restrained two-way solid slabs inaccordance with BS 8110: Part 1 using moment and shearfactors from equations 14 to 20 (i.e. Tables 3.14 and 3.15).Input is required on the first two sheets.

MAIN!This single sheet consists of the input and main output. Initself it should prove adequate for the design of restrainedtwo-way slabs. Inputs are underlined and most should beself-explanatory.

Self-weight, moment and shear factors are calculatedautomatically. The use of the factors is also governed byClause 3.5.3.5 (similar loads on adjacent spans, similar spansadjacent). Where the relevant conditions are not met, usersare directed towards Clause 3.5.3.6 or alternative methodsof analysis (e.g. sub-frame analysis). Whilst ultimate reactionsto beams are given, shear per se is not checked as it is veryrarely critical.

The dimension ly must be greater than lx: bays where lx > lyare invalid. It is recognised that B1 can be parallel to ly andthe user should specify in which layers the top and bottomreinforcement are located (see D33 and H33). In line 32 theuser is asked to specify the diameter of reinforcement to beused. This reinforcement should be provided at the requiredcentres in accordance with Clause 3.5.3.5 (1) to (6). (Middlestrips and column strips, torsion reinforcement at cornerswhere an edge or edges is/are discontinuous.) Thespreadsheet highlights whether additional reinforcement fortorsion is required or not. As noted under Deflection, thearea of steel required, Asreq, may be automatically increasedin order to reduce service stress, fs, and increase modificationfactors to satisfy deflection criteria.

An approximate reinforcement density is given. This isapproximate only and excludes supporting beams, trimmingto holes, etc.

Weight!Weight! gives an estimate of the amount of reinforcementrequired in a slab. Simplified curtailment rules, as definedin Clause 3.12, are used to determine lengths of bars. Thefigures should be treated as approximate estimates only asthey cannot deal with the effects of designers’ and detailers’preferences, rationalisation, the effects of holes, etc, etc. Tothe right of the sheet are calculations of length, etc.

Support widths are required as input as they affectcurtailments and lengths.

RCC94 Two-way Slabs (Tables).xls

T A B U L A R R C C 9 4–

Page 132: User Guid

130

M A I NT A B U L A R R C C 9 4– –

�?`^YTRb 3JL?;>MB??NM�NI�"3�������%#� REINFORCED CONCRETE COUNCIL �2[XT]b !>PCMILS�'LIOJ �<PST�Qg �3PbT �?PVT

�;^RPbX^] ��H>�@FIIL���=ILH?L�J;H?F &�NI�'����NI����� 2-7 ���/=N��� ���

��7!9�30!..).'�).3)45�#/.#2%4%�3,!"3�NI�"3������������4;<F?������ �2WTRZTS ATdXaX^] �9^Q�=^

>`XVX]PbTS�U`^\�A22($�f[a�^]�23�������������������������!(((�120�U^`�A22

�$)-%.3)/.3 -!4%2)!,3 34!453

aW^`b�a_P]��[f \ '�! URc =�\\� $ γc = !�Ô & '[^]V�a_P]��[g \ !"� Ug =�\\� $% γs = !� Ô

W \\ "Ô 3T]aXbg Z=�\� "#�% �C^_�R^dT` \\ " �=^`\P[�eTXVWb�R^]R`TbT� 0F;H1b\�R^dT` \\ "

�,/!$).'���RWP`PRbT`XabXR %$'%�#/.$)4)/.3BT[U�eTXVWb Z=�\� �( 4SVT�! 3 2�,�2^]bX]c^ca

4fb`P�STPS Z=�\� !�Ô 4SVT�" 3 3�,�3XaR^]bX]c^ca ;g�,�!"�\

C^bP[�3TPS��VZ Z=�\� &�$ γU, !�$ 4SVT�# 2

8\_^aTS��ÓZ Z=�\� Ô� γU, !�% 4SVT�$ 2 �3TaXV]�[^PS��] Z=�\� !'�#% BTT�5XVc`T�#�'�P]S�R[PcaTa�#�Ô�#�Ô�%

3(/24 ,/.' %$'%�� %$'%�� %$'%�� %$'%�� 1B'!!

�-!).�34%%, 30!. 30!. 5`TT 5`TT 2^]bX]c^ca 2^]bX]c^ca ATUT`T]RT

�a � Ô' � #$ � � � && � $Ô CPQ[T�#�!$

< Z=\�\ %(�' $!� � � (#� Ô$�%

S \\ """� " '� ""Ô� " '� """� " '�

Z� �!Ô% �!Ô% �!Ô% �!Ô% �!Ô% �!Ô%

Z � #Ô � "$ � � � $& � #"

I \\ "! �( !(&�% "!#�' !(&�% " (�& !(&�% #�$�$�$

0a�`TÓ \\��\ &ÔÔ $&# ! !# %#!

0a�\X] \\��\ #"Ô #"Ô #"Ô #"Ô #"Ô #"Ô CPQ[T�#�"Ô

0a�STU[TRbX^] \\��\ (%% % Ô l l l l

� \\ !% !" ! !" !% !"

;PgT` 1�! 1�" C�! C�" C�! C�"

/ \\ " !&Ô ""Ô #"Ô !&Ô !&Ô

0a�_`^d \\��\ ! Ô %$% #$( #$' !!$( %$%

, � �$Ô# �#!! �!ÔÔ �!%& �Ô!' �#!! �

B�\Pf \\ %!% %#% %'Ô %#% #(& Ô# 2[PcaT

BcQR[PcaT �Q� �P� �P� �P� �Q� �Q� #�!"�!!�"�&

�$%&,%#4)/.Ua "# ""Ô "& "(( 4Ó]�'

<^S�UPRb^` !�$#& 4Ó]�&

?T`\�;�S #&�#& 0RbcP[�;�S #%�$( 0a�T]WP]RTS�"&�(��U^`�STU[TRbX^]�R^]b`^[ CPQ[T�#�!

;f�,�'�!�\

=BA

6!,)$�$%3)'.

%>A?��

%>A?��

%>A?��

%>A?��

2���

�4/23)/.�34%%, "/4(�%$'%3�$)3#/.4).5/53 /.%�%$'%�$)3#/.4).5/53

� \\ ! 8 9 8 90a�`TÓ \\��\ #$( Ô%% #"Ô #�Ô�#�Ô

0a�_`^d�C \\��\ #$' #$( #$'

0SSXbX^]P[�0a�C�`TÓ \\��\ #"% #"'

0a�_`^d�1 \\��\ ! Ô %$% ! Ô %$%

1^bb^\�abTT[�]^b�Rc`bPX[TS�X]�TSVT�ab`X_a�Pb�U`TT�TSVTa

�3500/24�2%!#4)/.3��Z=�\�RWP`�c]^� �BTT�5XVc`T�#�! � Bc\��df�, �''' CPQ[T�#�!Ô

%$'%�� %$'%�� %$'%�� %$'%�� Bc\��dg�, �%%

���&�' '����� ���&�' &����� TÓcPbX^]a

�P �#ÔÔ �"%$ �Ô## �#(% !(���"

$?;> E.�G "!�"( !Ô�'" #!�(# "#�&$

)GJIM?> E.�G !$�#' ! �%( "!�Ô& !%� $

6M E.�G Ô"�' #(�# &(�" Ô'�(

�/54054�35--!293(/24 ,/.' %$'%�� %$'%�� %$'%�� %$'%��

��02/6)$%���������� 30!. 30!. ���&�' '����� ���&�' &�����<08=�BC44; 4���������"� 4���������"� 4���������4� 4���������4� 4���������4� 4���������4�

0338C8>=0; � #/2.%2�� #/2.%2�� #/2.%2��C>AB8>=�BC44; � '� '� &�G�SX`TRbX^] � ��4���4 � � �_[PRTS�X]�TSVT�ab`X_a

H�SX`TRbX^] � ��4���4 � �

�#(%#+3 10A�� B8=6;H <8= <0G ',/"!, ;f�-�;g +�2>E4A A48=5>A243 B?028=6 B?028=6 345;42C8>= 34!453

/+ /+ /+ /+ /+ /+ 6!,)$�$%3)'.

130

Page 133: User Guid

131

The spreadsheet designs multiple-span rectangular orflanged beams. It uses design ultimate bending moment andshear force factors from Table 3.5 of BS 8110: Part 1. As suchits use should be limited, as defined by Clause 3.4.3, to where:

• Qk >/ Gk

• Uniform loads are placed

• Variations in span < 15% lmax.

The intention is to provide the design of a simple continuousbeam on one sheet of A4. (Admittedly extra sheets are usedfor explanation.)

MAIN!The input requirements are self-explanatory. Answering “Y”to Support in alt layer will incur additional cover to top barsat supports (of the same size as those being designed atthat location) to allow for beams in the other direction. Usersshould ensure effective depths, d, are correct (seeDETAIL!D15, etc.).

The choice between rectangular, L or T beam is made via acombo-box to the right hand side.

When considering span reinforcement, the spreadsheet will,where necessary, automatically increase reinforcement inorder to lower service stresses and enhance allowable spanto depth ratios. The diagrams for loading and for bendingmoment are indicative only (the moment factors in Table3.5 do not give rise to a moment envelope).

The example is taken from Designed and detailed (15).

DETAIL!For first time users and young engineers, further detail ofthe calculations undertaken is given on the sheet namedDETAIL!, pages 2 and 3 of the print-out.

Weight!This sheet estimates the weight of reinforcement in the beamwhen designed according to normal curtailment rules asdefined in BS 8110. The estimate is repeated at the bottomof MAIN!. Workings are shown on the right hand side ofthe sheet. The estimate may be printed out using File/printor the print button on the normal toolbar.

It should be recognised that different engineers’ anddetailers’ interpretations of these clauses, different projectcircumstances and requirements will all have a bearing onactual quantities of reinforcement used.

Graf!This sheet provides data for the charts in MAIN! and is notintended for formal printing.

RCC95 Continuous beams (Tables).xls

T A B U L A R R C C 9 5–

Page 134: User Guid

132

M A I NT A B U L A R R C C 9 5– –

�?`^YTRb 3JL?;>MB??NM�NI�"3������

�2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] $$��%>A?�<?;G�'LC>�� �@LIG�!�NI�*

2>=C8=D>DB�2>=2A4C4�140<�34B86=�b^�1B�'!! )!((&�CPQ

> XVX]PbTS�U ^\�A22(�f[a�^]�23������������������������!(((�120�U^`�A22

�,/#!4)/. Bc__^`ba)�U`^\�V`XS� 0 b^�V`XS 9

�$)-%.3)/.3=��^U�a_P]a =� Ô BWP_T� ;�140<

<Pf�B_P] \ Ô� C^_�R^dT` \\ $

ST_bW��W \\ #Ô 1^bb^\�R^dT` \\ $

Qe \\ # BXST�R^dT` \\ $

WU \\ !&Ô Bc__^`b�abTT[�X]�P[b�[PgT`�. H

QU \\ %Ô

�,/!$).'BT[U�Fb Z=�\ !�"

��3TPS Z=�\ ! �(

C^bP[�3TPS��VZ Z=�\ !"�!

8\_^aTS�ÓZ Z=�\ Ô� ! *3TaXV]�[^PS��]�, Z=�\ "Ô� '?IG?NLS�;H>�,I;>CHA

�"%.$).' %.$ %.$ &)234�).43500/243 �0���9� 30!.3 3500/243

< Z=\ � Ô%�" %'�&

S \\ "&% "( "&

QU \\ # %Ô #

0a \\� $%% %$#

0a� \\�

����$?@F?=NCIH;�S�<Pf #'�%'

0RbcP[�;�S !&�"$ /+�

�<PST�Qg �3PbT �?PVT

LGQ ���/=N��� ���

Q[T�#�Ô �2WTRZTS �ATdXaX^] �9^Q�=^

=BA 2��

34!453

6!,)$�$%3)'.-!4%2)!,3

URc =�\\� $ γm = !�Ô

Ug[ =�\\� $% γm = !� Ô

Ugd =�\\� "Ô 3T]aXbg Z=�\� "#�%

W�PVV \\ " �=^`\P[�eTXVWb�R^]R`TbT� �

! *

).4%2)/2 ).4%2.!, 1B'!!

30!.3 3500/243 ATUT`T]RT

$#�& Ô � CPQ[T�#�Ô

"(" "&

%Ô # #�$�!�Ô

#% $Ô$ #�$�$�$

#�$�$�$

#%�&' #�$�%�#

!&�!" /+ #�$�%�!

)H>C=;NCP?�"?H>CHA�-IG?HN�$C;AL;G

REINFORCED CONCRETE COUNCIL

�!

�Ô

Ô

!

�����4?HMCIH�L?CH@IL=?G?HN� !% " "

=^ ��4IJ ��"NG ��4IJ0a�_`^d \\� $ " %"' ($"

, � �$( �&" !�!%

����#IGJL?MMCIH�L?CH@IL=?G?HN� !% !" !"

