semiconductor sources of two-photon states

30
Semiconductor sources of two-photon states at room temperature in the telecom range Gi LEO Giuseppe LEO Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques (UMR 7162) Les enjeux de la génération non linéaire paramétrique dans Les enjeux de la génération non linéaire paramétrique dans les domaines UV et IR : état de l’art et nouveaux challenges Grenoble, 28 - 29 juin 2012

Upload: others

Post on 18-Dec-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Semiconductor sources of two-photon states

Semiconductor sources of two-photon states pat room temperature in the telecom range

Gi LEOGiuseppe LEO

Université Paris Diderot, Sorbonne Paris Cité,Laboratoire Matériaux et Phénomènes Quantiques (UMR 7162)

Les enjeux de la génération non linéaire paramétrique dansLes enjeux de la génération non linéaire paramétrique dans les domaines UV et IR : état de l’art et nouveaux challenges

Grenoble, 28 - 29 juin 2012

Page 2: Semiconductor sources of two-photon states

Laboratoire MPQQ

Equipes : 

• DON (Dispositifs Optiques Nonlinéaires) • IPIQ (Ions Piégès et Information Quantique)• MEANS (Microscopie Electronique Avancées et Nanostructures)• QUAD (Physique Quantique et Dispositifs)• TELEM (Transport Electronique à l'Echelle Moléculaire)• SQUAP (Spectrocopie des Quasi Particules)STM (N t t t i é t STM)• STM (Nanostructures auto‐organisées et STM) 

• THEORIE (Physique Théorique de la Matière Condensée)

2

Page 3: Semiconductor sources of two-photon states

Equipe Dispositifs Optiques Nonlinéaires

G. LeoS Ducci A. Andronico F Ghiglieno

Christophe Baker Alexandre DelgaS. Ducci

I. Favero

V Berger

A. AndronicoP. FillouxC. Manquest

F. GhiglienoA. Eckstein

Alexandre DelgaSilvia MarianiAdeline Orieux

V. BergerL. Doyennette

Cécile Ozanam David ParrainMarc SavanierMarc Savanier

Page 4: Semiconductor sources of two-photon states

Dispositifs Optiques Nonlinéaires

Sources à deux photons intégrées

1 μm

Microstructures semiconductrices pour la génération et l’oscillation paramétriques

Paires contrapropageantes

Sources à deux photons intégrées AlGaAs fonctionnant à 300K

Microsystème guide-cavité AlGaAs à QPM efficace

g p q

Guide d’ondes GaAs/AlOx à biréfringence de forme

- Paires contrapropageantes- Longueur d’ondes télécom- Faible largeur de raie

λω≈0.775µm λ2ω≈1.55µm

X. Caillet et al. Opt. Expr. 18, 9967 (2010)A. Orieux et al., J. Opt. Soc. Am. B 28, 45 (2011)

M. Savanier et al. Opt. Expr. 19, 22582 (2011)M. Savanier et al. Opt. Lett. 36, 2955 (2011) λ1≈λ2≈1.3µm

λDFG≈100µm

S. Mariani et al. Opt. Express (2012)

Page 5: Semiconductor sources of two-photon states

Dispositifs Optiques Nonlinéaires

Nano-Optomécanique GaAs1 μm

Transport dans les hétérostructures pour la photodétection dans l’IR moyen

0.35

0.30

0.25

0 20y (e

V)

E8

E9

(a)QCD

0.20

0.15

0.10

0.05

Ener

gy

E1E2E3E4E5E6E7E8

0.05

0.006005004003002001000

Width (Å)11001100500 600 700 800 900 1000

L Ding et al Applied Opt 49 2441 (2010)

A. Buffaz et al. PRB 81, 075304 (2010)A. Delga, et al. APL 99, 252106 (2011)

L Ding et al. Applied Opt., 49, 2441 (2010)L. Ding et al. PRL 105, 263903 (2010) C. Baker et al. APL 99, 151117 (2011)J. Restrepo et al. C.R. Phys. 12, 860 (2011)

Ré i i di G ARésonateurs miniature disques GaAsHaute fréquenceCouplage fort optique/mécanique QWIP

Page 6: Semiconductor sources of two-photon states

Integrated sources for quantum information

Semiconductors: small de ices mat re clean room technologies optoelectronics capabilitiessmall devices, mature clean-room technologies, optoelectronics capabilities…

