biennial report 2015/16grande/arep2016.pdflaboratório de implantação iônica instituto de física...

80
Laboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report 2015/16

Upload: others

Post on 30-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation LaboratoryInstitute of Physics – UFRGS

Biennial Report 2015/16

Page 2: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report
Page 3: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation LaboratoryInstitute of Physics – UFRGS

Biennial Report – 2015/16

Editors

Rogério Luís MaltezJosé Henrique dos Santos

Pedro Luis Grande

Porto Alegre2016

Page 4: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report
Page 5: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Table of Contents

Preface..............................................................................................................................7

Staff...................................................................................................................................9

Permanent Researchers...........................................................................................9Permanent Technicians.........................................................................................10Temporary Technicians.........................................................................................10Postdocs................................................................................................................11Graduate students (Master and PhD)....................................................................11

Brazilian Collaborators...................................................................................................13

International collaborators..............................................................................................14

Facilities..........................................................................................................................17

Users’ highlights.............................................................................................................18

Agenor Hentz........................................................................................................19Cláudio Radtke.....................................................................................................21Cesar Aguzzoli......................................................................................................23Cesar Aguzzoli......................................................................................................23Daniel Lorscheitter Baptista.................................................................................25Fernanda Chiarello Stedile...................................................................................27Gabriel Vieira Soares............................................................................................29Henri Boudinov....................................................................................................31Johnny Ferraz Dias...............................................................................................33Jonder Morais.......................................................................................................35Livio Amaral.........................................................................................................37Moni Behar...........................................................................................................39Moni Behar...........................................................................................................40Paulo F. P. Fichtner...............................................................................................41Pedro Luis Grande................................................................................................43Pedro Luis Grande................................................................................................45Raul Carlos Fadanelli...........................................................................................47Ricardo Meurer Papaléo.......................................................................................49

5

Page 6: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Publications in peer reviewed journals...........................................................................51

Conference Proceedings.................................................................................................63

Books and book chapters................................................................................................67

Oral contributions and invited talks................................................................................67

Supervision of thesis and dissertations (completed).......................................................75

Patent..............................................................................................................................77

Organization of conferences...........................................................................................77

Members in international committees and in editorial boards........................................78

Partners (Universities, Research Institutes and Companies)..........................................79

Projects...........................................................................................................................79

6

Page 7: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Preface

The Ion Implantation Laboratory (IIL) is an ion beam center at the Institute of

Physics (IF) at the Federal University of Rio Grande do Sul (UFRGS), Brazil. The IF-

UFRGS is located in the city of Porto Alegre (state of Rio Grande do Sul) and it is

ranked as the most important research center of Physics in southern Brazil.

The IIL has three accelerators that provide a wide variety of positive ions in a

broad energy range and are used by tens of researchers from Brazil and other countries

from Latin America for ion-beam analysis, ion implantation and ion irradiation. Several

beam lines with different analytical techniques are available to scientists from different

fields. The techniques are:

PIXE (Particle-Induced X-ray Emission): provides elemental concentrations of

the order of part per million;

RBS (Rutherford Backscattering Spectrometry): used for characterization of

different structures, including multi-layered targets;

NRA (Nuclear Reaction Analysis) and NRP (Nuclear Reaction Profiling): ideal

to detect and profile specific isotopes respectively;

Microprobe: allow the use of techniques like PIXE, RBS and STIM with

micrometer beam size;

MEIS (Medium Energy Ion Scattering): it is a high-resolution RBS technique

with isotope-separation capability;

ERDA (Elastic Recoil Detection Analysis): for quantitative analysis of light

elements in solids, usually H and He;

7

Page 8: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Ion Implantation: used for modification of materials under controlled

parameters.

The infrastructure of the laboratory includes a large variety of ovens, a cleaning

room, a MEV microscope and photoluminescence laboratory, A fully dedicated

workshop allows the maintenance of the laboratory in a regular basis. A general view

of the laboratory is shown below, featuring the beam lines of the

Tandetron accelerator.

This is the fifth issue of our activities and covers two years (2015-2016) of

scientific production of all staff members, postdocs and students of the IIL. In spite of

strong difficulties arising from severe restriction of budget and increase of academic

duties in our university we are all committed to go further.

Pedro L. Grande

Head of Ion Implantation Laboratory

8

Page 9: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Staff

Permanent Researchers

Pedro Luís Grande, PhD. (IF, UFRGS, 1989) - Group leader since 2009.

Johnny Ferraz Dias, PhD. (UG, BELGIUM, 1994) – Accelerators coordinator since 2010.

Fernando Claudio Zawislak, PhD. (IF, UFRGS, 1967) - Founder and Group leader between 1980 and 2008.

Moni Behar, PhD. (UBA, ARGENTINA, 1970) – Accelerators coordinator between 1982 and 2009.

Israel Jacob Rabin Baumvol, PhD. (IF, UFRGS, 1977)

Livio Amaral, PhD. (IF, UFRGS, 1982)

Paulo Fernando Papaleo Fichtner, PhD. (IF, UFRGS, 1987)

Henri Ivanov Boudinov , PhD. (IE-BAN, BULGARIA, 1991)

Fernanda Chiarello Stedile, PhD. (IF, UFRGS, 1994)

Ricardo Meurer Papaléo, PhD. (U.UPPSALA, SWEDEN, 1996) PUC-RS

Rogério Luis Maltez, PhD. (IF, UFRGS, 1997)

Claudio Radtke,PhD. (IF, UFRGS, 2003)

Cristiano Krug, PhD. (IF, UFRGS, 2003)

9

Page 10: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Daniel Lorscheitter Baptista, PhD. (IF, UFRGS, 2003)

Gabriel Viera Soares, PhD. (PGMicro, UFRGS, 2008)

Raul Carlos Fadanelli Filho, PhD. (IF, UFRGS, 2005)

Leandro Langie Araujo, PhD. (IF, UFRGS, 2004)

Agenor Hentz da Silva Jr., PhD. (IF, UFRGS, 2007)

Raquel Giulian, PhD. (RSPE, ANU, AUSTRALIA, 2009)

Jonder Morais, PhD.(IFGW, Unicamp, 1995)

José Henrique dos Santos, PhD (IF, UFRGS, 1997)

Permanent Technicians

Agostinho A. Bulla, Electrical Engineer responsible for the accelerators

Clodomiro F. Castello, Accelerator support and operation

Paulo R. Borba, Accelerator support and operation (In memoriam)

Paulo Kovalick, Workshop

Temporary Technicians

Marcelo Cavagnolli, IE-MULTI (Multi-users support)

Eduardo Ribeiro dos Santos, IE-MULTI (Multi-users support)

10

Page 11: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Postdocs

Chiara Nascimento (2014 – 2016)

Bárbara Canto (2016 – 2019)

Cláudia Telles de Souza (2014 – 2016)

Igor Alencar (2015 – 2017)

Liana Appel Boufleur Niekraszewicz (2015 – 2020)

Paulo Jobim (2011 – 2016)

Silma Alberton Corrêa (2015 – 2017)

Tiago Ávila (2016)

Graduate students (Master and PhD)

Deiverti de Vila Bauer - Master

Eduardo Pitthan Filho – PhD

Eduardo Garcia Ribas – PhD

Eduardo Serralta Hurtado de Menezes – Master Eliana Antunes M. A. Van Etten – PhD

Eliasibe Luis – PhD

Flávia Fernandes – PhD

11

Page 12: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Flávio Matias da Silva – PhD

Frâncio Rodrigues – Master Gabriel Guteres Marmitt – PhD

Gabriel Volkweis Leite – PhD

Gabriela Copetti – PhD

Guilherme Koszeniewski Rolim – PhD

Guilherme Sombrio – PhD

Gustavo Henrique Stedile Dartora – Master

Henrique Trombini -– PhD

Horácio Coelho Júnior – PhD

Italo Martins Oyarzabal - Master

Ivan Rodrigo Kaufmann – PhD

Josiane Bueno Salazar - PhD

Lais Gomes de Almeida – Master

Louise Patron Etcheverry – PhD

Mariana de Mello Timm - PhD

Masahiro Hatori – PhD

12

Page 13: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Milena Sulzbach – Master

Taís Orestes Feijó – Master

Tatiele Ferrari – Master

Vagner Zeizer Carvalho Paes – PhD

Zacarias Eduardo Fabrim – PhD

Brazilian Collaborators

A. Ferreira, UFBA, Salvador

A. Paesano Jr., Maringá, PR.

A. M. H. de Andrade, UFRGS, Porto Alegre

A.L. Gobbi, LNN, Campinas

C. E. I. dos Santos, FURG, RS (Santo Antônio da Patrulha)

C. Requião, UFRGS, Porto Alegre

D. Mosca, Curitiba, PR.

F. Bernardi, UFRGS, Porto Alegre

F. R. da Silva, UNILASALLE, Canoas, RS

I. Hummelgen, UFPR, Curitiba

13

Page 14: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

J. da Silva, ULBRA, Canoas, RS

J. Geshev, UFRGS, Porto Alegre

J.F. Dias, IO-USP, São Paulo, SP

J.J. Zocche, UNESC, Criciúma, SC

J.W. Swart, UNICAMP, Campinas

L.G. Pereira, UFRGS, Porto Alegre

L.M. Nagamine, USP, São Paulo

P. Pureur, UFRGS, Porto Alegre

V.M. de Andrade, UNESC, Criciúma, SC

International collaborators

André Turos,Eletronic Department. Cracow, Poland

Benjamin Balke, Uni-Mainz, Germany

Bruno Canut, Universidade Claude Bernard, Lyon 1, France

Christina Trautmann, Gesellschaft für Schwerionenforschung, Darmstadt, Germany

Cláudia Gomes, Universidade do Porto, Porto, Portugal

14

Page 15: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Claudia Montanaro, Universidad de Buenos Aires, Argentina

Claudia S. Schnohr, Friedrich-Schiller-Universität Jena , Germany

Dieter Schmeisser, Brandenburg University of Technology Cottbus-Senftenberg,Germany

Dr Jonathan England,, Varian Semiconductor Equipment / Applied Materials, UK

Gerado Garcia Bermudez, CNEA, Buenos Aires, Argentina

Gregor Schwietz, Helmholtz-Zentrum, Berlin

Horst-Günter Rubahn, NanoSYD, Sonderborg, Denmark

Isabel Abril, Universidad de Alicant, Spain

Iuri Danilov, University of Nizhny Novgorod, Russia

Jaap van den Berg, University of Huddersfield, UK

Jakob Kjelstrup-Hansen, Sonderborg, Denmark.

Joaquim Farias, Universidade do Porto, Porto, Portugal

L. Thome, Orsay France

Leonard C. Feldman, Rutgers University, U.S.A.

Maarten Vos, ANU, Austrália

Mario Pomares, Universidad de la Habana, Cuba

Melissa K. Santala, Oregon State University, USA

N. Moncofre, Universite C. Bernard, Lyon, France

15

Page 16: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Nestor Arista, Centro Atomico Bariloche, Argentina

Osvaldo de Mello, Universidad de la Habana, Cuba

R.Garcia Molina Universidad de Murcia, Spain

Ricardo. D. Muino, DIPC and Centro de Fisica de Materiales, CSIC-UPV/EHU, SanSebastian, Spain

Roberto dos Reis, National Center for Electron Microscopy, LBNL, Berkeley, U.S.A.

