monografia 2012

242
Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos Neumáticos ELECTRICIDAD INDUSTRIAL “PROYECTO DE INNOVACION” DISEÑO, CONSTRUCCION Y MONTADE DE UN MODULO DE ENSAYOS DE MANDOS NEUMATICOS INGRESO: 2010-1 Electricidad Industrial Página 1 ZONAL CAJAMARCA SUR

Upload: indispen

Post on 24-Oct-2015

79 views

Category:

Documents


11 download

TRANSCRIPT

Page 1: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

ELECTRICIDAD

INDUSTRIAL “PROYECTO DE INNOVACION”

DISEÑO, CONSTRUCCION Y MONTADE DE UN MODULO DE ENSAYOS DE MANDOS NEUMATICOS

INGRESO: 2010-1

CAJAMARCA DICIEMBRE DEL 2012.

Electricidad Industrial Página 1

ZONAL CAJAMARCA SUR AMAZONAS

Page 2: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

DEDICATORIA

Con todo el cariño y el amor

Del mundo dedicamos este proyecto a

Dios, nuestros Padres, nuestros Instructores

Que han sido nuestros guías y apoyo

Para ver cristalizadas uno de nuestros

Grandes anhelos; el ser técnicos

Profesionales de Electricidad Industrial

Electricidad Industrial Página 2

Page 3: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

AGRADECIMIENTO

Queremos manifestar nuestra gratitud profunda a los Señores Instructores de la Carrera Profesional Electricidad Industrial y a las Empresas que contribuyeron para realizar nuestras prácticas y así poder cumplir nuestra Formación Profesional en el proceso de enseñanza y aprendizaje.

También expresar nuestro más sincero agradecimiento a todas las personas que hicieron posible nuestra Formación Profesional a nuestro Director Roberto Loayza Rivera, a nuestro instructor. Miguel Ángel Escalante Bautista.

Así mismo, nos comprometemos asumir con responsabilidad y lealtad la nueva faceta de nuestra vida, puesto que pronto tendremos que incorporarnos a la generación de Profesionales de Electricistas Industriales con suma responsabilidad social.

Electricidad Industrial Página 3

Page 4: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

PRESENTACIÒN

Sr. Director, Instructores y Miembros del Jurado

Cumpliendo las normas que establece el Servicio Nacional de Adiestramiento en Trabajo Industrial SENATI, los participantes del

Programa de aprendizaje Dual, de la Carrera de electricidad industrial ingreso 2010-I pone a vuestra consideración el presente proyecto

denominado “DISEÑO, CONSTRUCCIÓN Y MONTAJE DE UN MODULO DE ENSAYOS DE MANDOS NEUMÁTICOS”

. Esperando que con dicho informe, podamos obtener su aprobación y así obtener el Título Profesional de Técnico de Nivel

Operativo de la Carrera Electricidad industrial.

El presente Proyecto de Innovación y/o Mejora cumplen con los requisitos básicos exigidos por las Normas Técnicas y que sirva como

aporte dentro del desarrollo de las actividades en el campo de electricidad industrial

Hacemos entrega del contenido para que se dignen evaluar en su debida dimensión las experiencias teóricas y prácticas vertida en

este proyecto que servirán como un punto de apoyo para el mejoramiento continuo de las generaciones venideras de la Carrera.

Electricidad Industrial Página 4

Page 5: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

EL PRESENTE PROYECTO FUE REALIZADO POR LOS SIQUIENTES APRENDICES

PARTICIPANTE : ARANA GALÁN, MIRIAM CRISTINA.

ID : 434655

CARRERA : ELECTRICIDAD INDUSTRIAL

INGRESO : 2010-1

DNI : 47842836

CELULAR : 945462103

E-MAIL : [email protected]

Electricidad Industrial Página 5

Page 6: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

PARTICIPANTE : ASENCIO MEDINA, RAYDER ANTONY.

ID : 290005

CARRERA : ELECTRICIDAD INDUSTRIAL

INGRESO : 2010-1

DNI : 47026439

CELULAR : 999322372

E-MAIL : [email protected]

Electricidad Industrial Página 6

Page 7: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

PARTICIPANTE : HUAMAN ABANTO, LENET JAIRO.

ID : 259829

CARRERA : ELECTRICIDAD INDUSTRIAL

INGRESO : 2010-1

DNI : 46667409

CELULAR : 976812770

E-MAIL : @comunidad.senati.edu.pe

Electricidad Industrial Página 7

Page 8: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

PARTICIPANTE : HUAMAN CHILON, CARLOS.

ID : 437521

CARRERA : ELECTRICIDAD INDUSTRIAL

INGRESO : 2010-1

DNI : 47396798

CELULAR : 968951174

E-MAIL : @comunidad.senati.edu.pe

Electricidad Industrial Página 8

Page 9: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

PARTICIPANTE : JARA RUIZ, JOSE CHARLI.

ID : 339372

CARRERA : ELECTRICIDAD INDUSTRIAL

INGRESO : 2010-1

DNI : 46535211

CELULAR : 948886091

E-MAIL : @comunidad.senati.edu.pe

Electricidad Industrial Página 9

Page 10: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

PARTICIPANTE : LEYVA LEYVA, OSCAR MAXIMO.

