dr. sohail presentation.(2010)

Upload: snqau

Post on 08-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    1/63

    Peristaltic flow with an endoscope

    By

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    2/63

    Geometry of the problem

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    3/63

    For an incompressible fluid the balance of mass andmomentum are given by

    ,div

    ,0divf

    V

    V

    V V !

    !

    T pdt d

    1

    2

    The constitutive equation for A six-constant Jeffrey's fluidmodel is given by

    T 2 1 dT d t ! W .T T .W d T . D D.T bT : DI cDtr T 29 D 2 2 d Dt ! W . D D.W 2d D. D bD : DI

    3

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    4/63

    D symmetric part of velocity gradient V

    VT

    ,

    W antisymmetric part of velocity gradient V ! VT

    .

    W here

    b, d and c are material constants of six constant

    Jeffrey fluid model and is the relaxation time and

    is the delay time

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    5/63

    S pecial cases

    The transition from the eight-constant Oldroyd model to the six-constant generalized Jeffrey's model occurs under the followingconditions

    9 1

    !a8 1,

    9 !c8 1, : 1 b8 1,

    9 2

    !a8 2, : 2 b8 2.

    Further Maxwell, De W itt and W hite-Metzner models, as wellas three and four-constants Oldroyd models can be treated asparticular cases of the generalized six-constant Jeffrey's model

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    6/63

    The geometry of the wall surface is

    R1 a1,

    2 a 2 b1 s i 2@ Z ! ct ,

    4

    5

    0,

    The governing equations in the fixed frame for anincompressible flow are

    6

    A t

    ! p 1 RR R R Z ! 5 5 , 7

    C ontinuity equation

    R- C omponent of momentum equation

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    7/63

    Z -C omponent of momentum equation

    A W W ! p 1 RT R Z T Z Z .

    8

    z c 1t , r R ,

    z Z 1

    t , r R ,

    Transformations between two reference frames are defined

    w W c 1, ,

    9

    10

    The corresponding boundary conditions are the no-slip atboth the walls

    0 w c1 , at r r 1 ,

    !c dr 2 z , w !c1 , at r r 2 a b sin2@ z .

    11

    12

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    8/63

    R Ra 2 , r r

    a 2 , Z Z 8

    , z z 8

    , W W c 1 , wwc 1 , T

    a 2 T c 1 9 ,

    U 8 a 2 c 1 , u8

    a 2 c 1 , P a 2

    2 P

    c 1 8 9 , t c 1 t

    8 , 0

    a 2

    8 , Re Ac 1 a 24 0 ,

    r 2r 2a 2 1 F sin 2 @ z , 8 1

    2 1 c 1a 2 , 8 2

    2 2 c 1a 2 , 2

    1

    a 2 1 .

    Dimensionless variables are defined

    13U sing the non-dimensional quantities and transformation theresulting equations can be written as

    u

    r

    u

    r

    w

    z 0 ,

    C ontinuity equation

    r- C omponent of momentum equation

    Re0 3 u r w z u ! pr

    0 r r

    rT rr 0 2

    z T rz ! 0 T 55 r ,

    14

    15

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    9/63

    z -C omponent of momentum equation

    Re 0 ur

    w z

    w ! p z

    1

    r r rT rz 0

    zT zz , 16

    T r z

    wr

    1 8 18 2 1! d d b ! c2 2d 3b wr 2

    1 8 12 1! d d b ! c2 2d 3b wr 2 ,

    T rr 8

    2 wr

    21 d b

    ! 8 1 w

    r 1 d b T r z ,

    T zz 8 2 wr

    2

    !1 d b ! 8 1 wr

    !1 d b T r z ,

    T 55 8 2 wr

    2b! 8 1 w

    r bT r z ,

    W here

    17

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    10/63

    U nder the assumption of long wave length approximation andlow Reynolds number above equations take the form

    p 0 ,

    p z

    1r r

    r wr

    1r r

    ,, 1 wr

    3

    , , wr

    5,

    , 1 ! d d b ! c 2 d 3 b , , 1 8 1 8 2 ! 8 1 , , 2 !8 13 8 2 .where

    18

    19

    C orresponding boundary conditions in dimensionless form are

    w 1 , at r r 1 ,

    w 1, t r r 2 1 sin 2 z .