Saúl Larramendi, IMRE, Universidade de Havana, Cuba

Stephen E. Donnelly, Huddersfield, United Kingdom.

Stella Canut, Universidade Claude Bernard, Lyon 1, France

Torgny Gustafsson, Rutgers University, U.S.A.

Yusleidy Enamorado Horrutiner, IQ, Universidade de Havana, Cuba

16

Page 17: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Facilities

The Ion Implantation Laboratory has three accelerators that provide a widevariety of positive ions in a broad energy range, they are:

• 3 MV Tandetron accelerator;• 500 kV and 250 kV accelarators.

3 MV Tandetron 500 kV accelerator 250 kV accelerator

Besides the accelarators, the laboratory has the following additional facilities:

• Photoluminescence laboratory;• Clean-room;• Furnaces, ovens and reactor chambers;• Workshop.

Furnaces and reactors Optical characterization Clean-room

17

Page 18: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Users’ highlights selected

among their published articles

18

Page 19: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

On the use of MEIS cartography for the determination of

Si1-xGex Thin Film Strain.

Agenor Hentz

The characterization of the nanoscopic state of strain in crystalline

semicondutors is important for a large number of technological issues. In particular,

strained Si1-xGex alloys have been actively investigated during the last years because of

their application in high-mobility metal oxide-semicondutor field-effect transistors.

In this work we use an ion-beam (medium energy ion scattering - MEIS) probe in

order to quantify the amount of strain of two Si1-xGex samples with nominal Ge

fractions of 20 and 30 at %, instead of the traditional diffraction and contrast-phase

techniques. MEIS has recently been successfully applied to determine the depth profile

of strain for wide variety of crystalline materials, such as the heterostructure formed by

a thin Si overlayer on top of SiGe crystal. In order for the MEIS technique to be useful

for strain determination, it must be operated in the so-called “stereographic” mode. In

this mode, a series of standard 1-D MEIS spectra is collected for a given structure, each

one in a slightly shifted azimuthal angle (rotation around the surface normal direction).

These spectra are joined together in a 2-D colormap stereographic projection which can

be compared to simulation results (see figure). The main features of these maps are the

presence of pronounced spots, corresponding to crystallographic blocking directions,

and curved lines, corresponding to different crystallographic planes. Additionally,

different energy regions of the 1-D MEIS spectra can be selected to form the 2-D

19

Page 20: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

colormap, thus corresponding to different sample depths, allowing, in principle, one to

quantify the amount of strain as a function of the sample depth.

As a result, we found that the method is validated for the determination of the

strain in Si1-xGex and it agrees with pseudomorphically strained samples of Si1-xGex

with x=20 and 30%.

(a) Meis cartography of a reference Si(100) sample used for angular calibration. (b) MEIS

cartography for Si0.8Ge0.2. (c) and (d) are the same as in (a) and (b), corresponding, including the

main directions represented by circles.

Paper reference:On the use of MEIS cartography for the determination of Si1-xGex thin-film strain, T.S. Avila,

P.F.P. Fichtner, A. Hentz, P.L. Grande, Thin-Solid Films, 611 (2015) 101-106.

20

Page 21: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Stabilization of the GeO2/Ge Interface by Nitrogen

Incorporation in a One-Step NO Thermal Oxynitridation

Cláudio Radtke

Germanium (Ge) is a promising candidate for replacing silicon (Si) as p-channel

material in metal-oxide-semiconductor field effect transistors (MOSFET) owing to its

high hole mobility. However, the lack of a stable passivation layer for Ge surface

hinders the development of such technology. Unlike silicon dioxide (SiO2), germanium

dioxide (GeO2) is water-soluble and also thermally unstable at temperatures usually

employed during device processing.

In the present work, we investigated the incorporation of nitrogen in germanium

oxide and its role in the improved stability of the resulting dielectric layer. GeOxNy

films were produced in a one-step process by direct thermal oxynitridation of the Ge

surface using nitric oxide gas (NO), reducing the eventual damage of other nitridation

techniques like plasma immersion. Incorporation of a relatively low nitrogen

concentration into the oxide led to significant enhancement of the thermal stability of

GeO2/Ge structures.

N depth profiling evidenced that this element is spread throughout the whole

oxynitride film, with its incorporation being intervened by the production of vacancies

at the dielectric/Ge interface. Besides O transport during thermal growth of the

oxynitride layer, N was also confirmed as a mobile species. However, the lower

mobility of the later results in the blockage of vacancy diffusion paths. This reduced

vacancy diffusivity leads to a greater thermal stability and oxidation resistance of the

overall oxynitride lattice in comparison with pure oxide. The final N content in the

21

Page 22: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

formed layer is the net result of its incorporation and removal, mechanisms that take

place simultaneously during exposure of Ge to NO at high temperatures. Depending on

time and temperature of the NO treatment, oxynitride layers with different thicknesses

can be obtained. This procedure paves the way to synthesize interlayers with specified

characteristics aiming at stable dielectric stacks prepared on Ge.

Figure 1 - (Left) Experimental excitation curves of the 18O(p,α)15N reaction for 9 nm Ge16O2/Ge andGe16Ox 15Ny/Ge samples submitted to 1 atm of 18O2 at 550 °C for 30 min. The excitation curve of a 9nm thick Ge18O2 grown in 18O2 is shown for comparison. Dashed line indicates the energycorresponding to the surface. (Central) Experimental excitation curves of 15N(p,γα)12C reaction of theGe16Ox

15Ny sample obtained before and after thermal treatment in 18O2.

Paper reference:Stabilization of the GeO2/Ge Interface by Nitrogen Incorporation in a One-Step NO ThermalOxynitridation, G. Copetti, G.V. Soares, and C. Radtke, ACS Applied Materials & Interfaces, 8(2016) 27339-27345.

22

Page 23: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Antibacterial properties obtained by low-energy silverimplantation in stainless steel surfaces

Cesar Aguzzoli

The biofilms are a new form of life that offers greater resistance to

microorganisms, protecting them against physical and chemical aggressions of the

surroundings, which facilitate its adaptation in adverse conditions. The development of

pathogenic biofilms on contact surfaces used in the health and food industries is the

main cause of increased contamination that can, eventually, lead to public health

problems and economic order. To prevent, control or eradicate biofilms, technological

alternatives are being developed and tested in materials with antimicrobial properties.

Within this context, this study aimed to evaluate the antimicrobial properties of silver

ions (Ag+) implanted on the surface of austenitic stainless steel AISI 304 by the

technique of ion implantation at low energy (4 keV) in an Ion Plating Diversified (IPD)

equipment. The bacteria studied were Escherichia coli (IBEc 101) and Staphylococcus

aureus (ATCC 6538). The simulations Monte Carlo has predicted for a given energy of

implantation, the dose and depth profile of ions Ag+ implanted in steel. Physico-

chemical analysis presented doses of silver, in the order of magnitude of 1016 atoms/cm2

at depths less than 10 nm. The areal density of silver atoms implanted was influenced

by the relationship between the emission current index and the process time. The

microbiological results obtained showed a significant reduction in bacterial adhesion

(95% for E. coli and 90% for S. aureus) in relation to its controls. However, impurities

such as oxygen found on the surface of samples altered the adhesion of the bacterial

23

Page 24: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

cells. The variation of the pH of the culture medium caused the electrostatic repulsion

between bacterial cells and solid surface increases to pH values close to neutrality and

to shrink to no alkaline pH values, interfering in this way, in the adhesion of bacteria.

Missing data yet proving their income and the total cost of the product treated, there is

a huge prospect of making the process IPD on an industrial scale.

Paper reference:Antibacterial properties obtained by low-energy silver implantation in stainless steel surfaces,F.G. Echeverrigaray, S. Echeverrigaray, A.P.L. Delamare, C.H. Wanke, C.A. Figueroa, I.J.R. Baumvol,C. Aguzzoli, Surface & Coatings Technology, 307 (2016) 345-351.

24

Page 25: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Tunnel barriers for graphene spintronic devices

Daniel Lorscheitter Baptista

Graphene is a potential material for spintronic applications because of the

combination of its expected long spin lifetime and high electron mobility.

Experimentally, graphene spin-injection devices can be obtained by fabricating

ferromagnetic metal contacts on graphene; these assemblies act as spin-current filters.

However, previous studies showed that electrical spin injection from such

ferromagnetic electrodes in direct contact (transparent contact) with graphene is not

effective because of the conductance mismatch. Instead, the use of a thin insulating

layer acting as a tunnel barrier (tunneling contact) between the graphene layer and the

metal electrodes has proven to be an e ective solution. Nevertheless, complete controlff

of tunneling barrier fabrication on graphene sheets is still distant. Barrier structural and

chemical non-uniformities seem to play a crucial role in the experimental spin

relaxation time values; these are much shorter than expected (ca. microsecond) from

the low intrinsic spin-orbit couplings of graphene.

In this work, we report a detailed investigation of the structural and chemical

characteristics of thin evaporated Al2O3 barriers with variable thickness grown onto

single-layer graphene sheets. Advanced electron microscopy and spectrum-imaging

techniques were used to investigate the Co/Al2O3/graphene/SiO2 and

Co/graphene/SiO2 interfaces. Direct observation of pinhole contacts was achieved

using FIB cross-sectional lamellas. Spatially resolved EDX spectrum profiles

confirmed the presence of direct point contacts between the Co layer and the graphene.

25

Page 26: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

The high surface diffusion properties of graphene led to cluster-like Al2O3 film growth,

limiting the minimal possible thickness for complete barrier coverage onto graphene

surfaces using standard Al evaporation methods. The results indicate a minimum

thickness of nominally 3 nm Al2O3, resulting in a 0.7 rms rough film with a maximum

thickness reaching 5 nm.

1-HAADF-STEM cross-sectional images of samples with 1-nm-thick (nominal) Al2O3 barrier on

SiO2and graphene.

2-SEM image of graphene spintronic device with ferromagnetic tunnel contacts(Co/Al2O3/graphene/SiO2).

Paper reference:On the structural and chemical characteristics of Co/Al2O3/graphene interfaces for graphenespintronic devices, B. Canto, C. Gouvea, B. S. Archanjo, J. E. Schmidt, D. L. Baptista, ScientificReports, 5 (2015) 14332-14339.

26

Page 27: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Investigation of phosphorous in thin films using the31P(α,p)34S

nuclear reaction

Fernanda Chiarello Stedile

Phosphorus detection and quantification were obtained, using the 31P(α,p)34S

nuclear reaction and Rutherford Backscattering Spectrometry, in deposited silicon

oxide films containing phosphorus and in carbon substrates implanted with phosphorus.

It was possible to determine the total amount of phosphorus using the resonance at

3.640 MeV of the 31P(α,p)34S nuclear reaction in samples with phosphorus present in up

to 23 nm depth. Phosphorous amounts as low as 4×1014 cm-2 were detected. Results

obtained by nuclear reaction were in good agreement with those from RBS

measurements. Possible applications of phosphorus deposition routes used in this work

are discussed.

TABLE I - Areal densities of Si, O, and P determined by RBS in phosphorus containing silicon oxidefilms co-deposited (coX, see below) or sequentially deposited (seX, see below) by sputtering yieldingthe mentioned film thickness on carbon substrates and their calculated atomic ratios.

