semiconductor sources of two-photon states

Post on 18-Dec-2021

11 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Semiconductor sources of two-photon states pat room temperature in the telecom range

Gi LEOGiuseppe LEO

Université Paris Diderot, Sorbonne Paris Cité,Laboratoire Matériaux et Phénomènes Quantiques (UMR 7162)

Les enjeux de la génération non linéaire paramétrique dansLes enjeux de la génération non linéaire paramétrique dans les domaines UV et IR : état de l’art et nouveaux challenges

Grenoble, 28 - 29 juin 2012

Laboratoire MPQQ

Equipes : 

• DON (Dispositifs Optiques Nonlinéaires) • IPIQ (Ions Piégès et Information Quantique)• MEANS (Microscopie Electronique Avancées et Nanostructures)• QUAD (Physique Quantique et Dispositifs)• TELEM (Transport Electronique à l'Echelle Moléculaire)• SQUAP (Spectrocopie des Quasi Particules)STM (N t t t i é t STM)• STM (Nanostructures auto‐organisées et STM) 

• THEORIE (Physique Théorique de la Matière Condensée)

2

Equipe Dispositifs Optiques Nonlinéaires

G. LeoS Ducci A. Andronico F Ghiglieno

Christophe Baker Alexandre DelgaS. Ducci

I. Favero

V Berger

A. AndronicoP. FillouxC. Manquest

F. GhiglienoA. Eckstein

Alexandre DelgaSilvia MarianiAdeline Orieux

V. BergerL. Doyennette

Cécile Ozanam David ParrainMarc SavanierMarc Savanier

Dispositifs Optiques Nonlinéaires

Sources à deux photons intégrées

1 μm

Microstructures semiconductrices pour la génération et l’oscillation paramétriques

Paires contrapropageantes

Sources à deux photons intégrées AlGaAs fonctionnant à 300K

Microsystème guide-cavité AlGaAs à QPM efficace

g p q

Guide d’ondes GaAs/AlOx à biréfringence de forme

- Paires contrapropageantes- Longueur d’ondes télécom- Faible largeur de raie

λω≈0.775µm λ2ω≈1.55µm

X. Caillet et al. Opt. Expr. 18, 9967 (2010)A. Orieux et al., J. Opt. Soc. Am. B 28, 45 (2011)

M. Savanier et al. Opt. Expr. 19, 22582 (2011)M. Savanier et al. Opt. Lett. 36, 2955 (2011) λ1≈λ2≈1.3µm

λDFG≈100µm

S. Mariani et al. Opt. Express (2012)

Dispositifs Optiques Nonlinéaires

Nano-Optomécanique GaAs1 μm

Transport dans les hétérostructures pour la photodétection dans l’IR moyen

0.35

0.30

0.25

0 20y (e

V)

E8

E9

(a)QCD

0.20

0.15

0.10

0.05

Ener

gy

E1E2E3E4E5E6E7E8

0.05

0.006005004003002001000

Width (Å)11001100500 600 700 800 900 1000

L Ding et al Applied Opt 49 2441 (2010)

A. Buffaz et al. PRB 81, 075304 (2010)A. Delga, et al. APL 99, 252106 (2011)

L Ding et al. Applied Opt., 49, 2441 (2010)L. Ding et al. PRL 105, 263903 (2010) C. Baker et al. APL 99, 151117 (2011)J. Restrepo et al. C.R. Phys. 12, 860 (2011)

Ré i i di G ARésonateurs miniature disques GaAsHaute fréquenceCouplage fort optique/mécanique QWIP

Integrated sources for quantum information

Semiconductors: small de ices mat re clean room technologies optoelectronics capabilitiessmall devices, mature clean-room technologies, optoelectronics capabilities…

Quantum Dots: biexciton emission

• deterministic☺• cryogenic temperatures

Waveguides: spontaneous parametric down-conversion

• poissonian• room temperature☺• hyper entanglement ☺hyper entanglement ☺

ћωp = ћωs + ћωi

ћkp = ћks + ћkino birefringence in bulk AlGaAs

→ other PM strategies required

OutlineSPDC in AlGaAs waveguides :