    20

    21

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    11/63

    S olution of the problem

    Perturbation solution

    For perturbation solution, we expand w, F, p by takingas perturbation parameter

    E

    w w 0 , w 1 , 2 w 2 O, 3 ,

    p p0

    , p1

    , 2

    p2 O

    , 3 ,

    0 , 1 , 2

    2 , 3

    .

    ,ln

    ln

    lnln41

    6766863

    66

    46160

    502

    594

    586

    578

    561 0

    552

    111 0252

    44

    321

    2

    xx

    !

    ar ar

    ar

    ar

    ar

    ar ar ar ar ar ar a

    ar ar ar ar a z par a

    r w

    E

    E

    The perturbation results for small parameter E22

    S atisfying boundary condition can be written as

    23

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    12/63

    dp z 2 F r 2

    2

    !r 12

    ! , a69

    ! , 2 a7 0

    a6 8 ,

    Axial pressure gradient

    24

    W here all constant are presented as follows

    a1r 12 ! r 22

    4 ln r 2 ! ln r 1 , a2 !r 12 ln r 2 ! r 22 ln r 14 ln r 2 ! ln r 1 , a3 !,

    1

    32dp 0d z

    3

    ,

    a4 !3, 1a18dp 0d z

    3, a5 , 1a1

    3

    8dp 0d z

    3, a6 !3, 1a1

    2

    2dp 0d z

    3,

    a7 a3r 14 a4 r 12 a5r 12

    a6 ln r 1 , a8 a3r 24 a4 r 22 a5r 2

    2 a6 ln r 2 ,

    a9 a7 ! a8ln r 2 ! ln r 1 , a10 a9 a6 , a11 !a7 ! ln r 1a9 , a12 16 a3

    2 ,

    a13 16 a3a4 4a3 dp 1d z

    , a14 14

    dp 1d z

    2

    2a4 dp 1d z

    8a3a1 dp 1d z

    8a3a10 4a42 dp 1 z

    ,

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    13/63

    a 1 a 1dp 1d z

    2

    a 10dp 1d z

    4 a 4 a 1dp 1d z

    4 a 4 a 10 ! 16a 3 a 5 ,

    a 16 !4 a 4 a 5 a 102

    a 12 dp 1

    d z

    2

    2 a 5dp 1d z 2 a 10 a 1

    dp 1d z ! 4 a 5 a 4 ,

    a 17 !4 a 1 a 5 dp 1d z ! 4 a 5 a 10 , a 1 4 a 52 , a 19 1

    2

    dp 1d z

    2 a 4 , a 2 0 4 a 3 ,

    a 2 1 a 1dp 1d z

    a 10 , a 22 !2 a 5 , a 23 a 2 0 a 12 , a 2 4 a 1 2 a 19 a 13 a 2 0 ,a 25 a 12 a 2 1 a 2 0 a 1 4 a 13 a 19 , a 2 6 a 1 2 a 22 a 2 1 a 13 a 14 a 19 a 15 a 2 0 ,

    a 2 7 a 13 a 22 a 2 1 a 1 4 a 15 a 19 a 16 a 2 0 , a 28 a 14 a 22 a 2 1 a 15 a 16 a 19 a 17 a 2 0 ,a 2 9 a 15 a 22 a 2 1 a 16 a 17 a 19 a 18 a 2 0 , a 3 0 a 16 a 22 a 18 a 19 a 17 a 2 1 ,

    a 31 a18a21 a17 a22 , a32 a18 a22 , a33 132dp 0d z

    5

    , a34 a18

    3a116

    dp 0d z

    5

    ,

    a3510a12

    8dp 0d z

    5,

    a3610a13

    4dp 0d z

    5

    , a375a14

    2dp 0d z

    5

    a38 a15 dp 0

    d z

    5

    ,

    a39 3, 1a204

    dp 0d z

    2, a40 3, 1a19

    43, 1a1a20 dp 0

    d z

    2

    ,

    a41 3, 1a214

    3, 1a12a20 3, a1a19 dp 0d z

    2

    , a42 3, 1a224

    3, 1a12 a19 3, a1a21 dp 0d z

    2

    ,

    a43 3, 1a22 a1 3, 1a12 a21 dp 0 z

    2

    , a44 3, 1a12 a22 dp 0 z

    2

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    14/63

    a 4 5 , 1 a 23 , a 4 6 , 1 a 2 4 , a 4 7 , 1 a 25 , 2 a 33 a 39 , a 4 8 , 1 a 2 6 , 2 a 3 4 a 4 ,a 4 9 , 1 a 2 7 , 2 a 35 a 4 1 , a 5 , 1 a 28 , 2 a 3 6 a 4 2 , a 5 1 , 1 a 29 , 2 a 3 7 a 4 3 ,a 52 , 1 a 3 , 2 a 38 a 44 , a 53 , 1 a 3 1 , a 5 4 , 1 a 32 , a 55 !a 4 5

