ipcc ar4 - sorbonne-universite.frcrlmd/these/seminaire_ncar.pdf · ipcc ar4 ipcc ar4 clouds...

99

Upload: others

Post on 08-Feb-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Using water stable isotopi measurements tobetter evaluate the atmospheri and land surfaeomponents of limate modelsCamille RisiCIRES, Boulderwith ontribution of:S Bony, D NooneTES: J Worden, J Lee, D Brown,SCIAMACHY: C Frankenberg,MIPAS: G Stiller, M Kiefer, B FunkeACE-FTS: K Walker, P Bernath,FTIR: M Shneider, D Wunh, P Wennberg,V Sherlok, N Deutsher, D Gri�thin-situ: R Uemura, D YakirSWING2: C SturmMIBA: J. Ogée, T. Baria, L. Wingate, N. Raz-YaseefCDG seminar at NCAR, 5 April 2011

  • Unertainties in limate projetionsglobal

    warming

    IPCC AR4

    multi−model mean

    surf

    ace

    glob

    al w

    arm

    ing

    (°C

    )

    increaseCO2

    Introdution 2/27

  • Unertainties in limate projetionsglobal

    warming

    climatefeedbacks(clouds,

    water vapor)

    in climate modelsUncertainties

    IPCC AR4

    clouds

    relative humidity

    boundary layershallow convectiondeep convection

    multi−model mean

    surf

    ace

    glob

    al w

    arm

    ing

    (°C

    )

    increaseCO2

    Introdution 2/27

  • Unertainties in limate projetions

    precipitation change by 2099 (%)

    globalwarming

    regionalchanges in

    precipitation

    in climate modelsUncertainties

    IPCC AR4

    IPCC AR4

    clouds

    relative humidity

    boundary layershallow convectiondeep convection

    climatefeedbacks

    water vapor)(clouds,

    multi−model mean

    surf

    ace

    glob

    al w

    arm

    ing

    (°C

    )

    increaseCO2

    Introdution 2/27

  • Unertainties in limate projetions

    precipitation change by 2099 (%)

    globalwarming

    regionalchanges in

    precipitation

    in climate modelsUncertainties

    atmospherefeedbacks

    land−

    IPCC AR4

    IPCC AR4

    clouds

    relative humidity

    boundary layershallow convectiondeep convection

    land surfacehydrological

    changeschangeland use

    climatefeedbacks

    water vapor)(clouds,

    multi−model mean

    surf

    ace

    glob

    al w

    arm

    ing

    (°C

    )

    increaseCO2

    Introdution 2/27

  • Unertainties in limate projetions

    precipitation change by 2099 (%)

    globalwarming

    regionalchanges in

    precipitation

    in climate modelsUncertainties

    atmospherefeedbacks

    land−

    IPCC AR4

    IPCC AR4

    land surfacehydrology

    clouds

    relative humidity

    boundary layershallow convectiondeep convection

    land surfacehydrological

    changeschangeland use

    climatefeedbacks

    water vapor)(clouds,

    multi−model mean

    surf

    ace

    glob

    al w

    arm

    ing

    (°C

    )

    increaseCO2

    Introdution 2/27

  • Water isotopi omposition◮ H162 O, HDO, H182 O, H172 O, frationation

    HDO

    H16

    2O

    Introdution 3/27

  • Water isotopi omposition◮ H162 O, HDO, H182 O, H172 O, frationation◮ reords phase hanges

    Continental recyclingEvaporation

    ConvectionCondensation

    Precipitation

    HDO

    H16

    2O

    Introdution 3/27

  • Water isotopi omposition◮ H162 O, HDO, H182 O, H172 O, frationation◮ reords phase hanges

    Continental recyclingEvaporation

    ConvectionCondensation

    Precipitation

    HDO

    H16

    2O

    isotopiccomposition

    variablesmeteorological

    and variability

    present−dayclimate processes

    physicalfuture climate

    Introdution 3/27

  • Water isotopi omposition◮ H162 O, HDO, H182 O, H172 O, frationation◮ reords phase hanges

    Continental recyclingEvaporation

    ConvectionCondensation

    Precipitation

    HDO

    H16

    2O

    isotopiccomposition

    processevaluation

    variablesmeteorological

    and variability

    present−dayclimate

    combiningdata

    processesphysical

    future climate

    Introdution 3/27

  • Water isotopi omposition◮ H162 O, HDO, H182 O, H172 O, frationation◮ reords phase hanges

    Continental recyclingEvaporation

    ConvectionCondensation

    Precipitation

    HDO

    H16

    2O

    isotopiccomposition

    processevaluation

    strengthenprojections credibility

    variablesmeteorological

    and variability

    present−dayclimate

    combiningdata

    processesphysical

    future climate

    Introdution 3/27

  • General strategy

    controlling isotopicunderstand processes

    compositionIntrodution 4/27

  • General strategy

    controlling isotopicunderstand processes

    composition

    design observable,process−oriented

    isotopic diagnostics

    Introdution 4/27

  • General strategy

    controlling isotopicunderstand processes

    composition

    climate modelsapply to

    detect bias in models

    propose improvements

    understand reasons

    design observable,process−oriented

    isotopic diagnostics

    Introdution 4/27

  • General strategy

    controlling isotopicunderstand processes

    composition

    consequences onfuture changes

    quantify, prioritizeuncertainties

    climate modelsapply to

    detect bias in models

    propose improvements

    understand reasons

    design observable,process−oriented

    isotopic diagnostics

    Introdution 4/27

  • Outline

    precipitation change by 2099 (%)

    1)2)

    3)

    globalwarming

    regionalchanges in

    precipitation

    in climate modelsUncertainties

    atmospherefeedbacks

    land−

    IPCC AR4

    IPCC AR4

    land surfacehydrology

    clouds

    relative humidity

    boundary layershallow convectiondeep convection

    land surfacehydrological

    changeschangeland use

    climatefeedbacks

    water vapor)(clouds,

    multi−model mean

    surf

    ace

    glob

    al w

    arm

    ing

    (°C

    )

    increaseCO2

    Introdution 5/27

  • 1) Proesses ontrolling relative humidity◮ tropial/subtropial free tropospheri relative humidity (RH)impats:

