cavity qed construct: quantum information processing and...

56
Chang-Pu Sun (孙昌璞) Institute of Theoretical Physics, Chinese Academy of Sciences [email protected] http://www.itp.ac.cn/~suncp Cavity QED Construct: Quantum Information Processing and Quantum Optics for Solid State Artificial Atoms

Upload: others

Post on 21-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Chang-Pu Sun

(孙昌璞)

Institute of Theoretical Physics,

Chinese Academy of Sciences

[email protected]://www.itp.ac.cn/~suncp

Cavity QED Construct:

Quantum Information Processing and Quantum Opticsfor Solid State Artificial Atoms

Page 2: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Zi Song (Nankai),

Xue-Feng Liu (PKU),

Y.X. Liu, L.F. Wei (Riken, Japan )

Franco Nori (UM, US)

Paolo Zanardi (ISI, Italy),

J.Q. You (Fudan )

Z.D. Wang, (HKU)

P. Zhang,Y. Li , Y. D. Wang,H.T. Quan,F. XueL. Zhou

T. Shi,Y . Li S. Yang X.F. QianN. ZhaoB. Chen

Quantum Physics and Quantum Information Processing

Beijing

Tianjin

QPQIP in ITP CAS

Quantum Physics and Quantum Information Processing

Page 3: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Leture1: (Introductions)

Cavity QED Architecture: From Optical to Solid State Systems---Superconducting Quantum Circuits and Nano-Mechanical SystemsAprial 4, Tue 16:30-17:15 & 17:30-18:15 2.

Leture2:Superconducting Quantum Circuit QED for Quantum ComputingApr 8, Sat 11:30-12:15 (PHY5580)

Lecture 3.Quantum State Transfer and Storage with Quantum Spin SystemApr 18, Tue 16:30-17:15 & 17:30-18:15

Lecture 4:Decoherence

induced by Quantum Phase Transition In Solid Systems

Apr 25, Tue 16:30-17:15 & 17:30-18:15

Outline

Page 4: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Related Publications and References therein

1.P. Zhang, Y. D. Wang, and C. P. Sun,

Phys. Rev. Lett. 95, 097204 (2005)2. Y.-x. Liu, J. Q. You, L. F. Wei, C. P. Sun, and F. Nori,Phys. Rev. Lett. 95, 087001 (2005)3. C. P. Sun, L. F. Wei, Y.-x. Liu, and F. Nori, Phys. Rev. A 73, 022318 (2006)4. Y. B. Gao, Y. D. Wang, and C. P. Sun,Phys. Rev. A 71, 032302 (2005)5. Y. D. Wang, Z. D. Wang, and C. P. Sun,Phys. Rev. B 72, 172507 (2005) 6. Y. D. Wang, P. Zhang, D. L. Zhou, and C. P. Sun, Phys. Rev. B 70, 224515 (2004) 7.Y. D. Wang, Y. B. Gao and C. P. Eur. Phys. Jour. B 40, 321-326 (2004).8. P. Zhang, Z. D. Wang, J. D. Sun, and C. P. Sun, Phys. Rev. A 71, 042301 (2005)

Leture1 & 2:

Lecture 3:

1. H.T. Quan, Z. Song , X.F. Liu, P. Zanardi , C.P.Sun,

Phys. Rev. Lett. (2006) in press2. X.-F. Qian, T. Shi, Y. Li, Z. Song, and C. P. Sun,Phys. Rev. A 72, 012333 (2005)4. H. T. Quan, P. Zhang, and C. P. Sun,Phys. Rev. E 72, 056110 (2005)5. H. T. Quan, P. Zhang, and C. P. Sun,Phys. Rev. E 73, 036122 (2006)6. L. Zheng, C. Li, Y. Li, and C. P. Sun,Phys. Rev. A 71, 062101 (2005)7. F. Xue, S. X. Yu, and C. P. Sun, Phys. Rev. A 73, 013403 (2006)

Page 5: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Related Publications and References therein

Lecture 4:

1. C. P. Sun, Y. Li, and X. F. Liu, Phys. Rev. Lett. 91, 147903 (2003)2. S. Yang, Z. Song, and C. P. Sun, Phys. Rev. A 73, 022317 (2006) 3. X.-F. Qian, Y. Li, Y. Li, Z. Song, and C. P. Sun, Phys. Rev. A 72, 062329 (2005)4. Z. Song, P. Zhang, T. Shi, and C.-P. Sun,

Phys. Rev. B 71, 205314 (2005) 5. T. Shi, Y. Li, Z. Song, and C.-P. Sun,Phys. Rev. A 71, 032309 (2005)6. Y. Li, T. Shi, B. Chen, Z. Song, and C.-P. Sun,

Phys. Rev. A 71, 022301 (2005)7. R. Xin, Z. Song and C.P. Sun,

Physics Letters A, 342,, 30 (2005)

Review Article:

Song Z, Sun CP,LOW TEMPERATURE PHYSICS 31 (8-9): 686 (2005)

Page 6: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Lecture1 Lecture1 -- Overviews:Overviews:

Quantum Information Processing Quantum Information Processing

based on Solid State Systemsbased on Solid State Systems

---Superconducting Quantum Circuits and Nano-Mechanical Systems

Page 7: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Controllable

Cooper-Pair Box-Charge Qubit

Single Junction – Phase Qubit

Rf-SQUID: Flux Qubit

Trapped IonPhoton-Atom Liquid NMR

Spins and Quasi-spins in Semiconductors Quantum Dots

Scalable

Coherent

Physical Realizations of Quantum Bits (Physical Realizations of Quantum Bits (QubitsQubits)) Require Specially Designed TwoRequire Specially Designed Two--Level SystemsLevel Systems:

DiVincenzoDiVincenzo

Five criteriaFive criteria

1. Well defined addressable qubit array stable memory

2. Initialize in the |000..> state 3. Long decoherence time (>104

operation time) 4. Universal set of gate operations 5. Single-bit measurement

Page 8: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Main Obstacles and Challenges For QC

quantum decoherence, which can be significantly enhanced in a system of many qubits,

One Qubit Dephasing

N Qubit Dephasing

te γ−

?[ ] . ...N

KkH g h c g Nbσ +

+= + ⎯⎯→ +∑

2N te γ−

Sun et al , PRA (1993,1998)

b. An Atomic Ensembleb. An Atomic Ensemblea. In Generala. In General

[ ]N

k S Nbσ ++ += ⇒∑

Achieve a enhanced effective coupling, but

induce a enlarged decoherence

N

N

Sun, Yi, Li, and You, PRA (2002,2003)

Page 9: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Low Frequency Noise 1/f

NEC experiment 2005

It seems to be a non- principle difficulty , but it challenges all present technologies

Nobody know its origins physically !!!

Page 10: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Quantum Information Meets Condensed Matter Physics ?

Or

Condensed Matter Physics Beats Quantum Information ?

Page 11: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Integrating Various Qubits

for

QIP

Qubit Qubit

Data Bus: A Quantize Filed

Physics: Creating Distant Entanglement?

Atom, Spin, Ion, orArtificial Atoms :Charge, Flux , Quantum Dots

Quantized Electromagnetic Field

Large Josphson Junction (2004, Exp)

Quantum Transmission Line (2004, Exp)

“Phonons”: GHz. Nano Mechanical Beam

(I+N) : Tian, Zoller, PRL 93, 266403 (04) (C+N) : Irish , Schwab, PRB,68, 155311 (03)(C+JJ): Wang, Sun, PRB, 70, 224515 (04)

Artificial Cavity QED =

Spin-Boson Model

Examples

Page 12: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Cavity QED: Virtual Photon ExchangeInduces Qubit–Qubit

coupling

1s

2s

|e

|g

|e

|g

1s

2s

Jeff ∑k

|gk |2k − a

Effective Inter-Qubit Coupling

( , )k kg ω

See the details in Lecture 2

Page 13: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Finite Effective Interaction Requires Gapped Systems

Jeff ∑k

|gk |2k − aEffective Interaction

aωg

k

Δaωg

k

Page 14: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

ωΔ

Normal Metal with Qubit?Supercond.