    10, a 5 6 !a 4 6

    8,

    a 5 7 !a 4 76 , a 58 !a 4 8

    4, a 59 !a 4 9

    2, a 60 a 5 1

    2, a 61 a 52

    4, a 62 a 53

    6,

    a 63 a 5 48

    , a 64 a 55 r 110 a 5 6 r 18 a 5 7 r 1

    6 a 58 r 14 a 59 r 12 a 5 ln r 1 a60

    r 12a 61r 14

    a 62

    r 16

    a 63

    r 18 ,

    a65 a55 r 210 a56 r 28 a57 r 26 a58 r 24 a59 r 22 a50 ln r 2 a6 0r 2

    2a6 1r 2

    4a6 2r 2

    6

    a6 3r 2

    8 ,

    a66 a6 4 ! a6 5ln r 2

    !ln r 1

    , a6 7 !a66 ln r 1

    a6 8 r 24 ! r 14

    8a1 r 22 ln r 2 ! r 12 ln r 1 ! a12 r 2

    2 ! r 12 a2 r 22 ! r 12 ,

    a69 2 a3 r 26 ! r 16

    8a44

    r 24 ! r 14 a5 ln r 2 ! ln r 1 a10 r 2

    2 ln r 2 ! r 12 ln r 12 !

    r 22 ! r 12

    4,

    a11 r 22 ! r 122

    .

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    15/63

    The expression for pressure rise and frictional forces are givenby

    # p0

    1dpd z

    d z ,

    F 0

    :0

    1

    r 12

    !dpd z

    d z ,

    F i

    :0

    1

    r 22

    !dpd z d z ,

    25

    26

    27

    W here d p is defined in equation ( 21)

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    16/63

    HAM solution

    In this section, we have found the HAM solution of Eqs.(15 ) to ( 18 ). For that we choose

    w0 ! 1 r 2 a1 lnr a2 p z .

    28

    as the initial guess. Further, the auxiliary linear operator for

    the problem is taken as

    w r w 1r r r

    w 0

    r 29

    which satisfy

    wr w 0 0 . 3 0

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    17/63

    W e can define following zeroth-order deformation problemsthe

    1 qwr

    wr

    ,q w0 r

    qw N

    wr w

    r

    ,q , 3 1

    w r ,q ! 1, at r r 1,w r ,q , at r r 2 ,

    C orresponding boundary conditions are

    3 2

    In Eq. ( 3 0) denote the non-zero auxiliary parameter ,

    is the embedding parameter and,

    .15

    311)],([5

    222

    242

    2

    2

    22

    1

    3

    12

    2

    d z d p

    r

    wr r

    wr

    wr

    wr

    wr

    wr r

    wr

    wr

    qr w N wr

    xx

    xx

    xx

    xx

    xx

    xx

    xx

    xx

    EEEE

    EEEE

    33

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    18/63

    Obviously

    r , 0 w 0, r , 1 w r , 34Expanding

    ,in Taylor's series with respect to

    embedding parameter q.

    r ,q

    w0 r n 1

    -

    wm r qm

    , 35

    W here

    w m 1m !

    m

    w r ,qq m q 0 3 6

    Differentiating the zeroth order deformation m-times withrespect to q and dividing by m! and finally setting q= 0 , we

    get the following mth order deformation problem

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    19/63

    w wm r G mwm 1 r w Rwr r , 3 7

    .1

    1

    5

    3

    11

    0001

    1

    0

    2

    2

    0001

    1

    0

    22

    01

    1

    01

    01

    1

    0111

    mii j

    j

    i jl

    l

    jl k

    k

    l k m

    m

    k

    ii j

    j

    i jl

    l

    jl k

    k

    l k m

    m

    k

    l l k

    k

    l k m

    m

    k

    l l k

    k

    l k m

    m

    k mmwr

    d z dp

    wwwwwr

    wwwww

    www

    wwwr

    wr

    w R

    G EE

    EE

    EE

    EE!