    ◮ water vapor feedbak (Soden et al 2008)◮ louds feedbaks (Sherwood et al 2010)◮ deep onvetion (Derbyshire 2004)

    1) Proesses ontrolling humidity 6/27

  • 1) Proesses ontrolling relative humidity◮ tropial/subtropial free tropospheri relative humidity (RH)impats:

    ◮ water vapor feedbak (Soden et al 2008)◮ louds feedbaks (Sherwood et al 2010)◮ deep onvetion (Derbyshire 2004)

    ◮ but:◮ signi�ant dispersion in limate models (Sherwood et al 2010)◮ moist bias in the mid/upper troposphere (John and Soden 2005)

    1) Proesses ontrolling humidity 6/27

  • 1) Proesses ontrolling relative humidity◮ tropial/subtropial free tropospheri relative humidity (RH)impats:

    ◮ water vapor feedbak (Soden et al 2008)◮ louds feedbaks (Sherwood et al 2010)◮ deep onvetion (Derbyshire 2004)

    ◮ but:◮ signi�ant dispersion in limate models (Sherwood et al 2010)◮ moist bias in the mid/upper troposphere (John and Soden 2005)

    =⇒ need proess-based evaluation of RH in limate models1) Proesses ontrolling humidity 6/27

  • 1) Proesses ontrolling relative humidity◮ tropial/subtropial free tropospheri relative humidity (RH)impats:

    ◮ water vapor feedbak (Soden et al 2008)◮ louds feedbaks (Sherwood et al 2010)◮ deep onvetion (Derbyshire 2004)

    ◮ but:◮ signi�ant dispersion in limate models (Sherwood et al 2010)◮ moist bias in the mid/upper troposphere (John and Soden 2005)

    =⇒ need proess-based evaluation of RH in limate models=⇒ Goal: design observational diagnostis to evaluate proessesontrolling RH, detet and understand biases?1) Proesses ontrolling humidity 6/27

  • Sensitivity tests to RH proesses

    800

    600

    200

    100

    400

    1000

    P (hPa)

    30°N

    condensate detrainementin clouds

    large−scale

    rain evaporation

    boundary layermixing

    vertical mixing

    circulation

    dehydration

    lateral and

    Couhert et al 2010Folkins and Martin 2005Pierrehumbert 1998Sherwood et al 1996

    Wright et al 2009

    1) Proesses ontrolling humidity 7/27

  • Sensitivity tests to RH proesses

    800

    600

    200

    100

    400

    1000

    P (hPa)

    30°N

    condensate detrainement

    LMDZ−iso (Risi et al 2010a):

    in clouds

    large−scale

    rain evaporation

    boundary layermixing

    vertical mixing

    circulation

    dehydration

    lateral and

    ontrol: AR4 version (19 levels)

    AIRS datarelative humidity (%)

    pression(hPa)

    3020 40 50 60 70 801000

    100300200400500600700800900Couhert et al 2010Folkins and Martin 2005

    Pierrehumbert 1998Sherwood et al 1996Wright et al 2009

    1) Proesses ontrolling humidity 7/27

  • Sensitivity tests to RH proesses

    800

    600

    200

    100

    400

    1000

    P (hPa)

    30°N

    condensate detrainement

    LMDZ−iso (Risi et al 2010a):

    in clouds

    large−scale

    rain evaporation

    boundary layermixing

    vertical mixing

    circulation

    dehydration

    3 reasonsfor a

    moist bias

    lateral and

    ontrol: AR4 version (19 levels)

    AIRS datarelative humidity (%)

    pression(hPa)

    3020 40 50 60 70 801000

    100300200400500600700800900Couhert et al 2010Folkins and Martin 2005

    Pierrehumbert 1998Sherwood et al 1996Wright et al 2009

    1) Proesses ontrolling humidity 7/27

  • Sensitivity tests to RH proesses

    800

    600

    200

    100

    400

    1000

    P (hPa)

    30°N

    condensate detrainement

    LMDZ−iso (Risi et al 2010a):

    in clouds

    large−scale

    rain evaporation

    boundary layermixing

    vertical mixing

    circulation

    dehydration

    3 reasonsfor a

    moist bias

    lateral and

    ontrol: AR4 version (19 levels)di�usive vertial advetion

    AIRS datarelative humidity (%)

    pression(hPa)

    3020 40 50 60 70 801000

    100300200400500600700800900Couhert et al 2010Folkins and Martin 2005

    Pierrehumbert 1998Sherwood et al 1996Wright et al 2009

    1) Proesses ontrolling humidity 7/27

  • Sensitivity tests to RH proesses

    800

    600

    200

    100

    400

    1000

    P (hPa)

    30°N

    condensate detrainement

    LMDZ−iso (Risi et al 2010a):

    in clouds

    large−scale

    rain evaporation

    boundary layermixing

    vertical mixing

    circulation

    dehydration

    3 reasonsfor a

    moist bias

    lateral and

    ontrol: AR4 version (19 levels)di�usive vertial advetionσq/10

    AIRS datarelative humidity (%)

    pression(hPa)

    3020 40 50 60 70 801000

    100300200400500600700800900Couhert et al 2010Folkins and Martin 2005

    Pierrehumbert 1998Sherwood et al 1996Wright et al 2009

    1) Proesses ontrolling humidity 7/27

  • Sensitivity tests to RH proesses

    800

    600

    200

    100

    400

    1000

    P (hPa)

    30°N

    condensate detrainement

    LMDZ−iso (Risi et al 2010):

    in clouds

    large−scale

    rain evaporation

    boundary layermixing

    vertical mixing

    circulation

    dehydration

    3 reasonsfor a

    moist bias

    lateral and

    AIRS datarelative humidity (%)

    pression(hPa)