ID : 384198

CARRERA : ELECTRICIDAD INDUSTRIAL

INGRESO : 2010-1

DNI : 47026435

CELULAR : 947918134

E-MAIL : [email protected]

Electricidad Industrial Página 10

Page 11: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

PARTICIPANTE : LOJE MOSTACERO, ARLES BERNARDO

ID : 378113

CARRERA : ELECTRICIDAD INDUSTRIAL

INGRESO : 2010-1

DNI : 46697021

CELULAR : 957401259

E-MAIL : [email protected]

Electricidad Industrial Página 11

Page 12: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

PARTICIPANTE : MARIN MACHUCA, JOSE MELQUIADES

ID : 383662

CARRERA : ELECTRICIDAD INDUSTRIAL

INGRESO : 2010-1

DNI : 45880554

CELULAR : 966893748

E-MAIL : [email protected]

Electricidad Industrial Página 12

Page 13: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

PARTICIPANTE : POLO PIZAN, JHORBUS LISSANDER

ID : 389487

CARRERA : ELECTRICIDAD INDUSTRIAL

INGRESO : 2010-1

DNI : 70230173

CELULAR : 971145240

E-MAIL : @comunidad.senati.edu.pe

Electricidad Industrial Página 13

Page 14: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

PARTICIPANTE : VARGAS SALDAÑA, YHORDAN ALEXANDER.

ID : 435874

CARRERA : ELECTRICIDAD INDUSTRIAL

INGRESO : 2010-1

DNI : 47405964

CELULAR : 992259597

E-MAIL : [email protected]

Electricidad Industrial Página 14

Page 15: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

PARTICIPANTE : VASQUEZ ARELLANO, EDINSON RUFINO

ID : 203749

CARRERA : ELECTRICIDAD INDUSTRIAL

INGRESO : 2010-1

DNI : 46096612

CELULAR : 995397107

E-MAIL : [email protected]

Electricidad Industrial Página 15

Page 16: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

INDICEDEDICATORIACARATULA AGRADECIMIENTOPRESENTACIÓN

DESCRIPCION DEL PROYECTO 17 Pág. ANTECEDENTES 07 Pág. OBJETIVOS 08 Pág. CONSTRUCCION DE LA ESTRUCTURA 09 Pág.

DEL MÓDULO MONTAJE E INSATLACION DE 45 Pág.

MOTORES TRIFASICOS ASINCRONOS MONTAJE E INSTALACION DEL 59 Pág.

TABLERO DE AUTAMATIZACION CON PLC MONTAJE E INSTALACION DE LOS 76 Pág.

MODULOS DE UN PLC INSTALAR Y MANEJO DEL SOFTWARE 93 Pág. PROGRAMACION PARA EL ARRANQUE DIRECTO POR

TIRISTORES DE UN MOTOR DE INDUCCION TRIFASICO. 103 Pág.

FUNCIONAMIENTO DEL ARRANQUE DIRECTO POR TIRISTORES DE UN MOTOR DE INDUCCION TRIFASICO. 125 Pag.

PROGRAMACION DE ARRANQUE Y PARADA 135 Pág. SECUNECIAL DE DOS MOTORES TRIFASICOS POR PLC

FUNCIONAMIENTO DE ARRANQUE Y PARADA 144Pág. SECUENCIAL DE DOS MOTORES TRIFASICOS POR PLC

TIPOS Y COSTOS DE MATERIALES 148 Pág. TIEMPO EMPLEADO PARA LA ELABORACION 152 Pág.

DEL PROYECTO CONCLUSIONES FINALES 153Pág. BIBLIOGRAFIA 154Pág.

Electricidad Industrial Página 16

Page 17: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

DENOMINACIÓN DEL PROYECTO DE INNOVACIÓN Y/O MEJORA EN EL PROCESO DE PRODUCCIÓN O

SERVICIO EN LA EMPRESA

NOMBRE : DISEÑO, CONSTRUCCIÒN Y MONTAJE DE UN MODULO DE ENSAYOS DE MANDOS NEUMATICOS.

EMPRESA : SENATI ZONAL CAJAMARCA SUR AMAZONAS

DIRECCIÓN : Km. 06 Carretera a Baños Del Inca

ASESOR :

INSTRUCTOR : ESCALANTE BAUTISTA MIGUEL ÁNGEL

INGRESO : 2010 - l

FECHA : 07-12-2012

Electricidad Industrial Página 17

Page 18: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

DESCRIPCION DE PROYECTO

Nuestro proyecto pertenece a un módulo de ensayo neumático que será ejecutado para mejorar el nivel de capacitación técnica en la especialidad de electricidad industrial “SENATI”, mediante el cual se realizaran ensayos demostrativos del funcionamiento del modulo neumático y de sus componentes.

Dicho proyecto se ejecutará en “SENATI”. Ubicado en carretera baños del inca km. 6.5 en las instalaciones de la especialidad de ELECTRICIDAD INDUSTRIAL respectivamente desde el 8 de agosto al 30 de noviembre del 2012, al concluir este proyecto esperamos será de mucha importancia para los aprendices de los diferentes programas de la especialidad de electricidad industrial.

Mencionamos también que con este proyecto nos identificamos con la ISO 9001 porque tenemos la misión de tener una mejora de calidad en el taller; con nuestro proyecto se lograra ampliar el taller ya que no cuenta con módulos para la formación profesional técnica que brinda SENATI CAJAMARCA –SUR AMAZONAS

Electricidad Industrial Página 18

Page 19: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

ANTECEDENTE

Durante el tiempo que venimos realizando nuestros formación profesional en Senati, hemos podido notar que unas de las debilidades de la formación es el diseño, construcción y montaje de un módulo de ensayos de mandos neumáticos que no se encuentra a nuestra disposición para la realización de nuestros circuitos neumáticos de la formación práctica, lo que dificulta el normal desenvolvimiento de los aprendices para lograr los objetivos propuestos.

Para lo cual, los Participantes del Sexto Módulo del Programa aprendizaje dual de la Carrera de Electricidad Industrial, han tenido por conveniente solicitar a su representada como proyecto de innovación y/o mejora el diseño, construcción y montaje de un módulo de ensayos de mandos neumáticos, con el fin de demostrar nuestros conocimientos y destrezas adquiridos en centro y empresa.

Esto significa que con el proyecto propuesto va a mejorar nuestra formación profesional, así mismo se implementará el taller para mejorar la atención a los aprendices.