    dd

    !

    d

    !

    d

    !

    d

    !

    ddd

    !

    d

    !

    d

    !

    d

    !

    ddd

    !

    d

    !

    dd

    !

    d

    !

    ddd

    where

    3 8

    Gm0 , m 1,

    1, m 1.

    where

    3 9

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    20/63

    The solution of the above equation with the help of Mathematica can be calculated and presented as follows

    w r lim M -m 0

    M

    a m ,00

    n 1

    2 M 1

    m n! 1

    2 M

    k 1

    2 m 1! n

    a m ,nk r n ln r

    lim M -

    n 1

    2 M 1

    m n! 1

    2 M

    k 0

    2 m 1! n

    a m ,nk r 4n 2 ,

    a m,00W here and a m ,k are constants

    4 0

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    21/63

    Fig .a. Represents h- curve for velocity profile.

    H-curve

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    22/63

    Expressions for the five considered wave forms

    1) S inusoidal wave

    h z 1 sin 2 z

    2 ) Triangular wave

    h z 1 F @

    3n 1

    - !1 n 12 n ! 1 si 2 @2 n ! 1 z

    3 ) S quare wave

    h z 1 F 4@ n 1

    -! 1

    n 1

    2n ! 1cos 2@ 2n ! 1 z

    4 1

    4 2

    43

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    23/63

    4 ) Trape z oidal wave

    h z 1 F 32@

    2n 1

    - sin@8 2n ! 12n 1 2

    sin2@ 2n ! 1 z

    5 ) M ulti sinusoidal wave

    h z 1 sin 2 m z

    44

    45

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    24/63

    N umerical solution

    To see the validity of perturbation and homotopy

    analysis method we have also calculated thesolution of governing equations numerically byemploying shooting method. The numerical resultsare also compared with the perturbation and HAMresults. The comparison of different types of solutions is shown through table and figure, wehave found a good agreement between all theresults.

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    25/63

    Table. 1

    Table 1. C omparison of solutions by various methods .

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    26/63

    C omparison of velocity profile

    0.2 0.4 0.6 0.8 1-1.09

    -1.08

    -1.07

    -1.06

    -1.05

    -1.04

    -1.03

    -1.02

    -1.01

    -1

    -0.99

    r

    w ( r

    , z )

    Num er i ca l so lu t ion

    Pe r tu rba t ion so lu t ion

    H A M s o l u t i o n

    Fig .a. C omparison of velocity profile for different

    solutions

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    27/63

    Velocity profile

    0.2 0.4 0.6 0.8 1

    -1.09

    -1.08

    -1.07

    -1.06

    -1.05

    -1.04

    -1.03

    -1.02

    -1.01

    -1

    -0.99

    r

    ( r , z

    )

    P1 = 0.4

    P1 = 1.2

    P1 = 1.6

    0.2 0.4 0.6 0.8 1

    1.09

    1.08

    1.07

    1.06

    1.05

    1.04

    1.03

    1.02

    1.01

    1

    0.99

    z

    P2 = 1

    P2 = 5

    P2 = 1 0

    8

    8 2

    Fig. 3 . Velocity field for different values of retardation time

    Fig. 3 . Velocity field for different values of relaxation time

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    28/63

    0.2 0.4 0.6 0.8 1-1.09

    -1.08

    -1.07

    -1.06

    -1.05

    -1.04

    -1.03

    -1.02

    -1.01

    -1

    -0.99

    E = 0.0

    E = 0.4

    E = 0.8

    - 1.5 - 1 - 0.5 0 0.5 1 1.5

    -1 5

    -1 0

    -5

    0

    5

    10

    15

    Q

    ( P

    E = 0.0

    E = 0.1

    E = 0.3

    E = 0.5

    Fig. 3 . Velocity field for different values of perturbation parameter

    Fig. 4 . Pressure rise versusflow rate for differentvalues of perturbationparameter ,

    ,

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    29/63

    -1 5 -1 -0 5 0 0 5 1 1 5 -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    Q

    ( P

    P1 0 15

    P1 0 20

    P1 0 25

    P1 0 30

    -1

    5 -1 -0

    5 0 0

    5 1 1

    5

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    Q

    ( P

    P 2 0 15

    P 2 0 20

    P 2 0 25

    P 2 0 30

    Fig.6. Pressure rise versusflow rate for differentvalues of relaxationtime

    Fig. 5 . Pressure rise versusflow rate for differentvalues of retardationtime

    2

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    30/63

    -

    .