- Form birefringence phase-matching

- Modal phase-matching- Modal phase-matching

- Counterpropagating phase-matching

Comparison

7

p

Perspectives

OutlineSPDC in AlGaAs waveguidesSPDC in AlGaAs waveguides :

‐ Form birefringence phase‐matching

‐Modal phase‐matching‐Modal phase‐matching

‐ Counterpropagating phase‐matching

ComparisonPerspectives

8

Parametric fluorescence @ 2 µmTuning Bandwidth

G d id h i l l h• Good waveguide homogeneity over several mm length

• Generated signal and idler > 100 nW

• Tuning between 1 3 μm and 4 7 μmη = 1188 % W‐1cm‐2

• Tuning between 1.3 μm and 4.7 μm

Form Birefringence PM

Phase-Matching:kp = ks + kikp ks ki

nTMωp = nTEωs + nTEωi

insertion of low index layers (AlOx)→ artificial birefringence

TE0TMTM0

10

M Savanier et al OL 36 2955 (2011)

Record SH output… M. Savanier et al. OL 36, 2955 (2011)M. Savanier et al. OE 19 22582 (2011)

SHG experiment:FH @ 1550 nm (TE) → SH @ 775 nm (TM)

No sublinear deviation up to PFH = 50 mWMax SH output: PSH = 267 μWWaveguide length: 500 mWaveguide length: 500 μm

ηnorm = 1120% W‐1cm‐2 ☺→ we expect ηSPDC ≈ 4 10‐8

11

… but … but highhigh gguideduided--wave losseswave losses

FH: ECDL Fabry‐Perot fringes

0 3 0 06 1 iαNOX = 0.35 ± 0.06 cm‐1

αOX = 1.13 ± 0.03 cm‐1

SH

Two regimes

hν < 70% gap:SH: Ti:Sa transmissionαOX = 150 ± 12 cm‐1

hν < 70% gap: Rayleigh‐like scattering

hν > 70% gap: Absorption (*)

(*) Shi et al. APL 70, 1293 (1997)

Outline

SPDC in AlGaAs waveguides :SPDC in AlGaAs waveguides :‐ Form birefringence phase‐matching

‐Modal phase‐matchingp g

‐ Counterpropagating phase‐matching

13

ComparisonPerspectives

Modal PMPhase-Matching:

kp = ks + ki

nTEωp = nTEωs + nTMωi

Higher order p mp modeHigher-order pump mode(TIR or Bragg mode)

→ Electrical injection of the laser mode jwithin the nonlinear waveguide.

→ Integrated room temperature device for heralded single photon or photon pairs generation at telecom wavelength.

L. Lanco et al. APL 84, 2974 (2004)A. Orieux et al. CLEO 2012

14

R. Horn et al., PRL 108, 153605 (2012)

Modal PMLatest resultsa es esu s

SHG experiment (passive device):FH @ 1530 nm (TE+TM) → SH @ 765 nm (TE)Waveguide length: 2 mm

ηnorm = 35% W-1cm-2 ☺→ we expect ηSPDC ≈ 2 10-8

αSH ≈ 0.1 cm-1 ☺αFH ≈ 0.1 cm-1 ☺FH(10 times better than Horn et al.)

15

Modal PMLatest results

lasing on the Bragg modeWaveguide length: 2 mm

g gg(electrically pumped device): Waveguide length: 2 mm

α775 nm ≈ 6 cm‐1 

α1.55 μm ≈ 1 cm‐1 

Thanks to C. Sirtorifor discussionfor discussion

Modal PMLatest (unpublished) results

Spectrum & Tunability: Phase-matching vs temperature:Spectrum & Tunability: Phase matching vs temperature:

New sample under test right now!Graded MBE thicknesses

Outline

SPDC in AlGaAs waveguides :SPDC in AlGaAs waveguides :‐ Form birefringence phase‐matching