Electricidad Industrial Página 19

Page 20: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

OBJETIVOSGENERALES:

Al finalizar el proyecto el aprendiz y/o participante estará en condiciones de realizar trabajos de instalación/ reparación/ operación y mantenimiento de aparatos y equipos de funcionamiento neumático controlado con instrumentos adecuados de acuerdo a normas/ especificaciones técnicas y observando las normas de seguridad.

ESPECÍFICOS:

Al término del proyecto el aprendiz/participante estará en condiciones de:

Conocer y aplicar sus conocimientos, destrezas y habilidades con criterios de producción.

Valorar sus conocimientos técnicos desarrollando el proyecto según el diseño de planos.

Demostrar las normas de seguridad y el cuidado del medio ambiente en el desarrollo del proyecto.

Electricidad Industrial Página 20

Page 21: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

PROYECTO DE INNOVACIÓN Y/O MEJORA

NEUMÁTICA

1. INTRODUCCIÓN:

Como medio de racionalización del trabajo, el aire comprimido viene

encontrando, cada vez más, campos de aplicación en la industria, así como

el agua, la energía eléctrica, etc.

El término neumática es derivado del griego Pneumos o Pneuma

(respiración, soplo) y es definido como la parte de la Física que se ocupa de

la dinámica y de los fenómenos físicos relacionados con los gases o vacíos.

Es también el estudio de la conservación de energía neumática en energía

mecánica, a través de los respectivos elementos de trabajo.

La neumática es una fuente de energía de fácil obtención y tratamiento

para el control de máquinas y otros elementos sometidos a movimiento. La

generación, almacenaje y utilización del aire comprimido resultan

relativamente baratos y además ofrece un índice de peligrosidad baja en

relación a otras energías como la electricidad y los combustibles gaseosos

o líquidos. Ofrece una alternativa altamente segura en lugares de riesgo de

explosión o descarga, donde otras energías suponen un riesgo importante

por la producción de calor, chispas, etc.

Por estas ventajas las instalaciones de aire comprimido son ampliamente

usadas en todo tipo de industrias, incluso en todo tipo de transporte, aéreo,

terrestre y marítimo.

Electricidad Industrial Página 21

Page 22: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

2. COMPRESOR:

Aparato que sirve para comprimir un fluido, generalmente aire, a una

presión dada. Existen dos categorías, las máquinas volumétricas (aumento

de presión por reducción de volumen), y los turbocompresores (el aire

arrastrado por una rueda móvil adquiere cierta velocidad, que se traduce en

un aumento de presión en la rueda y en el difusor de salida).

Un compresor convierte la energía mecánica de un motor eléctrico o de combustión en energía potencial de aire comprimido.

Los compresores de aire se dividen en dos categorías principales: alternativos y rotativos.

Electricidad Industrial Página 22

Page 23: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Los tipos principales de compresores incluidos en estas categorías se indican en la figura

2.1.1 TIPOS PRINCIPALES DE COMPRESORES UTILIZADOS

EN LOS SISTEMAS NEUMÁTICOS

2.1.1 COMPRESORES ALTERNATIVOS:

2.1.1.1 Compresor de émbolo de una etapa.

El aire recogido a presión atmosférica se comprime a la presión

deseada con una sola compresión.

El movimiento hacia abajo del émbolo aumenta el volumen para

crear una presión más baja que la de la atmósfera, lo que hace

entrar el aire en el cilindro por la válvula de entrada.

Electricidad Industrial Página 23

Page 24: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Al final de la carrera, el émbolo se mueve hacia arriba, la válvula

de entrada se cierra cuando el aire se comprime, obligando a la

válvula de salida a abrirse para descargar el aire en el depósito

de recogida.

Este tipo de compresor se utiliza generalmente en sistemas que

requieran aire en la gama de 3-7 bares.

2.1.1.2 Compresor de émbolo de dos etapas.

En un compresor de una sola compresión, cuando se comprime

el aire por encima de 6 bares, el calor excesivo que se crea

reduce en gran medida su eficacia. Debido a esto, los

compresores de émbolo utilizados en los sistemas industriales de

aire comprimido son generalmente de dos etapas.

Electricidad Industrial Página 24

Page 25: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

2.1.2

COMPRESORES ROTATIVOS

2.1.2.1 Compresor rotativo de paleta deslizante

Este compresor tiene un rotor montado excéntricamente con una

serie de paletas que se deslizan dentro de ranuras radiales

Electricidad Industrial Página 25

Page 26: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Al girar el rotor, la fuerza centrífuga mantiene las paletas en

contacto con la pared del estator y el espacio entre las paletas

adyacentes disminuye desde la entrada de aire hasta la salida,

comprimiendo así el aire.

3. UNIDAD DE MANTENIMIENTO

Electricidad Industrial Página 26

Page 27: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

3.1 FILTRO:

La filtración del aire consiste en la aplicación de dispositivos capaces de

retener las impurezas suspendidas en el flujo de aire, y en suprimir aún

más la humedad presente.

Por consiguiente, es necesario eliminar estos dos problemas al mismo

tiempo. El equipo normalmente utilizado para este fin es el Filtro de

Aire, que actúa de dos formas distintas:

-Por la acción de la fuerza centrífuga.

-Por el paso del aire a través de un elemento filtrante de bronce

sinterizado o malla de nylon.

3.2 REGULADOR

Tiene la misión de mantener la presión de trabajo (secundaria) lo más constante posible, independientemente de las variaciones que sufra la presión de red (primaria) y del consumo de aire. La presión primaria siempre ha de ser mayor que la secundaria.

A medida que la presión de trabajo aumenta, la membrana actúa contra la fuerza del muelle. La sección de paso en el asiento de válvula

Electricidad Industrial Página 27

Page 28: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

disminuye hasta que la válvula cierra el paso por completo. En otros términos, la presión es regulada por el caudal que circula.

