第1分科会 「テラヘルツ電磁波の発生・検出とその...

64
第1分科会 「テラヘルツ電磁波の発生・検出とその応用」 谷正彦(大阪大学レーザーエネルギー学研究センター 助教授) E-mail: [email protected] 目次 1 章 序論 1.1 はじめに 1.2 THz 帯での光源(発振器)及び検出器の概略 2 章 レーザー励起による THz 電磁波発生・検出原理 2.1 光伝導アンテナによる発生と検出 2.2 非線形光学結晶による発生と検出 2.3 光パラメトリック発生・発振 2.4 半導体・超伝導体からの THz 電磁波放射 2.5 光混合法による連続波発生 3 章 テラヘルツ電磁波の分光応用 3.1 テラヘルツ時間領域分光法 (THz-TDS) 3.2 気体分子 3.3 固体 3.4 液体・溶液 3.5 生体関連分子 4 章 各種計測応用 4.1 イメージング応用 4.2 危険物の探知 4.3 結晶多形 5 章 おわりに さらに深く勉強するために(参考文献)

Upload: duongnga

Post on 17-Jul-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

  • E-mail: [email protected]

    1

    1.1

    1.2 THz

    2 THz

    2.1

    2.2

    2.3

    2.4 THz

    2.5

    3

    3.1 (THz-TDS)

    3.2

    3.3

    3.4

    3.5

    4

    4.1

    4.2

    4.3

    5

  • 1 1

    1.1 X

    (Terahertz, THz)

    30GHz12THz (THz )1.1.1

    1.1.1

    (Hz) (cm-1) 0.75m~2.5m 400~120 THz 13,333~4,000 cm-1 2.5m~25m 120~12 THz 4,000~400 cm-1

    25m~1 mm (0.1~1 mm)

    120.3 THz (30.3 THz)

    400~10 cm-1 (10010 cm-1)

    1~10 mm 30030 GHz 10010 cm-1

    1 THz1012 Hz1 (=10-12

    )1THz300mHz cm-11THz33.3cm-11THzh4.1meVkT(k )48K500nm2.5eV2

    (THz)

    // X

    104 106 108 1010 1012 1014 1016 1018 (Hz)

    1 THz = 1 ps = 300 m = 33 cm-1 = 4.1 meV = 48K

    (THz)

    // X

    104 106 108 1010 1012 1014 1016 1018 (Hz)

    // X

    104 106 108 1010 1012 1014 1016 1018 (Hz)

    1 THz = 1 ps = 300 m = 33 cm-1 = 4.1 meV = 48K

    1.1.1

  • 2 (Transit

    time)

    THz

    (Quantum Cascade Laser, QCL)THzQCL

    1980

    DCTHz

    THzTHz radiation (THz)THz

    (i) S/N

    (ii) Kramers-Kronig

    (iii) PumpProbe

    THz (Terahertz Time-Domain Spectroscopy, THz-TDS) THz THz-TDS THz

    THz THz THz THz Continuous Wave, CW THz THz THz InAs THz THz THz - CW-THz THz 3 (Terahertz Time-Domain Spectroscopy, THz TDS) THz-TDS THz

  • 3 THz

    THz 300GHz ( )

    [Bk6] 11 1.2 THz 1.2.1 THz

    1.2.1 THz

    ,

    CO2 (p-Ge)

    THz

    1.2.1 (a)

    Emissivity

    1)/exp(12)( 5

    2

    =

    TchhcP

    [W cm-3] (1.2.1)

    : (cm) c: 3x1010[cm/sec]h:=6.626x10-34 [Jsec] T: [K]

    T

    Tbm /= m: (1.2.2) THz

    300K 10m

  • 4 10m

    (1.2.1)

    300K1,000K

    THz

    1.2.1 T=700K 3~4m 1THz(=300m) 6 3~4m 10-6 1THz 3~4m THz (b) Synchrotron

    Orbital Radiation, SORSOR X X SOR SOR THz

    W THz [So1]

    v

    43

    0

    222

    6})())(1({

    caeNffNPcoh += (1.2.3)

    Neac0 , 22 /1/1 cv= f()

    [So2] 22 /1/1 cv= 45MeV =75 (1.2.3) 1 2 f()=1 f()=0

    N 1,000 SOR SOR 1,000 SOR SOR

    1 10 100 1000

    10-510-410-310-210-1100101102103 T=700K

    T=300K T=77K

    Bla

    ck b

    ody

    emitt

    ance

    (a.u

    .)

    Wavelength (m)

    m

    P()

    10m()

    1 10 100 1000

    10-510-410-310-210-1100101102103 T=700K

    T=300K T=77K

    Bla

    ck b

    ody

    emitt

    ance

    (a.u

    .)

    Wavelength (m)

    m

    P()

    10m()

    1.2.1 300K 10um

  • 5

    THz MeV 10

    SOR

    THz

    THz FELIX USCB 0.320m

    (c) GaAs Gunn Gunn

    IMPATT (IMPact-ionization Avalanche Transit Time diode) 200GHz300GHz 600GHz700GHz

    (RTD, Resonant Tunneling Diode)700GHz

    (d) (BWO, Backward Wave Oscillator)

    200GHz mW BWO 40GHz1.3THz 1THz 0.10.5mW

    140GHz1MW 100850GHz100W (CW) 140660GHz10W (e) CO2

    100mWmW THz CO2 MIM(Metal Insulator Metal) CO2

    THz Pb1-xSnxTe, Pb1-xSnxSe THz THz p-Ge p-Ge [So3] p-Ge Ge Ga Be Ge

    1.2.2 p-Ge p-Ge

  • 6

    1.2.2(b) kStreaming

    THz p-Ge

    p-Ge

    ns ms

    THz [So4] (i) (300K~kT=25meV~6THz),(ii) a n

    2

    2

    32

    em

    f nananah

    = (1.2.4)

    na a n na na THz THz

    1.2.3 3 1

    n=1, 2, 3 2 ( )

    Ek2E k n=1, 2, 3

    (a)

    B

    E

    B

    E

    (b)

    k

    EOptical phononscattering

    Eop

    heavy holestreaming

    light

    hole

    accu

    mulat

    ion

    1.2.2 (a) p-Ge(b) p-Ge

    Miniband(injector)

    d

    minigap3

    21

    Active region

    Lasing condition: 3 > 2

    3-well system

    Miniband(injector)

    d

    minigap3

    21

    Active region

    Lasing condition: 3 > 2

    3-well system

    1.2.3 3

  • 7 100 n=3 n=3 n=2

    23 > (1.2.5) 3 n=3 2 n=2 n=3 n=1

    232 > (1.2.6) 32 n=3 n=2 23 > n=3 d (

    )n=2 n=1 n=2 n=1 23 > 232 > n=3 n=3 n=2 1.2.3 1 100~200 n=3 n=2

    (

    d n=3 n=2 d ( Trade-off )THz

    MIT Hu

    2.1THz140m [So5]THz 2.1THz 40K DFB 4.4THz

    ( 1%200ns/20s,T

  • 8 1.2.2 THz THz

    (Pyroelectric detector)

    Ge:Ga 120m Ge:Ga 240m InSb IF(Intermediate Frequency)THz

  • 9 2 THz 2.1

    1 THz

    THz THz THz

    GHz THz

    ( D. H. Auston Auston

    2.1.1 2.1.1 GaAs, Si (coplanar transmission line) 2.1.1

    m Eg ( gEh > )

    THz ( ) far field )(tp )(tJ

    .sin)/(4

    sin)/(4

    1),( 222

    2

    tcrtJ

    rcl

    tcrtp

    rctrE e == (2.1.1)

    ),( trE r t c leJ (2.1.1) r

    22 / tp tJle / (=22 / tp )

    t= r/c 1/r

    Ni:Ge:Au

    20m

    LT-GaAs(2m)/SI-GaAs substrate(0.4mm)

    5m10m 10mDC or

    AC bias@ >10 kHz

    6mm

    10mm

    THz

    Si

    (dipole

    ETHz(t)J(t)/t

    I(t)

    J(t)

    2.1.1 ( )

    2.1.2 THz

  • 10 (2.1.1)

    2 J(t)

    jPC(t) bias= (t) jPC(t) [PC6]

    1

    1)()(

    )(0 +

    +

    =

    d

    biasPC

    nZtEt

    tj

    (2.1.2)

    0nd THz 2.1.2 bias

    el (2.1.1)

    (2.1.1) )(tJ el THz )(tETHz )(tjPC (2.1.1) )(tETHz

    +

    =

    antennagap

    PCTHz xdrt

    crtjc

    rtE 32sin)/(

    41),(

    (2.1.3)

    +antennagap xd 3

    30m ~2mm (2.1.1)(2.1.3) (2.1.3)

    = deEtE tiTHzTHz )()( (2.1.4a)

    +

    +

    =

    =

    antennagap PC

    antennagap PCTHz

    xdxr

    xrikxji

    c

    xdrikrxji

    cE

    3

    0

    02

    32

    sin)exp(

    ),(4

    1

    sin)exp(),(4

    1)(

    (2.1.4b)