    3020 40 50 60 70 801000

    100300200400500600700800900

    ontrol: AR4 version (19 levels)di�usive vertial advetionσq/10

    ǫp/2

    Couhert et al 2010Folkins and Martin 2005Pierrehumbert 1998Sherwood et al 1996

    Wright et al 2009

    1) Proesses ontrolling humidity 7/27

  • Isotopi measurements200

    100

    0°1000

    30°N

    P (hPa)

    400

    600

    800

    1) Proesses ontrolling humidity 8/27

  • Isotopi measurementssatellites

    (Steinwagner et al 2010)(Nassar et al 2007)

    MIPASACE−FTS

    200

    100

    0°1000

    30°N

    P (hPa)

    400

    600

    800

    1) Proesses ontrolling humidity 8/27

  • Isotopi measurements(Worden et al 2007)TES

    satellites

    (Steinwagner et al 2010)(Nassar et al 2007)

    MIPASACE−FTS

    200

    100

    0°1000

    30°N

    P (hPa)

    400

    600

    800

    1) Proesses ontrolling humidity 8/27

  • Isotopi measurements(Worden et al 2007)TES

    satellites

    total column:(Frankenberg et al 2009)

    SCIAMACHY

    (Steinwagner et al 2010)(Nassar et al 2007)

    MIPASACE−FTS

    200

    100

    0°1000

    30°N

    P (hPa)

    400

    600

    800

    1) Proesses ontrolling humidity 8/27

  • Isotopi measurements(Worden et al 2007)TES

    total column:(Frankenberg et al 2009)

    SCIAMACHY

    satellites

    ground−basedFTIR

    total column(5 TCCON/NDACC sites:

    2 US, 2 Australia,1 New−Zealand)

    Schneider et al 2009)

    profile(Canaries islands:

    (Steinwagner et al 2010)(Nassar et al 2007)

    MIPASACE−FTS

    200

    100

    0°1000

    30°N

    P (hPa)

    400

    600

    800

    1) Proesses ontrolling humidity 8/27

  • Isotopi measurements(Worden et al 2007)TES

    total column:(Frankenberg et al 2009)

    SCIAMACHY

    satellites

    ground−basedFTIR

    total column(5 TCCON/NDACC sites:

    2 US, 2 Australia,1 New−Zealand)

    Schneider et al 2009)

    profile(Canaries islands:in situ

    (GNIP−vapor,Angert et al 2007, Uemura et al 2007)

    (Steinwagner et al 2010)(Nassar et al 2007)

    MIPASACE−FTS

    200

    100

    0°1000

    30°N

    P (hPa)

    400

    600

    800

    1) Proesses ontrolling humidity 8/27

  • Isotopi measurements(Worden et al 2007)TES

    total column:(Frankenberg et al 2009)

    SCIAMACHY

    satellites

    ground−basedFTIR

    total column(5 TCCON/NDACC sites:

    2 US, 2 Australia,1 New−Zealand)

    Schneider et al 2009)

    profile(Canaries islands:in situ

    (GNIP−vapor,Angert et al 2007, Uemura et al 2007)

    (Steinwagner et al 2010)(Nassar et al 2007)

    MIPASACE−FTS

    200

    100

    0°1000

    30°N

    P (hPa)

    400

    600

    800

    ◮ model-data omparison: olloation; simulations nudged byECMWF; averaging kernels; spatial/temporal variations1) Proesses ontrolling humidity 8/27

  • Zonal anual mean

    data

    −180

    −160

    −140

    −120

    −100

    −80

    Eq 30N60S 60N30S

    −150

    −200

    −250

    −100

    Eq 30N60S 60N30S

    −60

    Eq 30N60S 60N30S

    −250

    −200

    −150

    Eq 30N60S 60N30S−800

    −300

    −200

    −400

    −500−600

    −700

    Eq 30N60S 60N30S−600

    −500

    −400

    −300

    LMDZ "ǫp/2"LMDZ "σq /10"LMDZ "di�usive advetion"LMDZ ontrol

    δD

    (h)δD

    (h)

    200hPa, MIPAS

    300hPa, ACEδD

    (h) SCIAMACHY andground-based FTIRTotal olumn,

    δD

    (h) Surfae, in-situ

    600 hPa, TESδD(h

    )1) Proesses ontrolling humidity 9/27

  • Zonal Seasonal variations (JJA-DJF)

    data

    Eq 30N60S 60N30S

    0

    50

    100

    −100

    −50

    Eq 30N60S 60N30S

    100

    50

    0

    Eq 30N60S 60N30S−20

    0

    20

    40

    60

    80

    Eq 30N60S 60N30S

    −100

    0

    100

    200

    Eq 30N60S 60N30S

    0

    100

    −100

    −50

    50

    150

    −150

    LMDZ "ǫp/2"LMDZ "σq /10"LMDZ "di�usive advetion"LMDZ ontrol

    200hPa, MIPAS∆

    δD

    (h)

    ∆δD

    (h)300hPa, ACEand ground-based FTIR

    ∆δD

    (h)ground-based FTIRSCIAMACHY andTotal olumn

    ∆δD

    (h)

    ∆δD

    (h)

    600 hPa, TESand ground-based FTIR

    Surfae, in-situ

    1) Proesses ontrolling humidity 10/27

  • What auses the moist biases in GCMs?

    −60

    −40

    −20

    0

    20

    40

    60

    20 25 30 35 40 45 50 55

    Exessive ondensatedetrainementInsu�ientin-situ ondensationvertial advetionExessively di�usiveControl

    400 hPa, 15◦N-30◦N mean

    relative humidity (%)JJA-DJF∆δD(h)

    Sensitivity tests:with LMDZ: ACE/AIRSdata

    1) Proesses ontrolling humidity 11/27

  • What auses the moist biases in GCMs?