‐Modal phase‐matching‐Modal phase‐matching

‐ Counterpropagating phase‐matching

18

ComparisonPerspectives

Counterpropagating PM

Longitudinal Phase-Matching:k sinθ = k - kikpsinθ ks ki

Int. 1: ωpsinθ = nTEωs – nTMωiInt. 2: ωpsinθ = nTMωs − nTEωi

Vertical Quasi-Phase-Matching:kpcosθ = kQPM = 2π/ΛQPM

ηSPDC ~ 10-11300≈ηηcav

L L t l PRL 97

L. Lanco et al. PRL 97,173901 (2006).

A O i t l JOSA B 28

19

A. Orieux et al. JOSA B 28,45 (2011).

Counterpropagating PM

intrinsic separation of the 3 beams ☺tunability by θP ☺two interactions at the same time: ☺

20

Counterpropagating PMX. Caillet et al. OpEx 19, 9967 (2010)

Two‐photon interference: Hong‐Ou‐Mandel dipTwo photon interference: Hong Ou Mandel dip

V = 85% ±3%

λp = 775 nmp

Counterpropagating PMPolarization entanglement

F l Bi iλp = 775 nm Fresnel Biprism

TE(1)TM(1)

signalidler

TETE(2)

TMTM(2)

To ards direct Bell state generation

22

Towards direct Bell‐state generation

Counterpropagating PMQuantum tomography:  latest (unpublished) results

F=0.8S=2.2

88P14, biprism TP

Tangle 0.37D FV J l ‘M f bi ’ PRA 2001

Concurrence 0.61

Entanglementof formation

0.48

D.F.V. James et al. ‘Measurement of qubits’ PRA 2001

A. Orieux et al. EOS 2012of formation

LinearEntropy

0,43 Now working with a more adapted biprism

Counterpropagating PMX. Caillet et al. JMO 56, 232 (2009) P. J. Mosley et al. PRL 100, 133601 (2008).

M. Avenhaus et al. OL 34, 2873 (2009).

( ) ( ) ( )⎥⎦⎤

⎢⎣⎡ −

+

⎥⎥⎦

⎢⎢⎣

⎡ −+−= is

TMTE

p

pisis

nncLcAJSA ωω

σωωω

ωω22

sin2

exp, 2

20

ωc ωcx

i l d l d l d

⎦⎣ p

pump spectrum phase-matching ωs ωs

0

ISJ L=2.5mm dLambdaPompe=0.1887nm

197.3

0.8

0.9

0.01 0.010.020.02

0.040.050 10 2

ISJ L=1mm dLambdaPompe=0.1887nm

197.3

0.8

0.9

0.01

ISJ L=1.7mm dLambdaPompe=0.1887nm

197.3

0.8

0.9

anticorrelated uncorrelated correlated

ΔλTE ~ 0.36 nm ΔλTE ~ 0.26 nm ΔλTE ~ 0.21 nm

0.01

0.01

0.01

0.01

0.02

0.02

0.02

0.02

0.04

0.04

0.04

0.050.05

0.05

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.70.80.9

ν TM (T

Hz)

197.2

197.25

0.3

0.4

0.5

0.6

0.7

0.01

0.01

002

0.02

0.02

0.04

0.04

0.04

05

0.05

0.05

0.05

0.10.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.30.3

0.3

0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9ν TM (T

Hz)

197.2

197.25

0.3

0.4

0.5

0.6

0.7

0.01

0 01

0.01

0.01

0.02

0.02

0.02

0.02

0.040.04

0.04

0.04

0.050.05

0.05

0.05

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.80.9

ν TM (T

Hz)

197.2

197.25

0.3

0.4

0.5

0.6

0.7

νTE (THz)197.15 197.2 197.25 197.3

197.150.1

0.2

1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9decomposition de Schmidt S=0.87953 L=2.5mm dLambdaPompe=0.1887nm

mode n

λ n

0.010.01 0.

