mit2_092f09_lec04

Upload: mokgok

Post on 04-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 MIT2_092F09_lec04

    1/6

    2.092/2.093FiniteElementAnalysisofSolids&FluidsI Fall 09Lecture4- ThePrincipleofVirtualWork

    Prof. K.J.Bathe MITOpenCourseWare

    Su =SurfaceonwhichdisplacementsareprescribedSf =SurfaceonwhichloadsareappliedSuSf =S ; SfSu =

    Giventhesystemgeometry(V, Su, Sf),loads(fB,fSf),andmaterial laws,wecalculate:Displacementsu,v,w (oru1, u2, u3)Strains,stresses

    We will perform a linear elastic analysis for solids. We want to obtain the equationKU =R. Recall ourtrussexample. There,wehadelementstiffness AE. Tocalculatethestiffnesses,wecouldproceedthisway:

    Li

    1

  • 8/13/2019 MIT2_092F09_lec04

    2/6

    Lecture4 ThePrincipleofVirtualWork 2.092/2.093,Fall09uEverydifferentialelementshouldsatisfyEAd2 =0. ToobtainF,wesolve:

    dx2

    ; u = 1.0 ; ud2u = 0 = 0EAdx2 x=0 x=Li

    Considera2Danalysis:

    Inthiscase,themethodusedforthetrussproblemtogetthestiffnessmatrixK wouldnotwork. Ingeneral3Danalysis,wemustsatisfy(fortheexact solution)

    Equilibrium:I. ij,j +fiB =0 inV(i,j = 1,2,3), whereij are the Cauchy stresses (forces per unit area in the

    deformedgeometry).II. ijnj =fiSf onSf

    Compatibility: ui =uSiu onSu andalldisplacementsmustbecontinuous.Stress-strain laws

    This isknownasthedifferentialformulation.ExampleReadingassignment: Section3.3.4

    Equilibriumd2u

    EA +fB =0 (a)dx2du

    EA =R (b)dx x=L2

  • 8/13/2019 MIT2_092F09_lec04

    3/6

    Lecture4 ThePrincipleofVirtualWork 2.092/2.093,Fall09

    Compatibilityu =0 (c)

    x=0Stress-strain law

    duxx =E (d)dx

    Ina1Dproblem,nodesaresurfaces.

    Ina2Dproblem,wedefine linethickness=surface,butonepointcanbelongtobothSf andSu.PrincipleofVirtualWork(VirtualDisplacements)Clearly,theexactsolutionu(x)mustsatisfy:

    d2u+fB u(x) = 0 (1)EA

    dx2

    whereu(x)iscontinuousandzeroatx=0. Otherwise,itisanarbitraryfunction. Hence,also,

    L d2u+fBEA

    dx20 u(x)dx=0 (2)

    3

  • 8/13/2019 MIT2_092F09_lec04

    4/6

    Lecture 4 The Principle of Virtual Work 2.092/2.093, Fall 09

    From Eq. (2):

    EAdu

    dxu

    L

    0

    L0

    du

    dxEA

    du

    dxdx+

    L0

    fBudx= 0 (A)

    The equation above becomes:

    Internal virtual work L0

    du

    dxEA

    du

    dxdx =

    External virtual work L0

    fBudx +

    Virtual work due toboundary forces

    RuL

    where dudx

    are the virtual strains, dudx

    are the real strains, andu are the virtual displacements. We setu = 0

    on Su, since we do not know the external forces on Su. To solve EAd2udx2

    +fB = 0, we look for a function u

    where d2udx2

    exists (dudx

    should be continuous). In order to calculate the virtual work, we look for the solutionswhere only u is continuous.

    (A) can be written as:

    L

    0

    xxEAxxdx= L

    0

    ufBdx+RuL (A)

    (the bar denotes virtual quantities)

    In 3D vector form, the principle of virtual work now becomes

    VTCdV =

    VuTfBdV +

    Sf

    uSfTfSfdSf (B)

    =

    xxyyzzxyyzzx

    ; xx=u

    x

    =

    xxyyzzxyyzzx

    ; zz =u

    z

    We see that (B) is the generalized form of (A). The principle of virtual work states that for any compatiblevirtual displacement field imposed on the body in its state of equilibrium, the total internal virtual work is

    4

  • 8/13/2019 MIT2_092F09_lec04

    5/6

    Lecture4 ThePrincipleofVirtualWork 2.092/2.093,Fall09equaltothetotalexternalvirtualwork. Notethatthisvariationalformulationisequivalenttothedifferentialformulation,givenearlier.

    5

  • 8/13/2019 MIT2_092F09_lec04

    6/6

    MIT OpenCourseWarehttp://ocw.mit.edu

    2.092 / 2.093 Finite Element Analysis of Solids and Fluids I

    Fall 2009

    For information about citing these materials or our Terms of Use, visit:http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/