    = detjj tiPCPC )(2

    1)( /2/ == ck

    r = |r | |r0x | |r0 | r0

    x sin

    +

    =antenna

    gap PCTHz xdxrikxjri

    cE 30

    02 )exp(),(

    sin4

    1)(

    +

    =antenna

    gap PC xdikxxjikrri

    c3

    00

    2 )cosexp(),()exp(sin

    41

    (2.1.5)

    r0

    r

    x

    E(t,r)

    O

    jPC

    xcos

    2.1.3

  • 11

    --- ---

    Lee[PC1-2] Auston[PC3-4] Jayaraman Lee[PC1] Nd GaAs 1972 Auston[PC3] 1975 Si 10

    1984 Auston [PC5]Auston 100fs Si 1.6ps [PC5]

    Auston Lee Chirped pulse amplification J. Mourou

    D.Grischkowsky (THz-TDS) 1873 Maxwell

    1887 Hertz Hertz

    Hertz 1887 Hertz

    It is no use whatsoever, he replied. This is just an experiment that proves Maestro Maxell was right, we just have these mysterious electromagnetic waves that we cannot see with the naked eye. But they are there. So, what next? asked one of his students at the University of Bonn. Hertz shrugged. He was a modest man, of no pretensions and little ambition. Nothing, I guess. Hertz

    Hertz 30 37

    (Heinrich Rudolph Hertz, 1857~1894)

    ()()

  • 12 ),( xjPC exp(ikxcos) x )(tjPC

    (t)(t) I(t) c n exp(-t/c)(t>0)

    ')/'exp()'()()(0

    dttttIhetnet c ==

    (2.1.6)

    e h 100 (z) I exp(z/)/h (2.1.6)

    (t) p c p

  • 13 2.1.1 (2.1.4b) [PC11] 2.1.4 3.5(THz GaAs ) ( ) sin2H-plane

    =/2 =/2

    3/2 [PC11] THz 10 GaAs =12 2.1.4

    [PC11] ( ) ( 2.1.5 ) THz GaAs Si(>1k cm n=3.41) (Hemispherical) (Hyper-Hemispherical) THz 2.1.5

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    x20

    E-plane

    H-plane

    GaAs Substrate (n=3.5)Air

    H-plane E-plane

    Dielectric substrate

    2.1.4 ( ) 20 3.5(GaAs THz )

    (>1kcm)SiPC (GaAs)

    Hemi-spherical

    r

    h

    h = r

    Hyper-hemi-spherical

    h = r (n+1)/n

    Collimating

    h = r n/(n-1)

    (>1kcm)SiPC (GaAs)

    Hemi-spherical

    r

    h

    h = r

    Hyper-hemi-spherical

    h = r (n+1)/n

    Collimating

    h = r n/(n-1)

    2.1.5 h 0.4

  • 14GaAs 0~3THz 3.63.65 Si 0~3THz 3.42 GaAs Si Fresnel 2.6~3.2% 0.070.1% ( )

    THz (Hyper-Hemispherical lens) r n

    nrr

    nnrh +=+= )1( (2.1.8)

    THz

    (Collimating lens)

    11 +=

    =

    nrr

    nrnh (2.1.9)

    THz

    (2.1.5)

    (2.1.1)

    [PC12] 50m

    4THz GaAs

    8THz TO 4~5THz 2 4THzTHz

    2.1.6(a) [PC13] 2.1.6(c) [PC14] 2.1.6(d) [PC15]

    THz

    Tapered slot antenna[PC16], Flared coplanar stripline antenna 2.1.6(e)[PC17-19]

  • 15 (a)

    5m

    (d)

    5~10m

    (b)

    100m

    (e)

    (c) Bow angle60~90 deg.

    1~2 mm 5~10 m

    2.1.6 (a) (b) (c) (d) (e)

    V

    2.1.6(b)[PC20-21]

    56 THz 2.1.6 (le= 50

    m) (le=2mmBow angle le=60 deg) ( 100m) THz ( )

    15mW 30V, 100V

    THz 1THz 0.5THz

    0 1 2 3 4 50

    10

    20

    30

    Bow-tie 2 W (15mW, 30V)Dipole I 0.34 W (15mW, 30V)Stlipline 0.42 W (15mW, 200V)

    Bow-tie Dipole I (50-m) Stripline

    Am

    plitu

    de (a

    rb. u

    nit)

    Frequency (THz)

    2 3 4 50.0

    0.2

    0.4

    0.6

    0.8

    1.0

    2.1.7

    THz

  • 16 mm cm

    [PC22-24] You [PC25]LT-GaAs 1cm 120fs10Hz

    0.8W/pulse( 500fs) THz 2%800nm 1 THz 1 1 Manley-Rowe THz optYou opt=375THz(opt=800nm) THz THz =0.5THz THzopt =0.5/375=0.13%You THz

    s

    P VE SdEs smax = =12

    12

    2 2 (2.1.10)

    S d

    ( ) (2.1.7)

    Deplete( ) ( ) THz

    THz Down-conversion THz DC THz 1 Up-conversion

    THz (2.1.2) (2.1.6)

    2.1.1

    Cr GaAs GaAs Si

  • 17 2.1.1

    ps

    cm2/V/s

    cm (

    V/cm)

    eV

    GaAs 100 1000 107 1.43 a) GaAs 0.3 150-200 106(5x105) a),b),c),d) InP 100 1000 4x107 1.34

    InP 0.1-4 200 > 106 c),e),f)

    Si(RD-SOS) 0.6 30 1.1 g)

    Si 0.8-20 1 107 a),h)

    MOCVD CdTe 0.5 180 1.49 i)

    In0.52Al0.48As 0.4 5 1.45 c)

    Ge 0.6 100 0.66 j) 1800 106(107) 5.5 k)

    a) S. Gupta, J. F.Whitaker, and G. A. Mourou: IEEE J. Quantum Electron. 28, 2464-72 (1992). b) M. Tani, K. Sakai, H. Abe, S. Nakashima, H. Harima, M. Hangyo, Y. Tokuda, K. Kanamoto, Y. Abe, and N. Tsukada: Jpn. J. Appl. Phys. 33, 4807-4811 (1994). c) S. Gupta, P. K. Bhattacharya, J. Pamulapati, and G. Mourou: Appl. Phys. Lett. 57, 1543-1545 (1990). d) G. L. Witt, Mat. Sci. Eng. B22, 9-15 (1993). e) K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. Hopfel: Appl. Phys. Lett. 59, 926-928 (1991). f) P. M. Downey and B. Schwartz: Appl. Phys. Lett. 44, 207-209 (1984). g) F. E. Doany, and D. Grischkowsky: Appl. Phys. Lett. 52, 36-38 (1988). h) A. M. Johnson, D. H. Auston, P. R. Smith, J. C. Bean, J. P. Harbison, and A. C. Adams: Phys. Rev. B 23, 6816-6819 (1981). i) M. C. Nuss, D. W. Kisker, P. R. Smith, and T. E. Harvey: Appl. Phys. Lett. 54, 57-59 (1989). j) N. Sekine, K. Hirakawa, F. Sogawa, Y. Arakawa, N. Usami, Y. Shiraki, and K. Katoda: Appl. Phys. Lett. 68, 3419-3421 (1996). k) P.-T. Ho, C. H. Lee, J. C. Stephenson, and R. R. Cavanagh: Opt. Commun. 46, 202-204 (1983).

    (

  • 18

    10C 600C

    250C 0.3ps [PC29]LT-GaAs Si (Radiation-Damaged Si on Sapphire, RD-SOS) [PC30] [PC31] LT-GaAs (30 cm2/Vs) [PC32] 1/5 LT-GaAs Ge 0.66eV1.55m 1.3m Ge [PC33] Ge THz

    LT-GaAs 1.55-m 2 1.55-m 1.55-m 800nm 10 [PC34] InP, MOCVD CdTe, MBE In0.52Al0.48As ( 2.1.1 ) 5.5eV (1800 cm2/Vs) 2 [PC35]

    2.1.2

    THz

    2.1.7

    THz

    )(det J ETHz(t) KPC(t)

    +

    =

    2/

    2/int

    detint

    int

    )()(1)(T

    T PCTHzdttKtE

    TJ (2.1.11)

    THz TintKPC(t) A(t)Ggap(t)

    )()()( tGtAtK gapPC = (2.1.12) A(t)

    Mode-locked Ti: sapphire laser

    PC Emitter

    Pumppulse

    PC detector

    Opticaldelay

    Gatingpulse

    AAsample

    2.1.7 THz (THz-TDS)

  • 19 le Ggap(t) )(t

    )()()( tlwt

    lS

    tGgapgap

    gapgap

    == (2.1.13)

    gapl ( ) wSgap = ( )w )(t (2.1.6)(2.1.11)

    +

    =

    2/

    2/int

    detint

    int

    )()(1)(T

    T THzgap

    e dtttEwll

    TJ (2.1.14a)

    +=

    =

    =

    =

    =

    2/

    2/int

    '

    0'

    int

    int

    ')/'exp()'()(Tt

    Tt cTHz

    t

    tgap

    e dtdttehT

    ttItEl

    wl

    (2.1.14b)

    gape lwl / hTtI int/)( )/'exp( cte THz )(det J THz ETHz(t) Kpc(tKpc(t )(det J ETHz(t) ( )

    Kpc(t )(det J ETHz(t) ( )

    Si

    (pAnA) S/N

    10kHz

    2.1.1

    LT-GaAs

    0 5 10 15

    0.0

    0.5 12 mW 30 V

    (a)