    -

    -

    .

    .

    .

    -

    -

    -

    Q

    F ( i )

    E = . E = . E = .

    E = .

    -

    .

    -

    -

    .

    .

    .

    -8

    -6

    -4

    -2

    2

    4

    6

    8

    Q

    F ( i )

    P

    =

    .

    P

    =

    .2

    P

    =

    .2

    P

    =

    .

    Fig.7. Frictional forces versusflow rate for outer tubefor different values of perturbation parameter

    Fig.8. Frictional forces versusflow rate for outer tubefor different values of retardation time

    ,

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    31/63

    -!

    ."

    -!

    -#

    ."

    # #

    ."

    ! !

    ."

    -8

    -6

    -4

    -$

    #

    $

    4

    6

    8

    Q

    F ( i )

    P%

    =#

    .!

    "

    P%

    =#

    .$ #

    P%

    =#

    .$

    "

    P%

    =#

    .&

    #

    -!

    ."

    -!

    -#

    ." # #

    ."

    ! !

    ."

    -#

    .#

    &

    -#

    .# $

    -#

    .#

    !

    #

    #

    .#

    !

    #

    .# $

    #

    .#

    &

    Q

    F (

    '

    )

    ( =#

    .#

    ( =#

    .!

    ( =#

    .&

    ( =#

    ."

    Fig.9. Frictional forces versusflow rate for outer tubefor different values of relaxation time 2

    Fig. 10 . Frictional forces versusflow rate for inner tubefor different values of

    perturbation parameter ,

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    32/63

    Fig. 11 . Frictional forces versusflow rate for inner tubefor different values of retardation time

    -1.5 -1 -0.5 0 0.5 1 1.5

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    Q

    F ( 0 )

    P1 ) 0.15

    P1 ) 0.20

    P1 ) 0.25

    P1 ) 0.30

    -1.5 -1 -0.5 0 0.5 1 1.5

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    Q

    0 ( 0

    )

    P2 1 0.15

    P2 1 0.20

    P2 1 0.25

    P2 1 0.30

    Fig. 12 . Frictional forces versusflow rate for inner tubefor different values of relaxation time 8 2

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    33/63

    0 0.5 1 1.5 -8

    -7.5

    -7

    -6.5

    -6

    -5.5

    -5

    -4.5

    -4

    -3.5

    z

    d P / d z

    J 2 0.05

    J 2 0.07

    J 2 0.09

    J 2 0.11

    0 0.5 1 1.5 -

    3

    0

    -10

    0

    10

    3

    0

    30

    40

    z

    d P / d z

    J 4 0.05

    J 4 0.07

    J 4 0.09

    J 4 0.11

    Fig. 13 . Pressure gradient versusz for sinusoidal wavefor different values of amplitude ratio

    Fig. 14 . Pressure gradient versusz for square wave for different values of amplitude ratio

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    34/63

    0 0 .5

    6 6

    .5

    -7

    0

    -6

    0

    0

    10

    20

    30

    40

    z

    d P / d

    z

    J = 0 .05

    J = 0 .07

    J = 0 .09

    J = 0 .11

    0 0 .5 1 1 .5 2

    4

    6

    8

    10

    12

    14

    16

    18

    z

    d P / d z

    J = 0 .05

    J = 0 .07

    J = 0 .09

    J = 0 .11

    Fig. 15 . Pressure gradient versusz for trape z oidal wavefor different values of

    Fig. 16. Pressure gradient versusz for triangular wavefor different values of amplitude ratio

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    35/63

    0 0 .5 1 1 .5 -20

    -10

    0

    10

    20

    30

    40

    z

    d P / d z

    J = 0 .05

    J = 0 .07

    J = 0 .09

    J = 0 .11

    Fig. 17. Pressure gradient versusz for multi sinusoidal wavefor different values of amplitude ratio