3.3 LUBRICADOR

Tiene la misión de lubricar los elementos neumáticos en medida suficiente. La forma práctica más lógica para lograr el correcto funcionamiento de todo aparato en el que se verifiquen movimientos es, sin duda la lubricación. Entre los componentes neumáticos existen dos formas de llevar a cabo esta lubricación: con lubricantes sólidos y con lubricantes líquidos. En muchos casos se prefiere el lubricante sólido (que durará lo que el componente en cuestión) pues existe menos riesgo de contaminación del producto que se estuviera elaborando. Cuando en cambio, se trata de lubricante líquido, la solución formal es instalar lubricadores. El lubricante previene un desgaste prematuro de las piezas móviles, reduce el rozamiento y protege los elementos contra la corrosión

.

4. ACTUADORES NEUMÁTICOS

El trabajo realizado por un actuador neumático puede ser lineal o rotativo. El movimiento lineal se obtiene por cilindros de émbolo (éstos también proporcionan movimiento rotativo con variedad de ángulos por medio de actuadores del tipo piñón-cremallera). También encontramos actuadores neumáticos de rotación continua (motores neumáticos), movimientos

Electricidad Industrial Página 28

Page 29: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

combinados e incluso alguna transformación mecánica de movimiento que lo hace parecer de un tipo especial.

4.1 CILINDROS DE SIMPLE EFECTO

Un cilindro de simple efecto desarrolla un trabajo sólo en un sentido. El émbolo se hace retornar por medio de un resorte interno o por algún otro medio externo como cargas, movimientos mecánicos, etc. Puede ser de tipo “normalmente dentro” o “normalmente fuera”.

Electricidad Industrial Página 29

Page 30: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

4.2 CILINDROS DE DOBLE EFECTO

Son aquellos que realizan tanto su carrera de avance como la de retroceso por acción del aire comprimido. Su denominación se debe a que emplean las dos caras del émbolo (aire en ambas cámaras), por lo que estos componentes sí que pueden realizar trabajo en ambos sentidos.

En definitiva, podemos afirmar que los actuadores lineales de doble efecto son los componentes más habituales en el control neumático.

Electricidad Industrial Página 30

Page 31: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

5. VÁLVULAS

Son elementos que mandan o regulan la puesta en marcha, el paro y la dirección, así como la

presión o el caudal del fluido enviado por el compresor o almacenado en un depósito.

5.1 VÁLVULAS 3 VÍAS 2 POSICIONES (3/2)

Electricidad Industrial Página 31

2

1 3

Page 32: MONOGRAFIA  2012

4 2

5

1

3

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

5.2 VÁLVULA DE CINCO VÍAS Y DOS POSICIONES 5/2

5.3 VÁLVULA ANTIRRETORNO

Son aquellas que impiden el paso del aire en un sentido y lo dejan libre

en el contrario. Tan pronto como la presión de entrada en el sentido de

paso aplica una fuerza superior a la del resorte incorporado, abre el

elemento de cierre del asiento de la válvula.

Electricidad Industrial Página 32

Page 33: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

5.4 VÁLVULA DE SIMULTANEIDAD

Se utiliza para los equipos de enclavamiento y para los equipos de

control. Tiene dos entradas P1 y P2 y una salida A. La señal de salida

sólo está presente si lo están las dos señales de entrada. En el caso de

una diferencia en el tiempo de las señales

5.5 VÁLVULA DE PEDAL CON

Electricidad Industrial Página 33

2

1 3

Page 34: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

.

.

5.6 VÁLVULA DIRECCIONAL NEUMÁTICA 3/2 CON POSICIÓN

NORMALMENTE CERRADA,

5.7 ACCIONADA POR RODILLO Y RETORNO

POR MUELLE.

Electricidad Industrial Página 34

Page 35: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

5.8 VÁLVULA DE RODILLO NORMAL

5.9 SILENCIADORES

Para la fabricación de nuestros silenciadores se ha utilizado acero

aluminado. Este material puede llegar a soportar temperaturas de

funcionamiento máximas de hasta 676 ºC. Otros materiales utilizados

son el acero inoxidable y el acero al carbón o negro de distintos

grosores.

Los silenciadores por absorción convencionales llevan años usándose

con todo éxito para manipular aire limpio.

|

Características

Diseño a prueba de incrustaciones

Mantenimiento mínimo

Fácil de limpiar

Baja caída de presión

Electricidad Industrial Página 35

Page 36: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Diseño flexible

Adecuados para altas temperaturas

Amplio espectro de atenuación

Disponible en varios materiales

Aplicaciones

Sistemas de ventiladores de tiro inducido

Flujos de gas contaminado

Flujos de gas saturado

Flujos de gas corrosivo

Altas temperatura

6. REDES DE DISTRIBUCIÓN DE AIRE COMPRIMIDO

6.1 SELECCIÓN DE LÍNEA DE DISTRIBUCIÓN

7.1.1 PRESIÓN DE AIRE COMPRIMIDO

Se debe calcular la presión de aire comprimido a la cual se desea

trabajar para establecer el buen funcionamiento del compresor y red.

Generalmente la red de trabajo industrial de aire comprimido tiene

presiones de 6 y 7 bares.

7.1.2 CAUDAL DE AIRE COMPRIMIDO

El Cálculo de caudal de aire comprimido de la red deberá ser

diseñado con base en la demanda de aire.

7.1.3 PÉRDIDAS DE PRESIÓN

Los elementos de una red de aire comprimido como codos, válvulas,

tés, cambios de sección, equipos de mantenimiento, y otras se

Electricidad Industrial Página 36

Page 37: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

oponen al flujo generando pérdidas de presión de aire. Garantizar

que las pérdidas de presión en tuberías de aire comprimido estén

en lo permisible es una labor esencial a la hora de desarrollar el

diseño de instalación neumática.