Quantum Dots: biexciton emission

• deterministic☺• cryogenic temperatures

Waveguides: spontaneous parametric down-conversion

• poissonian• room temperature☺• hyper entanglement ☺hyper entanglement ☺

ћωp = ћωs + ћωi

ћkp = ћks + ћkino birefringence in bulk AlGaAs

→ other PM strategies required

Page 7: Semiconductor sources of two-photon states

OutlineSPDC in AlGaAs waveguides :

- Form birefringence phase-matching

- Modal phase-matching- Modal phase-matching

- Counterpropagating phase-matching

Comparison

7

p

Perspectives

Page 8: Semiconductor sources of two-photon states

OutlineSPDC in AlGaAs waveguidesSPDC in AlGaAs waveguides :

‐ Form birefringence phase‐matching

‐Modal phase‐matching‐Modal phase‐matching

‐ Counterpropagating phase‐matching

ComparisonPerspectives

8

Page 9: Semiconductor sources of two-photon states

Parametric fluorescence @ 2 µmTuning Bandwidth

G d id h i l l h• Good waveguide homogeneity over several mm length

• Generated signal and idler > 100 nW

• Tuning between 1 3 μm and 4 7 μmη = 1188 % W‐1cm‐2

• Tuning between 1.3 μm and 4.7 μm

Page 10: Semiconductor sources of two-photon states

Form Birefringence PM

Phase-Matching:kp = ks + kikp ks ki

nTMωp = nTEωs + nTEωi

insertion of low index layers (AlOx)→ artificial birefringence

TE0TMTM0

10

Page 11: Semiconductor sources of two-photon states

M Savanier et al OL 36 2955 (2011)

Record SH output… M. Savanier et al. OL 36, 2955 (2011)M. Savanier et al. OE 19 22582 (2011)

SHG experiment:FH @ 1550 nm (TE) → SH @ 775 nm (TM)

No sublinear deviation up to PFH = 50 mWMax SH output: PSH = 267 μWWaveguide length: 500 mWaveguide length: 500 μm

ηnorm = 1120% W‐1cm‐2 ☺→ we expect ηSPDC ≈ 4 10‐8

11

Page 12: Semiconductor sources of two-photon states

… but … but highhigh gguideduided--wave losseswave losses

FH: ECDL Fabry‐Perot fringes

0 3 0 06 1 iαNOX = 0.35 ± 0.06 cm‐1

αOX = 1.13 ± 0.03 cm‐1

SH

Two regimes

hν < 70% gap:SH: Ti:Sa transmissionαOX = 150 ± 12 cm‐1

hν < 70% gap: Rayleigh‐like scattering

hν > 70% gap: Absorption (*)

(*) Shi et al. APL 70, 1293 (1997)

Page 13: Semiconductor sources of two-photon states

Outline

SPDC in AlGaAs waveguides :SPDC in AlGaAs waveguides :‐ Form birefringence phase‐matching

‐Modal phase‐matchingp g

‐ Counterpropagating phase‐matching

13

ComparisonPerspectives

Page 14: Semiconductor sources of two-photon states

Modal PMPhase-Matching:

kp = ks + ki

nTEωp = nTEωs + nTMωi

Higher order p mp modeHigher-order pump mode(TIR or Bragg mode)

→ Electrical injection of the laser mode jwithin the nonlinear waveguide.

→ Integrated room temperature device for heralded single photon or photon pairs generation at telecom wavelength.

L. Lanco et al. APL 84, 2974 (2004)A. Orieux et al. CLEO 2012

14

R. Horn et al., PRL 108, 153605 (2012)

Page 15: Semiconductor sources of two-photon states

Modal PMLatest resultsa es esu s

SHG experiment (passive device):FH @ 1530 nm (TE+TM) → SH @ 765 nm (TE)Waveguide length: 2 mm

ηnorm = 35% W-1cm-2 ☺→ we expect ηSPDC ≈ 2 10-8

αSH ≈ 0.1 cm-1 ☺αFH ≈ 0.1 cm-1 ☺FH(10 times better than Horn et al.)