    0.4 ps

    (nA)

    (ps)

    0 1 2 3 4 50.0

    0.5

    1.0(b)

    FFT

    (THz)

    2.1.8 LT-GaAs

    (a) (b)

  • 202.1.8(a) 2.1.8(b) 0.4ps 03 THz 0.5THz 12mW 30V 0.3W( 4 fJ/pulse) 10-410-5

    THz GaAs InP [PC36-37]

    ( )

    Johnson S/N [PC36]

    THz [PC38-40]

    (2.3.13) c ( )I(t) c

    2.1.9 18 ZnTe ( 12m)LT-GaAs ( ) (a) (b) FFT THz 27fs 40THz 10THz

    ( )

    27 fs

    0.6 0.8 1.0 1.2 1.4 1.6

    -0.1

    0.0

    0.1

    0.2

    01Sep26a0

    PC c

    urre

    nt (p

    A)

    Time (ps)0 20 40 60

    0.01

    0.1

    1

    10

    Frequency (THz)

    FFT

    am

    plitu

    de (a

    rb. u

    nit)

    (a) (b)27 fs

    0.6 0.8 1.0 1.2 1.4 1.6

    -0.1

    0.0

    0.1

    0.2

    01Sep26a0

    PC c

    urre

    nt (p

    A)

    Time (ps)0 20 40 60

    0.01

    0.1

    1

    10

    Frequency (THz)

    FFT

    am

    plitu

    de (a

    rb. u

    nit)

    (a) (b)

    2.1.9 18 ZnTe ( 12m)LT-GaAs ( ) (a) (b) FFT

  • 21

    600nm 100 7201080nm 100

    Er 1.55m 200fs 50~100mW 50MHz 1.55-m SHG(Second Harmonic Generation, 2 ) 150fs 780nm 20mW

    THz ( ) [PC1] S. Jayaraman and C. H. Lee: Appl. Phys. Lett. 20, 392-395 (1972). [PC2] C. H. Lee: Appl. Phys. Lett. 30, 84-86 (1977). [PC3] D. H. Auston: Appl. Phys. Lett. 26, 101-103 (1975). [PC4] D. H. Auston: Picosecond Optoelectronic Device ed. C. H. Lee, Academic Press, 73-117, (1984). [PC5] D. H. Auston, K. P. Cheung, and P. R. Smith: Appl. Phys. Lett. 45, 284-286 (1984). [PC6] A. J. Taylor, P. K. Benicewicz, and S. M. Young: Opt. Lett. 18, 1340-1342 (1993). [PC7] J. T. Darrow, X. -C. Zhang, D. H. Auston, and J. D. Morse, IEEE J. Quantum Electron.

    28, 1607-1616 (1992). [PC8] P. K. Benicewicz and A. J. Taylor, Opt. Lett. 18, 1332 (1993). [PC9] A. J. Taylor, P. K. Benicewicz, and S. M. Young, Opt. Lett. 18, 1340-1342 (1993). [PC10] M. Tani, K. Sakai and H. Mimura: Jpn. J. Appl. Phys. 36, L1175-L1178 (1997). [PC11] D. B. Rutledge, D. P. Neikirk and D. P. Kasilingam: Infrared and Millimeter Waves 10, 1 (1983). [PC12] M. Tani, S. Matsuura, and K. Sakai: Appl. Opt. 36, 7853-7859 (1997). [PC13] H. Harde and D. Grischkowsky: J. Opt. Soc. Am. B 8, 1642-1651 (1991). [PC14] Y. Pastol, G. Arjavalingam, and J.-M. Halbout: Electronics Lett. 26, 133-134 (1990). [PC15] D. R. Dykaar, et al: Appl. Phys. Lett. 59, 262-264 (1991). [PC16] A. P. DeFonzo, M. Jarwala, and C. Lutz: Appl. Phys. Lett. 50, 1155-1157 (1987). [PC17] A. P. DeFonzo and C. Lutz: Appl. Phys. Lett. 51, 212-214 (1987). [PC18] G. Arjavalingam, et al: IEEE Transactions on Micorowave Theory and Techniques, 38,

    615-621 (1990). [PC19] W. M. Robertson, G. Arjavalingam, and G. V. Kopcsay: Appl. Phys. Lett. 57, 1958-1960

    (1990). [PC20] N. Katzenellenbogen and D. Grischkowsky: Appl. Phys. Lett. 58, 222-224 (1991). [PC21] S. E. Ralph, and D. Grischkowsky: Appl. Phys. Lett. 60,1070-1072 (1992). [PC22] B. B. Hu, et al: Appl. Phys. Lett. 56, 886-888 (1990). [PC23] J. T. Darrow, et al: Optics lett. 15, 323-325 (1990). [PC24] J. T. Darrow, et al: IEEE J. Quantum Electron. 28, 1607-1616 (1992). [PC25] D. You, et al: Opt. Lett. 18, 290-292 (1993). [PC26] S. Gupta, J. F. Whitaker, and G. A. Mourou: IEEE J. Quantum Electron. 28, 2464-2472

    (1992). [PC27] G. L. Witt, Materials Science and Engineering, B22, 9-15 (1993). [PC28] D. C. Look, Thin Solid Films, 231, 61-73 (1993). [PC29] M. Tani, et al: Jpn. J. Appl. Phys. 33, 4807-4811 (1994). [PC30] F. E. Doany, D. Grischkowsky and C.-C. Chi: Appl. Phys. Lett. 50, 460-462 (1987). [PC31] P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. 24, 255-260 (1988). [PC32] M. van Exter, Ch. Fattinger, and D. Grischkowsky: Appl. Phys. Lett. 55, 337-339 (1989). [PC33] N. Sekine, et al: Appl. Phys. Lett. 68, 3419-3421 (1996). [PC34] M. Tani, Kwang-Su Lee and X.-C. Zhang: Appl. Phys. Lett., 77, 1396-1398 (2000). [PC35] H. Yoneda, et al:Appl. Opt. 40-36, 6733 (2001). [PC36] M. Tani, K. Sakai and H. Mimura: Jpn. J. Appl. Phys. 36, L1175-L1178 (1997).

  • 22[PC37] F. G. Sun, G. A. Wagoner, and X.-C. Zhang: Appl. Phys. Lett. 67, 1656-1658 (1995). [PC38] S. Kono, M. Tani, P. Gu and K. Sakai: Appl. Phys. Lett. 77, 4104-4106 (2000). [PC39] S. Kono, M. Tani, and K. Sakai: Appl. Phys. Lett. 79, 898-900 (2001). [PC40] S. Kono , M. Tani and K. Sakai: IEE Proceedings - Optoelectronics, 149, 105 (2002). 2.2 2.2.1. (Optical Rectification) THz THz

    (optical rectification) [NL1-3]+=2-=0 ==

    jkkjijki EEP )()()0(2)0(*)2(

    0)2( (2.2.1)

    Pi(2) i(=x,y,z) i jk(2)Ej() j (3.1) 2

    20

    *0 22 EcncEEnI == (2.2.2)

    I(t) (2.2.1)

    )(1)( )2( tIcn

    tP = (2.2.3)

    c n 2 (2.1.1) THz (2.2.1) DC (2.2.1) (2.2.3) THz

    (Difference Frequency Generation, DFG) (2.2.3) ..)exp()(~ cctiEtE += (E ) (2.2.4)

    )(~ tE ( )Ec.c. complex conjugate

    ..)exp()()(~0

    ccdtiEtE +=

    (2.2.5)

    *)()( EE = ( )

    dtiEtE )exp()()(~ =

    (2.2.6)

    )(~ tE (2.2.6)

    222111)2(

    02)2(

    0)2( )exp()()exp()()(~)(~ dtiEdtiEtEtP ==

    222*

    220111*

    110

    )2(0 )}exp()()exp()({)}exp()()exp()({ dtiEtiEdtiEtiE ++=

  • 23

    122121*

    00

    )2(012212

    *100

    )2(0

    12212*

    1*

    00

    )2(012212100

    )2(0

    })(exp()()(})(exp()()(

    })(exp()()(})(exp{)()(

    ddtiEEddtiEE

    ddtiEEddtiEE

    +++

    +++=

    122121*

    00

    )2(012212

    *100

    )2(0

    12212*

    1*

    00

    )2(012212100

    )2(0

    })(exp()()(})(exp()()(

    })(exp()()(})(exp{)()(

    ddtiEEddtiEE

    ddtiEEddtiEE

    +++

    +++=

    (2.2.7) 2 SFG 34 (DFG) SFG ,DFG

    12212*

    1)2(

    0

    12212*

    1

    00)2(012212

    *100

    )2(0

    12212*

    100

    )2(012212

    *100

    )2(0

    122121*

    00

    )2(012212

    *100

    )2(0

    )2(

    })(exp()()(

    })(exp()()(})(exp()()(

    })(exp()()(})(exp()()(

    })(exp()()(})(exp()()()(~

    ddtiEE

    ddtiEEddtiEE

    ddtiEEddtiEE

    ddtiEEddtiEEtP

    ==

    +=

    ++=

    ++=

    (2.2.8) )()2( tP )(P P 2

    (2)

    =

    dtiPtP )exp()(

    21)(

    (2.2.9a)

    dttitPP )exp()(~)( =

    (2.2.9b)