7.1.4 VELOCIDAD DE CIRCULACIÓN DE AIRE:

La velocidad de aire debe controlarse puesto que el aumento

produce mayores pérdidas de presión.

Además de estos puntos y según necesidades de la instalación,

seleccionaremos y evaluaremos la más adecuadas herramientas

para la instalación de aire comprimido. Dependiendo del uso o el

sector en el que se aplique el aire comprimido, el usuario necesitará

una calidad de aire, aire comprimido seco y limpio.

6.1.1 REDES DE DISTRIBUCIÓN DE AIRE COMPRIMIDO

7.2 SELECCIÓN DE LÍNEA DE DISTRIBUCIÓN

7.2.1 PRESIÓN DE AIRE COMPRIMIDO

Se debe calcular la presión de aire comprimido a la cual se desea

trabajar para establecer el buen funcionamiento del compresor y red.

Generalmente la red de trabajo industrial de aire comprimido tiene

presiones de 6 y 7 bares.

7.2.2 CAUDAL DE AIRE COMPRIMIDO

El Cálculo de caudal de aire comprimido de la red deberá ser

diseñado con base en la demanda de aire.

Electricidad Industrial Página 37

Page 38: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

7.2.3 PÉRDIDAS DE PRESIÓN

Los elementos de una red de aire comprimido como codos, válvulas,

cambios de sección, equipos de mantenimiento, y otras se oponen al

flujo generando pérdidas de presión de aire. Garantizar que las

pérdidas de presión en tuberías de aire comprimido estén en lo

permisible es una labor esencial a la hora de desarrollar el diseño de

instalación neumática.

7.2.4 VELOCIDAD DE CIRCULACIÓN DE AIRE:

La velocidad de aire debe controlarse puesto que el aumento

produce mayores pérdidas de presión.

Además de estos puntos y según necesidades de la instalación,

seleccionaremos y evaluaremos la más adecuadas herramientas

para la instalación de aire comprimido. Dependiendo del uso o el

sector en el que se aplique el aire comprimido, el usuario necesitará

una calidad de aire, aire comprimido seco y limpio.

7.3 TIPOS DE REDES DE AIRE COMPRIMIDO.

REDES DE DISTRUCION CERRADA

REDES DE DISTRIBUCIÓN ABIERTA

Electricidad Industrial Página 38

Page 39: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

7.3.1 REDES DE AIRE COMPRIMIDO, CERRADA.

En esta configuración la línea principal constituye un anillo. La

inversión inicial de este tipo de red es mayor que si fuera abierta. Sin

embargo, con ella se facilitan las laborares de mantenimiento de

manera importante, puesto que ciertas partes pueden ser aisladas sin

afectar a la producción.

Falta de dirección constante del flujo es una desventaja importante de

este sistema, ya que la dirección del flujo en algún punto de la red

dependerá de las demandas puntuales y por tanto, el flujo de aire

cambiará de dirección dependiendo del consumo.

El problema de estos cambios radica en que la mayoría de los

accesorios de una red (Filtros, Enfriadores etc.) son diseñados con

una entrada y una salida. Por tanto un cambio en el sentido de flujo los

inutilizaría.

7.3.2 RED DE AIRE COMPRIMIDO, ABIERTA.

Electricidad Industrial Página 39

Page 40: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Se constituye por una sola línea principal de la cual se desprenden

las secundarias y las de servicio. La poca inversión inicial necesaria

de esta configuración constituye su principal ventaja. Además, en la

red pueden implementarse inclinaciones para la evacuación de

condensados. La desventaja principal de este tipo de redes es su

mantenimiento. Ante una reparación es posible que se detenga el

suministro el suministro de aire "aguas abajo" del punto de corte lo

que implica una detención de la producción.

Electricidad Industrial Página 40

Page 41: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

7.4 DISEÑO DE LAS REDES DE DISTRIBUCIÓN DE AIRE COMPRIMIDO

La primera labor de diseño de una red de aire comprimido es levantar u

obtener un plano de la planta donde claramente se ubiquen los puntos

de demanda de aire anotando su consumo y presión requeridos. *La

red de aire comprimido hay que diseñarla con base a la arquitectura y

las actividades que se desarrollan dentro del edificio industrial, y de los

requerimientos de aire.

Procurar que las instalaciones de tuberías de aire sean lo más recta

posible y elegir los tramos más cortos con el fin de disminuir la longitud

de tubería, codos, tés, y los cambios de secciones que aumenten la

pérdida de presión en el sistema.

La instalación de tubería siempre debe ir aérea. Pueden ir sujetas a

paredes y techos. Con el fin de facilitar la labor de instalación de

accesorios, puntos de drenaje, futuras ampliaciones, fácil inspección y

accesibilidad para su mantenimiento. Las tuberías enterradas no son

prácticas, ya que dificultan su mantenimiento y en el interior del circuito

impide la evacuación de la condensación de líquidos.

Para evitar posibles accidentes y riesgos eléctricos la instalación de

tubería de aire comprimido no debe ir cerca del cableado.

Hay que tener cierta libertad a la hora de instalación de la red de aire

comprimido para que la tubería permita variación de longitud sin que

tenga lugar tensiones y deformaciones adicionales ante la posibilidad

de posibles variaciones de temperatura. Se pueden presentar "combas"

con la acumulación de agua, si esto no se garantiza.

Antes de realizar salidas o tomas de aire comprimido en la red se debe

comprobar que los diámetros de la tubería son suficientes, para una

cantidad adicional de aire.

En la tubería principal hay poner un buen diámetro para evitar

problemas a la hora de ampliación de la red. La pendiente de la tubería

Electricidad Industrial Página 41

Page 42: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

principal deberá tener una leve inclinación será del 1% en la dirección

del flujo del aire, para ubicar sitios de evacuación de condensados.