    −60

    −40

    −20

    0

    20

    40

    60

    20 25 30 35 40 45 50 55

    Exessive ondensatedetrainementInsu�ientin-situ ondensationvertial advetionExessively di�usiveControl

    400 hPa, 15◦N-30◦N mean

    relative humidity (%)JJA-DJF∆δD(h)

    Sensitivity tests:with LMDZ: ACE/AIRSdata

    ◮ robustness? additional tests, theoretial understanding1) Proesses ontrolling humidity 11/27

  • What auses the moist biases in GCMs?

    −60

    −40

    −20

    0

    20

    40

    60

    20 25 30 35 40 45 50 55

    Exessive ondensatedetrainementInsu�ientin-situ ondensationvertial advetionExessively di�usiveControl

    ECHAMMIROCHadAM GSMGISSSWING2 models:CAM2

    400 hPa, 15◦N-30◦N mean

    relative humidity (%)JJA-DJF∆δD(h)

    Sensitivity tests:with LMDZ: ACE/AIRSdata

    ◮ robustness? additional tests, theoretial understanding◮ frequent reason for moist bias=exessively di�usive advetion1) Proesses ontrolling humidity 11/27

  • What auses the moist biases in GCMs?

    −60

    −40

    −20

    0

    20

    40

    60

    20 25 30 35 40 45 50 55

    Exessive ondensatedetrainementInsu�ientin-situ ondensationvertial advetionExessively di�usiveControl

    ECHAMMIROCHadAM GSMGISSSWING2 models:CAM2vertial resolution

    400 hPa, 15◦N-30◦N mean

    relative humidity (%)JJA-DJF∆δD(h)

    Sensitivity tests:with LMDZ: ACE/AIRSdata

    ◮ robustness? additional tests, theoretial understanding◮ frequent reason for moist bias=exessively di�usive advetion1) Proesses ontrolling humidity 11/27

  • What impat on humidity projetions?

    −2.5

    −2

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    25 30 35 40 45 50 55 60 65 70 75

    AIRS

    RH(%/K)

    present-day RH (%/K)

    tropial average, 200hPa, 2xCO2

    ontrol simulationLMDZ testsdi�usive advetionσq /10ǫp/2CMIP3 models

    1) Proesses ontrolling humidity 12/27

  • What impat on humidity projetions?

    −2.5

    −2

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    25 30 35 40 45 50 55 60 65 70 75

    AIRS

    RH(%/K)

    present-day RH (%/K)

    tropial average, 200hPa, 2xCO2

    ontrol simulationLMDZ testsdi�usive advetionσq /10ǫp/2CMIP3 models

    ◮ How a moist bias a�et humidity hange projetions dependson the reason for the bias1) Proesses ontrolling humidity 12/27

  • What impat on humidity projetions?

    −2.5

    −2

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    25 30 35 40 45 50 55 60 65 70 75

    AIRS

    RH(%/K)

    present-day RH (%/K)

    tropial average, 200hPa, 2xCO2

    ontrol simulationLMDZ testsdi�usive advetionσq /10ǫp/2CMIP3 models

    ◮ How a moist bias a�et humidity hange projetions dependson the reason for the bias1) Proesses ontrolling humidity 12/27

  • Summary on relative humidity◮ Water vapor isotope measurements as observationaldiagnostis to understand the reasons for a moist bias inlimate models

    1) Proesses ontrolling humidity 13/27

  • Summary on relative humidity◮ Water vapor isotope measurements as observationaldiagnostis to understand the reasons for a moist bias inlimate models◮ Exessive vertial di�usion during water vaportransport/insu�ient vertial resolution is a widespread auseof moist bias in limate models

    1) Proesses ontrolling humidity 13/27

  • Summary on relative humidity◮ Water vapor isotope measurements as observationaldiagnostis to understand the reasons for a moist bias inlimate models◮ Exessive vertial di�usion during water vaportransport/insu�ient vertial resolution is a widespread auseof moist bias in limate models◮ Understanding this reason is all the more important ashumidity hange projetions depends on the reason for themoist bias

    1) Proesses ontrolling humidity 13/27

  • Summary on relative humidity◮ Water vapor isotope measurements as observationaldiagnostis to understand the reasons for a moist bias inlimate models◮ Exessive vertial di�usion during water vaportransport/insu�ient vertial resolution is a widespread auseof moist bias in limate models◮ Understanding this reason is all the more important ashumidity hange projetions depends on the reason for themoist bias◮ Consequenes on limate hange? -> study feedbaks usingradiative kernel deomposition (Soden et al 2008)1) Proesses ontrolling humidity 13/27

  • 2) Convetive proesses◮ mirophysial proesses? (Emanuel and Pierrehumbert 1996)

    reevaporationdowndraftsunsaturated

    detrainementonvetive onvetiveasent subsideneradiative100hPa

    2) Convetive proesses 14/27

  • Proesses along squall lines◮ rain sampled every 5 mins in Niamey during AMMA ampaign

    −8−7.5

    −7−6.5

    0 50 100 150 200 250

    15km

    200km

    time (minutes after the start of the rain)

    11 August 2006(Risi et al 2010b QJRMS)

    convective zone stratiform zone

    convectiveascent

    front−to−rear flowmeso−scale

    ascent

    meso−scale descent

    rear−to−front flow

    cold poolfrontgust

    δ18O (h)2) Convetive proesses 15/27

  • Proesses along squall lines◮ rain sampled every 5 mins in Niamey during AMMA ampaign◮ interpretation with 2D model of transport/mirophysis

    −8−7.5

    −7−6.5

    0 50 100 150 200 250

    15km

    200km

    time (minutes after the start of the rain)

    11 August 2006(Risi et al 2010b QJRMS)

    convective zone stratiform zone

    convectiveascent

    front−to−rear flowmeso−scale

    ascent

    meso−scale descent

    rear−to−front flow

    cold poolfrontgust

    δ18O (h)2) Convetive proesses 15/27

  • Proesses along squall lines◮ rain sampled every 5 mins in Niamey during AMMA ampaign◮ interpretation with 2D model of transport/mirophysis