=^ ��"NG ��4IJ ��"NG0a��_`^d \\� $ " ""% ""%

, � �$( �"% �"'

�3(%!2 /54%2�3504 &)234�).4�3504 ).4�3504E Z=�\ Ô%�" &Ô� %'�&

d =�\\� �%$% �("% �'$(

dR =�\\� �Ô& �'Ô' �&$(

;X]Z�� \\ ! ! !

;TVa =^ " " "

/ \\ " " "

�/54054�35--!29%.$ %.$ &)234�).4

3500/243 30!.3 3500/243��4���4 ��4���4 ��4���4

.IGCH;F�" ��4���" .IGCH;F�"

��2�������� ��2�������� ��2��������@IL���� @IL����

�#(%#+3 10A�� B8=6;4 10A

+�2>E4A ;0H4AB B?028=6

/+ /+ /+

�����,CHEM�

�����@LIG�#,�I@�MOJJILN�

02/6)$%��������-;CH�L?CH@IL=?G?HN�

!% "

��"NG ��4IJ$ " %"'

�$% �&'

!" !"

��4IJ ��"NG""% ""%

�"% �"'

./-).!,l CPQ[T�#�Ô

l 4Ó]�#

l CPQ[T�#�'

!

"

"

).4%2.!, ).4%2.!,30!.3 3500/243��4���4 ��4���4��4���" .IGCH;F�"

� ��2�������� ��2��������@IL����

B740A ',/"!, �

345;42C8>= ;8=:B 34!453 �

/+ /+ 6!,)$�$%3)'.

132

Page 135: User Guid

133

D E T A I LT A B U L A R R C C 9 5– –

�?`^YTRb 3JL?;>MB??NM�NI�"3������

�2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] $$��%>A?�<?;G�'LC>���@LIG�!�NI�*

#/.4).5/53�#/.#2%4%�"%!-�$%3)'.�NI�"3����������

>`XVX]PbTS�U ^\�A22(�f[a�^]�23������������������������!(((�120�U^`�A

�$%4!),%$�#!,#5,!4)/.3 6Z�,

�-!).�34%%,%.$ %.$

3500/243 30!.35PRb^` � � (

< Z=\ � Ô%�"

S \\ "&% "(

QU \\ # %Ô

:� �!ÔÔ' �!ÔÔ'

FTQ�<`Ta Z=\ !$"�$ !Ô&�"

5[P]VT�<`Ta Z=\ ��� $!!�Ô

: � � "Ô&

h \\ "%"�" "&Ô�Ô

f \\ # �& #"�"

S� \\ &' Ô%

]Tb�UaR =�\\� � �

4fRTaa�< Z=\ � �

0a��`TÓ \\�

Uab =�\\� $#'�! $#'�!

0a�`TÓ \\� $%%

Qe�Q ��� �$%!Ô

<X]�� �" � �!#�

<X]�0a "! !#&

�<PST�Qg �3PbT �?PVT

LGQ ���/=N��� ���

��4;<F?���� �2WTRZTS �ATdXaX^] �9^Q�=^

A22 =BA � 2�� �

% �& @Z�, "Ô� 5�, !"$�(' Z=

&)234�).4 ).4%2)/2 ).4%2.!, 1B�'!!

3500/243 30!.3 3500/243 ATUT`T]RT

�!! � & � ' CPQ[T�#�Ô

%'�& $#�& Ô � ��,��

"& "(" "&

# %Ô # #�$�!�Ô

�!ÔÔ' �!ÔÔ' �!ÔÔ' 5XV�#�#

!#%�# !Ô(�$ !#%�# ��,��

��� $!�% ��� ��,��

� &'% � !(& � Ô&! #�$�$�$

"$#�( "&&�$ "Ô!�% ��,��

Ô'� #"�$ $ �( ��,��

&% Ô% &"

� � � 5XV�#�#

� � �

$#'�! $#'�! $#'�! 5XV�#�#

%$# #% $Ô$

��� �$%!Ô ���

�" � �!#� �" � CPQ[T�#�"Ô

"! !#& "!

REINFORCED CONCRETE COUNCIL

�$%&,%#4)/.Ua =�\\� � ""&�$

1PaT�`PbX^ ""�

CT]a�<^S !�%"'

2^\_�<^S !� '

?T`\�;�S #'�%&'

0RbcP[�;�S !&�"$! IE

�4%.3)/.�34%%,0a \\� "! $%%

� \\ !% IE " IE

=^ " "

0a�_`^d \\� $ " %"'

2[TP`�SXab \\ !%'� !% �

<X]�B IE "Ô� IE "Ô� IE

<Pf�B IE # � IE " %�& IE

�#/-02%33)/.�34%%,ATÓcX`TS \\� #!$ !''

� IE !% IE !" IE

=^ " "

0a��_`^d \\� $ " ""%

,�� IE �$'% IE �"% IE

2[TP`�SXab \\ !%'� !&%�

<X]�B IE "Ô� IE "Ô� IE

" (�# "&$�Ô ""!�$ 4Ó]�'

""� #�$�%�#�$

!�Ô$( CPQ[T�#�!

!� &( CPQ[T�#�!!

#%�&&' #�$�%�#

!&�!"# IE #�$�%�!

%$# #% $Ô$

" IE !% IE "

# " "

($" $ " %"'

& � !%'� !% � QTbeTT]�QP`a

"Ô� IE "Ô� IE "Ô� #�!"�!!�!

""$�Ô IE !&!�" IE "!"�# CPQ[T�#�"'

#�!"�!!�"�$

!'' !'' !"! CPQ[T�#�"Ô

!" IE !" IE !"

" " "

""% ""% ""%

�"&( IE �"Ô' IE �"&(

!&%� !&%� !&%� QTbeTT]�QP`a

"Ô� IE "Ô� IE "Ô� #�!"�!!�!

133

Page 136: User Guid

134

D E T A I LT A B U L A R R C C 9 5– –

�?`^YTRb 3JL?;>MB??NM�NI�"3�������2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] $$��%>A?�<?;G�'LC>���@LIG�!�NI�*

#/.4).5/53�#/.#2%4%�"%!-�$%3)'.�NI�"3����������

>`XVX]PbTS�U`^\�A22(�f[a�^]�23������������������������!(((�120�U `�A

�3(%!2/54%2 &)234�).4

3500/24 3500/24

5PRb^` �$Ô �%

E Z= Ô%�" &Ô�

d =�\\� �%$% �("%

dR =�\\� �Ô& �'Ô'

�d�dR�Qd =�\\ !" � !" �

;X]Z�� IE ! IE ! IE

;TVa IE " IE " IE

/ \\ "!' " #

0SYcab�b^ \\ " "

U^` \\

0SYcab�b^ \\ ' %

0a�3Xab IE � IE ( � IE

0a��3Xab IE � IE � IE

REINFORCED CONCRETE COUNCIL

�<PST�Qg �3PbT �?PVT

LGQ ���/=N��� ��� �

��4;<F?���� �2WTRZTS �ATdXaX^] �9^Q�=^

A22 =BA � 2�� �

).4%2.!, ./-).!,3500/24

�ÔÔ l CPQ[T�#�Ô

%'�& l ��,��

�'$( l 4Ó]�#

�&$( l CPQ[T�#�'

!" � !" � CPQ[T�#�&

! IE ! #�!"�&�!

" IE "

" # "!' #�!"�&�!

" "

��� U`^\�R[�^U�ac_b

% ���

� IE � #�$�Ô�Ô

� IE � #�!"�&�"

134

Page 137: User Guid

135

Eurocode 2At the time of writing (November 1999), we are advisedthat the base document, Eurocode 2: Design of concretestructures, Part 1: General rules and rules for buildings, DDENV 1992-1-1: 1992(3) is due for revision into an EN in thenear future. The spreadsheets presented here are inaccordance with this document but development of otherspreadsheets has not perhaps been as extensive as firstenvisaged. Nonetheless, the spreadsheets presented herecover all the fundamental elements of in-situ concrete andshould give users a good understanding of the current ENVand provide the basis for an understanding of the final ENdocument.

It is hoped that the production of spreadsheets to the finalversion of EC2 will occur at some later date.

Eurocode 2, Design ofconcrete structures, hasnot been widely adoptedby UK industry. Theprocess of converting toa new design Code ofPractice is slow andexpensive, and EC2 will beadopted only when thereis commercial advantagein doing so. MainlandEuropeans, in contrast,seem more enthusiastic, and there is a danger of the UKbecoming isolated and uncompetitive in Europe. Whileseveral books on the subject have been published, there arevery few design aids. The availability of these spreadsheetfiles will help address this need.

These spreadsheets have called for some interpretation ofthe ENV. The provision for boxed values and the NationalApplication Document mean that many factors hidden awayin the BS 8110 versions are documented on a separate sheetallowing later amendment.

Notes regarding EC2In his Comparison of design requirements in EC2 and BS 8110,Narayanan(24) gave the following outline description of EC2.

General layoutDD ENV 1992-1-1(3): Part 1 is broadly comparable to BS 8110:Parts 1 and 2. EC2 comprises principles and rules ofapplication. Principles are general statements, definitions,other requirements, and analytical models for which noalternative is permitted. The rules of application aregenerally recognised rules that follow the principles andsatisfy their requirements.

In EC2, a number of numerical values appear within boxes.These numbers are for guidance only as each EU memberstate is required to fix the values that will apply in itsjurisdiction. The ‘boxed’ values are determined by NationalApplication Documents (the UK NAD is part of reference 3)and are shown in a separate sheet within the spreadsheets.Concrete strength in EC2 refers to the cylinder strength (fck),which is used throughout the EC2 spreadsheets. Therelationship between cylinder and cube strengths is shownbelow.

Frame analysis

There are slightly differences in the partial safety factorsfor loads. ENV 1992 uses factors of 1.35 for dead loads and1.5 for imposed loads. Corresponding values in BS 8110 are1.4 and 1.6.

Section analysisThe spreadsheets take a pragmatic approach to the designof sections to ENV 1992. Thus a simplified rectangular stressblock, Figure 4.4, is used (and particularly in the case ofcolumns, not the more complicated consideration of strainsin Figure 4.11).

Lever arm, z is restricted to 0.95 x effective depth. This limitis derived from BS 8110 and avoids dangers associated withtheoretically over-shallow neutral axis depths.

Redistribution of moments in continuousstructuresEC2 permits redistribution of moments in non-swaystructures subject to the maintenance of equilibriumbetween the distributed moment and applied loads. Themaximum redistributed moment to the moment before thedistribution is limited to 70%., and to 85% after distribution .

S P R E A D S H E E T S T O E C 2

Terminology employed will be generally familiar to UKengineers, although there are some new words. Thus‘loads’ are referred to as ‘actions’; ‘bending moments’and ‘shear forces’ are called ‘internal forces andmoments’; ‘superimposed loads’ are ‘variable loads’; and‘self-weight’ and ‘dead loads’ are referred to aspermanent loads

Property Strength class

C20/25 C25/30 C30/37 C35/40 C40/50 C45/50 C50/60

fck (cylinder) 20 25 30 35 40 45 50

fcu (cube) 25 30 37 40 50 50 60

Ecm 29 30.5 32 33.5 35 36 37

Relationship between cylinder and cube strengths

E U R O C O D E 2

Page 138: User Guid

136

ShearApplied shear force (Vsd) is compared with three values forthe resistance (VRd).

VRd1 represents the shear capacity of concrete alone; VRd2 isthe shear resistance determined by the capacity of thenotional concrete struts; and VRd3 is the capacity of a sectionwith shear reinforcement.

DeformationThe ENV 1992 span depth/ratio check is similar to that inBS 8110. For each type of member, it provides two values,one for highly stressed members and another for lightlystressed members. In this context, members with less than0.5% reinforcement are considered lightly stressed members,and members with 1.5% reinforcement are considered highlystressed. More rigorous approaches may be used if required.

DetailingFormulae for calculating basic lap lengths are similar to thosein BS 8110, but ENV 1992 uses marginally lower bond stress.

Minimum percentages of reinforcementThere is hardly any difference between the two Codes inthe minimum longitudinal reinforcement in beams and slabs.However for criteria for minimum reinforcement to controlcracking is different.

Familiarisation: outlinedescriptionThe layout and workings of the spreadsheets to EC2 are inline with those in the previous section, Spreadsheets toBS 8110. Descriptions of the spreadsheets to EC2 are givenin the following pages. The Introduction (page 2), andGeneral notes (page 3) are common to the use of allspreadsheets in this publication.

E U R O C O D E 2

Page 139: User Guid

137

RCCe11.xls includes sheets for designing

• Solid slabs

• Rectangular beams and

• T beams (and ribbed slabs) for bending

• Beam shear

• Columns with axial load and bending about one axis.

RCCe11.xls designs elements to Eurocode 2: Part 1: 1992(3). Itis assumed that loads, moments, shears, etc, are availablefor input from hand calculations or from analysis fromelsewhere. Span-to-depth ratios and other ‘boxed’ valuesare taken from the UK National Application Document (partof reference 3).

SLAB!This sheet designs a section of solid slab in a single simplysupported span, in a continuous end or internal span, atsupports or as a cantilever. Workings and references to clausenumbers are given to the right hand side of the sheet.