    (2.2.9b) )(~ tP (2.2.8)

    })(exp{)()()( 212*

    12

    2

    21

    1

    1

    )2(0 tiEEdddtP

    t

    t

    +=

    =

    =

    =

    =

    =

    = (2.2.10)

    t 021 =+

    ,)()()(

    )()()()(~

    2)2(022

    *21

    )2(0

    21212*

    1

    2

    2

    1

    1

    )2(0

    >=<

    =

    (2.2.11b)

    )*()( *2 EEE >=< )(E Auto-correlation function Fourier

    )()()*( tgtfgfF = F Fourier (2.2.12) (2.2.11a)

    )(1)()()*())(()( *)2(0*)2(

    0 tInctEtEEEFPFtP ==== ( ) (2.2.13)

    (2.2.3) ETHz P 2

    2

    2

    2

    2 )()()(t

    tIt

    tPtETHz

    (2.2.14)

    )()()( 2 PIETHz (2.2.15)

  • 24 )(P (2.2.14), (2.2.15) THz

    P E

    )2( 3 (2.2.9), (2.2.11)

    =

    dtit )exp()()( PP (2.2.16)

    22*

    21)2(

    ,0 )()()()( dEEP kjijk

    kji +==

    (2.2.17)

    (2.2.17) DC P(=0) (2.2.1) )(* kE

    )( 2* kE 2 2

    20 0

    [NL4] THz

    ZnTe II-VI zinc-blende m34 2.28eV@300KZnTe 2 =142d =

    )2(123 =

    )2(132 =252d

    =)2(231 =)2(

    213 =362d)2(

    321)2(

    312 =

    ==

    14

    14

    14

    000000000000000

    dd

    ddd ilijk (2.2.18)

    >> = 12>0

    +=

    +== gv

    kkkk 12211

    (2.2.31) vg1

    0 1 2 3 4 5

    1

    2

    3

    4

    5

    @780nm @800nm @810nm @830nm

    ZnTe

    Coh

    eren

    ce le

    ngth

    (mm

    ) L

    c=/

    2n

    Frequency (THz)

    2.2.3 ZnTe Lc THz 800 nm THz Lc 2 mm

  • 27

    3321 / kvkkkkL

    gc

    =

    =

    =

    THzTHzTHzg nvc

    /2/2 =

    THzg

    THz

    THzg

    THz

    nnnvc =

    =

    2/2

    (2.2.32)

    nTHzTHz THz ng=c/vg

    ZnTe Lc 2.2.3 ZnTe 800 nm 810 nm2 THz mm2 THz 4 mm ZnTe

    2.2.2 EO THz THz

    (Pockels ) THz 1 2

    );0(4)0;(2 )2(

    =+= kjijjii

    ijkjjii

    ijk dr (2.2.33)

    );0(4

    = kljjii

    lk dr (2.2.34)

    r41

    142414 dr

    = (2.2.35)

    (yy=zz= ) k l THz 800nm

    ZnTe ZnTe zinc-blende EO ri j

    =

    41

    41

    41

    000000000000000

    rr

    rrij (2.2.36)

    ),,( zyx EEEE =

    1222 41414120

    222

    =+++++ xyErzxEryzEr

    nzyx

    zyx (2.2.37)

    x, y, z ZnTe (110) THz

    2.2.4

    2.2.4 ZnTe (110) THz z

  • 28 THz ZnTe (z )

    ),cos,2/sin,2/sin( 000 EEEE =

    0EE = (2.2.38) (2.2.38)

    1cos22sin2

    2sin2

    041041041

    20

    222

    =++++ xyErzx

    Eryz

    Ern

    zyx

    (2.2.39)

    (x, y, z) x (110)yz=z ( z 45 )

    22yxx

    =

    22yxy

    +

    = (2.2.40)

    zz = (2.2.39) (2.2.40)

    1)(cossin2 2204104120

    222

    =+++ yxErzyEr

    nzyx (2.2.41)

    (110)=yz x'=0

    1cossin2 204104120

    22

    =+ yErzyEr

    nzy (2.2.42a)

    1sin2cos1 04120

    22

    04120

    =+

    zyEr

    nzyEr

    n (2.2.42b)

    (=) (2.2.42) (x, y) (y, z)

    12222

    2

    2

    =+=

    +

    zbyanz

    ny

    yy

    == 22

    1,1

    yy nb

    na (2.2.43)

    sincos zyy += cossin zyz += (2.2.44)

    ( 2.2.5 ) (2.2.44) (2.2.43)

    1sincos)(2)cossin()sincos( 222222

    =

    +++

    ba

    zbayba (2.2.45)

    (2.2.43) (2.2.45)

    2204120

    sincoscos1 baErn

    += (2.2.46a)

    2.2.5 (110)

  • 29

    2220

    cossin1 ban

    += (2.2.46b)

    2sin)(sincos)(2sin2 041 babaEr == (2.2.46c) (2.2.46a)+(2.2.46b)

    2204120

    11cos2

    zy nnbaEr

    n+=+= (2.2.46d)

    (2.2.46b) (2.2.46a) 2cos)()sin)(cos(cos 22041 ababEr == (2.2.46e)

    (9c)2+(9e) 2 )sin4(cos 2220

    241 +Er

    2222 )()2sin2(cos)( baba =+= (2.2.46f) b>a (ny>nz) (2.2.46f)

    22041222 sin4cos111

    +=

    == Er

    nnnab

    yz

    2/)2cos35(041 = Er (2.2.47)

    ( ) 0nnnnnn zyzy

  • 30

    2.2.7 (a) , (b) n THz E () ZnTe THz ,

    0 ZnTe Is ( Ip ) (Phase retardation) Is Ip

    +=

    +=

    +=

    +=

    221

    2sin1

    2)4/2/(2cos1)

    22/(sin 000

    20 IIIII s

    (2.2.51a)

    =

    =

    ++=

    +=

    221

    2sin1

    2)4/2/(2cos1)

    22/(cos 000

    20 IIIII p

    (2.2.51b)

    Is Ip

    = 0IIII ps , =

    0II

    (2.2.52)

    ndc

    nd == 2

    (2.2.53)

    (2.2.52) (2.2.53)

    dncI

    IIIII

    ps

    ps ==

    =+

    0

    (2.2.54)

    THz I/I0(2.2.50a) 3

    0410

    dnErcI

    ITHz

    =

    (2.2.55)

    THz ZnTe

    THz ( ) [NL1] D. H. Auston: Appl. Phys. Lett. 43, 713-715 (1983). [NL2] D. H. Auston, et al: Phys. Rev. Lett. 53, 1555-1558 (1984). [NL3] D. H. Auston and M. C. Nuss, IEEE J. Quantum Electron. 24, 184-197 (1988). [NL4] Q. Chen, M. Tani, Z. Jinag, X.-C. Zhang: J. Opt. Soc. Am. B18, 823-831 (2001).

  • 31 2.3

    1970 Stanford [OP1-2] [OP3]1970

    1990 [OP4-7]THz Q YAG THz THz

    Difference Frequency Generation, DFG ( ) )()()(2)( 2

    *1213

    )2(0213

    )2( EEP === DFG (2.3.1) 123=12 ( 2.3.1a)DFG (a)

    1 (2)2

    3=12

    (b)

    21

    3

    2.3.1 (a) (b)

    DFG SFG 2.3.1(b)

    DFG SFG DFG 1233222123 DFG Optical Parametric Amplification, OPA (21 ) 2.3.1(b)12 )12(Stimulated emission) 222 (Spontaneous two photon emission)32Parametric Fluorescence

    DFG 23 ( 2.3.2)23

    3(idler)(2)

    2(signal)1=2+3pump

    2.3.2

  • 32

    (Optical Parametric Oscillator)1 (Pump)2 (Signal)3 (Idler idle )

    THz THz LiNbO3 MgO LiNbO3LiNbO3 (d33=98 esu = 41 pm/V)MgO LiNbO3 1 7.5THz A1 TO ( )THz LiNbO3 TO TO THz TO 3 2.3.3

    ipTHz = (2.3.2)

    ipTHz kkk = (2.3.3)

    LiNbO3 TO THz Pump THz Pump Idler THz

    2.3.4 [OP4]

    Nd:YAG

    Si

    LiNbO3z

    p

    THz

    M1 M2

    kpki

    kTHz

    i

    THz

    2.3.4

    k

    =(c/n)k

    ip

    THz

    kTHz

    kp

    polariton dispersion

    ki kTHz

    2.3.3

  • 33 LiNbO3 THz Si THz LiNbO3 THz Pump Q Nd:YAG 10200Hz 1.064m THz 50100GHz

    THz 100MHz [OP8] THz 500GHz THz LiNbO3 THz 10mJ/pulse Pump THz 108107 2.3.4 Fabry-Perot

    [OP9] THz () [OP1] F. Zernike, Jr. and P. R. Berman: Phys. Rev. Lett. 26, 999-1001 (1965). [OP2] D. A. Faries, K. A. Gehring, P. L. Richards, and Y. R. Shen : Phys. Rev. 180 363-365

    (1969). [OP3] T. Yajima and N. Takeuchi: Jpn. J. Appl. Phys. 9, 1361-1371 (1970). [OP4] K. Kawase, J. Shikata, and H. Ito: J. Phys. D: Applied Physics, 35, R1-14 (2002). [OP5] K. Kawase, M. Sato, T. Taniuchi, and H. Ito: Appl. Phys. Lett. 68, 2483 (1996). [OP6] K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, H. Ito: Appl. Phys. Lett. 71, 753 (1997). [OP7] J. Shikata, K. Kawase, K. Karino, T. Taniuchi, H. Ito: IEEE Trans. Microwave Theory Tech.