27

Page 28: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Fig.1:a) RBS spectra of silicon oxide films containing 31P deposited by sputtering on C substrates. b)31P(α,p)34S nuclear reaction spectra obtained at 3.640 MeV from the same samples. c) Areal densitiesof 31P obtained by RBS and by nuclear reaction of the indicated samples. Measurement uncertaintiesare around 5% for NRA and 10% for RBS.

Paper reference:Investigation of phosphorous in thin films using the31P(α,p)34S nuclear reaction, E. Pitthan,, A.L.Gobbi, and F.C. Stedile, Nuclear Instruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms, 371 (2016) 220-223.

28

Page 29: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Water incorporation in graphene transfered onto SiO2/Siinvestigated by isotopic labeling

Gabriel Vieira Soares

Graphene is the two-dimensional building block for carbon allotropes, exhibiting

fascinating physical properties such as very high carrier mobility and near-ballistic

transport at room temperature. Moreover, the possibility to make very thin channels

will allow continuing the downscaling in field-effect transistors (FETs) channel lengths

and achieve higher device processing speeds. Owing to these characteristics, graphene

is considered one of the most promising contenders for future nanoelectronic devices.

The implementation of graphene in semiconductor technology will only be possible

through a large-scale fabrication approach. Chemical vapor deposition (CVD) of

single-layer graphene (SLG) on catalytic metal surfaces is a well-established method to

fulfill this purpose. However, SLG prepared by CVD needs to be transferred onto a

nonmetallic substrate, aiming at device fabrication. Processing and modification of

graphene properties for technological purposes are also challenging. In particular, the

adsorption of different species in SLG/SiO2/Si structures is of central importance.

Understanding these processes is necessary in order to meet the physical requirements

for industrial applications of graphene. In this way we systematically investigated the

incorporation of H and O in SLG transferred onto SiO2/Si substrates, upon annealing in

water vapor. In order to quantify the incorporation of these elements specifically related

to the annealing step, we used water simultaneously enriched in H (deuterium, D) and

18O rare isotopes. Nuclear reaction analysis (NRA) enables quantification of these rare

isotopes. Figure 1 shows the 18O and D amounts uptake in graphene. The ratio

29

Page 30: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

between 18O and D concentrations in the 100-300°C range is approximately constant,

which points to a common mechanism operating at these temperatures. Physisorption

of H2O molecules in the SLG/SiO2/Si structure is the dominant process in the 100-

300°C temperature range. For 400 °C and above, chemisorption is favored due to the

creation of defects in the graphene lattice. Transport measurements demonstrated that

the observed physico-chemical and structural modifications have a huge impact on the

electrical characteristics of these structures.

Figure 1: 18O (solid circles) and D (open circles) areal densities incorporated in graphene as afunction of annealing temperature.

Paper reference:Water incorporation in graphene transfered onto SiO2/Si investigated by isotopic labeling ,N.M. Bom, G.V.Soares, M.H.O. Junior, J.M.J. Lopes, H. Riechert, C. Radtke. The Journal of PhysicalChemistry C, 120 (2016) 201-206.

30

Page 31: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

SiC surface barrier detector for RBS spectroscopy

Henri Boudinov

Silicon carbide (SiC) is a semiconductor with wide bandgap (3.27 eV), high

thermal conductivity (4.9 W.cm-1.K-1), high-breakdown field strength (4 MV.cm-1), high

electron saturated drift velocity (2x107 cm.s-1) and high threshold displacement energy

(22-35 eV). These properties make SiC suitable to be used as a particle detector,

especially involving high-temperature experiments, high radiation background and hot

environments.

Epitaxial SiC device have been tested as detector for Rutherford Backscattering

Spectroscopy (RBS). The device was fabricated on a commercial 4H–SiC epitaxial n-

type layer grown onto a 4H–SiC n+ type substrate wafer doped with nitrogen.

Aluminum oxide with a thickness of 1 nm was deposited by Atomic Layer Deposition

and 10 nm of Ni were deposited by sputtering to form the Ni/Al2O3/SiC MIS Schottky

structure. Variable temperature Current-Voltage curves were used to extract the values

of real Schottky Barrier Height and ideality factor (0.61 eV and 1.19, respectively).

Current-Voltage and Capacitance-Voltage characteristics were measured and compared

with the curves of a commercial Si barrier detector from ORTEC. Before starting the

RBS experiment, it is important to estimate that the alpha collection occurs within the

epitaxial layer depth, which in the fabricated SiC detector was 6 m. SRIM simulations

were performed, considering He++ particles colliding perpendicularly with the surface of

the fabricated SiC structure. For the energy of 2 MeV, a projected ion range of 4.73 m

was inferred. The ion range will exceed the epitaxial layer depth if He++ particles have

31

Page 32: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

energy above 2.4 MeV. Therefore, the RBS experiment was performed using alpha

energies of 1, 1.5 and 2 MeV. This setup ensures that all alpha particles deposit the total

energy within the epitaxial layer. RBS data were collected from an Au/Si sample using

the fabricated and the commercial detectors simultaneously. The energy resolution for

the fabricated detector was estimated to be 76 keV. This energy resolution value is in

accordance to other SiC detectors presented in the literature and is poorer than the

common Si RBS detectors, but its major advantage relies in the fact that SiC structures

can be used in high radiation doses or high temperature ambient without varying its

physical and chemical properties.

Figure 1: a) Cross-section view of the fabricated Ni/(1 nm)Al2O3/SiC Schottkystructure. b) RBS spectra collected by the fabricated 4H-SiC detector from the Au/Sisample for 1 MeV, 1.5 MeV and 2 MeV He++ beam energies. The points are theexperimental spectra and the lines are the simulated by SIMNRA correspondingspectra.

Paper reference:Ni/Al2O3/4H-SiC structure for He++ energy detection in RBS experiments, I.R. Kaufmann, A.Pick, M.B. Pereira, H. Boudinov Journal of Instrumentation, 11 (2016) P10013-1-P10013-6.

32

Page 33: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Fabrication and Characterization of Microstructures Through

Ion Microprobe Techniques

Johnny Ferraz Dias

In this work we explore the capabilities of energetic focused beams of light ions

for the fabrication and analysis of microstructures produced on 12 μm thick

polyethylene terephthalate (PET) foils. To that end, single lines and multi-structure

patterns were drawn directly on the foils using Proton Beam Writing (PBW) techniques

followed by chemical etching.

The first step in this research project consisted in the evaluation of the influence

of ion fluence and of the etching time on the development of microstructures produced

by 2.2 MeV H+. Several lines of 1 x 100 pixels corresponding to approximately 2.5 x

101.5 µm2 were patterned using different ion fluences (from 1012 to 1017 H+/cm2) and

etching times (from 1 to 60 minutes). We observe the presence of three different

behaviors according to the ion fluence. Long etching times are necessary to open the

structure in the low fluence regime, while moderate fluences require shorter etching

times. In the high fluence regime, a more complex scenario emerges where short

etching times leads to structures either fully or partially developed.

The characterization of the microstructures was carried out with on-axis Scanning

Transmission Microscopy (STIM) employing H1+, He2+ and Li3+ ions in the MeV range.

Scanning Electron Microscopy (SEM) was employed as well. The results show that a

polymer like PET can be patterned trough a proper combination of irradiation

parameters and etching times. However, aspect ratios obtained in this way are quite

33

Page 34: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

poor. Moreover, STIM images obtained from different regions of the ion energy spectra

reveal patterns and cavities not seen neither by conventional STIM where the whole

energy spectrum is used nor by SEM. Moreover, striking differences are observed when

different ions are used for STIM analysis. The results suggest that heavier ions provide

additional information of the structures under analysis when compared with usual

STIM employing protons.

Figure 1 depicts energy loss spectra and respective on-axis STIM maps generated

by H+ (panels A, B, C and D), He2+ (panels E, F, G and H) and Li3+ (panels I, J, K and

L). The step-like structure was fabricated through PWB with fluences of 6x1014 and

3x1013 ions/cm2 for the inner and outer squares respectively. The sizes of the inner and

outer squares were approximately 30 x 30 µm2 and 75 x 75 µm2 respectively. The

etching time was 3 minutes. The letters on each panel stand for the respective particle

energy loss region used to generate the maps.

Figure 1

Paper reference:Fabrication and analysis of polymer microstructures through ion microprobe techniques, E.M.Stori, C.T. Souza, J.F.Dias, Journal of Applied Polymer Science, 43253 (2016) 1-10.

34

Page 35: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Correlating charge transfer effects with the chemical reactivityof PdCu nanoalloys

Jonder Morais

In this work we report on the synthesis and characterization of PdxCu1-x (x = 0.7,

0.5 and 0.3) nanoalloys obtained via an eco-friendly chemical reduction method based

on ascorbic acid and trisodium citrate. The average size of the quasi-spherical

nanoparticles (NPs) obtained by this method was about 4 nm, as observed by TEM. The

colloids containing the different NPs were then supported on carbon in order to produce

powder samples (PdxCu1-x/C) whose electronic and structural properties were probed by

different techniques. XRD analysis indicated the formation of crystalline PdCu alloys

with nanoscaled crystallite size. Core-level XPS results provided a fingerprint of a

charge transfer process between Pd and Cu and its dependency on the nanoalloy

composition. Additionally, it was verified that the alloying is able to change the NPs

reactivity towards oxidation and reduction. Indeed, the higher the amount of Pd in the

nanoalloy, less oxidized are both the Pd and the Cu atoms in the as-prepared samples.

Also, in situ XANES experiments during thermal treatment under reducing atmosphere,

showed that the temperature required for a complete reduction of the nanoalloys

depends on their composition. These results envisage the control at the atomic level in

order to tune novel catalytic properties of such nanoalloys.

35

Page 36: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Representative scheme of the correlation between the partial charge transfer (observed by XPS) andthe CO reactivity (probed by in situ XANES) for the inbvestigated Pd-Cu nanoalloys. It was observedthat the higher the amount of Pd, greater the reactivity of the samples to the reduction by CO, and thehigher is their resistance to oxidation.

Paper reference:Charge transfer effects in the chemical reactivity of PdxCu1-x nanoalloys, M. V. Castegnaro, A.

Gorgeski, B. Balke, M.C.M. Alves and J. Morais, Nanoscale, volume 8 (2016) 641-647.

36

Page 37: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Blood trace element concentrations in Polycystic

Ovary Syndrome: systematic review and meta-analysis

Livio Amaral

Polycystic ovary syndrome (PCOS) is a prevalent condition in women of

reproductive age. PCOS is characterized by androgen excess and chronic anovulation

and associated with low-grade inflammation and metabolic comorbidities. Some trace

elements have been linked to pathophysiological mechanisms of oxidative stress and

inflammation in different disorders. Therefore, we conducted a systematic review and

meta-analysis of the available evidence regarding trace element concentrations in

PCOS. We reviewed MEDLINE and EMBASE in search of case-control, cross-

sectional, and cohort studies published until September 2015. Of 183 studies identified,

six were selected for systematic review. All used the Rotterdam criteria for the

diagnosis of PCOS. Two studies evaluating chromium and one assessing cobalt levels

did not observe differences between PCOS and controls. Another study recorded

similar nickel and vanadium levels between the groups, but lower selenium

concentrations in women with PCOS compared to controls. Four studies were included

in the random effects model meta-analysis, for a total of 264 PCOS and 151 control

women. Copper levels were found to be higher in women with PCOS than in controls

[mean difference 0.12 ppm (95% CI 0.07; 0.17 ppm); I2=0%]. Manganese [mean

difference 0.04 ppm (95% CI −0.05; 0.13 ppm); I2 = 94.4%] and zinc concentrations

[mean difference 0.02 ppm (95 % CI −0.12; 0.16 ppm); I2= 92.4 %] were similar

37

Page 38: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

between the groups. The present results suggest a relationship between increased

copper concentration and PCOS.