    −8−7.5

    −7−6.5

    0 50 100 150 200 250

    15km

    200km

    time (minutes after the start of the rain)

    11 August 2006(Risi et al 2010b QJRMS)

    convective zone stratiform zone

    rainenrichmentthroughreevaporation

    convectiveascent

    front−to−rear flowmeso−scale

    ascent

    meso−scale descent

    rear−to−front flow

    cold poolfrontgust

    δ18O (h)2) Convetive proesses 15/27

  • Proesses along squall lines◮ rain sampled every 5 mins in Niamey during AMMA ampaign◮ interpretation with 2D model of transport/mirophysis

    −8−7.5

    −7−6.5

    0 50 100 150 200 250

    15km

    200km

    time (minutes after the start of the rain)

    11 August 2006(Risi et al 2010b QJRMS)

    convective zone stratiform zone

    subsidenceof dry anddepleted airrainenrichmentthroughreevaporation

    convectiveascent

    front−to−rear flowmeso−scale

    ascent

    meso−scale descent

    rear−to−front flow

    cold poolfrontgust

    δ18O (h)2) Convetive proesses 15/27

  • Convetive/large-sale �uxes

    ompensatingsubsidene large-saleasent

    reevaporationdetrainementonvetive

    large-saleondensation

    downdraftsunsaturated

    onvetive sheme large-sale

    onvetiveasent100hPa

    2) Convetive proesses 16/27

  • Convetive/large-sale �uxes

    more di�usive vertial advetionstronger ondensate detrainementless large-sale ondensationless large-sale preipitation

    ontrol: AR4

    ompensatingsubsidene large-saleasentvertial di�usionreevaporationdetrainementonvetive

    large-saleondensation

    downdraftsunsaturated

    onvetive sheme large-sale

    onvetiveasent

    Sensitivity tests with LMDZ:

    100hPa

    2) Convetive proesses 16/27

  • New TES pro�les

    -90 -60 -30 0 30 60800700600500400300200100

    90010000 1 2 3 4800700600500400300200100

    9001000∆q (g/kg) ∆δD (h)

    pressure(hPa)

    Amazon, seasonal yle (DJF-JJA)

    TES2) Convetive proesses 17/27

  • New TES pro�les

    -90 -60 -30 0 30 60800700600500400300200100

    90010000 1 2 3 4800700600500400300200100

    9001000∆q (g/kg) ∆δD (h)

    pressure(hPa)

    Amazon, seasonal yle (DJF-JJA)

    TESontrol2) Convetive proesses 17/27

  • New TES pro�les

    -90 -60 -30 0 30 60800700600500400300200100

    90010000 1 2 3 4800700600500400300200100

    9001000

    ontrolvertial advetion more di�usivestronger ondensate detrainmentless in-situ odnensationless in-situ preipitation

    ∆q (g/kg) ∆δD (h)pressure(hPa)

    Amazon, seasonal yle (DJF-JJA)

    TES2) Convetive proesses 17/27

  • Convetive ontribution to water budgetPLSPconv

    enrihmentby ondensateevaporation by ondensatedepletionloss100hPa

    subsidene vertial di�usionasent,

    ondensationonvetivedetrainement

    environmental large-salelarge-sale

    2) Convetive proesses 18/27

  • Convetive ontribution to water budget

    −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

    1.2

    1.6

    2

    1.8

    1.4

    1

    −50

    −40

    −30

    −20

    −10

    0

    10

    20 Amazon

    ∆PLS/∆Ptot DJF-JJA∆

    δD

    DJF-JJA(h)

    ∆q

    DJF-JJA(g/kg)

    600hPaTES data

    PLSPconv

    enrihmentby ondensateevaporation by ondensatedepletionloss

    ontrolvertial advetion more di�usivestronger ondensate detrainmentless large-sale ondensationless large-sale preipitation

    100hPa

    subsidene vertial di�usionasent,

    ondensationonvetivedetrainement

    environmental large-salelarge-sale

    2) Convetive proesses 18/27

  • Convetive ontribution to water budget

    −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

    1.2

    1.6

    2

    1.8

    1.4

    1

    −50

    −40

    −30

    −20

    −10

    0

    10

    20 Amazon

    ∆PLS/∆Ptot DJF-JJA∆

    δD

    DJF-JJA(h)

    ∆q

    DJF-JJA(g/kg)

    600hPaTES data

    PLSPconv

    enrihmentby ondensateevaporation by ondensatedepletionloss

    ontrolvertial advetion more di�usivestronger ondensate detrainmentless large-sale ondensationless large-sale preipitation

    100hPa

    subsidene vertial di�usionasent,

    ondensationonvetivedetrainement

    environmental large-salelarge-sale

    ◮ PLS/Ptot ill-de�ned quantity, but in�uenes loudiness,intra-seas. variability, hemial traor transport2) Convetive proesses 18/27

  • Upper troposphere detrainment120W180W 060W 60E 120E 180E

    30S

    Eq

    30N

    60N

    60S

    -700 -640 -600 -560 -520 -480 -440 -400 -360-320δD (h)

    MIPAS data at 200hPa, annual

    2) Convetive proesses 19/27

  • Upper troposphere detrainment120W180W 060W 60E 120E 180E

    30S

    Eq

    30N

    60N

    60S

    120W180W 060W 60E 120E 180E

    30S

    Eq

    30N

    60N

    60S-700 -640 -600 -560 -520 -480 -440 -400 -360-320

    LMDZ ontrol

    δD (h)