    48, 653 (2000). [OP8] K. Imai, Kodo Kawase, Hiroaki Minamide, Hiromasa Ito: Opt. Lett. 27, 2173-2175 (2002). [OP9] 29744 (2001). 2.4 THz 2.4.1 THz THz

    1998InAs[Se1-2] ()()() InAs THz

    2

    2.4.1(a)(b)np

    np

  • 34(a)

    J Drift current

    Fermi level fESurface

    Surface

    Depletion Layer

    Surface state Conduction band c

    Valence band v

    Electron (e)

    Hole (h)

    Air

    J Drift current

    Fermi level fESurface

    Surface

    Depletion Layer

    Surface state Conduction band c

    Valence band v

    Electron (e)

    Hole (h)

    Air

    (b) J Drift current

    Fermi level fESurface

    Surface

    Depletion Layer

    Conduction band c

    Valence band v

    Electron (e)

    Hole (h)

    Air

    Surface state

    2.4.1 (a) n(b) pn p

    Ed x

    )(0

    xWeNEd

    id =

    , )(2 0e

    kTVeN

    Wi

    d =

    (2.4.1)

    Ni d 0W V kT Ni =1018 cm-3, s=12V-kT/e=0.5V 30nm

  • 35

    n p THz

    n1 n2 11221 sin)(sin)(sin)( elelopop nnn == (2.4.2)

    op el THz op 2 THz 1 THz n1(op)=n1(el)=op=1

    (sin)

    (opt21290 ) 2.4.3 InSb(Eg=0.17 eV)

    InAs(Eg=0.36 eV) InP(Eg= 1.34 eV)

    THz 2.4.4(a)(c)

    [Se5]InSb InAs n pInP

    InSb InAs THz

    InPTHz

    (LO)Longitudinal Optical Phonon LO

    Pump-Probe LO LO

    2.4.3 THz

    (a) n-InSb p-InSb

    (b) n-InAs p-InAs

    0 2 4 6 8 10

    (c) n-InP p-InP

    Am

    plitu

    de (a

    rb. u

    nits

    )

    Time (ps)

    2.4.4 (50fs~800mn)

    (a) n p InSb(100)(b) n p InAs(111)(c) n p InP(100)

  • 36Dekorsy[Se6-7]Dekorsy TeA1, 3.6THz (ETO/2.76THz, ELO/3.09THz, ETO/4.22THz, ELO/4.26THz) A2,TO/2.6THz, A2,LO/2.82THzEO THz

    THz TO A1EO Tani LO THz [Se8]

    2.4.5 Tani , Te (Te, PbTe, CdTe)

    Te Te

    GaAs InP

    EO

    LO

    2.4.5 2.4.3 45

    200mW

    Te, PbTe, CdTe

    Te

    Dekorsy

    2.83THz A2

    LO

    PbTe LO

    3.2THz

    CdTe

    LO

    5.1THz

    3THz

    LO

    ()

    ISRS

    THz

    ISRS

    EO

    0

    5

    10

    15

    0 1 2 3 4 5 6 70

    20

    40

    60

    80

    LOTO

    (a) TeG

    a1/2(

    ) (%

    )

    FFT

    ampl

    itude

    s (a

    rb. u

    nits

    )

    LOTO

    (b) PbTe

    Ga1

    /2(

    ) (%

    )

    TO

    LO

    x10(c) CdTe

    Frequency (THz)

    2.4.5 (a)Te, (b) PbTe, (c)CdTe THz

  • 37 Tani [Se8]Tani G 2.4.5

    G

    2.4.5

    LO

    LO LO

    2.4.6 GaAs LO

    LO

    L+ LO

    L_

    TO(LO)

    LO

    Anti-crossing

    LO L+

    L_

    L_

    TO

    TO LO

    TO L_

    L L

    Ne

    p = e2N e /(

    * me ) *meeGu

    InSb LO

    [Se9]

    2.4.7 InSb (a) (b)

    2.4.8 2.4.74THz 6THz ( ) LO L_ L+

    0.0 0.5 1.0 1.5 2.00

    5

    10

    15

    20

    GaAs

    -

    + pl

    TO

    LO

    Freq

    uecn

    y (T

    Hz)

    N1/2 (x 109 cm-3/2)

    2.4.6 GaAs LO N

  • 38 2.4.7 (a)(b)() InSb THz

    2.4.8

    L_ L+LO

    THz(

    L+)

    InAs THz

    2.4.1 THz [Se10]InP 100 InAs THz n p

    InAs p InAs [Se11] InAs 2 THz W (~800nm,100fs 80MHz) 1T 50W THz [Se1] InAs THz [Se2] THz

    [Se12] 2.4.1 [Se11] InP

    InAs n p InAs InP GaAs CdTe CdSe InSb Ge GaSb Si GaSe

    ( ) 200

    300 100 71 33 11 8 7 2 0.5

  • 39 E_ E+ WW =Eh WW NW

    P

    22 /)( ttPETHz Roskos 10K (145GaAs /25 Al0.2Ga0.8As0.2/ 100

    GaAs x10 ) 45RD-SOS1.5THz 14 [Se14]

    Planken

    [Se13]Waschke [Se16]

    [Se15]

    2.4.2 THz

    YBa2Cu3O7-YBCO THz [Su1-3]

    [Su4-5]

    [Su6] THz

    [Su7] ( THz ) [Se1] N. Sarukura, H. Ohtake, S. Izumida, Z. Liu: J. Appl. Phys. 84, 654 (1998)

    ( 1T 1W 1mW THz

    50 W ) [Se2] H. Takahashi, et al: J. Appl. Phys. 95, 4545-4550 (2004). [Se3] X.-C. Zhang, et al: Appl. Phys. Lett. 56, 1011-1013 (1990). [Se4] X.-C. Zhang and D. H. Auston: J. Appl. Phys. 71, 326-338 (1992). [Se5] Ping Gu, et al: J. Appl. Phys. 91, pp.5533-5537, (2002). [Se6] T. Dekorsy, et al: Phys. Rev. Lett. 74, 738 (1995). [Se7] T. Dekorsy, H. Auer, H. Bakker, H. Roskos, H. Kurz: Phys. Rev. B 53, 4005 (1996). [Se8] M. Tani, et al: J. Appl. Phys. 83, 2473-2477 (1998). [Se9] P. Gu, M. Tani, K. Sakai and T.-R. Yang: Appl. Phys. Lett., 77, 1798-1800 (2000). [Se10] X.-C. Zhang and D. H. Auston, J. Appl. Phys. 71, 326-338 (1992). [Se11] R. Adomavieius, et al: Appl. Phys. Lett. 85, 2463-2465 (2004). [Se12] M. B. Johnston, et al: Opt. Lett. 27, 1935 (2002). [Se13] P. C. M. Planken, et al: Phys. Rev. Lett. 69, 3800-3803 (1992). [Se14] H. G. Roskos, et al: Phys. Rev. Lett. 68, 2216-2219 (1992). [Se15] I. Brener, et al: J. Opt. Soc. Am. B 11, 2457-2469 (1994). [Se16] C. Waschke, et al: Phys. Rev. Lett. 70, 3319-3322 (1993). [Su1] M. Tonouchi, et al: Jpn. J. Appl. Phys. 35, 2624 (1996). [Su2] M. Hangyo, et al: Appl. Phys. Lett. 69, 2122-2124 (1996).

  • 40[Su3] M. Tani, et al: Jpn. J. Appl. Phys. 35, L1184-1187 (1996). [Su4] M. Tonouchi, et al: Jpn. J. Appl. Phys. 36, L93-L95 (1997). [Su5] M. Tonouchi, et al: Physica C 293, 82-86 (1997). [Su6] M. Tonouchi, et al: Appl. Phys. Lett. 71, 2364-2366 (1997). [Su7] S. Shikii, et al: Appl. Phys. Lett., 74, 1317-1319 (1999). 2.5

    90 MIT Brown continuous wave, CW THz[Px1-2](Photomixing)40 ()[Px4]. LT-GaAs THz THzBrown THz [Px2-3, 5-12] THz.

    THzDCTHz 10MHz THz

    [Px13]. THz THz THz Duffy et al [Px14-15], Pearson et al [Px16], Matsuura et al [Px17]Tani et al [Px18] 2.5.1 THz 1 2

    )cos()(2..)exp()()(~ 11111 +=++= tzEcctizEtE (2.5.1a) )cos()(2..)exp()()(~ 22222 tzEcctizEtE =+= (2.5.1b)

    (c.c. ) Ei(z)

    })cos{(})cos{(2

    )2cos(2

    )22cos(22

    )cos()cos(2)(cos)(cos)(~

    21212121

    222

    121

    22

    21

    2121222

    2122

    1

    +++++

    ++

    ++=

    ++++=

    tEEtEE

    tEtEEE

    ttEEtEtEtI

    (2.5.2)