Paper reference:

Blood Trace Element Concentrations in Polycystic Ovary Syndrome: Systematic Review and

Meta-analysis, P.M. Spritzer, S.B. Lecke, V.C. Fabris, P.K. Ziegelmann, L. Amaral. Biological Trace

Element Research, 172 (2016) 104-113.

38

Page 39: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Enhanced Zn infiltration in porous silicon by using theIsothermal Close Space Sublimation method

Moni Behar

Isothermal Close Space Sublimation technique was used for embedding porous

silicon (PS) films with ZnTe. It was studied the influence of the preparation conditions

like: the chemical etching step before the ZnTe growth and the final porosity of the

ZnTe embebbed PS. The resulting structure was studied by means of the X-ray

diffraction, scanning electron spectroscopy (SEM) Rutherford bsckscattering

spectroscopy (RBS), and Energy Dispersive spectroscopy ( EDS). The combinatiom of

the above mentioned techniques allow us to determine among others the composition

profiles of the heterostructure. We conclude that the etching of the PS before the ZnTe

growth has two main effects: the increase of the porosity and enhancing the reactivity

of the inner surface. It was observed that both effects benefit the filling process of the

pores. We explored the evolution of the porosity by using the reflectance technique.

The atomic porcent determined by this last technique is in quite good agreement with

RBS and EDS results. The present work show the feasibility of the ICSS technique in

order produce solar cells like the one based on the CdTe/Zn hetero structure which is on

the way.

Paper reference:Enhanced ZnTe Infiltration in porous silicon by Isothermal Close Space Sublimation, C.C. deMelo, S. Larramendi V. Torres-Costa, J. Santoyo Salazar, M. Behar, J.F. Dias, Micropouros andMesopouros Materials, 188 (2014) 93-98.

39

Page 40: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Damage accumulation in MgO irradiated with MeV Au ions atelevated temperatures

Moni Behar

The damage accumulation process in MgO single crystals under medium energy,

heavy ion irradiation (1.2 MeV, Au) at a fluences up to 4 × 1014 cm-2 has been studied at

573, 773 and 1073 K. The disorder depth profiles were determined through the use of

the Channeling Rutherford Backscattering technique (RBS/C). The analysis of the

RBS/C data reveals two steps in the MgO damage process, irrespective of the

temperature. However it was found that for increasing irradiation temperature, the

damage level decreases and the fluence at which second step occurs the damage

increases. A shift of the damage peak at increasing fluence is observed for the three

temperatures. These results can be explained by an enhanced defect mobility which

facilitates defect migration and may favor defect annealing, X-ray observations are in

agreement with the RBS/C results.

Paper reference:Damage accumulation in MgO irradiated with MeV Au ions at elevated temperatures, D.Bachiller-Perea, A. Debelle, L. Thome and M. Behar, Journal of Nuclear Materials,478 (2016) 268-274.

40

Page 41: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

In-situ transmission electron microscopy growth ofnanoparticles under extreme conditions

Paulo F. P. Fichtner

The formation and time resolved behavior of individual Pb nanoparticles

embedded in silica have been studied by in-situ transmission electron microscopy

observations at high temperatures (400–1100C) and under 200 keV electron

irradiation. It is shown that under such extreme conditions, nanoparticles can migrate at

long distances presenting a Brownian like behavior and eventually coalesce. The

particle migration phenomenon is discussed considering the influence of the thermal

energy and the electron irradiation effects on the atomic diffusion process which is

shown to control particle migration. These results and comparison with ex-situ

experiments tackle the stability and the microstructure evolution of nanoparticles

systems under extreme conditions. It elucidates on the effects of energetic particle

irradiation-annealing treatments either as a tool or as a detrimental issue that could

hamper their long-term applications in radiation-harsh environments such as in space or

nuclear sectors.

41

Page 42: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Figures on left-side: In-situ evolution of the aged sample implanted at 5 % 1015 ions cm -2. (a)

Instantaneous micrograph obtained during in-situ 600 oC thermal annealing of the aged sampleshowing the presence of Pb NPs at SiO2/Si interface. (b) Irradiation effect of the TEM electron beam

(e-beam) combined with 1100 oC in-situ thermal annealing. Image extracted from the in-situ movie.(Multimedia view) [URL: http://dx.doi.org/10.1063/1.4940158.1].

Figures on right-side: Sequence of micrographs from the same sample region obtained during in-situ

1100 oC TEM thermal annealing after (a) 34 and (b) 42 min of high temperature treatment. (c)Particle diffusivity coefficient Dp as a function of NP radius. The data points were experimentally

obtained from the video recorded during 1100 oC in-situ thermal annealing and are consistently fitted

by Dp=br-4 (b=124) suggesting that particle growth is governed by migration and coalescenceprocesses mainly controlled by surface diffusion mechanisms. (Multimedia view) [URL:http://dx.doi.org/10.1063/1.4940158.3].

Paper reference:In-situ transmission electron microscopy growth of nanoparticles under extreme conditions, F.P.Luce, E. Oliviero, G. de M. Azevedo, D.L. Baptista, F. C. Zawislak and P.F.P. Fichtner, Journal ofApplied Physics, 119 (2016) 035901:1-6.

42

Page 43: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Alternative treatment for the energy-transfer and transportcross section in dressed electron-ion binary collisions

Pedro Luis Grande

A formula for determining the electronic stopping power and the transport cross

section in electron-ion binary collisions is derived from the induced density for

spherically symmetric potentials using the partial-wave expansion. In contrast to the

previous one found in many textbooks, the present formula converges to the Bethe and

Bloch stopping-power formulas at high ion velocities and agrees rather well with

experimental stopping-power data, as shown here for Al, C, and H2O targets. It can be

employed in plasma physics and particularly in any application that requires electronic

stopping-power values of quasifree electrons with high accuracy.

The energy transfer between electrons and ions in plasmas and the corresponding

momentum-transfer rate have been investigated using the concept of the transport cross

section σtr . It is a fundamental quantity used in different fields (e.g., atomic and plasma

physics) and in particular it is directly related to the electronic stopping power of

charged particles, which is important for a wide range of applications stretching

including ion-beam analysis, materials modifications, and ion-driven fast ignition in

plasmas. Moreover, its most appealing application is dosimetry for cancer treatment

using ions, because of the increasing worldwide use of protons and heavier ions in

radiation therapy. Here an alternative formula for the transport cross section used for

stopping-power calculations and energy-transfer rates in electron-ion binary collisions

is reported for spherically symmetric electron-ion potentials.

43

Page 44: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Stopping force dE/dz as a function of energy for H+ ions in an electron gas with electron radius rs =

2.07. The thin black solid line corresponds to calculations using the standard transport cross section

The thick red solid line corresponds to equation on the let. For comparison, the Bethe and Bloch

formulas are also shown with dashed and dot-dashed lines, respectively.

Paper reference:Alternative treatment for the energy-transfer and transport cross section in dressed electron-ionbinary collisions, P.L. Grande, Physical Review A, 94 (2016) 042704-1.

44

Page 45: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Neutralization and wake effects on the Coulomb explosion ofswift H2

+ ions traversing thin films

Pedro Luis Grande

The Coulomb explosion of small cluster beams can be used to measure the dwell

time of fragments traversing amorphous films. Therefore, the thickness of thin films

can be obtainedwith the so-called Coulomb depth profiling technique using relatively

high cluster energies where the fragments are fully ionized after breakup. Here we

demonstrate the applicability of Coulomb depth profiling technique at lower cluster

energies where neutralization and wake effects come into play. To that end, we

investigated 50–200 keV/u H2+ molecular ions impinging on a 10 nm TiO2 film and

measured the energy of the backscattered H+ fragments with high-energy resolution.The

effect of the neutralization of the H+ fragments along the incoming trajectory before the

backscattering collision is clearly observed at lower energies through the decrease of

the energy broadening due to the Coulomb explosion. The reduced values of the

Coulomb explosion combined with full Monte Carlo simulations provide compatible

results with those obtained at higher cluster energies where neutralization is less

important. The results are corroborated by electron microscopy measurements.

45

Page 46: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

1- 2D MEIS spectrum measured with 175 keV/u of H2+ projectiles under normal incidence on the

TiO2 layer grown over crystal Si. The following signals are observed from top to bottom: Tifrom the TiO2 film; Si from the substrate; O from TiO2 and SiO2 films; and C stemming fromcontamination. Blocking lines in Si are also visible.

2- (a) High-resolution TEM image of the TiO2 film using phase contrast. (b) Scanningtransmission electron microscope (STEM) image of the same sample. In (b) no differencecould be observed between the contributions of TiO2 and SiO2, present as a native oxide.

Paper reference:Neutralization and wake effects on the Coulomb explosion of swift H2

+ ions traversing thin films,L.F.S Rosa, P.L. Grande, J.F. Dias, R.C. Fadanelli, M. Vos, Physical Review A, 91 (2015) 042704-1.

46

Page 47: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Energy loss function of solids assessed by ion beam energy lossmeasurements: practical application to Ta2O5

Raul Carlos Fadanelli

We present a study where the energy loss function of Ta2O5, initially derived in

the optical limit for a limited region of excitation energies from reflection electron

energy loss spectroscopy (REELS) measurements, was improved and extended to the

whole momentum and energy excitation region through a suitable theoretical analysis

using the Mermin dielectric function and requiring the fulfillment of physically

motivated restrictions, such as the f- and KK- sum rules. The stopping cross section

(SCS) and the energy loss straggling measured for 300-2000 keV proton and 200-6000

keV helium ion beams by means of Rutherford backscattering spectrometry (RBS)

were compared to the same quantities calculated in the dielectric framework, showing

an excellent agreement, which is used to judge the reliability of the Ta2O5 energy loss

function.

47

Page 48: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Energy loss function as a function of the transferred energy (left), SCS as a function of the H (top) orHe (bottom) energy (center) and straggling as a function of H (top) and He (bottom) energy.

Paper reference:Energy loss function of solids assessed by ion beam energy loss measurements: practicalapplications to Ta2O5, R.C. Fadanelli, M. Behar, L.C.C.M. Nagamine, M. Vos, N.R. Arista, C.D.Nascimento, R. Garcia-Molina and I. Abril, J. Phys. Chem. C, 119 (2015) 20561-20570.