    MIPAS data at 200hPa, annual

    2) Convetive proesses 19/27

  • Upper troposphere detrainment120W180W 060W 60E 120E 180E

    30S

    Eq

    30N

    60N

    60S

    120W180W 060W 60E 120E 180E

    30S

    Eq

    30N

    60N

    60S

    50

    0 0.01 0.02 0.03

    0.011

    0.012

    0.013

    0.014

    0.015

    0.04

    −5

    0

    5

    10

    15

    20

    −10

    -700 -640 -600 -560 -520 -480 -440 -400 -360-320

    LMDZ ontrol

    ontrolvertial advetion more di�usivestronger ondensate detrainmentless large-sale ondensationless large-sale preipitation

    Di�erene 15◦S-15◦N minus

    δD (h)

    MIPAS data at 200hPa, annual

    ∆δD

    (h)30◦S-30◦N at 200hPa

    ∆q

    (g/kg)

    moistening by detrainement(g/kg/day)

    ACE: 30hMIPAS: 50h

    2) Convetive proesses 19/27

  • Upper troposphere detrainment120W180W 060W 60E 120E 180E

    30S

    Eq

    30N

    60N

    60S

    120W180W 060W 60E 120E 180E

    30S

    Eq

    30N

    60N

    60S

    50

    0 0.01 0.02 0.03

    0.011

    0.012

    0.013

    0.014

    0.015

    0.04

    −5

    0

    5

    10

    15

    20

    −10

    -700 -640 -600 -560 -520 -480 -440 -400 -360-320

    LMDZ ontrol CAMMIROCHadAMGISSECHAMGSM

    ontrolvertial advetion more di�usivestronger ondensate detrainmentless large-sale ondensationless large-sale preipitation

    Di�erene 15◦S-15◦N minus

    δD (h)

    MIPAS data at 200hPa, annual

    ∆δD

    (h)30◦S-30◦N at 200hPa

    ∆q

    (g/kg)

    moistening by detrainement(g/kg/day)

    ACE: 30hMIPAS: 50h

    2) Convetive proesses 19/27

  • Summary on onvetion1000

    800

    600

    400

    200100

    P (hPa)

    environmentalasentunsaturatedreevaporation

    large-saleasentin-situondensation

    downdraftsonvetivesubsidenemoistening byonvetive detrainement

    onvetion vs large-saleunsaturated downdraftsrain reevaporation

    2) Convetive proesses 20/27

  • Summary on onvetion1000

    800

    600

    400

    200100

    P (hPa)

    environmentalasentunsaturatedreevaporation

    large-saleasentin-situondensation

    downdraftsonvetivesubsidenemoistening byonvetive detrainement

    onvetion vs large-saleunsaturated downdraftsrain reevaporation

    ◮ Perspetives:◮ high frequeny data: e.g. ground-based remote-sensing

    2) Convetive proesses 20/27

  • Summary on onvetion1000

    800

    600

    400

    200100

    P (hPa)

    environmentalasentunsaturatedreevaporation

    large-saleasentin-situondensation

    downdraftsonvetivesubsidenemoistening byonvetive detrainement

    onvetion vs large-saleunsaturated downdraftsrain reevaporation

    ◮ Perspetives:◮ high frequeny data: e.g. ground-based remote-sensing◮ A-train synergy: TES+CALIPSO/Cloudsat2) Convetive proesses 20/27

  • Summary on onvetion1000

    800

    600

    400

    200100

    P (hPa)

    environmentalasentunsaturatedreevaporation

    large-saleasentin-situondensation

    downdraftsonvetivesubsidenemoistening byonvetive detrainement

    onvetion vs large-saleboundary layer?unsaturated downdraftsrain reevaporation◮ Perspetives:

    ◮ high frequeny data: e.g. ground-based remote-sensing◮ A-train synergy: TES+CALIPSO/Cloudsat◮ New physis of LMDZ for AR5 (Rio et al 2009)2) Convetive proesses 20/27

  • 3) Land atmosphere feedbaks

    precipitation

    atmospheric properties

    soil moisture

    surface fluxes− evaporation− transpiration− sensible heat flux

    − moisture− boundary layer

    3) Land-atmosphere feedbaks 21/27

  • 3) Land atmosphere feedbaks◮ model dispersion (Koster et al, Guo et al 2006)

    uncertaintiesin atmospheric

    component

    uncertaintiesin land surface

    component

    precipitation

    atmospheric properties

    soil moisture

    surface fluxes− evaporation− transpiration− sensible heat flux

    − moisture− boundary layer

    3) Land-atmosphere feedbaks 21/27

  • 3) Land atmosphere feedbaks◮ model dispersion (Koster et al, Guo et al 2006)

    uncertaintiesin atmospheric

    component

    uncertaintiesin land surface

    component

    precipitation

    atmospheric properties

    soil moisture

    surface fluxes− evaporation− transpiration− sensible heat flux

    − moisture− boundary layer

    continentalrecycling

    partitionning

    3) Land-atmosphere feedbaks 21/27

  • Partitionning surfae �uxes◮ ORCHIDEE-iso (Risi et al in rev)

    3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2−0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    controlstomatal resistance /5no drainage, only surface runoffsoil capacity /2less vegetation coverroot extraction depth /4

    Le Bray (France)

    observations

    D

    E/I (%)δ

    18O

    soil−

    δ18O

    p

    (h)Rs

    ET Pmoisturesoil I

    3) Land-atmosphere feedbaks 22/27

  • Partitionning surfae �uxes◮ ORCHIDEE-iso (Risi et al in rev)

    3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2−0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    controlstomatal resistance /5no drainage, only surface runoffsoil capacity /2less vegetation coverroot extraction depth /4

    Le Bray (France)

    observations

    D

    E/I (%)δ

    18O

    soil−

    δ18O

    p

    (h)Rs

    ET Pmoisturesoil I

    3) Land-atmosphere feedbaks 22/27

  • Isotopi signature of evaporative origin

    5 10 15 20 25 30 4050 60 70 80 90

    120W 60W 0 60E 120E

    60N

    30N

    Eq

    30S

    60S

    Water tagging:ET P

    evapo-transpiration (rcon)% vapor from ontinental3) Land-atmosphere feedbaks 23/27