    Fig. 18. S treamlines for sinusoidal wave

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    36/63

    Fig. 2 0. S treamlines for trape z oidal wave

    Fig. 19. S treamlines for square wave

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    37/63

    Fig. 2 1. S treamlines for

    triangular wave

    Fig. 22 . S treamlines for multi sinusoidalwave

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    38/63

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    39/63

    Peristaltic flow of a non-Newtonian fluidwith variable viscosity in an endoscope

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    40/63

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    41/63

    T r z

    wr 9 r 1 8 18 2 1! d d b ! c2 2d 3b wr

    2

    1 8 12

    1! d d b !c2 2d 3b

    wr

    2 ,

    T rr 8 2 9 r wr

    21 d b ! 8 1 w

    r 1 d b T r z ,

    T zz 8 2 9 r wr

    2

    !1 d b ! 8 1 wr

    !1 d b T r z ,

    T 55 8 2 9 r wr

    2b! 8 1 w

    r bT r z .

    where

    4U nder the assumption of long wave length approximation andlow Reynolds number above equations take the form

    ,0!xxr p

    p z

    1r r

    9 r r wr

    1r r

    ,, 1 9 r wr

    3

    , 2 , 2 9 r w

    r

    5

    5

    6

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    42/63

    , 1 ! d d b ! c 2 d 3 b , , 1 8 1 8 2 ! 8 1 , , 2 !8 13 8 2 .where

    C orresponding boundary conditions in dimensionless form are

    w 1 , at r r 1 ,

    w 1, at r r 2 1 F sin2 z.

    7

    8

    S olution of the problem

    Perturbation solution

    For perturbation solution, we expand w, F, p by takingas perturbation parameter

    E

    w w 0 , w 1 , 2 w 2 O, 3 ,

    w P 0 , P 1 , 2 P 2 O, 3 ,

    0 , 1 , 2 2 , 3 ,

    9

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    43/63

    The perturbation results for small perturbation parameter satisfying

    boundary condition can be written as

    w !1 3 r 2 2-r 3 12 a 1 l r -r 12 a 2 112 P

    z , a 2 0 r 7

    a 2 1 r 6 a 22 r 5 a 23 r 4 a 2 4 r 3 a 25 r 2 a 2 6 r a 2 7 l r a 28r a 29r 2

    a 3 1 l r

    -r a 33

    , 2 a 64 r 19 a 65 r 1 a 66 r 17 a 67 r 16

    a 6 r 15 a 69 r 1 4 a 70 r 13 a 71 r 1 2 a 72 r 11 a 73 r 10 a 74 r 9 a 7 5 r 8

    a 76 r 7 a 77 r 6 a 7 r 5 a 79 r 4 a 8 0 r 3 a 8 1 r 2 a 8 2 r a 8 3 l r a 8 4

    r a 8 5

    2

    a 8 63

    a 8 74

    a 885

    a 8 96

    a 9 07

    a 9 18 a 63 .

    Velocity profile

    10A xial pressure gradient

    d P

    z

    2 F r 22

    ! r 12

    ! , a 9 3 ! , 2

    a 94

    a 9 2, 11

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    44/63

    The expression for pressure rise and frictional forces are givenby

    # p0

    1 dpd z

    d z ,

    F 0 :0

    1

    r 12 ! dpd z d z ,

    F i

    :0

    1

    r 22 ! dpd z

    d z,

    12

    13

    14

    is defined in equation ( 21)dpW here

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    45/63

    N umerical solution

    Equations ( 5 ) and (6 ) are also solved numerically by employingshooting method. C omparison of both the perturbation andnumerical solution have been presented by the following table

    r Numer ica lsol Perturb a tionsol Err or 0.1 -1 .00000 -1 .00000 0 .000000.2 -1 .04474 -1 .04455 0.000 180.3 -1 .06692 -1 .06655 0.000 340.4 -1 .08 045 -1 .0778 4 0.002420.5 -1 .08 498 -1 .08 21 4 0.002620.6 -1 .08 432 -1 .081 09 0.002980.7 -1 .078 45 -1 .07558 0.00266

    0.8 -1 .06907 -1 .0661 3 0.002750.9 -1 .0561 0 -1 .05309 0.0028 51 .0 -1 .03772 -1 .03668 0.00 1 001 .1 -1 .01 773 -1 .01 707 0.0000 61 .18 -1 .00000 -1 .00000 0 .00000

    Table 1. C omparison of solutions by various methods .