    ( 1 2) 2(SHG 3 4) (SFG 5)DFG 6 2

    SHGSFG CW 21 . 6 (2.5.2) 1 2

  • 41

    })cos{(2)()( 2121210 +++== tPmPPPdStIcntP (2.5.3)

    dSE

    cnP ii 2

    2

    0= , (i=1 or 2) (2.5.4) m Pi , c n 0 (4)m 0 ( )1 ( ) 21 THz (3)THzTHz ()

    G(t) N(t)

    22 /)(/)(/)()( gapgapgapgapgap ltNelVtnelStnetG === (2.5.5) e Sgaplgap Vgap =Sgap lgap N(t) P c

    )()()( tPtNdt

    tdN

    c

    =+ , (2.5.6)

    P(t)(2.5.3) (2.5.6) N(t)(2.5.5) N(t) G(t)

    ))(1

    }sin{21()(

    20

    210

    cP

    tPmPGtG

    +

    ++= , (2.5.7)

    G0 P0=P1+P2 21 = )/1(tan 1 c

    = J(t) 2.5.1 J(t)

    A

    b

    RtVVtVtG

    dttdVCtJ )()()()()( =+= , (2.5.8)

    C V(t) Vb ()RA

    V(t) THz PTHz()[Px2-3]

    ])()()1[()1(])()1[()(

    )( 202

    1220

    20

    220

    202

    1

    AAAA

    AAAbTHz RGCRRGRG

    CRRGRGVP

    +++++

    = , 20

    21

    )(1

    2

    cP

    PmP

    += (2.5.9)

    G0RA

  • 42

    P0 (self-complementary) RA RCc >> 1 RAC >>1(2.5.10)

    2402

    1 )(/)( CRRVGP AcAbTHz (2.5.11) THz-12dB/octave

    opticalbeat

    THz wave

    Si hemisphericallens

    PC antenna(dipole type)

    LT-GaAssubstrate

    ETHz(t) dJ/dt

    P(t)

    PC current J(t)

    2.5.2 CW-THz

    2.5.3

    2.5.2CW-THz

    2.5.3THz

    RC (0.05 )0.5ps (2.5.10)2.5.3 [Px10]. THz

    (2.1.11)THz (CW)

    THz

    DC3THz ( ) [Px1] E. R. Brown, et al: Appl. Phys. Lett. 62, 1206-1208 (1993). [Px2] E. R. Brown, et al: J. Appl. Phys. 73, 1480-1484 (1993). [Px3] E. R. Brown, et al: Appl. Phys. Lett. 64, 3311-3313 (1994). [Px4] R. H. Pantell, M. DiDomenico, Jr., O. Svelto, and J. N. Weaver: Proceedings of the Third

    International Conference on Quantum Electronics, edited by P. Grivet and N. Bloembergen (Columbia University Press, New York, 1964), Vol. 2, p. 1811.

    [Px5] E. R. Brown, et al: Appl. Phys. Lett. 64, 3311-3313 (1994). [Px6] E. R. Brown, et al: Appl. Phys. Lett. 66, 285-287 (1995). [Px7] K. A. McIntosh, et al: Appl. Phys. Lett. 67, 3844-3846 (1995). [Px8] S. Verghese, K. A. McIntosh and E. R. Brown: IEEE Trans. Microwave Theory and Tech.

    45, 1301-1309 (1997). [Px9] S. Verghese, K. A. McIntosh and E. R. Brown: Appl. Phys. Lett. 71, 2743-2745 (1997).

  • 43 [Px10] S. Matsuura, M. Tani, and Kiyomi Sakai: Appl. Phys. Lett. 70, 559-561 (1997). [Px11] Pin Chen, et al: Appl. Phys. Lett, 71, 1601-1603 (1997). [Px12] K. A. McIntosh, et al: Appl. Phys. Lett. 70, 354-356 (1997). [Px13] O. Morikawa, et al: Jpn. J. Appl. Phys., Part 1 38, pp.1388-1389 (1999). [Px14] S. M. Duffy, et al: IEEE Trans. Microwave Theory and Tech. 49, 1032-1038 (2001) [Px15] S. M. Duffy, S. Verghese and K. A. McIntosh: Sensing with Terahertz Radiation

    (Springer-Verlag, Berlin, ed. D. Mittleman, 2003) pp.193-236. [Px16] J. C. Pearson, K. A. McIntosh, and S. Verghese: Continuous THz generation with Optical

    Heterodyning, Long-wavelength Infrared Semiconductor lasers, Ed. Hong K. Choi (John Wiley & Sons, Inc., 2004)

    [Px17] Shuji Matsuura and Hiroshi Ito: Generation of CW terahertz radiation with photomixing, in Terahertz Optoelectronics, Topics in Applied Physics, Vol. 97, pp.157-197, Sakai, Kiyomi (Ed.) (Springer, 2005)

    [Px18] M. Tani, et al: Semicond. Sci. Technol. Vol.20, pp.S151-S163 (2005).

  • 44 3 3.1 (THz-TDS)

    2 THz Terahertz Time-Domain Spectroscopy, THz-TDSTHz 2.1.7

    THz [Sp1-6] [Sp7-8] [Sp9-10] [Sp11-13] THz-TDS E(t)

    E r i E t i t dt

    r E E

    ( ) ( ) exp( ( )) ( ) exp( )

    ( ) ( ) , ( ) ( )

    = =

    = =

    1

    2arg

    (3.1.1)

    sam ref t()

    )(exp()()()( refsam

    ref

    sam

    ref

    sam irr

    EEt

    (3.1.2)

    ~( ) ( ) ( )n n ik = d THz

    +=

    =

    cd

    cndi

    nn

    cndittt saas

    )(exp)1)((exp)1)(~(

    )(~4)1)(~(exp)( 21

    (3.1.3)

    tas, tsa ( )

    1)(~2

    +=

    ntas 1)(~

    )(~2+

    =

    n

    ntsa (3.1.4)

    d THz THz m t()

    =

    = cndlirtt las

    m

    lm

    )(~2exp)()( 20

    1 (3.1.5)

    ras

    1)(~1)(~

    +

    ==

    nnrr saas (3.1.6)

    =

    cndir

    ttas

    )(~2exp1

    )()(2

    1

    (3.1.7)

    THz (3.1.3),(3.1.5) (3.1.7)

    T() A()

    ( )T t A rr

    dkc

    dsamref

    ( ) ( ) ( ) exp ( ) exp ( ) = = =

    22

    21 2 (3.1.8)

    ()=2k()/c ( ) ( ) ( ) 21~ i= ( ) ( ) ( ) 21~ i=

  • 45

    ( ) ( ) ( )0

    2~~~

    in == . (3.1.9)

    ( ) ( )221 )( kn = (3.1.10a) ( ) ( ) kn2)(2 = (3.1.10b) 0

    FTIR THz-TDS THz-TDS

    120.3 THz (FTIR) FTIR 3.1.1 FTIR

    2 1 245 45

    THz-TDS (THz-TDS FTIR )THz-TDS FTIR THz-TDS FTIR

    FTIR

    (i) Fellgett (Multiplex Advantage) ( N FTIR S/N 2/N (ii) Jacquinot Throughput AdvantageFTIR 100 S/N (iii) Connes (Frequency Precision)

    FTIR He-Ne

    Connes FTIR 20cm ( 10cm) 0.05cm-1 0.01cm-1 FTIR FTIR THz-TDS

    (

    (4545

    3.1.1 2 FTIR

  • 46THz-TDS FTIR

    (a) (

  • 47 3.2 (CH3CN) 3.2.1(a) (b)

    20cm 13 Torr 3.2.1(c) (d)

    ( 3.2.1(c) )

    3.2.1(d) 0.21.3THz (free induction decay, FID) 3.3.2 ( 3.3.1(d)) ( 3.3.1(c)) ( )

    THz THz FID

    FID 3.3.1(c)

    20 25 30 35

    0 100 200 300 400

    (a)

    Am

    plitu

    de (a

    rb.u

    nit)

    Time (ps)

    0 100 200 300 400

    (b)

    Am

    plitu

    de (a

    rb. u

    nit)

    Time (ps)

    0 1 2 3

    (c)

    FFT

    Am

    plitu

    de (a

    .u.)

    Frequency (THz)

    0 1 2 3

    (d)

    FFT

    Am

    plitu

    de (a

    .u.)