0

0.02 0.040.05

νTE (THz)197.15 197.2 197.25 197.3

197.150.1

0.2

1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8decomposition de Schmidt S=1.1035 L=1mm dLambdaPompe=0.1887nm

mode n

λ n

0.01

νTE (THz)197.15 197.2 197.25 197.3

197.150.1

0.2

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1decomposition de Schmidt S=0.032514 L=1.7mm dLambdaPompe=0.1887nm

mode n

λ n

τp = 3.25 psL = 2.5 mmS = 1.10 S = 0.03 S = 0.88

τp = 3.25 psL = 1.7 mm

τp = 3.25 psL = 1 mm

24

Outline

SPDC in AlGaAs waveguides :SPDC in AlGaAs waveguides :‐ Form birefringence phase‐matching

‐Modal phase‐matchingp g

‐ Counterpropagating phase‐matching

i25

ComparisonPerspectives

ComparisonForm Birefring. PM Modal PM Counterpropag. 

PM

PM t t I t II t IIPM type type I type II type II

Active / Passive P A / P P (A?)

CW / Pulsed CW or P P P or CW/

λSPDC 1550 nm 1550 nm 1520 nm

losses @ λSPDC 1 ‐ 2 cm‐1 1 cm‐1 / 0.1 cm‐1 0.1 cm‐1

losses @ λP 150 cm‐1 6 cm‐1 / 0.1 cm‐1 ‐

Lguide 0.5 mm 2 mm 2 mm

( i / h ) 4 10 8 2 10 8 10 11η (pairs / pump photon) ~ 4 10‐8

(1 10‐6 /cm)~ 2 10‐8

(1 10‐7 /cm)10‐11

ΔλSPDC (without filter) ~ 230 nm ~ 120 nm 0.17 nm(7 nm.cm) (24 nm.cm) (0.034 nm.cm)

ΔνSPDC (without filter) ~ 29 THz ~ 15 THz 22 GHz

brightness (s‐1mW‐1 GHz‐1) ~ 1 104 ~ 1 104 3 5 103

26

brightness (s 1 mW 1 GHz 1)  1 104

(3.5 105 /cm) 1 104

(5 104 /cm)3.5 103

Outline

SPDC in AlGaAs waveguides :‐ Form birefringence phase‐matching

d l h h‐Modal phase‐matching

‐ Counterpropagating phase‐matching

27ComparisonPerspectives

PerspectivesForm Birefringence PM:Form Birefringence PM:

Record SHG power in a sub-mm deviceWork on propagation losses

Modal PM:

Work on propagation losses

Modal PM:

Bragg mode SHGBragg mode lasingTune temperature and find twin photons

Counterpropagating PM:

HOMHOMMore quantum optics (direct Bell states

generation, frequency engineering,hyperentanglement) and integration

28

hyperentanglement) and integration(VCSEL on top, plasmonic circuit on chip)

Conclusion and perspectivesConclusion and perspectives

Ref.L 

(mm)W(μm)

αFH

(cm‐1)αSH

(cm‐1)Regime Type 

FH (mW)

SH (μW)

η(% W‐1)

ηnorm

(% W‐1cm‐2)FWHM (nm)

FBPM FioreAPL 1998

1.7 3 1.8 470 Pulsed I1.1(avg

)2.3(avg)

0.12 4.01 10

MPM DucciAPL 

1 5 53.5 TE

CW II 8 0 45 0 7 30 0 86MPM Ducci2004

1.5 56 TM

‐ CW II 8 0.45 0.7 30 0.86

MPM HelmyOPEX 2009

1.96 4 7.8 41 CW I 94 0.023 2.7 x 10‐4 6.8 x 10‐3 0.91

OLQPM Fejer

OL  2005

5 6 1.6 3.5 CW I 3 2 23 92 0.37

FBPM FejerOL 2006

0.6 1 5.3 70 CW I 0.023 10‐4 4.5 1250 10

FBPM LeoOL2011

0.5 4 1.1 140 CW I 135 270 2.8 1120 2.9

SFG and DFG study under waySystematic study of optical losses below 1μmSystematic study of optical losses below 1μmTry soon SPDC

NLO 2011‐ Lihue, 19/07/201130/10

top related