15

Page 16: Semiconductor sources of two-photon states

Modal PMLatest results

lasing on the Bragg modeWaveguide length: 2 mm

g gg(electrically pumped device): Waveguide length: 2 mm

α775 nm ≈ 6 cm‐1 

α1.55 μm ≈ 1 cm‐1 

Thanks to C. Sirtorifor discussionfor discussion

Page 17: Semiconductor sources of two-photon states

Modal PMLatest (unpublished) results

Spectrum & Tunability: Phase-matching vs temperature:Spectrum & Tunability: Phase matching vs temperature:

New sample under test right now!Graded MBE thicknesses

Page 18: Semiconductor sources of two-photon states

Outline

SPDC in AlGaAs waveguides :SPDC in AlGaAs waveguides :‐ Form birefringence phase‐matching

‐Modal phase‐matching‐Modal phase‐matching

‐ Counterpropagating phase‐matching

18

ComparisonPerspectives

Page 19: Semiconductor sources of two-photon states

Counterpropagating PM

Longitudinal Phase-Matching:k sinθ = k - kikpsinθ ks ki

Int. 1: ωpsinθ = nTEωs – nTMωiInt. 2: ωpsinθ = nTMωs − nTEωi

Vertical Quasi-Phase-Matching:kpcosθ = kQPM = 2π/ΛQPM

ηSPDC ~ 10-11300≈ηηcav

L L t l PRL 97

L. Lanco et al. PRL 97,173901 (2006).

A O i t l JOSA B 28

19

A. Orieux et al. JOSA B 28,45 (2011).

Page 20: Semiconductor sources of two-photon states

Counterpropagating PM

intrinsic separation of the 3 beams ☺tunability by θP ☺two interactions at the same time: ☺

20

Page 21: Semiconductor sources of two-photon states

Counterpropagating PMX. Caillet et al. OpEx 19, 9967 (2010)

Two‐photon interference: Hong‐Ou‐Mandel dipTwo photon interference: Hong Ou Mandel dip

V = 85% ±3%

λp = 775 nmp

Page 22: Semiconductor sources of two-photon states

Counterpropagating PMPolarization entanglement

F l Bi iλp = 775 nm Fresnel Biprism

TE(1)TM(1)

signalidler

TETE(2)

TMTM(2)

To ards direct Bell state generation

22

Towards direct Bell‐state generation

Page 23: Semiconductor sources of two-photon states

Counterpropagating PMQuantum tomography:  latest (unpublished) results

F=0.8S=2.2

88P14, biprism TP

Tangle 0.37D FV J l ‘M f bi ’ PRA 2001

Concurrence 0.61

Entanglementof formation

0.48

D.F.V. James et al. ‘Measurement of qubits’ PRA 2001

A. Orieux et al. EOS 2012of formation

LinearEntropy

0,43 Now working with a more adapted biprism

Page 24: Semiconductor sources of two-photon states

Counterpropagating PMX. Caillet et al. JMO 56, 232 (2009) P. J. Mosley et al. PRL 100, 133601 (2008).

M. Avenhaus et al. OL 34, 2873 (2009).

( ) ( ) ( )⎥⎦⎤

⎢⎣⎡ −

+

⎥⎥⎦

⎢⎢⎣

⎡ −+−= is

TMTE

p

pisis

nncLcAJSA ωω

σωωω

ωω22

sin2

exp, 2

20

ωc ωcx

i l d l d l d

⎦⎣ p

pump spectrum phase-matching ωs ωs

0

ISJ L=2.5mm dLambdaPompe=0.1887nm

197.3

0.8

0.9

0.01 0.010.020.02

0.040.050 10 2

ISJ L=1mm dLambdaPompe=0.1887nm

197.3

0.8

0.9

0.01

ISJ L=1.7mm dLambdaPompe=0.1887nm

197.3

0.8

0.9

anticorrelated uncorrelated correlated

ΔλTE ~ 0.36 nm ΔλTE ~ 0.26 nm ΔλTE ~ 0.21 nm

0.01

0.01

0.01

0.01

0.02

0.02

0.02

0.02

0.04

0.04

0.04

0.050.05

0.05

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.70.80.9

ν TM (T

Hz)

197.2

197.25

0.3

0.4

0.5

0.6

0.7

0.01

0.01

002

0.02

0.02

0.04

0.04

0.04

05

0.05

0.05

0.05

0.10.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.30.3

0.3

0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9ν TM (T

Hz)

197.2

197.25

0.3

0.4

0.5

0.6

0.7

0.01

0 01

0.01

0.01

0.02

0.02

0.02

0.02

0.040.04

0.04

0.04

0.050.05

0.05

0.05

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.80.9

ν TM (T

Hz)

197.2

197.25

0.3

0.4

0.5

0.6

0.7

νTE (THz)197.15 197.2 197.25 197.3

197.150.1

0.2

1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9decomposition de Schmidt S=0.87953 L=2.5mm dLambdaPompe=0.1887nm

mode n

λ n

0.010.01 0.