  • Isotopi signature of evaporative origin

    −30 −24 −18 −12 −6 0

    120

    −30

    0

    60

    90

    30

    5 10 15 20 25 30 4050 60 70 80 90

    120W 60W 0 60E 120E

    60N

    30N

    Eq

    30S

    60S

    Water tagging:

    d-exess(h)

    δ18

    O (h)

    monthly, all tropial land pointsPDF of vapor ompositionbare soilevaporationtranspirationtotal vaporoeani vapor

    ET P

    evapo-transpiration (rcon)% vapor from ontinental3) Land-atmosphere feedbaks 23/27

  • Water isotopes and ontinental reylingKoster et al 2006

    Land-atmosphere feedbaks"hot spots"

    derease in preip variane when soil moisture is presribed

    3) Land-atmosphere feedbaks 24/27

  • Water isotopes and ontinental reyling

    120E60E060W120W

    30S

    Eq

    30N

    60N

    60S−0.8

    −0.6

    −0.4

    0.2−0.2

    0.4

    0.6

    0.8

    Koster et al 2006orrelation δ18O - rcon, intra-seasonal sale, annual meanLand-atmosphere feedbaks"hot spots"

    derease in preip variane when soil moisture is presribed

    3) Land-atmosphere feedbaks 24/27

  • Isotopi signature of land-atmosphere feedbaksET րsoil moisture րmoistureonvergene ր P ր

    P րstrong preipitation omposite minus seasonal average:

    3) Land-atmosphere feedbaks 25/27

  • Isotopi signature of land-atmosphere feedbaks

    60W120W 0 60E 120E

    30S

    Eq

    30N

    60N

    −10 −5 −2 2 5 10

    ET րsoil moisture րmoistureonvergene ր P րP ր

    strong preipitation omposite minus seasonal average:∆rcon (%) JJA

    3) Land-atmosphere feedbaks 25/27

  • Isotopi signature of land-atmosphere feedbaks

    60W120W 0 60E 120E

    30S

    Eq

    30N

    60N

    −10 −5 −2 2 5 10

    −20 −10 0 10

    −10

    0

    10

    20

    ET րsoil moisture րmoistureonvergene ր P րP ր

    strong preipitation omposite minus seasonal average:∆rcon (%) JJA

    ∆δ

    18O

    v

    (h)

    positiveontrol bylarge-saleonvergene feedbakland-atmosphere

    DJFJJA

    ∆rcon (%)3) Land-atmosphere feedbaks 25/27

  • Summary on land-atmosphere feedbaks◮ work in progress:

    ◮ look at data (in-situ, GOSAT),◮ sensitivity tests: physis-disriminating diagnostis?

    3) Land-atmosphere feedbaks 26/27

  • Summary on land-atmosphere feedbaks◮ work in progress:

    ◮ look at data (in-situ, GOSAT),◮ sensitivity tests: physis-disriminating diagnostis?

    ◮ re�ne isotopi diagnostis◮ minimize sensitivity to unrelated atmospheri proesses◮ robustness of the diagnostis? ⇒ model inter-omparisons:ORCHIDEE, isoLSM, soon CLM and ORCHIDEE-multi-layer

    3) Land-atmosphere feedbaks 26/27

  • Summary on land-atmosphere feedbaks◮ work in progress:

    ◮ look at data (in-situ, GOSAT),◮ sensitivity tests: physis-disriminating diagnostis?

    ◮ re�ne isotopi diagnostis◮ minimize sensitivity to unrelated atmospheri proesses◮ robustness of the diagnostis? ⇒ model inter-omparisons:ORCHIDEE, isoLSM, soon CLM and ORCHIDEE-multi-layer

    ◮ relevane for hydrologial projetions◮ Global warming, land use hange (deforestation, irrigation)

    3) Land-atmosphere feedbaks 26/27

  • Conlusion200

    400

    800

    600

    100P (hPa)

    unsaturateddowndraftsreevaporationsurfaewaterbudget

    di�usiveadvetion

    ontinentalreyling

    detrainementonvetiveonvetionvs large-sale

    Conlusion 27/27

  • Conlusion200

    400

    800

    600

    100P (hPa)

    unsaturateddowndraftsreevaporationsurfaewaterbudget

    di�usiveadvetion

    ontinentalreyling

    detrainementonvetiveonvetionvs large-sale

    ◮ Ultimate goal: isotopi diagnostis to evaluate models andtheir projetions:Conlusion 27/27

  • Conlusion200

    400

    800

    600

    100P (hPa)

    unsaturateddowndraftsreevaporationsurfaewaterbudget

    di�usiveadvetion

    ontinentalreyling

    detrainementonvetiveonvetionvs large-sale

    ◮ Ultimate goal: isotopi diagnostis to evaluate models andtheir projetions:◮ new isotopi data

    Conlusion 27/27

  • Conlusion200

    400

    800

    600

    100P (hPa)

    unsaturateddowndraftsreevaporationsurfaewaterbudget

    di�usiveadvetion

    ontinentalreyling

    detrainementonvetiveonvetionvs large-sale

    ◮ Ultimate goal: isotopi diagnostis to evaluate models andtheir projetions:◮ new isotopi data◮ new model-data omparison methodologies

    Conlusion 27/27

  • Conlusion200

    400

    800

    600

    100P (hPa)

    unsaturateddowndraftsreevaporationsurfaewaterbudget

    di�usiveadvetion

    ontinentalreyling

    detrainementonvetiveonvetionvs large-sale

    ◮ Ultimate goal: isotopi diagnostis to evaluate models andtheir projetions:◮ new isotopi data◮ new model-data omparison methodologies◮ isotopi model inter-omparisonsConlusion 27/27