Input should be self-explanatory. Terminology may differfrom the BS 8110 version: for instance the term d is theredistribution factor (i.e. 1 – redistribution percentage/100).Concrete cylinder strength, fck, is changed using the combo-box to the right hand side.

In spans, the location of the section being designed has abearing on deflection limitations, and the appropriatelocation should be chosen from the combo-box to the righthand side. Similarly, the user should choose from the list ofusage (dwelling, office/store, parking etc.), which governsthe proportion of imposed load affecting long-termdeflection. EC2 requires the input of the relationshipbetween dead and imposed loading. This is done at cells G9and G10. When appropriate the sheet will automaticallyincrease amounts of reinforcement in order to lower servicestresses and enhance allowable span-to-depth ratios.

The example is taken from Worked examples for the designof concrete buildings(25) (to EC2) which itself is based on the1985 version of Designed and detailed. Discrepancies innumbers may be ascribed to differences in fck and differencesbetween tabular and calculated values of x/d.

RECT~BEAM!This sheet designs a rectangular beam in a single simplysupported span, in a continuous end or internal span, atsupports or as a cantilever. These choices have a bearing ondeflection limitations and the user should choose theappropriate location from the combo-box to the right handside. The user should similarly choose from the list of usage(dwelling, office/store, parking, etc.), which governs theproportion of imposed load affecting long-term deflection.This sheet will, where necessary, automatically increasereinforcement in order to lower service stresses and enhance

allowable span to depth ratios. Again, input of therelationship between dead and imposed loading is requiredin cells D12 and D13.y2

is the quasi-permanent load factor applied to imposedloads in calculations of deflection. The factors are 0.2 fordwellings, 0.3 for offices, 0.6 for parking areas and 0.0 forsnow and wind.

The example is taken from Worked examples for the designof concrete buildings(25) (to EC2) which itself is based on the1985 version of Designed and detailed.

TEE~BEAM!This sheet designs a rectangular beam in a single simplysupported span, in a continuous end or internal span, atsupports or as a cantilever. These choices have a bearing ondeflection limitations and the user should choose theappropriate location from the combo-box to the right handside. Choosing between end and interior spans altersmaximum allowable flange width. The user should similarlychoose from the list of usage (dwelling, office/store, parking)which governs the proportion of imposed load affectinglong-term deflection. This sheet will, where necessary,automatically increase reinforcement in order to lowerservice stresses and enhance allowable span-to-depth ratios.Again, input of the relationship between dead and imposedloading is required in cells D12 and D13. The user may alsochoose between a T beam and an inverted L beam.

The example is taken from Worked examples for the designof concrete Buildings (to EC2) which itself is based on the1985 version of Designed and detailed .

SHEAR!This sheet designs beams for shear.

Input is (we hope) self-explanatory. The value of shear force,Vsd, used can, provided there is diagonal compression andcontinuity of tension reinforcement for at least 2.5 d fromthe face of support, be evaluated at d from the face ofsupport (see Clause 4.3.2.2(10)). The UDL is the relevantultimate uniformly distributed load.

The sheet designs the links required at the sectionconsidered. If the beam loading is considered to be uniformlydistributed, the ultimate UDL, n, can be entered under n togive the distance for which this arrangement is requiredbefore reverting to nominal link arrangement.

COLUMN!This spreadsheet designs symmetrically reinforcedrectangular columns bent about one axis where both axialload, N, and maximum design moment, Mx, are known. It isbased on EC2 Figure 4.4 and Clause 4.2.1.3(12). It iterates x/h to determine where the neutral axis lies. The sheet includesstress and strain diagrams to aid comprehension of the final

RCCe11 Element Design.xls

E L E M E N T S R C C e 1 1–

Page 140: User Guid

138

design. Workings and references are shown to the right handside of the sheet.

For simplicity, where three or more bars are required in thetop and bottom of the section, it is assumed that asymmetrical arrangement will be required for the side faces(see the argument included within the commentary for theBS 8110 version, page 19).

Input is self-explanatory. The sheet assumes that the momententered has already been adjusted, if necessary, for bi-axialbending (see Worked examples for the design of concretebuildings(25) p137). Under Calculations, a is a stress blockshape factor, similar to the 0.67 factor used in BS 8110.

Theoretical shortfalls in area of up to 2% are considered tobe acceptable.

The example is taken from Worked examples for the designof concrete buildings(25) (to EC2) which itself is based on the1985 version of Designed and Detailed. Discrepancies innumbers may be ascribed to differences in fck and differencesbetween tabular and calculated values of x/d.

BOX!This sheet is for reference only. It lists those values specificfor the UK use of EC2, and gives their descriptions.

E L E M E N T S R C C e 1 1–

Page 141: User Guid

139

S L A BE L E M E N T S R C C e 1 1– –

�BTRbX^]�STaXV]�b^�4c`^R^ST�"��33�4=E�!(("�!�!�)�!(("�

�3/,)$�3,!"3 Originated from R C C e11.xls on CD © 1999 BCA for RCC

�).054 ;^RPbX^] �MN�&FIIL��3J;H�(�*< Z=\�\ " �" URZ =�\\� # γR = !�Ô

δ !� UgZ =�\\� $% γa = !�!Ô

a_P] \\ Ô VZ Z=�\" $�&

W \\ !&Ô ÓZ Z=�\" $�

1P`�� \\ !"R^dT` \\ " b^�bWXa�abTT[

BTRbX^]�[^RPbX^] 8=C4A8>A�B?0=�/54054 �MN�&FIIL��3J;H�(�* �

S�,�!&Ô���" ���!"�"�,�!$(� �\\4Óc]�0( f�,�J!$(����!$(����!% � �%'�f�" �"�f�!�Ô�# ��L� �'�,�! �#�\\4Óc]�0' �f�S��[X\Xb�,� �$$' f�S�PRbcP[�, � %(�+� �$$'��^Z

$�"�!�#�#�!"� h�,�!$(��� �$�f�! �#�,�!$$�(�\\ �0a�,�" �"4%�$% �!$$�(�f�!�!�,�#$(�-�0a�\X]�,�""$�\\��\

�$�"�!�! 0a�\X]�,�!��f�!$(�,�""$�\\��\

$�$�"�" 0a�R`PRZ�,�$ �f� �'�f�#�f�!&�"���$% �,�!'#�\\��\

0a�STU�,�"#�\\��\0LIPC>?�4���������������GG��G

CPQ[T�!�=03 ψ2 = �#��>UUXRT�Bb^`T�

$�$�#�"�$� Ua�,�$% �f�Ô�( �!"�#Ô�f�#$(�#&&�!�!Ô�,�!&%�&�=�\\�

<^SXUXRPbX^]�UPRb^`�,�"Ô �!&%�&�,�!�$!$%

CPQ[T�&�=03 ?T`\XaaXQ[T�;�S�,�!�$!$%�f�#&�!!&�,�Ô"�Ô Ô

0RbcP[�;�S�,�Ô �!$(�,�#�#Ô%��^Z �

Page 142: User Guid

140

R E C T ~ B E A ME L E M E N T S R C C e 1 1– –

�BTRbX^]�STaXV]�b^�4c`^R^ST�"��33�4=E�!(("�!�!�)�!(("�

�2%#4!.'5,!2�"%!-3�>`XVX]PbTS�U ^\�A22T!!�f[a�^]�23�����������!(((�120�U `�A22

�).054 ;^RPbX^] �MN�&FIIL��3J;H�� 1TP\�bg_T BD??>AC

< Z=\ "%'� URZ # =�\\� γR !�Ô δ �& UgZ $% =�\\� γa !�!Ô

a_P] \\ ' W \\ Ô 2%"!2 � #/6%2

Q \\ # CT]aX^] "Ô #ÔVZ Z=�\ "Ô�' 2^\_�] "Ô #ÔÓZ Z=�\ " � BXST �� #Ô

ψ"�, �# >UUXRT�Bb^`T

�/54054 �MN�&FIIL��3J;H�� �

4UUTRbXdT�ST_bW� S�,�Ô ���#Ô���"Ô�"�,�$Ô"�Ô�\\=Tcb`P[�PfXa� f�,�J$Ô"�Ô��$Ô"�Ô���"4%f"%'f!�Ô� �'Ô�# �# ��L� �'�,�!&!� �\\

�f�S��[X\Xb�,� �" ' f�S�PRbcP[�, �#&'�-� �" '������f�,�($�!�\\;TdT`�P`\� h�,�$Ô"�Ô��� �$�f�($�!�,�$!$�(�\\

S��,�#Ô���"Ô�"�,�$&�Ô�\\6`^aa�UaR�,�#$%�&�=�\\���U`^\�ab`PX]�SXPV`P\=Tb�UaR�,�#$%�&��� �'Ô�f�# ��!�Ô�,�#"(�&�=�\\�4fRTaa�<�,�"%'���!Ô(�#�,�! '�&�Z=\

2^\_TaaX^]�abTT[� 0a��,�! '�&4%��#"(�&���$Ô"�Ô���$&�Ô��,�'!$�\\�?A>E834�"�C"Ô�2><?A4BB8>=�BC44;�,�('"�\\�

BbTT[�ab`Taa� Uab�,�$ � �=�\\���U`^\�ab`PX]�SXPV`P\CT]aX^]�abTT[� 0a�,�!�!Ô4%�f�!Ô(�#�$!$�(�$ � ���'!#�(�f�#"(�&�$ � �,�!%#!�\\�

Ô�$�"�!�! 0a�\X]�,�!�Ô�f�# �f�Ô �,�" $�\\�$�$�"�" 0a�R`PRZ�,� �$�f� �'�f�#�f�Ô �"�f�# �$% �,�!##�\\� �

�?A>E834�$�C"�C4=B8>=�BC44;�,�!(%#�\\����� �

Page 143: User Guid

141

T E E - B E A ME L E M E N T S R C C e 1 1– –

�BTRbX^]�STaXV]�b^�4c`^R^ST�"��33�4=E�!(("�!�!�)�!(("�

�3)-0,%�4%%��,�"%!-3�>`XVX]PbTS�U`^\�A22T!!�f[a�^]�23�����������!(((�120�U `�A22

�).054 ;^RPbX^] �MN�&FIIL��3J;H���NI��

< �Z=\ #"Ô� 1TP\�bg_T 4=3�B?0=

δ !� URZ # =�\\� γR !�Ô a_P] \\ ' UgZ Ô =�\\� γa !�!Ô

W \\ Ô Qe \\ # 2%"!2 � #/6%2

QU \\ !%% CT]aX^] "Ô #ÔWU \\ !&Ô 2^\_�] !" #ÔVZ Z=�\ "Ô�' BXST �� #ÔÓZ Z=�\ " � ψ"�, �# >UUXRT�Bb^`T

�/54054 �MN�&FIIL��3J;H���NI��4UUTRbXdT�ST_bW� S�,�Ô ���#Ô���"Ô�"�,�$Ô"�Ô�\\=Tcb`P[�PfXa� f�,�J$Ô"�Ô��$Ô"�Ô���"4%f#"Ôf!�Ô� �'Ô�# �# ��L� �'�,�#"�'�\\

�f�S��[X\Xb�,� �$$' f�S�PRbcP[�, � &"��^Z;TdT`�P`\� h�,�$Ô"�Ô��� �$�f�#"�'�,�$#(�$�-� �(ÔS�,�$"(�(�\\

CT]aX^]�abTT[� 0a�,�!�!Ô4%�f�#!'� ��$"(�(��$#$�'���!&!!!ÔÔÔ�(�f� � ��$#$�'�,�!&$!�\\�Ô�$�"�!�! 0a�\X]�,�!�Ô�f�# �f�$Ô"�Ô�,�" $�\\�$�$�"�" 0a�R`PRZ�,� �$�f� �'�f�#�f�!$ !&!�Ô �,�""(�\\�

U^`�STU[TRbX^]� 0a�STU�,�!#%&�\\�?A>E834�$�C"�C4=B8>=�BC44;�,�!(%#�\\��

BT`dXRT�ab`Taa� Ua�,�Ô �f�#!�' ��%$�'#�f�!&$!��!(%#��!��!�!Ô�,�!'(�!�=�\\�<^SXUXRPbX^]�UPRb^`�,�"Ô �!'(�f�& �' �f� �' �,� �("%

CPQ[T�&�=03 ?T`\XaaXQ[T�;�S�,� �("%�f�"#�$'"�,�"!�&#&0RbcP[�;�S�,�' ��$Ô"�Ô�,�!&�%' ��^Z ������� �

Page 144: User Guid

142

S H E A RE L E M E N T S R C C e 1 1– –

�BTRbX^]�STaXV]�b^�4c`^R^ST�"��33�4=E�!(("�!�!�)�!(("�

�"%!-�3(%!2�>`XVX]PbTS�U ^\�A22T!!�f[a�^]�23�����������!(((�120�U^`�A22

1b\�Rc`bPX[\T]b�+,�Ô �

�).054 ;^RPbX^] �MN�&FIIL��3J;H���;N��%

URZ =�\\� # γR !�Ô > <

UgeZ =�\\� "Ô γa !�!Ô $$ #

-;CH�3N??F ,CHE�� ,?AM 3C>?�=IP?L 63> H�

� "Ô !" " # "$'� %$�'