48

Page 49: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Confinement effects of ion tracks in ultrathin polymer films

Ricardo Meurer Papaléo

In the past 30 years, basic physico-chemical changes observed in polymers

irradiated by energetic ions have been thoroughly investigated for a multitude of

polymeric systems and irradiation conditions. However, very little has been reported on

nanoscale polymer systems and, in particular, on studies aiming a direct comparison of

the magnitude of radiation effects under bulk and confinement conditions. In this paper

we present recent results on polymer thin and ultrathin films, used as a model system to

investigate confinement effects of ion tracks in one dimension. We followed the

changes in radiation effects at the surface as the thickness is systematically reduced

from ~ 100 nm down to ~2nm. Experiments were performed for ions in an energy

range from 600 MeV up to 2 GeV one involving individual ions. As shown in Fig. 1,

surface effects, such as nanocavities and protrusions produced by swift heavy ions

(associated to mass transport and particle ejection) are weakened when the length of the

ion track is spatially confined. The deviation from bulk-like behavior starts at a critical

thickness as large as 40nm in PMMA. We argue that the confinement effects seen here

arise essentially due to the decrease of the number of point sources of excitation energy

in shorter track lengths. Effects that strongly depend on the cooperative action of

energy sources along the track (as rim formation in PMMA) are suppressed first,

resulting in large critical lengths. We also provide strong evidence for the importance of

momentum transfer, which limits the depth of origin of ejected particles to a maximum

of h/2, even at the very thin layers and large dE/dx used.

49

Page 50: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Fig. 1 SFM images of PMMA thin films of different thicknesses bombarded by (a-e) 923-MeV Pb eq+

ions at normal incidence, and by (f-j) 2.2-GeV Aueq+ ions at grazing incidence. The thickness of thelayer is given in each image. The scale bar of 100 nm is for images (a) to (e); the 200 nm bar is forimages (f) to (j). The height scale given in (f) is valid for all images, except in (e)

Paper reference:Confinement Effects of Ion Tracks in ultrathin Polymer Films, R.M. Papaléo, R. Thomaz, L. I.Gutierres, V. M. de Menezes, D. Severin, C. Trautmann, D. Tramontina, E, M. Bringa, and P. L.Grande, Phys. Rev. Lett.,, 114 (2015) 118302- 1-5.

50

Page 51: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Publications in peer reviewed journals

[1] I. Alencar et al., “Irradiation effects in CaF 2 probed by Raman scattering,” J.

Raman Spectrosc., vol. 47, no. 8, pp. 978–983, Aug. 2016.

[2] B. S. Archanjo et al., “Nanoscale mapping of carbon oxidation in pyrogenic black

carbon from ancient Amazonian anthrosols,” Environ. Sci. Process. Impacts, vol.

17, no. 4, pp. 775–779, 2015.

[3] A. W. Arins et al., “Correlation between tetragonal zinc-blende structure and

magnetocrystalline anisotropy of MnGa epilayers on GaAs(111),” J. Magn.

Magn. Mater., vol. 381, pp. 83–88, May 2015.

[4] T. S. Avila, P. F. P. Fichtner, A. Hentz, and P. L. Grande, “On the use of MEIS

cartography for the determination of Si1–xGex thin-film strain,” Thin Solid

Films, vol. 611, pp. 101–106, Jul. 2016.

[5] D. Bachiller-Perea, A. Debelle, L. Thomé, and M. Behar, “Damage accumulation

in MgO irradiated with MeV Au ions at elevated temperatures,” J. Nucl. Mater.,

vol. 478, pp. 268–274, Sep. 2016.

[6] N. M. Bom, G. V. Soares, S. Hartmann, A. Bordin, and C. Radtke, “GeO2/Ge

structure submitted to annealing in deuterium: Incorporation pathways and

associated oxide modifications,” Appl. Phys. Lett., vol. 105, no. 14, p. 141605,

Oct. 2014.

[7] N. M. Bom, M. H. Oliveira, G. V. Soares, C. Radtke, J. M. J. Lopes, and H.

Riechert, “Synergistic effect of H2O and O2 on the decoupling of epitaxial

51

Page 52: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

monolayer graphene from SiC(0001) via thermal treatments,” Carbon N. Y., vol.

78, pp. 298–304, Nov. 2014.

[8] N. M. Bom, G. V. Soares, M. H. de Oliveira Junior, J. M. J. Lopes, H. Riechert,

and C. Radtke, “Water Incorporation in Graphene Transferred onto SiO 2 /Si

Investigated by Isotopic Labeling,” J. Phys. Chem. C, vol. 120, no. 1, pp. 201–

206, Jan. 2016.

[9] B. Canto, C. P. Gouvea, B. S. Archanjo, J. E. Schmidt, and D. L. Baptista, “On

the Structural and Chemical Characteristics of Co/Al2O3/graphene Interfaces for

Graphene Spintronic Devices,” Sci. Rep., vol. 5, p. 14332, Sep. 2015.

[10] L. N. Carli, T. S. Daitx, G. V. Soares, J. S. Crespo, and R. S. Mauler, “The effects

of silane coupling agents on the properties of PHBV/halloysite nanocomposites,”

Appl. Clay Sci., vol. 87, pp. 311–319, Jan. 2014.

[11] L. S. Casarin et al., “Effect of Plasma Nitriding Surface Modification on the

Adhesion of Food Pathogens to Stainless Steel AISI 316 and AISI 304,” J. Food

Saf., vol. 36, no. 3, pp. 341–347, Aug. 2016.

[12] M. V. Castegnaro, A. Gorgeski, B. Balke, M. C. M. Alves, and J. Morais, “Charge

transfer effects on the chemical reactivity of Pd x Cu 1−x nanoalloys,” Nanoscale,

vol. 8, no. 1, pp. 641–647, 2016.

[13] G. Copetti, G. V. Soares, and C. Radtke, “Stabilization of the GeO 2 /Ge Interface

by Nitrogen Incorporation in a One-Step NO Thermal Oxynitridation,” ACS Appl.

Mater. Interfaces, vol. 8, no. 40, pp. 27339–27345, Oct. 2016.

52

Page 53: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

[14] N. B. D. da Costa et al., “Tungsten oxide thin films obtained by anodisation in

low electrolyte concentration,” Thin Solid Films, vol. 578, pp. 124–132, Mar.

2015.

[15] A. F. da Silva, A. Levine, Z. S. Momtaz, H. Boudinov, and B. E. Sernelius,

“Magnetoresistance of doped silicon,” Phys. Rev. B, vol. 91, no. 21, p. 214414,

Jun. 2015.

[16] N. Dal’Acqua et al., “Characterization and Application of Nanostructured Films

Containing Au and TiO 2 Nanoparticles Supported in Bacterial Cellulose,” J.

Phys. Chem. C, vol. 119, no. 1, pp. 340–349, Jan. 2015.

[17] N. Dam Madsen et al., “Titanium Nitride as a Strain Gauge Material,” J.

Microelectromechanical Syst., vol. 25, no. 4, pp. 683–690, Aug. 2016.

[18] Y. A. Danilov et al., “Formation of the single-phase ferromagnetic semiconductor

(Ga,Mn)As by pulsed laser annealing,” Phys. Solid State, vol. 58, no. 11, pp.

2218–2222, Nov. 2016.

[19] C. de Melo et al., “Infiltration of ZnO in Mesoporous Silicon by Isothermal Zn

Annealing and Oxidation,” ECS J. Solid State Sci. Technol., vol. 5, no. 2, pp. P6–

P11, Nov. 2016.

[20] O. de Melo et al., “Graded composition CdxZn1−xTe films grown by Isothermal

Close Space Sublimation technique,” Sol. Energy Mater. Sol. Cells, vol. 138, pp.

17–21, Jul. 2015.

53

Page 54: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

[21] C. T. de Souza, E. M. Stori, L. A. Boufleur, R. M. Papaléo, and J. F. Dias, “The

effect of local fluence on the micropatterning of poly(ethylene terephthalate) foils

through proton beam writing,” Appl. Phys. A, vol. 122, no. 7, p. 690, Jul. 2016.

[22] M. R. de Souza et al., “Evaluation of the genotoxic potential of soil contaminated

with mineral coal tailings on snail Helix aspersa,” Chemosphere, vol. 139, pp.

512–517, Nov. 2015.

[23] A. Duarte et al., “Elemental quantification of large gunshot residues,” Nucl.

Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.

348, pp. 170–173, Apr. 2015.

[24] F. G. Echeverrigaray et al., “Antibacterial properties obtained by low-energy

silver implantation in stainless steel surfaces,” Surf. Coatings Technol., vol. 307,

pp. 345–351, Dec. 2016.

[25] Y. Enamorado-Horrutiner, M. E. Villanueva-Tagle, M. Behar, G. Rodríguez-

Fuentes, J. Ferraz Dias, and M. S. Pomares-Alfonso, “Cuban zeolite for lead

sorption: application for water decontamination and metal quantification in water

using nondestructive techniques,” Int. J. Environ. Sci. Technol., vol. 13, no. 5, pp.

1245–1256, May 2016.

[26] R. C. Fadanelli et al., “Energy Loss Function of Solids Assessed by Ion Beam

Energy-Loss Measurements: Practical Application to Ta 2 O 5,” J. Phys. Chem. C,

vol. 119, no. 35, pp. 20561–20570, Sep. 2015.

[27] R. C. Fadanelli et al., “Stopping and straggling of H and He in ZnO,” Eur. Phys.

J. D, vol. 70, no. 9, p. 178, Sep. 2016.

54

Page 55: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

[28] A. L. Fernandes Cauduro et al., “Tuning the optoelectronic properties of

amorphous MoOx films by reactive sputtering,” Appl. Phys. Lett., vol. 106, no.

20, p. 202101, May 2015.

[29] J. A. Fernandes et al., “Synergizing nanocomposites of CdSe/TiO 2 nanotubes for

improved photoelectrochemical activity via thermal treatment,” Dalt. Trans., vol.

45, no. 24, pp. 9925–9931, 2016.

[30] J. A. Fernandes et al., “TiO2 nanotubes sensitized with CdSe via RF magnetron

sputtering for photoelectrochemical applications under visible light irradiation,”

Phys. Chem. Chem. Phys., vol. 16, no. 19, p. 9148, 2014.

[31] N. Figueiredo-Prestes et al., “Stabilization of perpendicular magnetic anisotropy

in CeO 2 films deposited on Co/Pt multilayers,” RSC Adv., vol. 6, no. 62, pp.

56785–56789, 2016.

[32] P. L. Grande, “Alternative treatment for the energy-transfer and transport cross

section in dressed electron-ion binary collisions,” Phys. Rev. A, vol. 94, no. 4, p.

42704, Oct. 2016.

[33] E. Guziewicz et al., “XRD and RBS studies of quasi-amorphous zinc oxide layers

produced by Atomic Layer Deposition,” Thin Solid Films, vol. 612, pp. 337–341,

Aug. 2016.

[34] A. L. Hilario Garcia et al., “Genotoxicity induced by water and sediment samples

from a river under the influence of brewery effluent,” Chemosphere, vol. 169, pp.

239–248, Feb. 2017.

55

Page 56: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

[35] V. F. S. Kahl et al., “Telomere measurement in individuals occupationally

exposed to pesticide mixtures in tobacco fields,” Environ. Mol. Mutagen., vol. 57,

no. 1, pp. 74–84, Jan. 2016.

[36] I. R. Kaufmann, A. Pick, M. B. Pereira, and H. I. Boudinov, “Ni/Al 2 O 3 /4H-

SiC structure for He ++ energy detection in RBS experiments,” J. Instrum., vol.

11, no. 10, pp. P10013–P10013, Oct. 2016.

[37] I. R. Kaufmann, M. B. Pereira, and H. I. Boudinov, “Schottky barrier height of

Ni/TiO 2 /4H-SiC metal-insulator-semiconductor diodes,” Semicond. Sci.