Para evitar detener el suministro de aire comprimido en la red cuando

se hagan reparaciones de fugas, nuevas instalaciones y operaciones de

mantenimiento es esencial que se ubiquen llaves de paso

frecuentemente en la red.

Las tomas de aire para las bajantes o tuberías de servicio no deben de

hacerse nunca en la parte inferior de la tubería sino en la parte superior,

para evitar que el agua condensada que circula por defecto de la

gravedad pueda ser recogida y llevada a los distintos equipos

neumáticos conectados a la red.

Es recomendable que la pérdida de presión hasta el punto más

desfavorable se establezca en un máximo de 0,6 bares.

7.5 ACCESORIOS DE AIRE COMPRIMIDO Y MANTENIMIENTO.

7.5.1 UNIDAD DE MANTENIMIENTO NEUMÁTICA:

Deben tenerse en cuenta los siguientes puntos: El caudal total de

aire en m3/h es decisivo para la elección del tamaño de unidad. La

presión de trabajo no debe sobrepasar el valor estipulado en la

unidad. La temperatura no deberá ser tampoco superior a 50 ºC

(valores máximos para recipiente de plástico).

7.5.2 CONSERVACIÓN UNIDAD DE MANTENIMIENTO.

Filtro de aire comprimido: Debe examinarse periódicamente el

nivel del agua condensada, porque no debe sobrepasar la altura

indicada en la mirilla de control. Asimismo debe limpiarse el

cartucho filtrante.

Regulador de presión: Cuando está precedido de un filtro, no

requiere ningún mantenimiento

Electricidad Industrial Página 42

Page 43: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Lubricador de aire comprimido: Verificar el nivel de aceite en la

mirilla y, si es necesario, suplirlo hasta el nivel permitido. Los filtros

de plástico y los recipientes de los lubricadores no deben limpiarse

con tricloroetileno. Para los lubricadores, utilizar únicamente

aceites minerales.

7.5.3 FILTROS AIRE COMPRIMIDO.

Depuran el aire comprimido: Polvo, residuos de las

conducciones, aceite solidificado del compresor, vapor acuoso

contenido en la atmósfera.

Provocan en los equipos: Desgaste rápido, mal funcionamiento,

obstrucción de la línea de aire.

REGULADORES DE PRESIÓN.

Presiones de trabajo muy altas producen: Grandes pérdidas de

carga, desgaste de los componentes.

Presiones de trabajo bajas producen: Rendimiento malo.

Tipos de reguladores: Membrana y Pistón.

7.5.4 LUBRICADORES DE ACEITE.

El lubricante: Previene de un desgaste prematuro de las piezas

móviles, reduce el rozamiento y protege los elementos contra la

corrosión.

7.4.6 LUBRICANTE.

Electricidad Industrial Página 43

Page 44: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Los lubricantes industriales aptos para instalaciones neumáticas,

deben ser: Aceite ligero de base mineral. Contener antioxidantes y

antiespumantes. Punto de anilina alto de 82–104ºC. Viscosidad

equivalente al SAE 10.

8 SIMBOLOGÍA NEUMÁTICA

Conversión de energía

Compresor Bomba de vacío

Motor neumático

unidireccional

de caudal constante

Motor neumático

bidireccional

de caudal constante

Actuador de giro

Cilindro neumático de

simple

efecto con retroceso por

fuerza exterior

Cilindro neumático de simple

efecto con retroceso por

muelle Cilindro de doble efecto

Electricidad Industrial Página 44

Page 45: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Cilindro de doble efecto con

amortiguación regulable en

ambos sentidos

Cilindro de doble efecto

con

doble vástago

Unidad lineal neumática sin

VástagoCilindro hidrotelescópico

ELEMENTOS DE MEDICIÓN

Manómetro Caudalímetro

Termómetro Caudalímetro contador

Presostato

TRANSMISIÓN DE ENERGÍA

Electricidad Industrial Página 45

Page 46: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Fuente de presión neumática

Fuente de presión hidráulica

Fuente de presión neumática

Fuente de presión hidráulica

Unión de conductos Cruce de conductos

Conexión cerrada de escape de

aireSilenciador

Acoplamiento rápido

Acoplamiento rápidoconectado con mecanismo de

cierre de apertura mecánica

Acoplamiento rápidodesconectado, con

conductoabierto

Acoplamiento rápidodesconectado, con

conductocerrado

Salida de aire sin posibilidad de

conexión

Salida de aire con posibilidad

de conexión

Conexión de presión cerrada

Válvula de cierre

FiltroFiltro con purga manual

deCondensados

Filtro con purga automática decondensados

Lubricador

Refrigerador sin conductos para

el sentido de flujo del medio

refrigerante

Refrigerador con conductos

para el medio refrigerante

Electricidad Industrial Página 46

Page 47: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

SecadorUnidad de

mantenimiento

Acumulador de aire a presión

VÁLVULAS DE VÍAS

Válvula 2/2 normalmentecerrada (NC)

Válvula 2/2 normalmenteabierta (NA)

Válvula 3/2 normalmentecerrada (NC)

Válvula 3/2 normalmenteabierta (NA)

Válvula 3/3 con centro cerrado

Válvula 4/2

Válvula 4/3 con centro cerrado

Válvula 4/3 con centro aescape en las vías de

trabajo

Válvula 5/2Válvula 5/3 con centro

cerrado

Válvula distribuidoraproporcional con

posicionesintermedias y 2

posicionesFinales.