=^ " \\ =^ \\ Z= Z=�\

�/54054 �MN�&FIIL��3J;H���;N��%0a�, ('"�\\��,� �&$$�τAS�, �#$ �=�\\��U`^\�bPQ[T�$�'EAS!�, �#$ �f�!�!% �!�"�$ f � &$��f�# �f�$$ �! �,�&'� �Z=EAS"�, �#�f� �ÔÔ�f�# �f�# �f�$$ �! �,�%Ô#�$�Z=

EaS�EAS"�, "$'��%Ô#�$�,� �#' EeS�, ! �"$'���&'� ��,�!& #(�=

0ae�a�, !& #(�f�!�!Ô�� �(��"Ô ��$$ �,�!�(&Ô"�-� �%%Ô �\X]a�`TÓc�, ""%�"��!�(&Ô"�,�!!Ô�\\�+�a�\Pf�,�"%$��Ô�$�"�"�a�R`PRZ�, # ��CPQ[T�$�!#�

02/6)$%���F?AM�2�������� �?`^dXST�U^`�SXabP]RT�^U�!Ô �\\bWT]�]^\X]P[�[X]Za�,�"�[TVa�A!"�/�"Ô

Page 145: User Guid

143

C O L U M NE L E M E N T S R C C e 1 1– –

�BTRbX^]�STaXV]�b^�4c`^R^ST�"��33�4=E�!(("�!�!�)�!(("�

�#/,5-.�$%3)'.�>`XVX]PbTS�U`^\�A22T!!�f[a�^]�23�����������!(((�120�U^`�A22

�).054 ;^RPbX^] #IFOGH��% URZ #" =�\\�

0fXP[�[^PS��= !' & Z= UgZ $% =�\\�

<^\T]b��< "&� Z=\ <Pf�QP`�� " \\

WTXVWb��W # \\ ;X]Z�� ! \\

Q`TPSbW��Q # \\ γR !�Ô R^]R`TbT

R^dT`��b^�[X]Z� "Ô \\ γa !�!Ô abTT[

�#!,#5,!4)/.3

U`^\�<��� 0a�,�J<���αURZ�Q�SR�W�"���SR�"�L���J�W�"�S����UaR�Uab��γRLU`^\�=��� 0a�,��=���αURZ�Q�SR����J�UaR���Uab��γRL 0aR�,�0ab�,�0a������SR�,�\X]�W�� �'f��������

S��, $Ô \\ α.URZ��γR�, !'�! =�\\�

S�, "ÔÔ \\ UgZ��γ\�, $ � =�\\�

U`^\�XbT`PbX^]��]Tcb`P[�PfXa�ST_bW��f�, #Ô �" \\ SR�, "' �! \\

α�URc�Q�SR�γR�, !Ô"#�( Z=

BbTT[�R^\_�ab`PX]�, � "&Ô

BbTT[�bT]a�ab`PX]�, � � '%

�UaR�, $ =�\\� �2^\_��ab`Taa�X]�`TX]U��

Uab�, �!&" =�\\� �CT]aX[T�ab`Taa�X]�`TX]U��

U`^\�<���0a�, $(Ô \\� U`^\�=���0a�, $(Ô \\�

�/54054 /+�

#IFOGH��%

ATÓcX`Ta�$(Ô\\��C�1)��������� 02/6)$%��4��

�XT�"C" �C�1����%"'\\��C�1����!�$ ��^�P��/"! �R�R��

;X]Za�)�� 02/6)$%�4��������

BH<<4CA820;�A42C0=6D;0A�2>;D<=�34B86=

<><4=CB�01>DC�G�0G8B�>=;H

!'�!�=�\\�

=^bTa

Bb`TaaTa�X]�=�\\"

2^\_`TaaX^]���dT

�������=Tcb`P[�PfXa

3NL?MM�>C;AL;G

!&"

$

3NL;CH�>C;AL;G

� '%

� "&Ô

� $Ô

� #!%

Page 146: User Guid

144

B O XE L E M E N T S R C C e 1 1– –

�BTRbX^]�STaXV]�b^�4c`^R^ST�"��33�4=E�!(("�!�!�)�!(("�

�%#��.!$�"/8%$�6!,5%3�>`XVX]PbTS�U`^\�A22T!!�f[a�^]�23�����������!(((�120�U^`�A22���������������������������aTT�P[a^�1>GE0;

%#��2?@ &OH=NCIH 6;FO?

CPQ[T�"�" γ �6 !�#Ô STPS�[^PS�UPRb^`

CPQ[T�"�" γ �@ !�Ô X\_^aTS�[^PS�UPRb^` C01;4�!��=03�

CPQ[T�"�# γ �R !�Ô R^]R`TbT ψ0CPQ[T�"�# γ �a !�!Ô abTT[ ! �Ô

CPQ[T�$�' URZ�\Pf $ aWTP`�[X\Xb " �&

$�"�!�#��!"� α �'Ô ab`Taa�Q[^RZ�UPRb^` # �&

$�$�"�"��#� URb�TUU # R^]R`TbT�bT]aX^]

$�#�"�#��!� Z ! Rc`bPX[\T]b�UPRb^` C01;4�&��=03��,�CPQ[T�$�!$

$�#�"�#��!� ρ; � " abTT[�`PbX^�[X\Xb �!Ô

$�#�$��"��!� dAS"�dAS! "� _c]RWX]V�[X\Xb ! #$

$�#�$�Ô�"��!� dAS"�√URZ �( _c]RWX]V " $$

4Óc]�$�Ô' RWP]VT�Pb !�% _c]RWX]V # #'

Ô�$�"�!�! 4Óc]�Ô�!$ �% \X]�abTT[ $ $!

Ô�$�"�!�! 4Óc]�Ô�!$ � !Ô \X]�abTT[ Ô !$

�$�"�!�!��"� 0a�0R�\Pf � $ \Pf�abTT[

�$�"�"��(� a�\Pf ' \Pf�b`P]a�[X]Z�a_PRX]V C01;4�$�'

Ô�$�#�"�!��$� B�\Pf Ô \Pf�a[PQ�a_PRX]V " "Ô

�$�#�"�!��$� B�W�\Pf # \Pf�a[PQ�a_PRX]V �"% �#

Ô�$�#�#��"� ��^U�CPQ�Ô�Ô ! � a[PQ�aWTP`

4Óc]�Ô�!# �0a�\X] �#� \X]�R^[c\]�abTT[

ψ 1 ψ 2 �$ �"

�% �#

�& �%

$

�Ô !�Ô

"Ô !'

#" "#

#Ô "Ô

# "!

! &

# #Ô $

�#$ �#& �$!

Page 147: User Guid

145

RCCe21.xls analyses sub-frames in accordance withEurocode 2: Part 1: 1992(3).

Spans may be of two different profiles to simulate varyingsection inertia.

Inputs are required on two sheets.

MAIN!This single sheet consists of the main inputs.

Most inputs should be self-explanatory. In cell D9 etc,‘segment’ refers to the length of the section measuredfrom the left-hand support. If this is less than the spanlength, the cell below will show the remainder of the spanas a second segment. The dimension of the flange width,bf, is automated to be either bw + 0.07 x span for L beamsor bw + 0.14 x span for T beams.

Unwanted data cells are ‘greyed out’. The use of C, K, or Ecan alter the characteristics of a support from cantileverto knife-edge to encastré. Remote ends of columns atsupports may be F for fixed, otherwise and by default, Pfor pinned. Extraneous data is highlighted in red or bymessages in red. Beneath Operating Instructions a numberof checks, mainly for missing entries, are carried out andany problems are highlighted. At the bottom of the sheetthere is a simplistic but scale arrangement and loadingdiagram. This is given to aid data checking. Great careshould be taken to ensure that this sheet is completedcorrectly for the case in hand. It may prove prudent towrite down expected values for bending moments at eachsupport before progressing to ACTIONS!

Ultimate and characteristic support reactions are given atthe bottom of the sheet

ACTIONS!This sheet shows bending moment and shear forcediagrams from the analysis undertaken in Analysis! Theuser is required to input desired amount of redistributionto the initial moments in line 27. Cell L14 allows threetypes of distribution according to the user’s preferences.

The sheet also provides elastic and redistributed ultimateshears and column moments according to the various loadcases.

Analysis!This sheet details the moment distribution analysis carriedout but is not necessarily intended for printing out otherthan for checking purposes.

Graf!This sheet comprises data for graphs used on other sheets,particularly in ACTIONS! It is not necessarily intended forprinting out other than for checking purposes

Segs!This sheet calculates non-prismatic Fixed End Moments usedin other sheets notably in Analysis!. Separately, for each loadtype and for unit load, it calculates the simply supportedbending moments at 1/20 points then numerically integratesthe Area Moment diagram to find the Fixed End Moments.This sheet is not necessarily intended for printing out otherthan for checking purposes.

RCCe21 Subframe Analysis.xls

A N A L Y S I S R C C e 2 1–

Page 148: User Guid

146

M A I NA N A L Y S I S R C C e 2 1– –

�?`^YTRb 3JL?;>MB??NM�NI�"3�������%#�REINFO

�2[XT]b !>PCMILS�'LIOJ �<PST�Qg

�;^RPbX^] 3JCH?�"?;G���3#(%-%�� LGQ�2WTRZTS

=BA

�30!.3 ,/#!4)/. U`^\�V`XS 2

,��\� 3?AG?HN��\� (��\\� <Q��\\� B@��\\� 4SJ? <@��\\�

B?0=�!� %� #�" % $ A $

"�' Ô %%% !Ô C !Ô %

B?0=�"� &�" Ô�$ % $ A $

!�' $Ô $ A $

B?0=�#� %� %� $Ô $ A $

B?0=�$� &�" &�" % $ A $

B?0=�Ô�

B?0=�%�

�3500/243,?HANB��\� (��\\� "��\\� %H>�#IH> ,?HANB��\� (��\\� "��\\�

Bc__^`b�! : #

Bc__^`b�" #�% $Ô $Ô 5 $�Ô $Ô $Ô

Bc__^`b�# #�% $ $ 5 $�Ô $ $

Bc__^`b�$ #�% $ $ 5 $�Ô $ $

Bc__^`b�Ô #�% $ $ 5 $�Ô $ $

Bc__^`b�%

Bc__^`b�&

!"/6%� "%,/7

35"&2!-%�!.!,93)3�4/�%#���$$�%.6����������� ������

>`XVX]PbTS�U`^\�A22T"!�f[a ��^]�23������������!(((�120�U^`�A22

ORCED CONCRETE COUNCIL �3PbT �BWTTb�=^

���.IP��� ����ATdXaX^] �9^Q�=^

� 2��

b^�V`XS 4

�^]�;7B�^U�a_P]

�^]�A7B�^U�a_P]

�^]�;7B�^U�a_P]

�^]�A7B�^U�a_P]

%H>�#IH>

5

5

5

5

�,/!$).'�$)!'2!-

,/!

3403

8<?>B43

�,/!$).'��RWP`PRbT`XabXR�$?;> )GJIM?> 0IMCNCIH ,I;>?> $?;> )GJIM?>

3J;H�� ,I;> ,I;> @LIG�F?@N ,?HANB 3J;H�� ,I;> ,I;>D3;� (&�"& #%� lllll lllll D3; (&�"& #%�

?;�!� lllll ?;�!

?;�"� lllll ?;�"

?P`b�D3;� ?P`b�D3;

3J;H�� 3J;H��D3;� Ô � "Ô� lllll lllll D3;

?;�!� &" # %�&Ô lllll ?;�!

?;�"� lllll ?;�"

?P`b�D3;� $&�"& !!� �&Ô $�' ?P`b�D3;

3J;H�� 3J;H��D3;� lllll lllll D3;

?;�!� lllll ?;�!

?;�"� lllll ?;�"

?P`b�D3;� ?P`b�D3;

�2%!#4)/.3

3500/24� � � � � � �

<0G�D;C8<0C4� $!#�& !#%Ô�" %$Ô� & Ô�# %%$�#

<8=�D;C8<0C4� !&"�( &$!�( "$ �# #$!�( ##(�!

2WP`PRbT`XabXR�3TPS� "! �! &"#�' # #�' #% �Ô #$$�%

2WP`��8\_^aTS� '%�& "Ô'�& !Ô%�% !$%�( !#"�&

!$).'�0!44%2. �GCH G;R

!� !�#Ô

!�Ô

0IMCNCIH ,I;>?>

@LIG�F?@N ,?HANBlllll lllll

lllll

lllll

lllll lllll

lllll

lllll

lllll lllll

lllll

lllll

146

Page 149: User Guid

147

A C T I O N SA N A L Y S I S R C C e 2 1– –

�?`^YTRb 3JL?;>MB??NM�NI�"3�������%#�

�2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] 3JCH?�"?;G���3#(%-%����@LIG�#�NI�%

35"&2!-%�!.!,93)3�4/�%#���$$�%.6��������

>`XVX]PbTS�U ^\�A22T"!�f[a��^]�23������������!(((�120�U^`

�"%.$).'�-/-%.43��Z=\�c[bX\PbT�

# %F;MNC=�-IG?HNM

3500/24�.I� � �4[PabXR�<� (($�(

ATSXab`XQcbTS�<� '(Ô�$

2^[c\]�UPRT�<� �!'�Ô &Ô!�

�Q� !� �(

ATSXab`XQcbX^]� ! � � ! � �

30!.�.I� � �4[PabXR�<� $(!� ! $%'� #

ATSXab`XQcbTS�<� $%!�%' $'!�'$

�Q� �($ !� #

�!