Technol., vol. 30, no. 12, p. 125002, Dec. 2015.

[38] S. Khan et al., “Effect of Oxygen Content on the Photoelectrochemical Activity

of Crystallographically Preferred Oriented Porous Ta 3 N 5 Nanotubes,” J. Phys.

Chem. C, vol. 119, no. 34, pp. 19906–19914, Aug. 2015.

[39] E. Leal da Silva et al., “Influence of the support on PtSn electrocatalysts

behavior: Ethanol electro-oxidation performance and in-situ ATR-FTIRS studies,”

Appl. Catal. B Environ., vol. 193, pp. 170–179, Sep. 2016.

[40] F. P. Luce, E. Oliviero, G. de M. Azevedo, D. L. Baptista, F. C. Zawislak, and P.

F. P. Fichtner, “In-situ transmission electron microscopy growth of nanoparticles

under extreme conditions,” J. Appl. Phys., vol. 119, no. 3, p. 35901, Jan. 2016.

[41] L. P. Matte et al., “Influence of the CeO 2 Support on the Reduction Properties of

Cu/CeO 2 and Ni/CeO 2 Nanoparticles,” J. Phys. Chem. C, vol. 119, no. 47, pp.

26459–26470, Nov. 2015.

56

Page 57: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

[42] A. E. P. Mattos et al., “Photoluminescence Emission from Si Nanocrystals in

SiO2 Matrix Obtained by Reactive Sputtering,” Adv. Sci. Eng. Med., vol. 6, no. 3,

pp. 277–282, Mar. 2014.

[43] L. P. R. Moraes et al., “Synthesis and performance of palladium-based

electrocatalysts in alkaline direct ethanol fuel cell,” Int. J. Hydrogen Energy, vol.

41, no. 15, pp. 6457–6468, Apr. 2016.

[44] C. D. Nascimento, R. C. Fadanelli, and M. Behar, “The influence of the mean

charge state on the Coulomb heating of fast diclusters through the Si〈 111〉direction,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with

Mater. Atoms, vol. 372, pp. 86–90, Apr. 2016.

[45] L. A. B. Niekraszewicz, C. T. de Souza, E. M. Stori, P. F. C. Jobim, L. Amaral,

and J. F. Dias, “The role of micro-NRA and micro-PIXE in carbon mapping of

organic tissues,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact.

with Mater. Atoms, vol. 348, pp. 160–164, Apr. 2015.

[46] R. M. Papaléo et al., “Confinement Effects of Ion Tracks in Ultrathin Polymer

Films,” Phys. Rev. Lett., vol. 114, no. 11, p. 118302, Mar. 2015.

[47] E. Pitthan, S. A. Corrêa, G. V. Soares, H. I. Boudinov, and F. C. Stedile,

“SiO2/SiC structures annealed in D218O: Compositional and electrical effects,”

Appl. Phys. Lett., vol. 104, no. 11, p. 111904, Mar. 2014.

[48] E. Pitthan, R. dos Reis, S. A. Corrêa, D. Schmeisser, H. I. Boudinov, and F. C.

Stedile, “Influence of CO annealing in metal-oxide-semiconductor capacitors

57

Page 58: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

with SiO2 films thermally grown on Si and on SiC,” J. Appl. Phys., vol. 119, no.

2, p. 25307, Jan. 2016.

[49] E. Pitthan, A. L. Gobbi, H. I. Boudinov, and F. C. Stedile, “SiC Nitridation by

NH3 Annealing and Its Effects in MOS Capacitors with Deposited SiO2 Films,”

J. Electron. Mater., vol. 44, no. 8, pp. 2823–2828, Aug. 2015.

[50] E. Pitthan, A. L. Gobbi, and F. C. Stedile, “Investigation of phosphorous in thin

films using the 31P(α,p)34S nuclear reaction,” Nucl. Instruments Methods Phys.

Res. Sect. B Beam Interact. with Mater. Atoms, vol. 371, pp. 220–223, Mar. 2016.

[51] S. M. M. Ramos, J. F. Dias, and B. Canut, “Drop evaporation on

superhydrophobic PTFE surfaces driven by contact line dynamics,” J. Colloid

Interface Sci., vol. 440, pp. 133–139, Feb. 2015.

[52] G. K. Rolim, A. Gobbi, G. V. Soares, and C. Radtke, “Oxygen Transport and

Incorporation in Pt/HfO 2 Stacks Deposited on Germanium and Silicon,” J. Phys.

Chem. C, vol. 119, no. 8, pp. 4079–4084, Feb. 2015.

[53] L. F. S. Rosa, P. L. Grande, J. F. Dias, R. C. Fadanelli, and M. Vos,

“Neutralization and wake effects on the Coulomb explosion of swift H2+ ions

traversing thin films,” Phys. Rev. A, vol. 91, no. 4, p. 42704, Apr. 2015.

[54] M. J. Sampaio, M. J. Lima, D. L. Baptista, A. M. T. Silva, C. G. Silva, and J. L.

Faria, “Ag-loaded ZnO materials for photocatalytic water treatment,” Chem. Eng.

J., May 2016.

58

Page 59: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

[55] M. J. Sampaio et al., “Photocatalytic performance of Au/ZnO nanocatalysts for

hydrogen production from ethanol,” Appl. Catal. A Gen., vol. 518, pp. 198–205,

May 2016.

[56] D. F. Sanchez, R. Moiraghi, F. P. Cometto, M. A. Pérez, P. F. P. Fichtner, and P. L.

Grande, “Morphological and compositional characteristics of bimetallic

core@shell nanoparticles revealed by MEIS,” Appl. Surf. Sci., vol. 330, pp. 164–

171, Mar. 2015.

[57] D. Schafer et al., “Antiparallel interface coupling evidenced by negative rotatable

anisotropy in IrMn/NiFe bilayers,” J. Appl. Phys., vol. 117, no. 21, p. 215301,

Jun. 2015.

[58] J. Soares Neto et al., “Surface Water Impacted by Rural Activities Induces

Genetic Toxicity Related to Recombinagenic Events in Vivo,” Int. J. Environ.

Res. Public Health, vol. 13, no. 8, p. 827, Aug. 2016.

[59] G. V. Soares, T. O. Feijó, I. J. R. Baumvol, C. Aguzzoli, C. Krug, and C. Radtke,

“Thermally-driven H interaction with HfO2 films deposited on Ge(100) and

Si(100),” Appl. Phys. Lett., vol. 104, no. 4, p. 42901, Jan. 2014.

[60] P. A. Sobocinski, P. L. Grande, and P. Pureur, “Fluctuation conductivity and the

chiral glass state in disordered,” Phys. C Supercond. its Appl., vol. 517, pp. 49–

52, Oct. 2015.

[61] M. A. Sortica, B. Canut, M. Hatori, J. F. Dias, N. Chauvin, and O. Marty, “Optical

and structural properties of InAs nanoclusters in crystalline Si obtained through

59

Page 60: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

sequential ion implantation and RTA,” Phys. status solidi, vol. 212, no. 12, pp.

2686–2691, Dec. 2015.

[62] V. S. Souza et al., “Hybrid tantalum oxide nanoparticles from the hydrolysis of

imidazolium tantalate ionic liquids: efficient catalysts for hydrogen generation

from ethanol/water solutions,” J. Mater. Chem. A, vol. 4, no. 19, pp. 7469–7475,

2016.

[63] E. M. Stori, C. T. de Souza, and J. F. Dias, “Fabrication and analysis of polymer

microstructures through ion microprobe techniques,” J. Appl. Polym. Sci., vol.

133, no. 14, p. n/a-n/a, Apr. 2016.

[64] D. S. Trentin et al., “N2/H2 plasma surface modifications of polystyrene inhibit

the adhesion of multidrug resistant bacteria,” Surf. Coatings Technol., vol. 245,

pp. 84–91, Apr. 2014.

[65] D. S. Trentin et al., “Natural Green Coating Inhibits Adhesion of Clinically

Important Bacteria,” Sci. Rep., vol. 5, p. 8287, Feb. 2015.

[66] J. Treter, F. Bonatto, C. Krug, G. V. Soares, I. J. R. Baumvol, and A. J. Macedo,

“Washing-resistant surfactant coated surface is able to inhibit pathogenic bacteria

adhesion,” Appl. Surf. Sci., vol. 303, pp. 147–154, Jun. 2014.

[67] A. Valim de Souza, T. Pacheco Soares, C. Alejandro Figueroa, and C. Aguzzoli,

“Redução de Oxigênio por Limpeza à Plasma na Implantação a baixa energia de

Íons de Prata sobre Titânio,” Sci. cum Ind., vol. 3, no. 1, pp. 12–16, May 2015.

60

Page 61: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

[68] M. Vos and P. L. Grande, “High-energy electron scattering from TiO2 surfaces,”

Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms,

vol. 354, pp. 332–339, Jul. 2015.

[69] M. Vos, X. Liu, P. L. Grande, S. K. Nandi, D. K. Venkatachalam, and R. G.

Elliman, “The use of electron Rutherford backscattering to characterize novel

electronic materials as illustrated by a case study of sputter-deposited NbOx

films,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater.

Atoms, vol. 340, pp. 58–62, Dec. 2014.

[70] M. Vos, G. G. Marmitt, and P. L. Grande, “A comparison of ERBS spectra of

compounds with Monte Carlo simulations,” Surf. Interface Anal., vol. 48, no. 7,

pp. 415–421, Jul. 2016.

[71] A. Weilhard et al., “Challenging Thermodynamics: Hydrogenation of Benzene to

1,3-Cyclohexadiene by Ru@Pt Nanoparticles,” ChemCatChem, Nov. 2016.

[72] L. M. Zhang, R. C. Fadanelli, P. Hu, J. T. Zhao, T. S. Wang, and C. H. Zhang,

“Structural damage in InGaN induced by MeV heavy ion irradiation,” Nucl.

Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.

356–357, pp. 53–56, Aug. 2015.

[73] L. M. Zhang et al., “Microstructural response of InGaN to swift heavy ion

irradiation”, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with

Mater. Atoms, vol. 388, pp. 30–34, Dec. 2016.

61

Page 62: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

[74] M. R. de Souza et al., “Evaluation of the genotoxic potential of soil contaminated

with mineral coal tailings on snail Helix aspersa”, Chemosphere, vol. 139, pp

512-517, 2015.

[75] C. A. Matzenbacher et al., “DNA damage induced by coal dust, fly and bottom

ash from coal combustion evaluated using the micronucleus test and comet assay

in vitro”, Journal of Hazardous Materials, vol. 324, pp 781-788, 2017.

[76] R. F. de Jesus et al., “Magneto-transport properties of As-implanted highly

oriented pyrolytic graphite”, Physica B, vol. 500, pp 118-125, 2016.

62

Page 63: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Conference Proceedings

1) G.V.Soares, J.M. Wofford, J.M.J. Lopes, H. Riechert. "Towards the large-area

growth of pgrahene on dielectrics using molecular beam epitaxy" In: Graphene Week,

2015, Manchester.

2) G.V.Soares, J.M. Wofford, J.M.J. Lopes, H. Riechert. "Boron-doped graphene grown

by molecular beam epitaxy". In: MRS Fall Meeting, 2016, Boston.