Circuit QED :

5 μmDC +6 GHz in

out

Superconducting Transmission Line +Charge Qubit

0=n

1=n

二能级系统

CJ EJ

Vg Cg

EJ CJ

See the details in Next Lecture

Page 15: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Circuit QED Based on Superconductors

Nature 431, 162 (2004). Nature 431, 159 (2004).

A Earlier Proposal: Circuit QED based on Large junction by us (2002)

Wang, Zhang, Zhou, and Sun, Phys. Rev. B 70, 224515 (2004)

Exp

erimen

ts

12H= a a+ +g(a + a )zω ωσ σ σ+ +

+ −

Large Junction 21cos( ) 12

V φ φ= −

Page 16: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Strong Couplings by Circuit QED

Blais, A., et al., Phys. Rev.A 69, 062320 (2004)

Parameter Symbol Optical cQED with Cs atoms

Microwave cQED

circuit QED

Dipole moment d/eao 1 1,000 20,000

Vacuum Rabi frequency

g/π 220 MHz 47 kHz 100 MHz

Cavity lifetime 1/κ; Q 1 ns; 3 x 107 1 ms; 3 x 108

160 ns; 104

Atom lifetime 1/γ 60 ns 30 ms > 2 μs

Atom transit time

ttransit > 50 μs 100 μs Infinite

Critical atom # N0 =2γκ/g2 6 x 10-3 3 x 10-6 6 x 10-5

Critical photon #

m0 =γ2/2g2 3 x 10-4 3 x 10-8 1 x 10-6

# of vacuumRabi oscillations

nRabi =2g/(κ

+γ)10 5 100

Page 17: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Other Condensed Matter System seems to Beat Quantum Information ?

Finite Correlated Length vs. Decaying EntanglementDue to the decreasing effective coupling

'( ) ( ') e x p ( ) , L

−Ψ Ψ ∝ − ≈ Δ

x xx x

BA

qubit qubitCorrelation length

Data Bus

N

L

L<N

0| 1 or 1/Nδϕ ϕ ∼a long range order?

QI Transfer from A to B = Dynamic Entangling A and B States

Page 18: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

BEC : Long distance correlation of Boson System

22D

Bm k Tπλ =

( ) ( )0 02, exp[ ]

2ik x y

kn n mkT rx y n e dkV V r R

ρ −= + → + −∫

r x y= − → ∞

a

High temperature (T>Tc):

3 2.612,D

=

Low temperature (T<Tc):

D aλ ∼D aλ

a

Coherent Overlap :

Macro-Atoms

( ) 0, nx yV

ρ →

Off-diagonal long range order (ODLRO)

Thermal Wave Length

Page 19: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Quantum state transfer via Spin Ladder

0 1 0I A B NH J S S J S S= ⋅ + ⋅ ( )2int 0 0,zz

A BH J G x S Sω= = ⋅

Li, Shi, Chen, Song, Sun, Phys. Rev. A 71, 022301 (2005)

A typical gapped system

Page 20: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

De-entanglement vs. Decoherence

Decoherence of single qubit

Quantum correlations?

Concurrence=entalement

What characterize the quantum coherence of many body system?•

Entanglement or Corrrelation? Are there differences?

2t N te eγ γ− −→

Yu,

Eberly,Phys. Rev. Lett. 93, 140404 (2004)

Page 21: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Overcome the difficulty by Engineered Spin ChainWith Always-On Interactions

S. Bose, 2003;M. Christandl, PRL, 92, (2004)

1

1 11

( )

( )

i N

i i i i ii

i

H J S S S S

J i N i

θ= −

+ − − ++ +

=

= +

= −

∑Shi, Li, Song, and Sun, Phys. Rev. A 71, 032309 (2005)

Time evolution=Parity Reflection

Our discovery :

Commensurate Spectrum

0( )U t P=

For the details see Lecture 3:

Page 22: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Peierls

Distorted Chain for QST

M.X. Huo, Ying Li, Z. Song , C.P. Sun, 2006 in preparation

More Realistic System with spatially-varying Hamiltonian

Dimmerization : SSH model

Page 23: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

・・・

・・・

Nano-Mechanical Resonator

(NAMR)

48 / ( ) 1B Bk T mK k E hL GHzρ= ⋅ ≈ ≈ ⋅

Knobel

and Cleland, Nature, 2003 La Haye

et al., Science,

304, 74 (2004)

H a aω +=

Standard Quantum Limit (SQL):

Quantization of Single Model Phonon

Page 24: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Standard Quantum Limit (SQL):

1 2d x x= −

2 2 21 2

21 2

22

( ) ( ) ( )

2( )( ) ( )

( )

px xm

p xm

m

d

xm

x

τ

τ

τ τ

Δ= Δ + Δ +

Δ≥ Δ + Δ

= + Δ

Δ

1x 2xp

mτ Δ

1 2p xΔ Δ ≥Free Particle

Measurement of length Limited by Uncertain Relation

Harmonic Oscillator (0)( ) (0)cos( ) sin( )px t x t tm

ω ωω

= +

22 2 2

2 2

(( ) )( ) cos ( ) sin ( )px t tm

x tm

ω ωω ω

Δ=Δ Δ + ≥

Page 25: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Nano-Mechanical QED (NM-QED )Constructs

2. NAMR + Josephson Qubit1.NAMR + Spins

Nature 430, 329 (2004)

Armour, et al Phys. Rev. Lett. 88, 148301 (2002).

Wang, Gao

and Sun. Eur. Phys. Jour. B 40, 321-326 (2004).

Page 26: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Direct Observation of Quantization of NAMR

Gaidarzhy

et al, PRL. 94, 030402 (2005)

2 2

2 2

/ ( )/

i L B mV Ii Q

ωξ ωϖ ω ϖω

=− +

金电极上的电压

Page 27: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Detection Of Single Spin

Nature 430, 329 - 332 (15 Jul 2004)

Page 28: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

22 21

2 2z

cPH M z B SM

ω γ= + + ⋅

1 1 0cos( ) sin( ) ( )tipx y zr rB B t e B t e B e B zω ω= + + +

0 1 0 1( ) ( ) ( )tip x zB z z e z eξ ξ η η≈ − + −

03

3( )4tip

n m n mBd

μπ

⋅ −=

B0

B1r tω

2 2( ) / 2 2 ,x x zp x S xSε η= + + +H 2 2( ) / 2 2 ,x x zp x S xSε η= + + +H

Nano-Mechanical QED: Single Mode Phonon

Page 29: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Adiabatic Quantum Measurement

Sun, et al, PHYS REV A 6301 : 2111(2001); EUR PHYS J D 17 :85(2001)

2 2 2 2 2

( 2 ) ( ) ( ) ( ) ,

( ) 4 2 / ,

x z nS xS n x V x n x n

V x x x

ε η

ε η ε η ε±

+ = = ±

= ± + ≈ ± ±

2 2( ) / 2

( )xp x V

a aω δ±

+

= + +

= ±effH

Page 30: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Probe for Spin Wave : Dressed Boson

F. Xue, L. Zhong, C.P. Sun, 2006, PRB

B0

B1r tω

Page 31: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Natural Atom,Ions

SuperconductingQbits

Nuclear Spin,Excitation

Quantu m Dots

Q-EM field CavityQED Semi-Clas. Quant. Quant.

S-TLR T Circuit QED × ×NAMR T NM-QED Semi-Clas TLarge JJ T Circuit QED × ×Collective Spin × × SW.QED SW.QE

D

2-Level Artificial Atoms

Artificial Cavity QED Construct

Qu

an

tum

data

bu

s

T=Theoretical Protocols

Page 32: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Cleland, Geller, Cond- mat/0311007