  • Conlusion200

    400

    800

    600

    100P (hPa)

    unsaturateddowndraftsreevaporationsurfaewaterbudget

    di�usiveadvetion

    ontinentalreyling

    detrainementonvetiveonvetionvs large-sale

    ◮ Ultimate goal: isotopi diagnostis to evaluate models andtheir projetions:◮ new isotopi data◮ new model-data omparison methodologies◮ isotopi model inter-omparisons◮ proess/feedbaks studies omparing models behavior forpresent limate and for projetionsConlusion 27/27

  • Supl material

    Conlusion 28/27

  • Evaluation against SCIAMACHY120W180W 060W 60E 120E 180E

    30S

    Eq

    30N

    30S

    Eq

    30N

    120W180W 060W 60E 120E 180E

    δD (h) total olumn-200 -180 -170 -160 -150 -140 -130 -120 -110 -100

    -80 -60 -40 -20 -10 10 20 40 60 80∆δD (h) total olumn JJA-DJF

    LMDZ ontrolSCIAMACHY data

    Risi et al in rev,bConlusion 29/27

  • Evaluation against TES30S

    Eq

    30N

    30S

    Eq

    30N

    120W180W 060W 60E 120E 180E120W180W 060W 60E 120E 180E

    −230 −220 −210 −200 −190 −180 −170 −160 −150

    120W180W 060W 60E 120E 180E

    30S

    Eq

    30N

    120W180W 060W 60E 120E 180E

    −80 −50 −30 −20 −10 10 20 30 50 80

    TES data LMDZ (-31h)

    LMDZTES data δD (h) 600hPa annual mean

    ∆δD (h) 600hPa JJA-DJF Risi et al in rev,bConlusion 30/27

  • Consequenes on projetions 150

    200

    250

    300

    350 0 50 100 150 200 250 25 30 35 40 45 50 55 60 65 70 75

    −2.5

    −2

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    AIRS Relative humidity (%)present-day RH (%/K)

    RH(%/K)

    Pressure(hPa)

    tropial average, 200hPa, 2xCO2

    σq /10ǫp/2

    ontrol simulationdi�usive advetion EverythingLMDZ tests preipitates:presentConlusion 31/27

  • Consequenes on projetions 150

    200

    250

    300

    350

    (Harmann and Larson 2002)

    fixed anviltemperature

    0 50 100 150 200 250 25 30 35 40 45 50 55 60 65 70 75−2.5

    −2

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    AIRS Relative humidity (%)present-day RH (%/K)

    RH(%/K)

    Pressure(hPa)

    tropial average, 200hPa, 2xCO2

    σq /10ǫp/2 present2xCO2ontrol simulationdi�usive advetion EverythingLMDZ tests preipitates:Conlusion 31/27

  • Consequenes on projetions 150

    200

    250

    300

    350

    (Harmann and Larson 2002)

    fixed anviltemperature

    0 50 100 150 200 250 25 30 35 40 45 50 55 60 65 70 75−2.5

    −2

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    AIRS Relative humidity (%)present-day RH (%/K)

    RH(%/K)

    Pressure(hPa)

    tropial average, 200hPa, 2xCO2

    σq /10ǫp/2 present2xCO2ontrol simulationdi�usive advetion EverythingLMDZ tests preipitates:

    Additionalupward transportpresentConlusion 31/27

  • Consequenes on projetions 150

    200

    250

    300

    350

    (Harmann and Larson 2002)

    fixed anviltemperature

    0 50 100 150 200 250

    less warmanomaly

    anomaly warm

    25 30 35 40 45 50 55 60 65 70 75−2.5

    −2

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    AIRS Relative humidity (%)present-day RH (%/K)

    RH(%/K)

    Pressure(hPa)

    tropial average, 200hPa, 2xCO2

    σq /10ǫp/2 present2xCO2 2xCO2presentontrol simulationdi�usive advetion EverythingLMDZ tests preipitates:

    Additionalupward transportConlusion 31/27

  • Consequenes on projetions 150

    200

    250

    300

    350

    (Harmann and Larson 2002)

    fixed anviltemperature

    0 50 100 150 200 250

    less warmanomaly

    anomaly warm

    25 30 35 40 45 50 55 60 65 70 75−2.5

    −2

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    AIRS Relative humidity (%)present-day RH (%/K)

    RH(%/K)

    Pressure(hPa)

    tropial average, 200hPa, 2xCO2

    σq /10ǫp/2 present2xCO2 2xCO2presentontrol simulationdi�usive advetion EverythingLMDZ tests preipitates:

    Additionalupward transportCMIP3 modelsConlusion 31/27

  • Estimating ontinental reyling 0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.2 0.4 0.6 0.8 1

    y=x

    Risi et al 2010d

    1 − rconrcon

    June-July 2006 in Niamey, daily

    dδvoce

    dxknown x estimat

    edreyling

    simulated reylingd ( ron1− ron) /dx = dδv/dx − dδvoe/dxδp − δvConlusion 32/27

  • Estimating ontinental reyling 0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.2 0.4 0.6 0.8 1

    y=x

    Risi et al 2010ddδvoce

    dxdependslinearly on preipitation

    1 − rconrcon

    June-July 2006 in Niamey, daily

    dδvoce

    dxknown x estimat

    edreyling

    simulated reylingd ( ron1− ron) /dx = dδv/dx − dδvoe/dxδp − δvConlusion 32/27

  • Estimating ontinental reyling 0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.2 0.4 0.6 0.8 1

    y=x

    Risi et al 2010ddδvoce

    dxdependslinearly on preipitation

    1 − rconrcon

    June-July 2006 in Niamey, daily

    dδvoce

    dxknown x estimat

    edreyling

    simulated reylingd ( ron1− ron) /dx = dδv/dx − dδvoe/dxδp − δv◮ Main limitation in using vapor isotopi measurements forontinental reyling: understanding atmospheri ontrolsConlusion 32/27

    Introduction1) Processes controlling humidity2) Convective processes 3) Land-atmosphere feedbacksConclusion