3) Kaufman I. ; M.B. Pereira ; Boudinov, H. . Apparent Schottky Barrier Height of MIS

Ni/SiC diodes. In: 30th Symposium on Microelectronics Technology and Devices,

Salvador. Chip in Bahia, 2015.

4) M. Adam ; Coelho, A. V. P. ; M.B. Pereira ; Boudinov, H. . Reactive Sputtering of

SixNy for MONOS Memory Fabrication. In: 30th Symposium on Microelectronics

Technology and Devices, Salvador. Chip in Bahia, 2015.

5) G. Sombrio ; Rodrigues, F. S. ; P. Franzen ; Soave, P. A. ; Boudinov, H. . Photo and

Electroluminescence Photo and Electroluminescence from SiNx Layer. In: 30th

Symposium on Microelectronics Technology and Devices, Salvador. Chip in Bahia,

2015.

6) C. Lisevski ; Cauduro A. ; P. Franzen ; Baptista D. ; Boudinov, H. . Engineering of

the photoluminescence of ZnO nanowires by different growth and annealing

63

Page 64: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

environments. In: 30th Symposium on Microelectronics Technology and Devices,

Salvador. Chip in Bahia, 2015.

7) Lisevski, C. ; Cauduro, A. ; Franzen, P. ; Baptista D. ; Boudinov, H. . Electrical and

Optical Behavior of ZnO Nanowires Irradiated by Ion Beam. In: 30th Symposium on

Microelectronics Technology and Devices, Salvador. Chip in Bahia, 2015.

8) Etcheverry, L. P. ; Rodembusch, F. ; Boudinov, H. ; Gundel, A. ; Moreira, E. C. .

Photoactive Thin Films Based on Benzoxazole Derivatives. In: 30th Symposium on

Microelectronics Technology and Devices, Salvador. Chip in Bahia, 2015.

9) Rodrigues, F. S. ; Sombrio, G ; Franzen, P. L. ; Boudinov, H. . Electrical

Characterization of Non-Stoichiometric Silicon Nitride Films for Electroluminescent

Applications. In: 29th South Symposium of Microelectronics, Alegrete, RS. Brasil.

Proceedings of 29th SIM, 2014.

10) Reis, R.M.S dos ; C. Lisevski ; Franzen, P. ; Baptista D. ; Boudinov, H. . Tailoring

the Optical Characteristic of ZnO Nanowires by Using Different Substrates. In: MRS

Spring Meeting, San Francisco, California, 2015.

11) Garcia, I.T.S.; da Costa, N. B. D. ; Pires, G. H. ; Moreira, E.C. ; Sombrio, G. ;

Boudinov, H. . Tungsten oxide thin films obtained by anodizing: structure and

photoluminescent properties. In: XIV Brazil MRS Meeting, 2015, Rio de Janeiro, 2015.

64

Page 65: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

12) Leite, G. ; Boudinov, H. . Changing optical and electrical properties of ITO by ion

bombardment. In: XIV Brazil MRS Meeting, 2015, Rio de Janeiro. XIV Brazil MRS

Meeting – 2015.

13) Gorgeski, A.; Castegnaro, M. V.; Bernardi, F. and Morais, J. Characterization of Pt

x Pd x-1 /SiO 2 (x = 1, 0.7 or 0.3) nanoparticles by in-situ XAS, Recent developments

in synchroton radiation. 2015. p. 90, São Paulo School of Advanced Sciences

(SyncLight 2015), Campinas, SP.

14) Gorgeski, M. V. Castegnaro, F. Bernardi, M. C. M. Alves and J. Morais; The

support influence on PtxPd1-x/SiO2 (x = 1, 0.7 or 0.3) nanoparticles reactivity; The

LNLS 26th Annual Users’ Meeting (RAU) p. 25, August 24th to 25th, 2016,

LNLS/CNPEM, Campinas, SP.

15) Castegnaro, M.V., A. Gorgeski, B. Balke, M.C.M. Alves and J. Morais; Charge

transfer effects in the chemical reactivity of PdxCu1-x nanoalloys; The LNLS 26th

Annual Users’ Meeting (RAU)p.68,, August 24th to 25th, 2016, LNLS/CNPEM,

Campinas, SP.

16) Pitthan, E.; Corrêa, S. A.; Soares, G. V.; Boudinov, H. I.; Stedile, F. C.;

“Estructuras SiO2/SiC tratadas termicamente em D218O: efectos composicionales y

eléctricos”, LVIII Congreso Nacional de Física y Congreso Latinoamericano de Física,

Mérida, Yucatán, México, outubro de 2015, p.106.

65

Page 66: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

17) Pitthan, E.; Gobbi, A.L.; Stedile. F. C.; “Phosphorus quantification by 31P(?,p)34S

nuclear reaction in phosphorous contaiming films”, 22nd International Conference on

Ion Beam Analysis – IBA22, Opatija, Croácia, junho de 2015, p. 213.

18) Paixão, P.V.; Stedile, F. C.; Gonzalez, J.C.; Santos, V.F.; Souza, G.G.B.;

“Rutherford Backscattering Spectrometry and X-Ray Fluorescence as probes to

determine trace elements in hair samples”, 22nd International Conference on Ion Beam

Analysis – IBA22, Opatija, Croácia, junho de 2015, p. 127-128.

19) Caceres, J.; Salles, R.; Mello, M.; Silva, G.; Cardoso, S.; Stedile, F. C.; Martins, D.;

Santos, V.N.C.; Alves, S.F.; Nunez, C.; Souza, G.G.B.; “Use of Ion beam (RBS) and X-

Ray techniques (XRF, NEXAFS) in the elemental characterization and chemical

speciation of Amazonian plants”, 22nd International Conference on Ion Beam Analysis

– IBA22, Opatija, Croácia, junho de 2015, p. 128-129.

20) Corrêa, S.A.; Treviso, Alex; Stedile,F.C.; “Semiconductors surface preparation for

atomic layer deposition of high-k dielectric”, Proceedings of the XV Brazilian MRS

(Materials Research Society) Meeting, Campinas (SP), setembro de 2016.

21) Stedile, F. C.; Pitthan, E.; Corrêa, S. A.; Soares, G. V.; “Interaction of water vapor

isotopically enriched (D218O) with silicon dioxide films on Si and on SiC substrates”,

XXXVII Encontro Nacional de Física da Matéria Condensada, Costa do Sauípe (BA),

maio de 2014, pág. 55.

66

Page 67: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Books and book chapters

1) Encontro Sul-Americano de Colisões Inelásticas na Matéria (7. : 2014 :

Gramado, RS).

Autores: Raul Carlos Fadanelli Filho, Pedro Luis Grande.

Ano: 2014.

Editora: UFRGS - Instituto de Física.

Modo de acesso: http://www.if.ufrgs.br/~grande/VIIESCIM.pdf

ISBN: 978-85-64948-12-9

Oral contributions and invited talks

1) Gabriel Vieira Soares: MRS Fall Meeting, Boston, EUA (nov. 2016). Oral

presentation.

2) Moni Behar VIII Taller de colisiones inelásticas en la materia, 2016, Mexico.

3) Moni Behar, A tendency from Atomic to Nuclear Physics Atlanta USA 2016

4) Ivan Kaufman, 30th Symposium on Microelectronics Technology and Devices,

2015, Salvador, Oral presentation

67

Page 68: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

5) Henri Boudinov, 30th Symposium on Microelectronics Technology and Devices,

2015, Salvador, Oral presentation

6) Guilherme Sombrio, 30th Symposium on Microelectronics Technology and Devices,

2015, Salvador, Oral presentation

7) Caroline Lisevski, 30th Symposium on Microelectronics Technology and Devices,

2015, Salvador, Oral presentation

8) Frâncio Rodrigues, 29th South Symposium of Microelectronics 2014, Alegrete, RS,

Brasil. Oral presentation

9) Roberto dos Reis, MRS Spring Meeting, 2015, San Francisco, California. Oral

presentation

10) Raquel Giulian, EMRS Spring Meeting, 2016, Lille - France. Invited Talk

11) Pedro Luis Grande, Invited Lectures on High Sensitivity 2D & 3D Characterization

and Imaging with Ion Beams, Joint ICTP-IAEA Advanced Workshop, 26 - 30

September 2016, ICTP, Trieste, Italy

68

Page 69: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

12) Pedro Luis Grande, oral contribution, 8th International Workshop on High

Resolution Depth Profiling.On the use of MEIS cartography for the determination of

Si1-xGex thin-film strain, 2016, London, Canada.

13) Pedro Luis Grande, Invited talk, 16th Japanese Symposium on Surface and

Interface Analysis with Ion Beam.Exploring alternative methods for characterization of

thin films and nanostructures. 2015, Nara, Japan.

14) Pedro Luis Grande, Oral contribution, 22nd International Conference on Ion Beam

Analysis. Neutralization and wake effects on the Coulomb explosion depth profiling.

2015, Opajia, Croacia.

15) Pedro Luis Grande,VIII Taller de colisiones inelásticas en la materia, 2016,

Mexico.

16) Johnny Ferraz Dias. International Conference on Particle-Induced X-ray Emission

(PIXE 2015) - Cidade do Cabo, Africa do Sul (2015). Radioactivity in Brazil: from

Myth to Facts (Invited Talk).

17) Johnny Ferraz Dias. 2 Small Workshop on Remediation Technology for Fukushima

Nuclear Disaster - Sendai, Japão (2016). The Nuclear Accidents of Juarez (Mexico) and

Goiania (Brazil) (Invited Talk).

69

Page 70: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

18) Fernanda Chiarello Stedile: “Desvendando a incorporação de água em estruturas

dióxido de silício / carbeto de silício usando reações nucleares”, Programa de Pós-

Graduação em Microeletrônica da UFRGS, setembro de 2016. Invited Talk

19) Fernanda Chiarello Stedile: “A Química Nuclear e suas Aplicações” na VII Semana

Científico-Tecnológica - VII SEMACIT-IFRJ – Campus Duque de Caxias, 6h-aula,

novembro de 2015. Invited Course

20) Fernanda Chiarello Stedile: “Análise elementar de alta sensibilidade utilizando

feixes de íons: fundamentos e aplicações da técnica RBS (Rutherford Backscattering

Spectrometry)”, Programa de Pós-Graduação em Química da UFRJ, agosto de 2015.

Invited Talk.

20) Fernanda Chiarello Stedile: “Investigação do transporte atômico em materiais

utilizando traçadores isotópicos e reações nucleares”, Laboratório do Acelerador van de

Graaff do Departamento de Física da PUC-Rio, abril de 2014. Invited Talk.

21) Fernanda Chiarello Stedile: “Investigação do transporte atômico em materiais

utilizando traçadores isotópicos e reações nucleares”, Laboratório de Colisões

Atômicas e Moleculares do Instituto de Física da UFRJ, abril de 2014. Invited Talk.

22) Daniel L. Baptista: "Fabrication of 2D Nanomaterials for Sensing Applications",

Workshop em Sistemas Micro-Nanoestruturados: Aplicações (Bio)Ópticas e

Multifuncionais, Porto Alegre, RS, 2015. Oral contribution.

70

Page 71: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

23) Daniel L. Baptista: "Point-defect Migration in ZnO Semiconductor Nanowires",

XV B-MRS, Búzios, RJ, 2015. Invited talk.