Page 33: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Decoherence

showed by Nano

MQED

( )22 ˆ ˆ2 ( )c

e n n xH

−=

( ) ( )( )12ˆ ˆ

ˆ( )g g g x xe

g

n x C V C x V

n n xδ

= +

= +

Y. D. Wang, Y. B. Gao and C. P. Sun, Eur. Phys. Jour. B 40, 321-326 (2004).

V

Φ

V

( )† †04

2J

c z x zEH E n a a a aδ σ σ λ σ ω= − − + +

Page 34: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

( )22 ˆ ˆ2 ( )c

e n n xH

−=

( ) ( )( )12ˆ ˆ

ˆ( )g g g x xe

g

n x C V C x V

n n xδ

= +

= +

( )ˆ (1 )x xxC x Cd

≅ −

( ) ( )†ˆ ˆxxn x n a a

dδ Δ

= − +

H 4Ecnz − EJ2 x − a a†z 0a†a

Page 35: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Cooling Nano-Mechanical Resonator By “Bang-bang ”

couplings to Charge Qubit

th 1.7;/8;

/ 133

≈=

=a

Ngrτ π

κ( ) 1

1 th /sas

n p N r κ −≈ ≈

Zhang, Wang, Sun, PRL, 097204 (2005) ,

VX

Vg

0

cos xJEω π=

⎛ ⎞Φ⎜ ⎟Φ⎝ ⎠

( ) 2 coth 12g

Bk Tπ ωω α ω

⎡ ⎤⎛ ⎞Γ = +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦( )ωΓ

Our result : Cooling efficiency vs. initial state

Page 36: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

† †

0

( )2

cos( )2

z b z

J xx

H b b b b

E

ω σ ω λ σ

π σ

′ ′

= + + +

Φ−

Φ

Quantum transducers:

VX

XΦVg

Sun, Wei, Liu, Nori, PRA, 2006

†( ),q k k kk

i a aφΦ = −∑

Page 37: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Mechnical

QED and Circuit QED

Jaynes-Cummings (JC) Model

What is New Physics

?

—link Qubits

with quantum Data Bus

~1cm

Page 38: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Λ − Type

−V Type

Ξ − Type

No -Type Natural Atoms in Electric Dipole TransitionsΔ

Winger –Ekert Theorem with SO(3) or SO(4) Symmetry

Exotic features of Superconducting Artificial Atoms

Liu, You, Wei , Sun, and Nori, PRL, (2005)

Page 39: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Things change dramatically for the Artificial Atoms

in Symmetry Breaking

⊗eΦ

Liu, You, Wei , Sun, and Nori, PRL, (2005,)

Φe + Φa (t)

Total Phase Sensitiveness for Adiabatic Manipulations

Page 40: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)
Page 41: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Appendix 1:

Cavity QED for Atom-Photon system

A Constrained Photon System

104

Cesium Atoms

Detectory|e =|1

|g |0=

Page 42: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Jaynes-Cummings (JC) Model = Spin-Boson Model

12H= a a+ +g(a + a )a zω ω σ σ σ+ +

+ −

1. Enhancement and suppression spontaneous emission 2. Vacuum Rabi Splits in Spectrum3. Collapse and revivals of Atomic Population 4. Coherent Forces for Atoms entering the cavity

Model and Effects of Cavity QED :

[a, a ] 1+ =

Page 43: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

, ) s in , 1 c o s ,

, ) c o s , 1 s in ,n n

n n

n g n e n

n g n e n

θ θ

θ θ

+ = + +

− = + −

aω ωΔ= −

Energies

of

Dressed

States

2 21( ) 4 ( 1)2 2

E n g nω± = + ± Δ + +

0Δ=

2g

/ Rω ω

aω ω=

2 2cos2

4 ( 1)n

g nθ Δ

=+ + Δ

Page 44: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Single Qubit

Single Model Virtual Photon Process

0

0

: 1 , 2

.

a Z

H H V

H a a

V ga h c

ω σ ω

σ

+

+

= +

= +

= +

00 [ , ]V H S= +

0 01 [ , ],2e effH H V H V S∼ + = +

2’nd Order Process

.a

gS a h cσω ω += −

Page 45: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

2 2†

eff 0112r z z

g gH a aω σ ω σ⎛ ⎞ ⎛ ⎞

≈ − − +⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠

Optical AC Stark EffectAtom AC Stark shift

1s

2s2

3 312f

a

gV aa aaξ σ σω ω

+ += ≡−

The Lamb Shifts

:

2 21( )( ) ( )2 2

g gE nω± ≈ ± + ± ΔΔ Δ

Page 46: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Large detuning

|e ∼

|g ∼| α

| ite κ α−− ⊗ |g

⊗ |e| ite κ α+−

| α ⊗ (b|e +c|g ) b | |e +c | |git ite eκ κα α+ −− −⊗ ⊗

κ ω ξ± = ±

2

2 1| |a

gω ω−

2 2( ) * ( ) .f t a g g b e e ab D t e g h cρ = + + +

Decoherence

due to Lamb Shifts

:

Page 47: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Phys. Rev. Lett. 77,4887,(1996)

Progressive Decoherence

Experiment

Haroch’s Group

( ) |it itD t e eκ κα α+ −− −=

| ( ) |D t

Page 48: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Entanglement due to Virtual Photon Exchange

0

(1) (2)0

(1) (2) (1) (2)

:1 ( )2

( ) ( )

a Z Z

H H V

H a a

V ga ga

ω σ σ ω

σ σ σ σ

+

++ + − −

= +

= + +

= + + +

1s

2p2s

1s

2p2s

2(2) (1) (1) (2)( )f

a

gH σ σ σ σω ω + − + −− +

−2

(1) (2)( 1/ 2)]( )Z Za

g a a σ σω ω

++ + +−

Virtual Photon Process

With Two Atoms

2

2 1| |a

gω ω−

Large detuning

2Small / | | means a slow processeff ag g ω ω= −

Page 49: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

0

(1) (2)0

(1) (2)

:1 ( )2

( )

a Z Z k k kk

k kk

H H V

H a a

V g a hc

ω σ σ ω

σ σ

+

+− −

= +

= + +

= + +

Multi-model virtual photon Process

|e

|g

|e

|g

??

Page 50: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Second order perturbation

(1) (2) (1) (2)'

1.... ( ) [ ( )]( )2eff eff a k k Z ZV J hc a aσ σ ω δ σ σ+

− += + + + + +

' ( )( ) k k k k

k ak

a a g gk ka a ω ωδ

+′ ′+

−=∑

Off-diagonal Lamb shift

0 01 [ , ],2e effH H V H V S∼ + = +

(1) (2)( )kk

k k a

gS a hcσ σω ω

+− −= + −

−∑

Jeff ∑k

|gk |2k − a

Page 51: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Condition for Finite Effective Coupling

Gapped System is needed !!!

2

2| | 1| |

k

k a

gω ω−

Jeff ∑k

|gk |2k − a

二阶微扰成立条件

2| | the sum is not too smallk

k k a

gthatω ω−∑

In Quantum Computing, fast operation requires

Δaω

g

k

aωg

k

Page 52: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Towards to Fully Solid State Cavity QED

SS Qubits

+ SS Data Bus

Superconductor Circuit QED

ωΔ

Normal Metal JJ QubitsSuperconductor

Page 53: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Circuit QED based Josephson

Junction

Nature 431 162 (2004)

Page 54: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

NanoNano--Mechanic (NMechanic (NM)-

QEDQED

Integrating Josephson Qubit or Spin wit A nano -beam

Fast Progresses In experiments

Gaidarzhy

et al, PRL. 94, 030402 (2005)

Knobel

etal

, Nature, 2003 LaHaye

et al., Science (2004), Nature 430, 329 (2004)

Page 55: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Quantum Information is Fragile

• low energy

• isolation from environment

• control of operations

• superpositions are very fragile

0 1

106 eV

CLASSICAL|0⟩

|1⟩

10-6 eV

QUANTUM

Page 56: Cavity QED Construct: Quantum Information Processing and ...suncp/ppt/Lecture_HongKong/Lecture1.pdf · 1.P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

Quantum PhysQuantum Phys Information Information ScienceScience

量量 子子 信信 息息

New Stating Point?

Physics of Quantum Information:

Dream or Reality