    Frequency (THz)

    3.2.1 (a) ( ) (b)13Torr CH3CN 20cm THz (c) (d)

    t

  • 48( =1/t) 3.2.1 2.5 GHz (t= 400ps = 120 mm) 3.2.1 0.50.6THz 13 Torr rotE J K ( 3.2.2 )

    322 )1()1()1( +++= JJDJJKDJBJE JJKrot (3.2.1) B , DJ DJK

    1,0 =J 0=K (3.2.2) 3

    1=K 0=J

    32 )1(4)1(2)1(2 +++= JDJKDJB JJK (3.2.3)

    1.3355 1.3360 1.3365

    80

    90

    100

    K

    7

    6

    54

    3

    21

    =0

    CH3CN(0.2 Torr)J=72-73

    (a)

    Tran

    smitt

    ance

    (%)

    Frequency (THz)

    1.33535 1.33540 1.33545 1.33550

    80

    90

    100 (b)

    26 MHz1

    K=0

    Tran

    smitt

    ance

    (%)

    Frequency (THz)

    3.2.4 THz (a)J=7273 (b)K=0,K=1 J=7273

    DJ DJK B 3.2.2 2B

    0.0 0.5 1.0 1.5

    CH3CN13 Torr

    ()

    (THz)

    0.50 0.55 0.600.0

    0.2

    0.4

    J

    K

    H

    C C N

    xyIb

    IbIa

    3.2.2 THz-TDSCH3CN

    3.2.3 CH3CN

  • 49

    )1(2 + JB (3.2.4) B, DJ DJK [Ai1-2] J=1259 3.2.1 13Torr K

    K THz-TDS 100MHz 1.5m

    THz-TDS 3.2.4 THz 0.2Torr J=7273 [Ai3]

    K=0 K=1 THz 10MHz HCl, CO, HCN, NNO, (3.2.3)

    H2, N2, CO2,O2

    THz THz-TDS

    401THz 1THz 2THz THz THz THz

    =1, 2, J, K J =1, 0, 1 P Q R ( ) K K ( ) [Ai1] P. Venkateswarlu, et al : J. Mol. Spectrosc. 6, 215-228, (1961). [Ai2] P. A. Steiner, et al: J. Mol. Spectrosc. 21, 291-301, (1966). [Ai3] S. Matsuura, et al: J. Mol. Spectrosc. 187, 97-101 (1998). 3.3 3.3.1 THz-TDS Bi4Ti3O12(Bismuth Titanate, BIT)

    [Sd1]BIT (FeRAM)BIT (monoclinic) 2 28 cm-1(0.93 THz)A(x,z) A(y) a

  • 50 b (z a )

    THz-TDS BIT a 3.3.2 (3.1.5) (3.1.10)b

    28.3 cm-1 3.0 cm-1 3.3.1

    k )(~)(~ nk = (3.3.1)

    k 3.3.2 [Sd2] LO TO LOiTOi

    = =

    2/1

    2

    22

    1

    )1()(

    iTO

    iLO

    ick (3.3.2)

    3i

    TOi

    LOiN

    i2

    2

    3

    )()1(

    =

    = (3.3.3)

    3.3.1 (3.3.2) (3.3.3)

    3.3.1

    THz-TDS 3.3.2 THz

    [Sd3] 1.1 cm 400 m

    (100) 3.3.3

    100 K

    3.3.1 Bi4Ti3O12(BIT) a c (15x15mm2 0.225mm)

    =28.3 cm-1=3.0 cm-1

    3.3.2 (a ) 3.3.1 Modes A(x,y) polariton

    (E// a)

    A(y) polariton (E // b)

    TO1 LO1 TO2 LO2 TO3 LO3 () (1) (0)

    28.3 cm1 34.42 cm1 53.76 cm1 53.78 cm1 70.5 cm1 74.5 cm1

    6.76 45.97 75.99

    35.9 cm1 42.0 cm1 85.0 cm1 98.4 cm1

    6.76 74.74

    146.41

  • 51 2 (3.1.5) (3.1.9) 3.3.4

    3.3.4

    THz-TDS

    1 mm

    - ( ) [Sd1] S. Kojima, N. Tsumura, M. W. Takeda, S.

    Nishizawa: Phys. Rev. B 67, 035102 (2003).

    [Sd2] T. Kurosawa: J. Phys. Soc. Jpn. 16, 1298 (1961).

    [Sd3] S. Nashima, O. Morikawa, K. Tanaka, and M. Hangyo: J. Appl. Phys. 90, 837 (2001).

    3.4

    THz-TDS THz-TDS ( )

    40 50 60

    -40

    -20

    0

    20

    40

    60

    Si (0.9~1.3 cm)

    A

    mpl

    itude

    (arb

    . uni

    ts)

    Time (ps)

    Without sample

    100 K

    50 K

    16 K

    300 K

    150 K

    With sample

    40 50 60

    -40

    -20

    0

    20

    40

    60

    Si (0.9~1.3 cm)

    A

    mpl

    itude

    (arb

    . uni

    ts)

    Time (ps)

    Without sample

    100 K

    50 K

    16 K

    300 K

    150 K

    With sample

    3.3.3 1.1 cm(P ) 400 m (100)

    (a)

    (K)

    (THz)

    1(1

    /cm

    )

    (b)

    (K)

    (THz)

    2(1

    /cm

    )

    3.5.4 3.5.3 1.1 cm Si 3 (a) (b)

  • 52 THz-TDS

    THz-TDS 3.5.5 THz-TDS 300GHz

    THz THz

    D (Debye)

    D

    s

    i

    +

    += 1)(~ (3.4.1)

    s

    (

  • 53

    ( ) [Li1] J. Barthel and R. Buchner: Puer&Appl. Chem, 63, 1473-1482 (1991). [Li2] D. S. Venables, A. Chiu and C. A. Schmuttenmaer : J. Chem. Phys. 113, 3243-3248 (2000). [Li3] T. M. Nymand, C. Rnne, and S. R. Keiding: J. Chem. Phys. 114. 5246-5255 (2001) [Li4] C. Rnne et al: J. Chem. Phys. 113. 3749-3756 (2000).

    3.5

    THz 300 K 6 THz(= 200 cm-1) 6 THz THz

    THz-TDSMalkerzDNA THz [Bi1]Brucherseifer DNA

    [Bi2] Nagel THz-TDS DNA [Bi3]DNA

    (11-cis-retinal all-trans-retinal) THz Walther[Bi4] THz

    THz-TDS

    20

    NHO CHO

    THz-TDS MgO

    13 mm 1 mm

    3.5.1 L-phenylananine L-tyrosine

    L-phenylalanine R-CH(NH2)COOH R-CH2-()

    0.5 1.0 1.5 2.0 2.50

    10

    20

    30

    40

    50

    60

    Mol

    ar A

    bsor

    ptio

    n (c

    m-1M

    -1)

    Frequency (THz)

    L-phenylalanine L-tyrosine

    3.5.1 L-phenylalanine( )L-tyrosine( ) THz

    Frequency (THz)0.5 1.0 1.5 2.0 2.5

    Mol

    ar a

    bsor

    ptiv

    ity (c

    m-1

    M-1

    )

    0

    2

    4

    5

    3

    1

    DL-alanine

    L-alanine

    D-alanine

    Frequency (THz)0.5 1.0 1.5 2.0 2.5

    Mol

    ar a

    bsor

    ptiv

    ity (c

    m-1

    M-1

    )

    0

    2

    4

    5

    3

    1

    DL-alanine

    L-alanine

    D-alanine

    3.5.2 L-alanine, D-alanine DL-alanine THz

  • 54L-tyrosine L-phenylalanine -OH OH 3.5.1 L-tyrosine 2.1 THz 0.95 THzL-phenylalanineTHz 3.5.2 L-alanine, D-alanine DL-alanine MgO[Bi5]20 glycine D L(Enantiomer) LDL-alanine D LalanineD L

    DL-alanine 1.24 THz L-alanine D-alanine 2.21

    THz 2.55 THz L D DL

    alanine leucine()asparic acid(), methioninetyrosine, tryptophan L D DL THz

    L-alanine3.5.3 (a) (b)2.21 THz2.55 THz10 K2.24 THz2.61 THz

    anharmonicityKorter [Bi6] (biotin) 0.2 3.5THz

    THz ( )

    anharmonicity ,3.5.3b alanine 2.5 THzanharmonicity

    Walther [Bi7] ( ) ( )

    THz-TDS

    THz

    0 50 100 150 200 250 300

    2.23

    2.24

    2.25

    2.26

    (a)

    L-alanine-d7

    L-alanine

    Peak

    Fre

    quen

    cy (T

    Hz)

    Temperature (K)

    0 50 100 150 200 250 300

    2.50

    2.55

    2.60 (b)

    L-alanine-d7

    L-alanine

    Peak

    Fre

    quen

    cy (T

    Hz)

    Temperature (K)

    3.5.3. L-alanine L-alanine-d7(a) L-alanine () L-alanine-d7 () (b) L-alanine 2() L-alanine-d7 ()L-alanine-d7

    AladAla MM /7

  • 55

    Mnor Miso

    isonor MM / AHB

    ADBAH 2/1/ =DH MM

    L-alanine L-alanine-d7 L-alanine THz-TDS

    7/ dAlaAla MM 1.96/1.89= 963.0= ()L-alanine-d7

    3.5.3 1/0.963 L-alanine L-alanine-d72.2 THz0.01 THz2.6 THz0.06 THz

    100% THz 1970 1980 (THz-TDS )[Bi8] THzTHz-TDS

    THz-TDS

    THz THz-TDS ATR (Attenuated Total Reflection)[Bi9]

    [Bi1] A. G. Markelz, A. Roitberg and E. J. Heilweil: Chem. Phys. Lett. 320, 42 (2000). [Bi2] M. Brucherseifer, et al: Appl. Phys. 77, 4049 (2000). [Bi3] M. Nagel, et al: Appl. Phys. Lett. 80, 154 (2002). [Bi4] M. Walther, et al: Chem. Phys. Lett. 332, 389 (2000). [Bi5] M. Yamaguchi, et al: Appl. Phys. Lett. 86, 053903 (2005). [Bi6] T. M. Korter and D. F. Plusquellic: Chem. Phys. Lett. 385, 45 (2004). [Bi7] M. Walther, B. M. Fischer, and P. Uhd Jepsen: Chem. Phys. 288, 261 (2003). [Bi8]

    W. J. Shotts and A. J. Sievers: Biopolymers, 13, 2593 (1974). J. Bandekar, et al: Spectrochimica Acta, 39A, 357 (1983). 50 cm-1 M. Hineno and H. Yoshinaga: Spectrochim. Acta, 28, 2263 (1972). M. Hineno and H. Yoshinaga: Spectrochim. Acta, 29A, 301 (1973). M. Hineno and H. Yoshinaga: Spectrochim. Acta, 29A, 1575 (1973). M. Hineno and H. Yoshinaga: Spectrochim. Acta, 30A, 411 (1974). M. Hineno: Carbohydrate Research, 56, 219 (1977).