�'

�%

�$

�"

"

$

%

'

!

!"

Ô ! !Ô " "Ô

REINFORCED CONCRETE COUNCIL

<PST�Qg 3PbT ?PVT

% LGQ ���/=N��� ���

���������� 2WTRZTS ATdXaX^] 9^Q�=^

`�A22 =BA � 2��

% # 2?>CMNLC<ON?>�%HP?FIJ? %

� � � � �Ô#$�Ô %" �Ô Ô"'�% l l Z=\

Ô#$�Ô $(%�$ $&Ô�& l l Z=\

$! �& #%%�! #$%�% l l

!� �' �( l l

" � � ! � �

� �!!�"% %#%�"( l l Z=\

!!�"% &!$�'! l l Z=\

!� !�!"# l l

#

�!

�'

�%

�$

�"

"

$

%

'

!

!"

Ô ! !Ô " "Ô #

�3(%!23��Z=�c[bX\PbT�

# %F;MNC=�3B?;LM

30!.�.I �4[PabXR�E $"%�% &!!�$

ATSXab`XQcbTS�E $!#�& & Ô�"

30!.�.I �4[PabXR�E %' �& %Ô&�!

ATSXab`XQcbTS�E %& � %%$�#

�#/,5-.�-M��Z=\�c[bX\PbT� 1 2039024=C�B?0=B 0Q^dT #$�Ô

;>0343 1T[^e "&�%

>33�B?0=B 0Q^dT �&'�!

;>0343 1T[^e �%"�Ô

4E4=�B?0=B 0Q^dT !#"�$

;>0343 1T[^e ! Ô�(

�'

�%

�$

�"

"

$

%

'

Ô ! !Ô " "Ô

% # 2?>CMNLC<ON?>�3B?;LM %

� �%&#�( %#!�% !%�" "(�& Z=

%% �! %"(�' !Ô�" #Ô�# Z=

Z=

Z=

3 4 5 �""Ô�$ "Ô#�& �"( �Ô

�!' �# " "�( �"#"�$

�('�% !#%�# �!Ô#�Ô

�&'�( ! (� �!""�'

�"#(�% "%Ô� �!#(�'

�!(!�& "!"� �"#$�(

#

�'

�%

�$

�"

"

$

%

'

Ô ! !Ô " "Ô #

147

Page 150: User Guid

148

The spreadsheet allows for the design of multiple-spanrectangular or flanged beams using sub-frame analysis toderive moments and shears according to the current versionof Eurocode 2: Part 1: 1992(3).

The intention is to provide the design and analysis of up tosix spans of continuous beams with columns above andbelow. There are three main sheets: MAIN!, ACTIONS! andSPANS! Input is required on each of these three sheets.

MAIN!This sheet contains user input of materials, frame geometryand load data, for up to six spans. Users should note thatwith values of concrete strength of fck > 35 N/mm2 (equivalentto fcu > 45 N/mm2), limiting values of x/d and consequentlymlim (limiting applied moment ratio) are affecteddramatically.

The example is taken from Worked examples for the designof concrete buildings(25) (to EC2) which itself is based on the1985 version of Designed and detailed. In order to reflectthe latter publication, the spreadsheet has been set up withthe beams being considered as rectangular in both theanalysis and design.

Users should note that the maximum permitted flangewidths are calculated from points of contraflexure on theBM diagrams, and may therefore change with modificationsin loading.

ACTIONS!ACTIONS! includes bending moment and shear forcediagrams, summaries of moments and shears and user inputfor amounts of redistribution. Users should ensure that theamounts of redistribution are always considered, as thereare no default values.

SPANS!This sheet designs reinforcement for bending in spans andsupports and for shear in the spans. User input is requiredfor reinforcement sizes. The size used at a right support iscarried through to the left support of the next span. Howeverdifferent numbers of bars may be designed, as supportmoments (including cantilever moments) are considered atthe face of the support (see Bar!). Non-existent spans aregreyed out.

The reinforcement areas required for ultimate span momentscan be automatically increased in order to enhance span-to-depth ratios. EC2 Clause 4.4.3.2P(4), appears to give theunlimited possibility to reduce service stress and increasespan-to-depth ratios, but the spreadsheet does not allowany increase in span-to-depth ratios greater than 100%. Theeffectiveness of increasing the area of reinforcementdepends on the extent of cracking. The effect is marginal if

the section is substantially uncracked, i.e. slabs, but is moresignificant for beams. Beeby and Narayanan’s Designershandbook to EC2, p182)(26) gives some modification factorsbased on parametric studies.

Weight!This sheet estimates the weight of reinforcement in the beamas designed according to curtailment in EC2. Workings areshown on the right hand side of the sheet. The estimatemay be printed out using File/print or the print button onthe normal toolbar. It should be recognised that differentengineers’ and detailers’ interpretations of these clauses,different project circumstances and requirements, will allhave a bearing on actual quantities used. A print-out of thissheet is reproduced.

Analysis!This sheet shows the moment distributions used in theanalysis of the beam: it is not intended for formal printing.

Bar!For first time users and young engineers, further detail ofthe calculations undertaken and EC2 references are given.Moments at ¼ span points are used to determine the topreinforcement in spans. A print-out of this sheet isreproduced.

Graf!This sheet provides data for the charts in MAIN! andACTIONS!: it is not intended for formal printing.

Box!Many values used in EC2 are subject to national ratification.This is signified by them appearing within boxes in the maindocument. These ‘box’ values are defined in the NationalApplication Document (part of DD ENV 1992-1-1 1992)(3) andthose used within the spreadsheet are presented within Box!

RCCe41 Continuous Beams (A & D).xls

B E A M S R C C e 4 1–

Page 151: User Guid

149

M A I NB E A M S R C C e 4 1– –

�?`^YTRb 3JL?;>MB??NM�NI��%#�

�2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] 7ILE?>�%R;GJF?M ��-;CH�<?;G�'LC>M�#�NI�(

#/.4).5/53�"%!-�!.!,93)3��$%3)'.�NI�%#���$$�%.6���������� �������

>`XVX]PbTS�U`^\�A22T$!�f[a�^]�23���������������������������!(((�120�U `�A22

�-!4%2)!,3 34!453�/+

URZ #" =�\\� SV " \\

UgZ Ô =�\\� γs !�!Ô

UgeZ "Ô =�\\� γc !�Ô

�30!.3 ,��\� B��\\� <Q��\\� B@��\\� 4SJ?

B?0=�!� '� Ô # !&Ô A

B?0=�"� %� Ô # !&Ô A

B?0=�#�

B?0=�$�

B?0=�Ô�

B?0=�%�

�3500/243 !"/6%��\� (��\\� "��\\� %H>�#IH> "%,/7��\�

Bc__^`b�! #�Ô # # 5 $�

Bc__^`b�" #�Ô # # 5 Ô�

Bc__^`b�# #�Ô # # 5 $�

Bc__^`b�$

Bc__^`b�Ô

Bc__^`b�%

Bc__^`b�&

�,/!$).'�$)!'2!-

�,/!$).' D3;a��Z=�\������?;a��Z=�����?^aXbX^]��\�

$?;> )GJIM?> 0IMCNCIH ,I;>?>

3J;H�� ,I;> ,I;> @LIG�F?@N ,?HANB 3J;H��

D3;� "Ô�' " � lllll lllll D3;

?;�!� lllll ?;�!

?;�"� lllll ?;�"

?P`b�D3;� ?P`b�D3;

3J;H�� 3J;H��

D3;� "Ô�' " � lllll lllll D3;

?;�!� lllll ?;�!

?;�"� lllll ?;�"

?P`b�D3;� ?P`b�D3;

3J;H�� 3J;H��

D3;� lllll lllll D3;

?;�!� lllll ?;�!

?;�"� lllll ?;�"

?P`b�D3;� ?P`b�D3;

�2%!#4)/.3��Z=�3500/24� � � �

0;;�B?0=B�;>0343� "$!�( Ô %�$ !Ô(�#

>33�B?0=B�;>0343� "$!�( #((�! #"�Ô

4E4=�B?0=B�;>0343� &(�% #Ô"�# !%#�$

<0G�D;C8<0C4� "$!�( Ô %�$ !%#�$

2WP`PRbT`XabXR�3TPS ("�& " (�# Ô(�"

2WP`PRbT`XabXR�8\_^aTS &&�( !$(�" ÔÔ�&

$?;> )GJIM?> 0IMCNCIH ,I;>?>,I;> ,I;> @LIG�F?@N ,?HANB

lllll lllll

lllll

lllll

lllll lllll

lllll

lllll

lllll lllll

lllll

lllll

REINFORCED CONCRETE COUNCIL

�<PST�Qg �3PbT �?PVT

LGQ ���.IP��� ���

�2WTRZTS �ATdXaX^] �9^Q�=^

=BA � 2��

#/6%23��b^�[X]Za�C^_�R^dT` " \\

1b\�R^dT` " \\

BXST�R^dT` " \\

<@��\\� ��,/!$).'�0!44%2.

# GCH G;R

# 3403 !� !�#Ô

8<?>B43 !�Ô

��2%"!2�,!9%2).'

Bc__^`b�abTT[

X]�P[b�[PgT`�. =

(��\\� "��\\� %H>�#IH>

# # ?

# # ?

# # ?

149

Page 152: User Guid

150

A C T I O N SB E A M S R C C e 4 1– –

�?`^YTRb 3JL?;>MB??NM�NI��%#�

�2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] 7ILE?>�%R;GJF?M��-;CH�<?;G�'LC>M�#�NI�(

#/.4).5/53�"%!-�!.!,93)3��$%3)'.�NI�%#���$$�%.6�����

>`XVX]PbTS�U ^\�A22T$!�f[a�^]�23���������������������������!(((�120�U^`�A22

�"%.$).'�-/-%.43��Z=\�

%F;MNC=�-IG?HNM

3500/24�.I � � �

4[PabXR�<� !'#�$ #'"�# '!�#

ATSXab`XQcbTS�<� !"'�# "%&�% '!�#

�Q� �& �& !�

ATSXab`XQcbX^]� # � � # � �

30!.�.I � �

4[PabXR�<� "%"�& !$$�# l

ATSXab`XQcbTS�<� #"#� !#(�! l

�Q� !�"# �(%$ l

�3(%!23��Z=�

�#

�"

�!

!

"

#

$

Ô

Ô ! !Ô

REINFORCED CONCRETE COUNCIL

<PST�Qg 3PbT ?PVT

LGQ ���/=N��� ���

������������� 2WTRZTS ATdXaX^] 9^Q�=^

=BA � 2��

2?>CMNLC<ON?>�%HP?FIJ?

l l l Z=\�\

l l l Z=\�\

l l l l

l l l

l l l

l l l

�$

�#

�"

�!

!

"

#

$

Ô ! !Ô

%F;MNC=�3B?;LM

30!.�.I � �

4[PabXR�E� "$ �Ô "'Ô�' "$ �"

ATSXab`XQcbTS�E� "$!�( "&%�& ""(�%

30!.�.I

4[PabXR�E� l l l

ATSXab`XQcbTS�E� l l l

�#/,5-.�-/-%.43��Z=\�c[b� � � �

!,,�30!.3 0Q^dT ! #�! �##�Ô �#$�#

,/!$%$ 1T[^e %&�& �!&�% �""�Ô

/$$�30!.3 0Q^dT !! �& �%!�! !�"

,/!$%$ 1T[^e &"�% �#"�! �'

%6%.�30!.3 0Q^dT ##�Ô !$�# �$(�!

,/!$%$ 1T[^e ""� &�Ô �#"�"

�$

�#

�"

�!

!

"

#

Ô ! !Ô

2?>CMNLC<ON?>�3B?;LM

!&!� l l

!%#�$ l l

l l l

l l l

�$

�#

�"

�!

!

"

#

Ô ! !Ô

150

Page 153: User Guid

151

S P A N SB E A M S R C C e 4 1– –

�?`^YTRb 3JL?;>MB??NM�NI��

�2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] 7ILE?>�%R;GJF?M��-

#/.4).5/53�"%!-�!.!

>`XVX]PbTS�U`^\�A22T$!�f[a�^]�

�%#�REINFORCED CONCRETE

COUNCIL

<PST�Qg 3PbT ?PVT

-;CH�<?;G�'LC>M�#�NI�( LGQ ���/=N��� ��� �

!,93)3��$%3)'.�NI�%#���$$�%.6����������������� 2WTRZTS ATdXaX^] 9^Q�=^

�23������������ ������������ ���!(((�120�U^`�A22 =BA � 2�� �

�30!.��!#4)/.3 < Z=\

δ$%3)'. S \\

0a \\�

0a� \\�

4/0�34%%, ;PgT`�!