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    46/63

    0.2 0.4 0.6 0.8 1-1.09

    -1.08

    -1.07

    -1.06

    -1.05

    -1.04

    -1.03

    -1.02

    -1.01

    -1

    -0.99

    r

    w

    ( r , z

    )

    Numerical solution

    P er turbat ion so lu t ion

    C omparison of velocity profile

    Fig .a. C omparison of velocity profile for differentsolutions

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    47/63

    -5 - 4 - 3 - 2 -1 0 1 2 3- 15

    - 10

    - 5

    0

    5

    10

    15

    20

    25

    30

    35

    Q

    ( P

    E 8 0.0

    E 8 0.3

    E 8 0.6

    E 8 0.9

    -5 -4 -3 -2 -1 0 1 2 3-15

    -10

    -5

    0

    5

    10

    15

    20

    25

    Q

    ( P

    F 9 0.00

    F 9 0.15

    F 9 0.30

    F 9 0.45

    Fig. 2 . Pressure rise versusflow rate for differentvalues of viscosityparameter

    Fig. 1. Pressure rise versusflow rate for different

    values of perturbationparameter

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    48/63

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    49/63

    -5 -4 -3 -2 -1 0 1 2 3-15

    -10

    -5

    0

    5

    10

    15

    20

    25

    Q

    ( P

    B

    = 0.0 B

    = 0.2 B

    = 0.3B

    = 0.4

    -5 -4 -3 -2 -1 0 1 2 3-20

    -10

    0

    10

    20

    30

    40

    Q

    ( P

    I = 0.1

    I = 0.3

    I = 0.4

    I = 0.5

    Fig.6. Pressure rise versusflow rate for differentvalues radius ratio

    Fig. 5 . Pressure rise versusflow rate for different

    values of amplituderatio F

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    50/63

    -5 -4 -3 -2 -1 0 1 2 3-6

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    Q

    F ( 0 )

    E = 0 .0

    E = 0 .3

    E = 0 .6

    E = 0 .9

    - 5 - 4 - 3 -2 - 1 0 1 2 3- 6

    - 5

    - 4

    - 3

    - 2

    - 1

    0

    1

    2

    3

    Q

    F ( 0 )

    F = 0 .00

    F = 0 .15

    F = 0 .30

    F = 0 .4 5

    Fig.8. Frictional forces for inner tube versusflow rate for differentvalues of viscosityparameter

    Fig.7. Frictional forces for inner tube versus

    flow rate for differentvalues of perturbationparameter

    -

    ,

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    51/63

    -5 -4 -3 -2 -1 0 1 2 3-8

    -6

    -4

    -2

    0

    2

    4

    Q

    F ( 0 )

    P2 C 0.2

    P2 C 0.4

    P2 C 0.6

    P2 C 0.8

    - 5 -4 -3 -2 - 1 0 1 2 3-20

    -15

    -10

    -5

    0

    5

    Q

    F ( 0 )

    P1 D 1

    P1 D 2

    P1 D 3

    P1 D 4

    Fig. 10 . Frictional forces for inner tube versusflow rate for differentvalues of retardationtime

    Fig.9. Frictional forces for inner tube versus

    flow rate for differentvalues of relaxationtime 8 2

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    52/63

    -5 -4 -3 -2 -1 0 1 2 3-4

    -3

    -2

    -1

    0

    1

    2

    Q

    F ( 0 )

    J E 0.0

    J E 0.2

    J E 0.3

    J E 0.4

    -5 -4 -3 -2 -1 0 1 2 3-4

    -3

    -2

    -1

    0

    1

    2

    Q

    F ( 0 )

    F E 0.1F E 0.3F E 0.4F E 0.5

    Fig. 12 . Frictional forces for inner tube versusflow rate for differentvalues radius ratio

    Fig. 11 . Frictional forces for inner tube versus

    flow rate for differentvalues of amplituderatio

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    53/63

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    54/63

    -5 -4 -3 -2 -1 0 1 2 3-25

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    Q

    I

    P

    Q

    R

    P2 S 0.2

    P2 S 0.4

    P2 S 0.6

    P2 S 0.8

    -5 - 4 -3 - 2 -1 0 1 2 3- 70

    - 60

    - 50

    - 40

    - 30

    - 20

    - 10

    0

    10

    20

    Q

    T

    P

    Q

    R

    P1

    U 1

    P1 U 2

    P1 U 3

    P1 U 4

    Fig. 16. Frictional forces for outer tube versusflow rate for differentvalues of retardationtime