    [Bi9] H. Hirori, et al: Jpn. J. Appl. Phys. 43, L1287 (2004).

  • 56 4 4.1 THz

    THz

    ( )THz X THz THz

    THz [Im1-2] [Im3]

    THz [Im4] 2 THz THz [Im5]THz THz 3

    THz 1995 Hu Nuss[Im6] IC THz

    Hu Nuss THz THz 2 3

    Wu [Im7] CCD THz EO 2 THz 2 EO EO ZnTe 2 THz THz

    EO THz kHz

    S/N Jiang[Im8] THz EO

    Jiang S/N

    250kHz CCD 5ms1 frame 1000

    CMOS

    ZnTeZnTe

    4.1.1. THz EO

  • 57 1kHz 250 kHz 1/250 S/N 1/15 CCD S/N S/N

    S/N THz CMOS EO THz S/N [Im9] CMOS Model C8201

    128 x 128 5.12 x 5.12 mm2 1kHz 1 k frame/sec 4.1.1 500Hz CMOS 1kHz EO

    THz EO THz EO

    ])2[,(1

    ]12[][Img

    ]2[][Img][Img

    0sig iIgiI

    iiI

    ii bkgTHz

    +

    = (4.1.1)

    I[2i] I[2i+1] 2i 2i+1 ImgTHz[i] Imgbkg[i] i THz EO CMOS 128 x 128 pixel CMOS g(0, I[2i]) 2i THz THz 2 THz EO 0 [Im10] THz g I[2i] g=1 4.1.2 CMOS 2 EO THz

    15153mm (110)ZnTe 140 J/pulse

    THz 7.5 40mm THz EO 3mm 50mm (110)ZnTeEO THz f=60mm f=120mm 2:1 20mm

    1KHz 100 10 flames/s S/N 40 OHP 21.5mm

    (a)

    (b)

    4.1.2. CMOS 2 EO THz OHP

    25x32mm2

  • 58 THz EO 4.1.2 CMOS 2 EO

    S/N THz THz

    10 THz

    ( ) [Im1] K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue: Optics Express, 11, 25492554 (2003). [Im2] K, Kawase, Optics & Photonics News, October Issue, p.34 (2004). [Im3] K. Yamamoto, et al: Jpn. J. Appl. Phys. 43, L414-L417 (2004). [Im4] N. Karpowicz, et al: Appl. Phys. Lett. 86, 054105 (2005). [Im5] S Wang and X-C Zhang: Phys. D: Appl. Phys. 37, R1R36, (2004). [Im6] B. B. Hu and M. C. Nuss: Opt. Lett. 20, 1716-18 (1995). [Im7] Q. Wu, F. G. Sun, Q. Chen and X.-C. Zhang: Appl. Phys. Lett. 69, 1026-1028 (1996). [Im8] Z. Jiang, X. G. Xu and X.-C. Zhang: Appl. Opt. 39, 2982-2987 (2000). [Im9] F. Miyamaru, T. Yonera, M. Tani and M. Hangyo: Jpn. J. Appl. Phys., 43, L 489-L491

    (2004). [Im10] Z. Jiang, F. G. Sun, Q. Chen, and X.-C. Zhang, Electro-optic sampling near zero optical

    transmission point,Appl. Phys. Lett. vol. 74, no.9, pp.1191-1193 (1999). 4.2 THz

    THz 100X (i)X (ii) THz THz X

    THz C-4 [Da1]C-4 C-4 1,3,5- -1,3,5- (RDX) 4.2.1C-4 X ~10-11 Torr

    4.2.2 C-4 C-4

    C-4 RDX 6

    THz

  • 59

    N N

    N

    NO2

    NO2

    O2N

    C-4

    C-4

    C-4

    C-4

    4.2.1 C-4 1,3,5- -1,3,5-

    4.2.2 (a) C-4 (b) C-4

    ( ) ( )

    (a)

    -0.3

    1

    -0.3

    1

    3.5

    mm

    7 mm

    Position [mm]

    Pos

    ition

    [m

    m]

    (b)

    7 mm

    3.5

    mm

    7 mm

    3.5

    mm

    4.2.3 (a) C-4 (b) C-4

    4.2.3 C-4 ( ) 2

    2 C-4

    4.2.3 C-4 C-4 THz C-4 C-4

    THz-TDS [Da2] ( ) [Da1] K. Yamamoto, et al: Jpn. J. Appl. Phys. 43, L414-L417 (2004). [Da2] T. Ikeda, et al: Investigation of inflammable liquids by terahertz spectroscopy, to be published in Appl.

    Phys. Lett.

  • 604.3

    TAG( )

    X NMRTHz-TDS

    THz

    THz-TDS

    C4H8N2O3 H2O

    60

    40

    20

    0Abs

    orpt

    ion

    Coe

    ffic

    ient

    (cm

    -1)

    604020Wavenumber (cm-1)

    A-(b)(a)

    60

    40

    20

    0Abs

    orpt

    ion

    Coe

    ffic

    ient

    (cm

    -1)

    604020Wavenumber (cm-1)

    B-(b)(b)

    4.3.1 L- (a) (b) 10 cm-1 300 GHz

    L- (P212121) 3

    71 THz-TDS L- ( 23% 77 ) 1(a) 71 C 9 1(b) ( )

  • 61 63 53 cm-1(1.6THz)63 cm-1(1.9THz)

    53 cm-1(1.6 THz)

    X

    I II

    THz-TDS

    4.3.2

    I 27cm-1 II 34cm-1

    47cm-1

    THz-TDS

    III

    4.3.2 I II

    I 27cm-1 II

    34cm-1 47cm-1

  • 62 5 THz-TDS FTIR THz-TDS FTIR

    THz-TDS

    THz

    Conformation Conformation

    THz THz THz (THz ) THz-TDS

    CARS(Coherent Anti-Stokes Raman Scattering) S/N CARS Stokes THz

    THz THz-TDS

  • 63 [Rev1] 68 12 1999 THz

    THz THz CW

    [Rev2] 70 2 p.149-155 (2001)

    [Rev3] 71 2 p.167-172(2002) THz

    [Rev4] 74 6 p.709-717(2005)

    [HB1] 1999 4 10

    ( ) [HB2] 9 2000 7-5

    [HB3] ( )

    2003 ) ( ) [HB] 2 ,2005 18 8 pp.400-405,

    THz ( ) [Bk1] J.M. Chamberlain, R. E. Miles, New Directions in Terahertz Technology, Kluwer Academic

    Publishers (Proceedings of the NATO Advanced Research Workshop, Chateau de Bonas, Castera-Verduzan, France, June 30-July 11, 1996

    [Bk2] R. E. Miles, P. Harrison, D. Lippens: Terahertz Sources and Systems , Kluwer Academic Publishers (Proceedings of the NATO Advanced Research Workshop, Chateau de Bonas, France, 22-27 June 2000)

    [Bk2] Millimeter and Submillimeter Wave Spectroscopy of Solids , G. Gruner (Ed.), Springer (1998) [Bk3] E. Gonik and R. Kersting, Coherent THz Emission in Semiconductors, Chap. 8 of Ultrafast

    Physical Processes in Semiconductors (Semiconductors and Semimetals Volume67), pp.389-440, Ed. K. T. Tsen, (Academic Press 2001)

    [Bk4] D. Mittleman, Sensing with Terahertz Radiation, Springer [Bk5] K. Sakai(Ed.), Terahertz Optoelectronics (Springer, Topics in Applied Physics, 2005) [Bk6] 2005 Journal [JL1] J. P. Heritage and M. C. Nuss: Special Issue on Ultrafast Optics and Electronics, IEEE J.

    Quantum Electron., Vol.28 (1992), pp.2084-2542 [JL2] D. R. Dykaar and S. L. Chuang (Eds): Terahertz Electromagnetic Pulse Generation, Physics and

    Applications, Journal of Optical Society of America, Vol. 11, (1994) , Special Issue on Terahertz Electromagnetic Pulse Generation, Physics, and Applications, pp.2454-2585

    [JL3] IEEE Journal of Selected Topics in Quantum Electronics, Vol. 2, No.3, The Issue On Ultrafast Electronics, Photonics, And Optoelectronics, (1996).

    [JL4] IEE Proceedings, Optoelectronics, Vol. 149, No. 8, (2002), Special Issue on Ultrafast Optoelectronics Photomixing

    [JL5] Physics in Medicine & Biology, Vol. 47, No. 21(2002): Proceedings of the First International Conference on Biological Imaging and Sensing Applications of THz Technology (BISAT)