;PgT`�"

0a�_`^d \\�

"4-�34%%, ;PgT`�!

;PgT`�"

0a��_`^d \\�

$%&,%#4)/.

3(%!2 EaS Z=

EAS! Z=

EAS" Z=

a�`TÓ \\

,).+3

[TVa =^

#(%#+3 ��0a

2^dT`

\X]�B

\Pf�B

;X]Za

<PX]�QP`a

\Pf�E

3TU[TRbX^]

,%&4 #%.42% 2)'(4

!!#�! #"#� "$!�'

�& !�"# �&

$% � $Ô"� $ÔÔ�Ô

Ô(% !((% !#$!

Ô""

� 4 �� � 4 �� � 4 ��� � �

% # 0a��_`^d ##( 0a�_`^d !$&#

� 4 �� � 4 �� � 4 ��� � �

% # 0a�_`^d "$!# 0a��_`^d !% '

;�S !&�& 0[[^eTS #&�"# ���

"#"�" ,).+�� "%&�

%%�' !" &'�Ô

&!Ô�$ ./-).!, & '�$

!%# #$ !$!

2���������@IL����� 2�������� 2���������@IL�����

" " "

IE IE IEIE IE IEIE IE IEIE IE IEIE IE IE

IE IEIE

IE IE IE

�30!.��!#4)/.3 < Z=\

δ$%3)'. S \\

0a \\�

0a� \\�

4/0�34%%, ;PgT`�!

;PgT`�"

0a�_`^d \\�

"4-�34%%, ;PgT`�!

;PgT`�"

0a��_`^d \\�

$%&,%#4)/.3(%!2 EaS Z=

EAS! Z=

EAS" Z=

a�`TÓ \\

,).+3

[TVa =^

#(%#+3 ��0a

2^dT`

\X]�B

\Pf�B

;X]Za

<PX]�QP`a

\Pf�E

3TU[TRbX^]

,%&4 #%.42% 2)'(4

"$(�% !#(�! Ô&�Ô

�'! �(% !�

$Ô&�Ô $Ô&�Ô $%$�

!$!( &$' #

&$

� 4 �� � 4 �� � 4 ��� � �

!$&# !M�JLIP ('" !M�JLIP ##(

� 4 �� � 4 �� � 4 ��� � �

##( 0a�_`^d ('" 0a��_`^d ##(

;�S !#�!! 0[[^eTS Ô%�$( ���

"!(�( ,).+�� !Ô#�&

&'�& ! %#�%

&!!�Ô ./-).!, &"!�%

!#" "#% " (

2���������@IL����� 2�������� 2���������@IL�����

" " "

IE IE IEIE IE IEIE IE IEIE IE IEIE IE IE

IE IEIE

IE IE IE

151

Page 154: User Guid

152

?`^YTRb �� �[^RPb X^] B_`TPSaWTTba�b^��42"�)�F^`ZTS�4fP\_[Ta )�<PX]�QTP\ �

2>=C8=D>DB�140<�0=0;HB8B�� �34B86=�b^�42"��33�4=E�!(("�!�!� )�!(("���

B_P] '� �\ W Ô �\\ C^_�R^dT`

2 QTP\ Qe # �\\ 1b\ �R^dT`

NI�%#� WU !&Ô�\\ BXST�R^dT`

0R !Ô

�-!).�34%%, ,%&4 ��� ,<�2; Z=\ !"'�# C^_�abTT[�RWTRZ

<�UPRT Z=\ !!#�! Ô'�%

δ �& �&

S \\ $% � $%"�

QU \\ # #

f�[X\ \\ (Ô�& ($�&

f \\ Ô( �% "( �(

2^]R�<>A Z=\ !&Ô�% !&$�(

h \\ $#%�" $#'�(

S� \\ $ � $'�

]Tb�UaR =�\\� "!" � �

4fRTaa�< Z=\ � �

0a��`TÓ \\�

Uab =�\\� $#$�' $#$�'

0a�`TÓ \\� Ô(% # &

Qb \\ # #

0a�\ X] \\� " & " '

0a�R`PRZ \\� "$Ô "!%

0a�STU[TRbX^] \\�

�$ %&,%#4 )/.�#(%#+Ua =�\\� "' �%

ρ �

1PaT�`PbX^

<^S�UPRb^`

?T`\ �;�S

0RbcP[�;�S IE

�6`XSa �2�b^�7)�b^ �42"�� 30!. �

���> `XVX]PbTS �U`^\�A22T$!�f[a�^]�23 ������� ������������� ������ �!((( �120�U^`�A22

#" \\ �b^�\PX] �abTT[ 9^Q�=^ A%'

#" \\ �b^�\PX] �abTT[ Qg `\e

#" \\ �b^�\PX] �abTT[ 3PbT "(�=^d�((

30!. 2 )'(4 42"�ATU

"%&�%

#"#� "$!�'

!�"# �&

$Ô"� $ÔÔ�Ô

# #

" "�Ô ($�& "�Ô �#�$ �"

!(( �$ !#'�( $ �"�! �#�#

#"%�( !&"�" $ �"�! �#�#

#&"�# $!& �% ��, ��

#'� $'�

$!%�% #"&�" 5XV �$ �$

� %( �%

Ô""

$#$�' $#$�' 5XV �$ �$

!((% !#$!

# # Ô �$ �"�! �!

" # " Ô 4Óc]�Ô �!$

"# "$Ô 4Óc]�$ �&'

'Ô% $ �$ �#�"

!#Ô�" "&&�Ô $�$ �# �"��$ �

!�&&( !� &' CPQ [T�&

"#� � �=03�

!�%!( �&'' $ �$ �#�"

#&�" � ��, ��

!& �& IE �

4 .3) . 34

AT X`TS \\� Ô(%

��! \\ IE !% IE

� �" \\

<Pf�=^ [PgT` Ô

=^�! #

, \\� % #

=^�" IE IE

a�_`^d \\� % #

,�� � IE �$ " IE

2[TP`�SXab \\ ($�

<X]�B \\ IE "Ô� IE

<Pf�B \\ IE !##�" IE

02 33) . 34

AT X`TS \\� % #

��! \\ IE !% IE

� �" \\

<Pf�=^ [PgT` %

=^�! #

, \\� % #

=^�" IE IE

a �_`^d \\� % #

,�� � IE �$ " IE

2[TP`�SXab \\ ($�

<X]�B \\ IE " � IE

3( !2 τAS�,

!((% !#$!

#" IE "Ô

# $ Ô �$ �"�! �!

# #

"$!# !$&#

IE

"$!# !$&#

!�% ' IE �('"

& � ' �Ô QTbe TT] �Q P`a

#"� IE "Ô� Ô �"�! �! ��#�

"(( �! IE !"'�! CPQ [T�$ �!"

# & % # Ô�$ �"�!

!" IE #"

% #

# "

##( !% '

IE

##( !% '

�""% IE !� &" �

! � !&"� QTbe TT] �Q P`a

"Ô� IE #"� Ô �"�! �! ��#�

�#Ô

EaS�Pb�UPRT Z= "#" �" Z �,

ρ; �$#&� ν�,EAS! Z= %%�' 0ae�a�\ X] �,

EAS" Z= &!Ô�$

EaS�EAS" �#"Ô

EeS Z= !%Ô�$

0ae�a�`TÓ \\ !�#'(%

a�`TÓ \\ !%#

a�\Pf \\ "&%

a�R`PRZ \\ "

;X]Z�� \\ IE !" IE

;TVa IE " IE

/ \\ !%#

0SYcab�b^ \\ !Ô

U^`��D3;�^] [g� \\ " &&

U^` ��e XbW �?;� \\ " &&

0SYcab�b^ \\ !(Ô

a�b`P]a�[X\ \\ $% �

a�b`P]a \\ IE "$'� IE

! "%&�

�Ô$ !� &'� $ �#�"�#

�%& &'�Ô �$ �!' �

.IGCH;F & '�$ �$ �!(�

�"#" �#&&

(&�Ô !''�%

lll !�Ô((' �$ �"#�

#$ !$!

"&# "&# �Ô �!& �!(�

lll " CPQ [T�$ �!#

!" IE !"

" IE "

"&# !$!

"Ô !"Ô

lll "%!$ U`^\ �R[

lll �=�0 ��, ��

lll "Ô U`^\ �UPRT

$Ô"� $ÔÔ�Ô Ô �$ �"�"��(�

"$'� IE "$'�

B A RB E A M S R C C e 4 1– –

Page 155: User Guid

153

?`^YTRb �� �[^RPb X^] B_`TPSaWTTba�b^ ��42"�)�F^`ZTS�4fP\_[Ta )�<PX]�QTP\ �6`XSa �2�b^ �7)�b^

2>=C8=D>DB�140<�0=0;HB8B�� �34B86=�b^�42"��33�4=E�!(("�!�!� )�!(("�����> ` XVX]PbTS �U`^\�A22T$

B_P] %� �\ W Ô �\\ C^_�R^dT` #

2 QTP\ Qe # �\\ 1b\ �R^dT` #

NI�%#� WU !&Ô�\\ BXST�R^dT` #

0R !Ô

�-!). �34%%, ,%&4 ��� , 30!.<�2; Z=\ "%&�% C^_�abTT[�RWTRZ

<�UPRT Z=\ "$( �% !!#�" !#( �!

δ �' ' �' &($!" �(%$

S \\ $Ô&�Ô $Ô&�Ô $Ô&�Ô

QU \\ # � # � # �

f�[X\ \\ !#$�& !#$�& !( !�&

f \\ !$#�# % � &$�&

2^]R�<>A Z=\ "#%�% "#%�% #!& �'

h \\ $ #�% $##�Ô $"&�%

S� \\ #%� $"�Ô $" �Ô

]Tb�UaR =�\\� $!%�% !'Ô�( "'#�'

4fRTaa�< Z=\ !#� � �

0a��`TÓ \\� &$

Uab =�\\� $#$�' $#$�' $#$�'

0a�`TÓ \\� !$!( % &$'

Qb \\ # # #

0a�\ X] \\� " % " % " %

0a�R`PRZ \\� "$Ô !&( "!Ô

0a�STU[TRbX^] \\� !(Ô

�$ %&,%#4 )/.Ua =�\\� "Ô$�# !##�!

ρ � !� &# �&!Ô

1PaT�`PbX^ � # � %

<^S�UPRb^` �('# !�'&(

?T`\ �;�S � Ô%�Ô

0RbcP[�;�S IE � IE !#�!

�4%.3)/. �34%%,

^�42" �� 30!. �

$!�f[a�^]�23 �������� ����������� ������� �!(((�120�U^`�A22

\\�b^�\ PX] �abTT[ 9^Q�=^ A%'

\\ �b^�\ PX] �abTT[ Qg `\e

\\ �b^�\ PX] �abTT[ 3PbT "( �=^d�((

2)'(4 42"�ATU

'!�#

Ô&�Ô

!�

$%$�

# �

" &�( "�Ô �#�$ �"

"( �" $ �"�! �# �#

#$$�Ô $ �"�! �# �#

$$ �' ��, ��

#%�

� 5XV �$ �$

$#$�' 5XV �$ �$

#

# Ô �$ �"�! �!

" ( 4Óc]�Ô �!$

"$Ô 4Óc]�$ �&'

$ �$ �#�"

!#!�& $�$ �# �"��$ �

CPQ [T�&

�=03�

$ �$ �#�"

��, ��

ATÓcX`TS \\� !$!( &$'

��! \\ IE "Ô IE "Ô

� �" \\

<Pf�=^�[PgT` $ $

=^�! # "

, \\� !$&# ('"

=^�" IE IE

0a�_`^d \\� !$&# ('"

,�� � IE �('" IE �%Ô$

2[TP`�SXab \\ '"�Ô !( �

<X]�B \\ IE "Ô� IE "Ô�

<Pf�B \\ IE !Ô& �! IE # '�&

�#/-02%33)/.�34%%,ATÓcX`TS \\� "$Ô %

��! \\ IE !" IE "Ô

� �" \\

<Pf�=^�[PgT` & $

=^�! # "

, \\� ##( ('"

=^�" IE IE

0a��_`^d \\� ##( ('"

,�� � IE �""% IE �%Ô$

2[TP`�SXab \\ ! "� !( �

<X]�B \\ IE " � IE "Ô�

#

IE !"

% Ô �$ �"�! �!

#

##(

IE

##(

IE �""%

! "� QTbeTT] �QP`a

IE "� �"�! �! ��#�

IE #"#�$ CPQ [T�$ �!"

"$Ô Ô �$ �"�!

IE !"

&

#

##(

IE

##(

IE �""% �

! "� QTbeTT] �QP`a

IE " � �"�! �! ��#�

�3(%!2 τAS�, �#Ô

EaS�Pb�UPRT Z= "!( �( Z�, !