24) Agenor Hentz: "Structural Changes in Quantum-Dots Core-Shell CdSe/ZnS by

Thermal Treatment", 22nd International Conference on Ion Beam Analysis, Opatia,

Croacia, 2015. Oral contribution.

25) Igor Alencar: "Radiation effects in ionic crystals: To create or not to create metallic

colloids?", International Conference on Processing and Manufacturing of Advanced

Materials, Graz, Áustria, 2016. Invited talk.

26) Igor Alencar: "Characterization of nanoparticles emitted by electronic sputtering of

CaF2", European Materials Research Society Spring Meeting, Lille, França, 2016. Oral

contribution.

27) Igor Alencar: "Compositional depth profile investigation of plasma doped

Si/SiO2:As by Medium-Energy Ion Scattering", 8th International Workshop on High-

Resolution Depth Profiling, London, Canadá, 2016. Oral contribution.

28) Igor Alencar: "Time-of-Flight Secondary Ion Mass Spectrometry beamline at the

Ion Implantation Laboratory: Current status and perspectives", XIII Workshop em

Física Molecular e Espectroscopia, Rio de Janeiro, Brasil, 2016. Oral contribution.

71

Page 72: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

29) Paulo F. P. Fichtner, invited talk, XXXXVIII Reunião de Trabalho sobre Física

Nuclear no Brasil, 4-11 September 2015, Mangaratiba, RJ, Brazil (on the stability of

nanoclusters and nanoparticles embedded in dielectric substrates)

30) Paulo F. P. Fichtner, invited talk, International Nuclear Atlantic Conference, 4-9

October 2015, São Paulo, SP, Brazil (On the use of energetic ions and electrons for

defect engineering and radiation damage studies)

31) Paulo F. P. Fichtner, invited talk, XV Brazilian MRS Meeting, 25-29 September

2016, Campinas, SP, Brazil (electron irradiation effects on the structural stability of

nano objects)

32) Paulo F. P. Fichtner, oral contribution, Ion Beam Modification of Materials,

30/October - 4/November 2016, Wellington, New Zealand (Inert gas effects on the

precipitation process in austenitic alloys irradiated with heavy ions)

33) Gabriel G. Marmitt, oral contribution, XIV Encontro da SBPMat, 27/09 – 01/10

2015, Rio de Janeiro, RJ, Brasil, (The use of ERBS for thin film thickness

measurements and the study of O diffusion in TiO2 films)

72

Page 73: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

34) Gabriel G. Marmitt, oral contribution, 8th International Workshop on High-

Resolution Depth Profiling, 7 à-11/08 2016, London, Ontario, Canada, (Application of

ERBS analysis on O diffusion in TiO 2 films)

35) Gabriel G. Marmitt, oral contribution, VIII Taller de colisiones inelásticas en la

materia, 11 – 14/12 2016, Playa del Carmen, Quintana Roo, México, (Diffusion in

TiO2 films studied by electron- and ion-RBS)

36) Masahiro Hatori, oral contribution, VIII Taller de colisiones inelásticas en la

materia, 11 – 14/12 2016, Playa del Carmen, Quintana Roo, México, (Synthesis of InAs

nanoprecipitates by low energy ion implantation and rapid thermal annealing (RTA))

37) Ricardo Meurer Papaléo, oral contribution, 27th International Conference on

Atomic Collisions in Solids (ICACS 27), 2016, Lanzhou, China, (Confinement effects

of ion tracks in ultrathin polymer films)

38) Ricardo Meurer Papaléo, oral contribution, 27th International conference on

atomic collisions in solids (ICACS-27), 2016, Lanzhou, China, (Modification of

polymers by high-energy ions: from single events to macroscopic effects)

73

Page 74: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

39) Ricardo Meurer Papaléo, oral contribution, 12th Meeting of the Ionizing Radiation

and Polymers Symposium, 2016, Peninsula of Giens, France, (Ion Irradiation of

polymer thin and ultrathin films: effects of spatial confinement in one dimension)

40) Ricardo Meurer Papaléo, oral contribution, 2nd Brazil-Turkey Nanotechnology

Workshop, 2015, Santo André, SP, Brazil, (Nanoscience and nanotechology at PUCRS :

A brief overview)

41) Ricardo Meurer Papaléo, oral contribution, XXXIX National Meeting on

Condensed Matter Physics, 2016, Natal, RN, Brazil, (Functionalized Iron Oxide

Nanoparticles as Contrast Agents for Multimodall Biomedical Imaging.)

42) Ricardo Meurer Papaléo, oral contribution, VII Taller de Colisiones Inelásticas en

la Materia, 2016, Playa del Carmen, Quintana Roo, México, (On the radiolytic

efficiency of high-energy ions confined in ultrathin polymer films.)

43) Ricardo Meurer Papaléo, oral contribution, Brazil-Sweden Excellence Seminar,

2016, Brasilia, DF, Brazil, (Multifunctional nanoparticles for biomedical applications)

74

Page 75: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

Supervision of thesis and dissertations (completed)

1) Gabriel Volkweis Leite, Dissertation (2015) "Controle das características elétricas e

ópticas do ITO através de bombardeamento com íons." Supervisor: Henri Boudinov.

2) Louise Etcheverry, Dissertation (2016) "Compostos fotoativos derivados de

benzazolas: uma abordagem teórico-experimental para aplicação em dispositivos

orgânicos emissores de luz.", Supervisor: Henri Boudinov and Eduardo Ceretta.

3) Caroline Lisevski, PhD Theses (2015) "Propriedades Optoeletrônicas de Nanofios de

ZnO.", Supervisor: Daniel Lorscheitter Baptista and Henri Boudinov.

4) Guilherme Sombrio, PhD Theses (2016) "Estudo de Eletroluminescência de Nitreto

de Silício Não-Estequiométrico Depositado por Sputtering Reativo.", Supervisor: Henri

Boudinov and Paulo Franzen.

5) Tiago Silva da Ávila. Uso da técnica de cartografia-MEIS para a determinação da

deformação no parâmetro de rede em filmes finos. 2016. Tese (Doutorado em Física) -

Universidade Federal do Rio Grande do Sul, Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior. Orientador: Pedro Luis Grande.

6) Lúcio Flávio dos Santos Rosa. Neutralização e efeitos de força de arrasto em filmes

ultrafinos de TiO2 e Al2O3. 2015. Tese (Doutorado em Física) - Universidade Federal

75

Page 76: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

do Rio Grande do Sul, Conselho Nacional de Desenvolvimento Científico e

Tecnológico. Orientador: Pedro Luis Grande.

7) Anaí Duarte. Caracterização Elementar de Resíduos de Disparo de Arma de Fogo

Gerados por Munição de Fabricação Brasileira. Tese de Doutorado em Ciência dos

Materiais - 2014. CAPES. Orientador: Johnny Ferraz Dias.

8) Gabriela Copetti. Estabilidade de filmes de GeOxNy crescidos termicamente sobre

Ge. 2015. Dissertação (Mestrado em Programa de Pós Graduação em Física) -

Universidade Federal do Rio Grande do Sul, Conselho Nacional de Desenvolvimento

Científico e Tecnológico. Orientador: Cláudio Radtke.

9) Nicolau Molina Bom. Processamento físico-químico de semicondutores com alta-

mobilidade de portadores: germânio e grafeno. 2015. Tese (Doutorado em

Microeletrônica) - Universidade Federal do Rio Grande do Sul, Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior. Orientador: Cláudio Radtke.

10) João Wagner Lopes de Oliveira. Síntese hidrotérmica de nanoestruturas de ZnO

impregnadas com ouro ou prata para fotogeração de hidrogênio. 2015. Doutorado.

Programa de Pós-graduação em Microeletrônica. Orientador: Daniel L. Baptista.

11) Luiz Henrique Acauan. Síntese de estruturas 3D de nanotubos de carbono

verticalmente alinhados, dopados e não-dopados, decorados com nanopartículas de

óxido de titânio, sua caracterização microestrutural e de propriedades fotocatalíticas e

76

Page 77: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

elétricas. 2015. Doutorado. Programa de Pós-graduação em Engenharia de Minas,

Metalúrgica e de Materiais. Orientadores: Carlos Pérez Bergmann e Daniel L. Baptista.

12) Cristiana Marin, Thesis 2016) “Estabilidade térmica de nanoaglomerados metálicos

em dielétricos”. Supervisor: Paulo F. P. Fichtner

13) Mariana de Mello Timm, Dissertation (2015) “Efeitos da Irradiação de Elétrons

sobre a formação e estabilidade térmica de nanopartículas de Au em filmes de Si3N4“.

Supervisor: Paulo F. P. Fichtner

Patent

1) Depósito de pedido ao INPI - Instituto Nacional da Propriedade Industrial. Número

do registro: PI 0702638-2. Depositante: UCS. Título da Invenção: Processo para

Remoção de Metais Pesados de Líquidos Contaminados. Inventores: A. J. P. Dillon, J.

F. Dias, M. L. Yoneama, S. M. da Silva, L. O. da Rosa. 2015

Organization of conferences

1) Encontro Sudamericano de Colisiones Inelásticas conjuntamente com P.L. Grande e

J.F. Dias, Gramado Brasil 2014.

77

Page 78: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação IônicaInstituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

2) Simpósio "Advanced and Analytical Microscopy and Spectroscopy of

Nanostructures and Engineering Materials", coordenado por Daniel L. Baptista e

Guillermo Solorzano no XV B-MRS, Campinas, Brasil, 2016.

3) IX Congresso Brasileiro de Microscopia dos Materiais - MICROMAT, organizado

por Daniel L. Baptista e Karla Balzuweit, Belo Horizonte, Brasil, 2016.

Members in international committees and in

editorial boards of scientific journals

1) Fernanda Chiarello Stedile - Member of the international committee of the

International Conference on Ion Beam Analysis (IBA)

2) Moni Behar, Radiation Effects on Insulators. Member of the IC.

3) Moni Behar, Member of the IC of the Encontros Sudamericanos de Colisiones

Inelasticas da Materia.

4) Moni Behar, member of the IC of the Conference of Radiation Effects on the Matter

(REM).

78

Page 79: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica Instituto de Física – UFRGS

Ion Implantation Laboratory Institute of Physics – UFRGS

2015/16

Biennial

Report

4) Johnny Ferraz Dias – Member of the IC of the International Conference on Particles

– Induced X-Rays Spectrometry.

5) Johnny Ferraz Dias – Member of the IC of the International Symposium on

BioPIXE.

Partners (Universities, Research Institutes and Companies)

1) CAPES/MES, Cuba 2012/2016.

2) CAPES/FCT, Portugal 2014/2015.

Projects

PRONEX

INCT-INES

Nanobiotec

INCT-Namitec

PNPD-CAPES

R-NANO, PETROBRAS

CNPq

PqG-FAPERGS

IAEA

Humboldt Return Fellowship

79

Page 80: Biennial Report 2015/16grande/arep2016.pdfLaboratório de Implantação Iônica Instituto de Física – UFRGS Ion Implantation Laboratory Institute of Physics – UFRGS Biennial Report

Laboratório de Implantação Iônica

Instituto de FísicaUniversidade Federal do Rio Grande do Sul

Av. Bento Gonçalves 950091501-970, Porto Alegre – RS, BrasilPhone +55 51 33087004 Fax +55 51 33087296http://implantador.if.ufrgs.br