    Fig. 15 . Frictional forces for outer tube versus

    flow rate for differentvalues of relaxationtime

    8

    8 2

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    55/63

    -5 -V

    -3 -2 -1 0 1 2 3-20

    -15

    -10

    -5

    0

    5

    10

    W

    FX

    Y

    `

    J a 0.0

    J = 0.2

    J = 0.3

    J = 0 .V

    -5 -b

    -3 -2 -1 0 1 2 3-25

    -20

    -15

    -10

    -5

    0

    5

    10

    c

    Fd

    e

    f

    I = 0.1

    I = 0.3

    I = 0.b

    I = 0.5

    Fig. 18. Frictional forces for outer tube versusflow rate for differentvalues radius ratio

    Fig. 17. Frictional forces for outer tube versus

    flow rate for differentvalues of amplituderatio

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    56/63

    0 0.5 1 1.5 4

    6

    8

    10

    12

    14

    16

    18

    20

    22

    z

    d P / d z

    J = 0.20

    J = 0.25

    J = 0.30

    J = 0.35

    0 0.5 1 1.5 -140

    -120

    -100

    -80

    -60

    -40

    -20

    z

    d P / d z

    I = 0.20

    I = 0.25

    I = 0.30

    I = 0.35

    Fig. 2 0. Pressure gradientversus z for differentvalues radius ratio

    Fig. 19. Pressure gradient versusz for different values of

    amplitude ratio

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    57/63

    0 0 .5 1 1 .5 3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    z

    d P

    g d z

    Q h 0 .50 Q h 0 .55 Q h 0 .60 Q h 0 .65

    0 0 .5 1 1 .5 0

    20

    40

    60

    80

    100

    120

    140

    Q

    d p

    i

    d z

    P1 h 0 .0

    P1 h 0 .1

    P1

    h 0 .2

    P1 h 0 .3

    Fig. 2 1. Pressure gradient versusz for different values of

    flow rate Q

    Fig. 22 . Pressure gradient versusz for different values of retardation time

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    58/63

    0 0 .5 1 1 .5 0

    5

    10

    15

    20

    25

    Q

    d p

    p

    d z

    P 2 q 0 . 0

    P 2 q 0 . 1

    P 2 q 0 . 2

    P 2 q 0 . 3

    0 0 .5 1 1 .5 1.4

    1.6

    1.8

    2

    2 .2

    2 .4

    2 .6

    2 .8

    3

    3.2

    z

    d

    r

    s

    d

    z

    E t 0 .1

    E t 0 .2

    E t 0 .3

    E t 0 .4

    Fig. 24 . Pressure gradientversus z for differentvalues of perturbation

    parameter

    Fig. 23 . Pressure gradient versusz for different values of

    relaxation time 8

    ,

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    59/63

    -0 .2 -0 .1 0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7

    0 .2

    0 .4

    0 .6

    0 .8

    1

    1 .2 (e )

    -0 .2 -0 .1 0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7

    0 .2

    0 .4

    0 .6

    0 .8

    1

    1 .2 (f )

    Fig. 25 . S treamlines for differentvalues of perturbationparameter

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    60/63

    -0 .u -0 . v 0 0 . v 0 . u 0 . w 0 . x 0 . y 0 . 0 .

    0 .u

    0 .x

    0 .

    0 .

    v

    v .u i

    -0 .u -0 . v 0 0 . v 0 . u 0 . w 0 . x 0 . y 0 . 0 .

    0 .u

    0 .x

    0 .

    0 .

    v

    v .u j

    Fig. 2 6. S treamlines for different

    values of viscosityparameter -

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    61/63

    -0 . -0 . 0 0 . 0 . 0 . 0 . 0 . 0 . 0 .

    0 .

    0 .

    0 .

    0 .

    . k

    -0 . -0 . 0 0 . 0 . 0 . 0 . 0 . 0 . 0 .

    0 .

    0 .

    0 .

    0 .

    . l

    Fig. 2 7. S treamlines for different

    values of relaxationtime 2

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    62/63

    -0 . -0 . 0 0 . 0 . 0 . 0 . 0 . 0 . 0 .

    0 .

    0 .

    0 .

    0 .

    . g

    j

    -0 .k -0 . l 0 0 . l 0 . k 0 . m 0 . n 0 . o 0 . 0 .

    0 .k

    0 .n

    0 .

    0 .

    l

    l .k h

    j

    Fig. 2 8. S treamlines for differentvalues of retardation

    time

  • 8/6/2019 Dr. Sohail Presentation.(2010)

    63/63