ρ; !� &#� ν�, �Ô$

EAS! Z= &'�& 0ae�a�\ X] �, �%&

EAS" Z= &!!�Ô .IG CH;F

EaS�EAS" �# ( �"

EeS Z= !$!�" &'�&

0ae�a�`TÓ \\ !�!("' lll

a�`TÓ \\ !#" "#%

a�\Pf \\ "&Ô "&Ô

a�R`PRZ \\ # lll

;X]Z�� \\ IE ! IE !

;TVa IE " IE "

/ \\ !#" "#%

0SYcab�b^ \\ !"Ô ""Ô

U^`��D3;�^] [g� \\ "!&' lll

U^` ��e XbW�?;� \\ "!&' lll

0SYcab�b^ \\ " lll

a�b`P]a�[X\ \\ $Ô&�Ô $Ô&�Ô

a�b`P]a \\ IE "Ô � IE "Ô �

!Ô#�&

�"$$� $ �# �"�#

%#�% �$ �!' �

&"!�% �$ �!(�

�" !#

( �!

�&Ô & �$ �"#�

" (

"&' �Ô �!& �!(�

# CPQ [T�$ �!#

IE !

IE "

" (

"

!!Ô& U`^\ �R[

�=�0 ��, ��

! U`^\ �UPRT

$%$� Ô �$ �"�"��(�

IE "Ô �

B A RB E A M S R C C e 4 1– –

Page 156: User Guid

154

The main folders Admin, ByOthers and UserGuid, areprovided in order to help the user. The folder hierarchy,together with sub-folders and the spreadsheet files, is shownin the screen dump below.

AdminUnder the Admin folder will be found several folders andfiles associated with the use of the spreadsheets.

Acrobat folder (and sub-folders)To read and print from the fully illustrated Userguid.pdfyou need to have Adobe Acrobat ® Reader (version 3.0 orabove) on your computer. Use Windows Explorer to checkyour hard disk for a folder called Acrobat.

If Reader is not there, then for Windows 95, 98 and NT installit from the CD-ROM, E:\Admin \Acrobat \PC \32bit \Setup.exe.If E is not your CD-ROM drive, substitute the correct letter.Double click on Setup.exe, the self extracting installer file,which will install the software onto your hard disc.

TheFontsThis folder contains the font files:

• Tekton~i.ttf

• Tekton~n.ttf

• Marker.ttfThese fonts have been included in order to give users accessto the fonts intended for the spreadsheets.

These condensed fonts were used in the spreadsheets inorder to emulate a designer’s handwriting and to allow anadequate amount of information to be shown across thepage and in each cell. As described under Fonts in Using thespreadsheets for the first time (see page 11), unless theappropriate fonts and default font size have been installed,the appearance on screen will be different from thepublication and from that intended. Column width and celloverlap problems may occur unless the correct fonts anddefault font size are installed.

To the best of our knowledge these fonts are copyright-free.

S U P P O R T I N G F O L D E R S

Screen dump from Windows Explorer

Page 157: User Guid

155

Printreg.xlsThis spreadsheet is included to provide:

• A means for finding set-up / printing discrepanciesbetween computers

• An initial check on users’ set-ups

• A print-out for registration

A copy is shown on page 155. Its use should be selfexplanatory.

Readme.doc & Readme.txtEssential for initial users of the spreadsheets in both Wordand text formats.

ByOthersThe BCA and RCC disclaim any responsibility for programsby others. These programs and files are provided to helpdissemination. They are subject to the authors’ conditionsof use.

BRCThis suite of programs is provided by BRC – ConcreteConnections, for use in the design of their proprietary liftinganchors, anchors for sandwich panels and Studrail (apunching shear system ). The anchor and sandwich panelsoftware was authored by DEHA Ankersysteme, Germany.The Studrail files are joint BRC/DEHA Ankersysteme software.The programs are provided as freeware (i.e. free software).For further information please contact: BRC – ConcreteConnections, Mansfield, Tel: 01623 440472, Fax: 01623 559758,email: [email protected]. www.brc-uk.co.uk

Anchors

The program DHT-2E suggests positions and types of anchorsfor lifting various precast concrete products - slabs, walls,pipes etc. With a graphical interface and output the programshould prove easy to use. Some text is in German.

To load the program to your hard disk, use the setup file/Byothers/ Brc/ Anchors/ Setup.exe. Files will be saved undera folder deha/ on your hard disk drive. To run the programuse Windows Explorer and successively double click deha/dht20e/ DHT-2E.

Sandwich

This program indicates the anchor positions needed tosupport the outer facing layer of a concrete sandwich wallpanel and designs the fixing anchors to suit. The graphicalprogram outputs design calculations and drawings showingthe type and position of the fixings required. Start by usingDefaults and work through Facing layer to Design.

To run the program direct from the CD-ROM run Byothers/Brc/ Anchors/ Dehas-e or copy the folder to the hard disk.

Studrail

This program designs Studrail reinforcement for punchingshear around a column or pile and prints out the full designcalculation and drawings.

To load the program to your hard disk, use the setup fileByothers/ Brc/ Studrail/ Setup.exe – a folder will be created inthe directory of your choice. To run the program useWindows Explorer and successively double click Studrail/Studrail.exe or select the icon “Studrail” in the program menu.

CBuckThis folder contains Barsched.xlt, a spreadsheet templatefor the scheduling of steel for the reinforcement of concreteto BS 4466: 1989 and Amendment No 1. The aim of thespreadsheet is to reduce the time taken to produce a barschedule, eliminate arithmetical errors, reduce schedulingerrors, increase compliance with the BSI specified formatfor bar scheduling and perhaps become the basis forelectronic data interchange. The spreadsheet presents afamiliar interface to the user who has produced schedulesby hand and it is simple to use. It will guide the user throughthe scheduling process while checking the input is inaccordance with British Standard requirements.

A complementary template, Shape99.xlt is also provided.

These templates are made available as shareware (see page 13)by their author. For further information, includingregistration details, corporate customisation etc., e-mail:[email protected]. A support web site isavailable at http://users.newscientist.net/bar.schedule/.

TechnoPile Loads991112-.xlt is a spreadsheet template to determinedistribution of load in piles beneath rigid rafts or pile caps.Loads induced in n-piles beneath m-sided polygon subjectedto moments Mxx, Myy and p-number of vertical loads canbe calculated.

Co-ordinates from an origin at a convenient point describethe position of each pile node and load. Using the specifiedthickness and density of the raft or pile cap, the self-weightof the m-sided polygon is calculated by the template itselfand included in the analysis.

In order to use this template (see Excel documentation),please copy the file to:

C:\Program Files\ Microsoft Office\ Template

To use the program, start Excel 97 and choose:

File/ New and Select PileLoads991112-.xlt

With care, the file may also be used as if it were a normal.xls file.

S U P P O R T I N G F O L D E R S

Page 158: User Guid

156

The spreadsheet includes three examples having 2, 3 and 4plies. To add a node, load or pile, click the apprpriate Addbutton at the top of the sheet. To delete a node, load orpile, position the cursor in any cell in its row and then clickthe appropriate Delete button. To include additional pilecaps for analysis, click Add Sheet button at top of the screen.

Shaded cells in the input and output mean that they areuser input and the unshaded cells are spreadsheet results.For further details refer to Notes! within the spreadsheet.Pile Loads991112-.xlt is made available as shareware. Forfurther information, including registration details anddisclaimers, refer to Terms! within the spreadsheet.

UserGuidUserGuid.doc: ‘Word’ file of User Guide

This file formed the basis of the printed User Guide. It maybe loaded, read and printed out by using Word 97 orsubsequent releases. While it has been superceded by thr.pdf file, it is included to provide help to allow parts of thedocument to be printed or for use as a basis for comment.

UserGuid.pdf: ‘Adobe Acrobat’ file of the UserGuide

This file presents the User Guide in full colour. AdobeAcrobat Reader v 3.0 or later will be required to read andinterrogate the .pdf file. Acrobat Reader is available on theCD-ROM (see above). The file has been included to providehelp and to allow colour printing of parts of the document.

S U P P O R T I N G F O L D E R S

Page 159: User Guid

157

S U P P O R T I N G F O L D E R S

36

To

from

re

Ifre

gis

terin

g,re

mitta

nce

enclo

se

d.

eg

£5

8.7

5(=

£50.0

0+

VA

T)

AB

CD

EF

GH

IJ

K

12D

ea

rU

se

r,34

Th

iss

pre

ad

sh

ee

th

as

be

en

inc

lud

ed

for

thre

em

ain

rea

so

ns

:

51

am

ea

ns

for

find

ing

se

t-up

/p

rintin

gd

isc

rep

an

cie

s

62

an

initia

lc

he

ck

on

us

ers

's

et-u

ps

73

ap

rinto

ut

for

reg

istra

tion

89

10

11

12

13

14

15

16

17

Yo

ur

na

me

AB

Se

e

18

Co

mp

any

NG

Ne

er

&P

artn

ers

19

20

Ad

dre

ss

Ad

dre

ss

1

21

Ad

dre

ss

2

22

To

wn

23

Co

unty

24

(Ifno

tU

K,C

ountry

&)

Po

stc

od

e

25

26

Pho

ne

eg

01

34

47

62

67

6

27

Fa

xe

g0

13

44

76

12

14

28

E-m

ail

eg

ng

ne

er@

ho

me

.co

.uk

29

30

Na

ture

ofb

usin

ess

eg

Co

nsultin

gE

ng

ine

ers

31

No

ofe

mp

loye

es

eg

12

32

33

Yo

ur

co

mp

ute

re

gD

ellO

ptip

lex

GX

i

34

Mo

nito

re

gS

am

sung

17

GL

35

Prin

ter

eg

HP

La

se

rjetII

RCC fax to 01344 761214 or

send to RCC, Telford Avenue, Crowthorne, Berkshire, RG45 6YS

A B See , N G Neer & Partners

Spreadsheets to BS8110 & EC2: formatting, registration etc

Date 26-Nov-99

1 of 1

MN

OP

QR

ST

U

---

ma

ny

tha

nk

s

CH

Go

od

ch

ild

InE

xce

l,d

efa

ult

fontna

mee

gA

rial

InE

xce

l,d

efa

ult

fontsize

eg

12

Fo

nts

Isth

isA

rial?

Aria

l

Isthis

Tekton?Tekton

Isthis

Tekton

italic

?Tekton

Isth

isM

ark

er?M

ark

er

Exc

elre

lea

se

8.0

e8

.0a

Op

era

ting

Sys

tem

Win

do

ws

(32

-bit)

NT

4.0

0W

ind

ow

s(3

2-b

it)4

.00

Re

ca

lcula

tion

mo

de

Auto

ma

ticA

uto

ma

tic

Test

Thenam

eofthe

fontin

cellN21ordefault(see

Tools\Options

\General,)ifdifferent

please.Fontnam

eand

size(from

lefthand

sideofForm

attingtoolbar)

Checkin

fontbox

inForm

attingToolbar(View

/Toolbars/Form

atting).Ifnotload

thesefonts

intoyourfont

directory(Usually

C\Windows\Fonts)

Ifnotautom

aticsee

Tools\Options\Calculation

11

-No

v-99

If<8.0

ausers

may

experiencedifficulties

#ABCabcq

5678

Make

cheques

payableto

'BCA'.Sendtogetherwith

acopy

ofthisprintout

toRCC,

TelfordAvenue,

Crowthorne,Berkshire,

RG45

6YSRegistration

includesacceptance

ofthe'Conditions

ofUse'asdefined

inthe

UserGuide

Spreadsheets

forconcretedesign

toBS

8110

andEC2

Ple

ase

ch

eck

on

eo

fth

eb

oxes

ab

ove

an

dco

mp

lete

the

info

rmatio

nb

elo

wb

yo

verw

riting

blu

ete

xt

as

far

as

yo

uare

ab

le.P

lease

do

no

tch

an

ge

an

yth

ing

els

e.In

the

case

of

1o

r2

ab

ove,co

mp

are

with

prin

ted

vers

ion

inacco

mp

an

yin

gU

ser

Gu

ide

an

din

the

case

of

diffic

ulty

prin

tan

dfa

xa

co

py.

Inth

ecase

of

3,re

gis

tratio

n,p

lease

prin

to

ut

an

dsen

dth

isco

mp

lete

dfo

rmw

ithyo

ur

rem

ittan

ce.

Page 160: User Guid

158

References1 Goodchild, C.H. Economic concrete frame elements.

British Cement Association, Crowthorne, 1997. 128 pp.

2 BRITISH STANDARDS INSTITUTION. BS 8110: 1997.Structural use of concrete. Part 1. Code of practicefor design and construction. British StandardsInstitution, London, 1997.

3 BRITISH STANDARDS INSTITUTION. DD ENV 1992-1-1:1992. Eurocode 2: Design of concrete structures. Part1: General rules and rules for buildings. Includes theUK National Application Document. British StandardsInstitution, London, 1992.

4 BRITISH STANDARDS INSTITUTION. BS 8002: 1994.Code of practice for earth retaining structures. BritishStandards Institution, London, 1994.

5 BRITISH STANDARDS INSTITUTION. BS 8007: 1987.Code of practice for design of concrete structures forretaining aqueous liquids. British StandardsInstitution, London, 1987.