DENOMINACIÓN DE LAS CONEXIONESISO/DIS 11727 Para válvulas 2/2 y 3/2 Para válvulas 4/2 y 4/3 Para válvulas 5/2 y 5/3

1 P P P2 A B B3 R R S

Electricidad Industrial Página 47

Page 48: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

4 - A A5 - - R10 Z - -12 Z Y Y14 - Z Z

ACCIONAMIENTOS

Manual

General Pulsador Pulsador a tracción Palanca Pedal

Mecánico

Leva Rodillo Rodillo escamoteable muelle

Válvula accionada en posición inicial

Accionamiento por presión

Pilotaje neumático Centrado por muellePor aplicación de presión

diferencial

Accionamiento eléctrico

Electroimán con un devanado Electroimán con dos devanados

Electricidad Industrial Página 48

Page 49: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Electroimán y servopilotajeElectroimán, servopilotaje y accionamiento

manual auxiliar

Enclavamiento

Válvulas de caudal

Válvula reguladora de caudal

con estrangulación constante

Válvula reguladora de caudal

con estrangulación variable

Regulador de caudalunidireccional

Divisor de caudal

Válvulas de presión

Válvula reguladora de

presióncon escape de

aire

Válvula regulable, limitadorade presión

Válvula de secuencia

Válvula de secuencia

conpilotaje externo

Válvulas de cierre

Válvulaantirretorno

Válvulaantirretornoprecargada

Selector decircuito

Válvula desimultaneidad

Válvula deescape rápido

Componentes para vacío

Electricidad Industrial Página 49

Page 50: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Generador de vacío Ventosa

Detectores neumáticos

Detector réflex

Amplificador de señal de baja presión

Electricidad Industrial Página 50

Page 51: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

GENERALIDADES:

En base al análisis realizado a las necesidades de ejecutar tareas practicas y experimentales por los aprendices y participantes. Hemos creído conveniente el “DISEÑO, CONTRUCCION Y MONTAJE DE UN MODULO DE ENSAYOS DE MANDOS NEUMATICOS”, que está de acuerdo a las necesidades de nuestro taller; en el área de

Electricidad Industrial Página 51

Page 52: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

electricidad que complementara en el futuro el aprendizaje tanto práctico y teórico.

Una de las partes importante de este proyecto “DISEÑO, CONTRUCCION Y MONTAJE DE UN MODULO DE ENSAYOS DE MANDOS NEUMATICOS “es la construcción del modulo, ya que sus funciones son especificas, es decir el sitio de maniobra y protección de toda la instalación, donde el operador tendrá la facilidad de acceso para su maniobra. .

Para la construcción del modulo o estructura tenemos que tener conocimiento: del material que vamos a utilizar, el diseño del modulo y las máquinas, herramientas equipos e instrumentos adecuados que vamos a utilizar.

PROCESO DE EJECUCCION

HABILITAR MATERIALES

MEDIR TUBO

Medir piezas del tubo cuadrado con mucha precisión.

Electricidad Industrial Página 52

Page 53: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

De acuerdo a la escala del plano del módulo realizar mediciones

TRAZAR LINEAS PARA CORTAR EL TUBO

Ya listas las mediciones del fierro cuadrado, trazamos con una regla metálica y escuadra lo que próximamente se cortará.

CORTAR.

Con mucho cuidado realizar el corte del fiero cuadrado utilizando un arco de sierra de forma vertical, diagonal, de acuerdo al corte que se va a realizar.

PULIR.

Pulir significa alisar, pulir, abrillantar o limpiar algo mediante el frotamiento con un objeto abrasivo, generalmente una lima. El limado es una tarea fundamental en cualquier trabajo de acabado (pintura, barniz, etc.)

Utilizando una lima triangular y una lima semi redonda limpiar las rebabas que se a quedado en el momento de terminar de cortar

Luego lijar y dar un buen acabado a las piezas de fiero cuadrado ya cortadas.

Electricidad Industrial Página 53

Page 54: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

ENSAMBLAR

JUNTAR LAS PIEZAS DE FIERRO

Juntar las piezas de fierro de acuerdo al tamaño y forma del modelo del módulo.

Apuntalar el fiero cuadrado.

SOLDAR

Primero contar con todos los equipos de protección personal. Energizar la maquina de soldar.

Tener colocada la careta y el mandil, zapatos de seguridad y también los guantes para iniciar a soldar. Soldar las partes ya apuntaladas del fierro cuadrado así mismo los ángulos de soporte respectivamente.

DAR ACABADO

ESMERILAR

Nosotros vamos a referirnos principalmente al limado. El limado se puede hacer a mano o con ayuda de maquinas eléctricas (lijadoras y taladros con acoples, principalmente). Como norma general

Electricidad Industrial Página 54

Page 55: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Primero con lima bastarda o media y acabando con lima mas fina. Se debe cambiar de lima (a más fina) en cuanto desaparezcan los arañazos dejados por la lima anterior. Con una amoladora y un disco para fierro.

Trabajo en tubo iniciar a amolar las bases ya soldadas cuidadosamente y utilizar guantes.

Lijar la parte ya limada para tener un acabado blando

TALADRAR

Hacer puntos de referencia con el granete. Con una broca de 10mm taladrar los puntos señalados anteriormente.

SS/HH: Utilizar los equipos de protección personal.

MASILLAR

Preparar masilla y colocar en las esquinas del modulo y en todas las partes soldadas para así tener un buen acabado.

Dejar secar.

LIJAR

Una vez que la masilla a secado iniciaremos a lijar y dar un buen acabado. Utilizaremos también guantes y un respirador.

Electricidad Industrial Página 55

Page 56: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

PINTAR

Con un compresor de aire y una pistola modo espray iniciaremos a pintar el modulo armado. Primeramente habilitar la pintura blanca que será la base del modulo y dejar secar. Cuando ya esta seca iniciar a pintar con el color negro uniformemente y dejar secar.

Volver a pasar la segunda mano de pintado. De esta manera el modulo ya esta quedando listo

MONTAR LA MELAMINE.

HABILITAR MELAMINE.

Medir melanina de acuerdo al tamaño del modulo. Realizar señalización.