0

0.02 0.040.05

νTE (THz)197.15 197.2 197.25 197.3

197.150.1

0.2

1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8decomposition de Schmidt S=1.1035 L=1mm dLambdaPompe=0.1887nm

mode n

λ n

0.01

νTE (THz)197.15 197.2 197.25 197.3

197.150.1

0.2

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1decomposition de Schmidt S=0.032514 L=1.7mm dLambdaPompe=0.1887nm

mode n

λ n

τp = 3.25 psL = 2.5 mmS = 1.10 S = 0.03 S = 0.88

τp = 3.25 psL = 1.7 mm

τp = 3.25 psL = 1 mm

24

Page 25: Semiconductor sources of two-photon states

Outline

SPDC in AlGaAs waveguides :SPDC in AlGaAs waveguides :‐ Form birefringence phase‐matching

‐Modal phase‐matchingp g

‐ Counterpropagating phase‐matching

i25

ComparisonPerspectives

Page 26: Semiconductor sources of two-photon states

ComparisonForm Birefring. PM Modal PM Counterpropag. 

PM

PM t t I t II t IIPM type type I type II type II

Active / Passive P A / P P (A?)

CW / Pulsed CW or P P P or CW/

λSPDC 1550 nm 1550 nm 1520 nm

losses @ λSPDC 1 ‐ 2 cm‐1 1 cm‐1 / 0.1 cm‐1 0.1 cm‐1

losses @ λP 150 cm‐1 6 cm‐1 / 0.1 cm‐1 ‐

Lguide 0.5 mm 2 mm 2 mm

( i / h ) 4 10 8 2 10 8 10 11η (pairs / pump photon) ~ 4 10‐8

(1 10‐6 /cm)~ 2 10‐8

(1 10‐7 /cm)10‐11

ΔλSPDC (without filter) ~ 230 nm ~ 120 nm 0.17 nm(7 nm.cm) (24 nm.cm) (0.034 nm.cm)

ΔνSPDC (without filter) ~ 29 THz ~ 15 THz 22 GHz

brightness (s‐1mW‐1 GHz‐1) ~ 1 104 ~ 1 104 3 5 103

26

brightness (s 1 mW 1 GHz 1)  1 104

(3.5 105 /cm) 1 104

(5 104 /cm)3.5 103

Page 27: Semiconductor sources of two-photon states

Outline

SPDC in AlGaAs waveguides :‐ Form birefringence phase‐matching

d l h h‐Modal phase‐matching

‐ Counterpropagating phase‐matching

27ComparisonPerspectives

Page 28: Semiconductor sources of two-photon states

PerspectivesForm Birefringence PM:Form Birefringence PM:

Record SHG power in a sub-mm deviceWork on propagation losses

Modal PM:

Work on propagation losses

Modal PM:

Bragg mode SHGBragg mode lasingTune temperature and find twin photons

Counterpropagating PM:

HOMHOMMore quantum optics (direct Bell states

generation, frequency engineering,hyperentanglement) and integration

28

hyperentanglement) and integration(VCSEL on top, plasmonic circuit on chip)

Page 29: Semiconductor sources of two-photon states
Page 30: Semiconductor sources of two-photon states

Conclusion and perspectivesConclusion and perspectives

Ref.L 

(mm)W(μm)

αFH

(cm‐1)αSH

(cm‐1)Regime Type 

FH (mW)

SH (μW)

η(% W‐1)

ηnorm

(% W‐1cm‐2)FWHM (nm)

FBPM FioreAPL 1998

1.7 3 1.8 470 Pulsed I1.1(avg

)2.3(avg)

0.12 4.01 10

MPM DucciAPL 

1 5 53.5 TE

CW II 8 0 45 0 7 30 0 86MPM Ducci2004

1.5 56 TM

‐ CW II 8 0.45 0.7 30 0.86

MPM HelmyOPEX 2009

1.96 4 7.8 41 CW I 94 0.023 2.7 x 10‐4 6.8 x 10‐3 0.91

OLQPM Fejer

OL  2005

5 6 1.6 3.5 CW I 3 2 23 92 0.37

FBPM FejerOL 2006

0.6 1 5.3 70 CW I 0.023 10‐4 4.5 1250 10

FBPM LeoOL2011

0.5 4 1.1 140 CW I 135 270 2.8 1120 2.9

SFG and DFG study under waySystematic study of optical losses below 1μmSystematic study of optical losses below 1μmTry soon SPDC

NLO 2011‐ Lihue, 19/07/201130/10