6 INSTITUTION OF STRUCTURAL ENGINEERS ET AL. Earthretaining structures. (Civil Engineering Code ofPractice No. 2.) Institution of Structural Engineers,London, 1975. 224 pp.

7 MACLEOD, I.A. ET AL. Information technology for thestructural engineer. The Structural Engineer, Vol. 77,No.3, 2 February 1999. pp. 23 - 25.

8 STANDING COMMITTEE ON STRUCTURAL SAFETY.Standing Committee on Structural Safety, 10th report,July 1992 – June 1994. SETO Ltd, London, 1994. 32 pp.

9 ANSLEY, M. Liability concerns require adaptablesoftware. Concrete International, Vol. 19, No. 12,December 1997. pp. 37, 38.

10 KHAN, S. Techno Consultants Ltd, Manchester.Correspondence with authors, May 1999.

11 MOSLEY, W.H. & BUNGEY, J.H. Reinforced concretedesign (4th edition). Macmillan, Basingstoke, 1990.392 pp.

12 REYNOLDS, C.E. & STEEDMAN, J.C. Reinforcedconcrete designer’s handbook (10th edition). E&FNSpon, London, 1998. 448 pp.

13 ALLEN, A.H. Reinforced concrete design to BS 8110simply explained. E&FN Spon, London, 1988. 256 pp.

14 THE CONCRETE SOCIETY. Post-tensioned concretefloors – Design Handbook, Technical Report No 43.The Concrete Society, Slough (now Crowthorne), 1994.162 pp.

15 HIGGINS, J.B. & ROGERS, B.R. Designed and detailed(BS 8110:1997) . British Cement AssociationCrowthorne, 1998. 28 pp.

16 KHAN, S. & WILLIAMS, M. Post-tensioned concretefloors. Butterworth Heinnemann, Oxford, 1995. 312pp.

17 CEMENT AND CONCRETE ASSOCIATION. Basic data forthe prediction of shrinkage and creep. Training noteTDH 2391. Cement and Concrete Association (nowBritish Cement Association), Slough (nowCrowthorne), 11 pp.

18 WYATT, T A. Design guide on the vibration of floors.Pub. No. 076, Steel Construction Institute, Ascot, 1989.43 pp.

19 BRITISH STANDARDS INSTITUTION. BS 6399: Part 1:1996. Loading for buildings. Code of practice for deadand imposed loads. British Standards Institution,London, 1996.

20 BRITISH STANDARDS INSTITUTION. CP 110: 1972. Codeof practice for the structural use of concrete. BritishStandards Institution, London, 1972.

21 BRITISH STANDARDS INSTITUTION. BS 5400: 1988.Steel, concrete and composite bridges . BritishStandards Institution, London, 1988.

22 RAFIQ, M.Y. AND SOUTHCOMBE, C. Geneticalgorithms in optimal design and detailing ofreinforced concrete biaxial columns supported by adeclarative approach for capacity checking.International Journal of Computers and Structures,69 (1998), pp 443 - 457.

23 BRITISH STANDARDS INSTITUTION. BS 8004: 1986.Code of practice for foundations. British StandardsInstitution, London, 1986.

24 NARAYANAN, R S. Comparison of designrequirements in EC2 and BS 8110. The StructuralEngineer, Vol. 67, No 11, 6 June 1989, pp. 218 - 227.

25 BEEBY, A.W. ET AL. Worked examples for the designof concrete buildings. British Cement Association,Crowthorne, 1994. 256 pp.

26 BEEBY, A.W. & NARAYANAN, R.S. Designershandbook to Eurocode 2 Part 1.1: Design of concretestructures. Thomas Telford Ltd, London, 1994. 242 pp.

Further reading

1 INSTITUTION OF STRUCTURAL ENGINEERS;INSTITUTION OF CIVIL ENGINEERS. Manual for thedesign of reinforced concrete building structures.London, ISE, London, 1985. 88 pp.

2 REYNOLDS, C.E. & STEEDMAN, J.C. Examples of thedesign of reinforced concrete buildings to BS 8110(4th edition). E&FN Spon, London, 1992. 320 pp.

3 MOSLEY, W.H. Et Al. Reinforced concrete design toEurocode 2 (EC2). Macmillan, London, 1996. 426 pp.

R E F E R E N C E S A N D F U R T H E R R E A D I N G

Page 161: User Guid

159

Please note that definitions relating to retaining andbasement walls and many of those relating to post-tensioneddesign are contained within the relevant spreadsheets.

Abbre-viation Unit Explanation

(B or S) Beam or slab (re PT)

(L, R, B) Stressing ends left, right and bottom(re PT)

(B, U) Prestressing system bonded orunbonded (re PT)

~ Not applicable/ no result

~~~ or No input required~~~~~

m Coefficient of friction

Ac mm² Area of concrete section

acr mm Distance from point considered tonearest longitudinal bar (Crack widths:usually from surface half way etweenbars to bar)

Ap mm² Area of prestressing strand/tendon

As mm² Area of (tension) steel

As’ mm² Area of compression steel

As min mm² Minimum area of steel required

As prov mm² Area of steel provided

As req’d mm² Area of steel required

Asv mm² Area of shear reinforcement

b mm Width, effective width, breadth (inRCC51.xls both or two-way spanning)

bf mm Breadth of flange

B, Btm Bottom

be mm Breadth of effective moment strip

bv mm Breadth of section

bw mm Average web width of a flangedbeam

char Characteristic (load)

Cl Centreline (of support)

CO mm Cover (crack widths)

Comp Compression

d mm Effective depth

d’ mm Depth to compression reinforcement

dc mm Depth of compression zone (columndesign)

Def Deflection

Dia Diameter

E/O Extra over

Ec28 N/mm² Modulus of elasticity of concrete (at28 days)

Eci N/mm² Modulus of elasticity of concrete atinitial stressing (re PT)

Ep N/mm² Modulus of elasticity of prestressingstrand/tendon (re PT)

e mm Eccentricity

emin mm Minimum eccentricity

F kN total design ultimate load on the fullwidth of panel

fci N/mm2 Characteristic concrete strength atinitial stressing (re PT)

fck N/mm2 Characteristic concrete cylinderstrength (EC2)

fcu N/mm² Characteristic concrete strength

FEM Fixed end moment

fs N/mm² (Estimated in-) service stress ofreinforcement in a section

fsc N/mm² (In-) service stress of reinforcement ina section: compression

fst N/mm² (In-) service stress of reinforcement ina section: tension

fy N/mm² Characteristic steel strength (bendingreinforcement)

fyv N/mm² Characteristic steel strength (linkreinforcement)

Gk kN Characteristic dead load

gk kN Characteristic dead load per unit area

h, H mm Height

hc mm Effective diameter of column (designof flat slabs)

hf mm Thickness of flange

hf mm Height of flange

K M/bd2fcu - used to determine whethercompression reinforcement is requiredor not

K Wobble factor (re PT)

K’ Factor determining whethercompression reinforcement is required

L m, mm Span

L/d Span:depth

lx m, mm Length along x axis, length of shorterside (two-way slab panel or flat slabpanel)

Lx m, mm Span in x direction

ly m, mm Length along y axis, length of longerside (two-way slab panel or flat slabpanel)

MOR kNm Moment of resistance

M(e) all kNm Elastic moment all spans loaded

SYMBOLS

Page 162: User Guid

160

M(r) kNm Redistributed moment eveneven spans loaded

Moment, kNm Design ultimate moment at a sectionM

Madd kNm Additional design ultimate momentinduced by deflection of column

Mmin kNm Moment due to axial load acting atminimum eccentricity

Mres kNm Moment of resistance

Ms kNm Service moment (crack widths)

msx kNm/m Maximum design ultimate moments inspan or at support in strips of unitwidth and length lx. Likewise msy

Mt kNm Design moment transferred betweenslab and column

Mx kNm Design moment about x - x axis

N kN Design ultimate axial load

n kN/m² Total design ultimate load per unit area

n. a. Neutral axis

n/a Not applicable

No Number

f mm Bar diameter, maximum bar diameter

o/a Overall

Perim Perimeter

PL Point load

PT Post tensioned (concrete)

Qk kN Characteristic imposed load

qk kN Characteristic imposed load per unit area

R Grade 250 reinforcement, mild steel

R/H % Relative Humidity (re PT)

Rel% % Relaxation (re PT)

s mm Spacing (of links or bars)

SLS Serviceability limit state

sv mm Spacing of links

T Top, Grade 460 reinforcement

Tens Tension

UDL Uniformly distributed load

ULS Ultimate limit state

ult Ultimate

uno Unless noted otherwise

V kN Design ultimate shear force

v N/mm² Shear stress at a section

vc N/mm² (Allowable) design shear stress

vc’ N/mm² (Allowable) design shear stresscorrected for axial load (e.g. columndesign)

Veff kN Design effective shear includingallowance for moment transfer (flatslabs, punching shear)

VRd1 kN Maximum design shear force withoutreinforcement (EC2)

VRd1 kN Maximum design shear force withreinforcement (EC2)

VSd kN Design shear (EC2)

vsx kNm/m Maximum design shear in strips ofunit width and length lx

Vt kN Design ultimate shear transferred tocolumn (flat slabs, punching shear)

w mm Crack width

W/C ratio Water:cement ratio (re PT)

Wk kN Characteristic wind load

wk kN Characteristic wind load per unit area

x mm Depth to neutral axis

x or y Spanning parallel to x or y

Y/N Yes/ no

z mm Lever arm

a Modular ratio (usually Es/Ec,approximately 15)

bb Redistribution factor - the ratio:(moment at a section afterredistribution / moment at the sectionbefore redistribution)

e Strain

gm Average strain (crack widths)

gc Partial safety factor for strength ofmaterial: concrete

gm Partial safety factor for strength ofmaterial. (See relevant Code)

gs Partial safety factor for strength ofmaterial: steel

r Proportion of steel reinforcement

sc N/mm² Allowable compressive (long term)stress in concrete (re PT)

sic N/mm² Allowable compressive stress inconcrete at initial stressing (re PT)

sit N/mm² Allowable tensile stress in concrete atinitial stressing: (re PT)

st N/mm² Allowable (long term) tensile stress inconcrete (re PT)

tRd N/mm2 Basic shear strength (EC2)

Y2 Quasi-permanent load factor appliedto imposed loads in calculations ofdeflection (EC2)

z % Damping, (usually 2% to 8%) (re PT)

m Coefficient of friction

mlim Limiting value of applied momentratio for singly reinforced sections(ENV EC2)

S Y M B O L S

Page 163: User Guid

Advisory Group Members

S Alexander, S Alhayderi, Dr H Al-Quarra, I Baldwin, C Barker, M Beamish, A Beasley, T Bedford, G Belton,R Bhatt, R Bickerton, P Blackmore, D Blackwood, M Brady, C Buczkowski, A Campbell, Dr P Chana,G Charlesworth, L Cheng, Mr Chichger, R Collison, A Craddock, M Morton, J Curry, J Dale, H Dikme,C P Edmondson, J Elliott, I Feltham, G Fernando, M Fernando, I Francis, A Fung, P Gardner, J Gay, P Green,A Hall, N Harris, G Hill, D W Hobbs, R Hulse, M Hutcheson, A Idrus, N Imms, P Jennings, R Jose, D Kennedy,G Kennedy, R Jothiraj, Dr Shaiq Khan, A King, G King, S King, K Kus, I Lockhart, M Lord, B Lorimer, M Lovell,Dr Luker, J Lupton, M Lytrides, Prof I Macleod, F Malekpour, A McAtear, A McFarlane, F Mohammad,A Mole, M Morton, R Moss, B Munton, C O’Boyle, Dr A Okorie, T O’Neill, B Osafa-Kwaako, D Patel,D Penman, M Perera, B Quick, Y Rafiq, A Rathbone, M Rawlinson, P Reynolds, H Riley, N Russell, U P Sarki,T Schollar, A Stalker, A Starr, M Stevenson, B Stoker, B Treadwell, A Truby, R Turner, T Viney, Dr P Walker,B Watson, J Whitworth, C Wilby, S Wilde, A Wong and E Yarimer.

If the CD-ROM RC-Spreadsheets is missing, contactthe RCC on (01344) 725733 for a replacement.

Page 164: User Guid

SPREADSHEETS FOR CONCRETEDESIGN to BS 8110 and EC2

C H Goodchild

R M Webster

BRITISH CEMENT ASSOCIATION PUBLICATION 97.370

con reteB E T T E R B U I L T I N

CI/Sfb

UDC624.04

�?`^YTRb 3JL?;>MB??NM�NI�"3�����

�2[XT]b !>PCMILS�'LIOJ

�;^RPbX^] $$��-;CH�<?;G�'LC>M�#�NI�(

#/.4).5/53�"%!-��!H;FSMCM��$?MCAH��NI�"3�������

>`XVX]PbTS�U`^\�A22$!�f[a�^]�23�������������������������!(((�120�U

�,/#!4)/. Bc__^`ba�U`^\�V`XS� ! b

�-!4%2)!,3 URc $ =�\\�

Ug[ $% =�\\�

Ugd "Ô =�\\