Trazar líneas de referencia.

CORTAR MELAMINE.

Con un arco de sierra iniciar a cortar la melamine. Teniendo la melamine ya cortada iniciaremos a colocar los cantos y dejar secar

Hacer puntos de referencia

Una vez habilitada la melanine tenemos que montar la melanine al módulo del tubo cuadrado.

FIJAR MELAMINE.

Colocar los pernos de sujeción y con una llave para el perno ajustar suavemente hasta tener un modulo terminado y montado con melamine.

Electricidad Industrial Página 56

Page 57: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

FUNDAMENTOS TEÓRICOS

1. FIERRO

El fierro es un elemento químico de número atómico 26 situado en el grupo 8, periodo 4 de la tabla periódica de los elementos. Su símbolo es Fe. Este metal de transición es el cuarto elemento más abundante en la corteza terrestre, representando un 5% y, entre los metales, sólo el aluminio es más abundante. Igualmente es uno de los elementos más importantes del Universo, y el núcleo de la Tierra está formado principalmente por hierro y níquel, generando al moverse un campo magnético. Ha sido históricamente muy importante, y un período de la historia recibe el nombre de Edad de Hierro.

El fierro es un metal maleable, de color gris plateado y presenta propiedades magnéticas; es ferro magnético a temperatura ambiente y presión atmosférica.

Es el elemento más pesado que se produce por fusión, y el más ligero que se produce a través de una fisión.

Electricidad Industrial Página 57

Page 58: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

En la construcción de este módulo vamos a utilizar fierro cuadrado de 2x2 pulgadas; utilizamos este fierro por ser resistente el adecuado para obtener un mejor soporte y precisión de Angulo, se puede cortar y soldar los puntos que se desea unir. Además fierro de ángulo de 1.5”

2. MELANINE

La melamine es un compuesto orgánico que se combina a menudo con formaldehido para producir la resina de melanina, un polímero sintético que es resistente al fuego y resistente al calor. Material de resina de melanina es un material muy versátil con una estructura muy estable. Usos de la melanina son pizarras, baldosas, utensilios de cocina, telas ignífugas, y los filtros comerciales. La melanina puede ser fácilmente moldeado en caliente, sino que se pone en una forma fija.

Electricidad Industrial Página 58

Page 59: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Esta propiedad hace que sea ideal para ciertas aplicaciones industriales.

Es un tipo de plástico que se emplea como materia prima para fabricar chapas duras, también son utilizados como muebles que dan comodidad y salud a sus ambientes de trabajo y estudio.

Además es un material suave que vamos a emplear y vale decir que es el adecuado para la mesa de trabajo y el tablero del módulo.

3. PERNOS

Estos pernos tienen la forma de clavos gruesos con cabeza hexagonal por un extremo y son milimétricos para que corra la tuerca por el otro lado del perno

Electricidad Industrial Página 59

Page 60: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

4. LIJAS

4.1.-TIPO DE GRANO

El grano es el material abrasivo que se adhiere al soporte de la lija. Según su composición podemos distinguir tres tipos de grano:

De carburo de silicio.  Es un grano delgado, anguloso, quebradizo  y no mucha durabilidad. Se utiliza principalmente para el lijado de materiales sólidos y tenaces como: vidrio, fundición gris, piedra, mármol, lacas, cerámica, titanio, goma, plásticos, fibra de vidrio, etc.

De óxido de aluminio. Es un grano, redondo, sin aristas agudas, tenaz y de alta durabilidad. Es apropiado para el lijado de materiales de virutas largas, como el metal y la madera. También son indicadas para el lijado de paredes enlucidas.

Electricidad Industrial Página 60

Page 61: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

El número de grano da información sobre el tamaño del mismo. Los diferentes granos se obtienen por cribado. El número de grano corresponde a la cantidad de cribas por pulgada cuadrada. Cuanto menor es el número de grano, mayor es éste, y por tanto más basto será el lijado.

Soporte: Tejido de algodón o poliéster. Es más resistente y flexible, pero también más caro. Se utiliza mucho en lijas manuales para metales y es imprescindible  en las bandas lijadoras de las lijadoras de bandas

5. ELECTRODOS

En soldadura de arco un electrodo es usado para conducir corriente a través de la pieza de trabajo y fusionar dos piezas juntas. Dependiendo del proceso, el electrodo puede ser consumible, en el caso de la soldadura con gas metal o la soldadura blindada, o no consumible, como la soldadura con gas tungsteno.

Estos electrodos nos van a ayudar para poder soldar las partes que corresponden unir de la estructura, esto se realiza produciendo un arco eléctrico entre la pieza a soldar y un electrodo metálico recubierto.

El calor producido por el arco se funde en el extremo del electrodo y se quema el revestimiento, así se produce la transferencia de gotas del metal fundido del electrodo para la fusión con el material base

Electricidad Industrial Página 61

Page 62: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

6. AMOLADORA

Se llama amoladora, a una máquina herramienta también conocida como muela, muy simple que está presente en la mayoría de talleres e industrias de fabricación mecánica y que tiene diversos usos, según sea el tipo de discos que se monten en la misma.

Hay discos que son de un material blando y flexible, que utilizan para el pulido y abrillantado de metales.

Hay discos de alambre que se utilizan para quitar las rebabas de mecanizado que puedan tener algunas piezas.

Electricidad Industrial Página 62

Page 63: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Hay discos de material abrasivo que pueden ser de grano grueso o de grano fino:

Los de grano grueso se utilizan para desbastar o matar aristas de piezas metálicas. Los de grano fino se utilizan principalmente para afilar las herramientas de corte: Cuchillas, brocas, etc.

7. MÁQUINA DE SOLDAR

La máquina de soldar es uno de los dispositivos o herramientas más utilizadas por el ser humano, esto se debe a que en algún momento de nuestra vida hemos tenido que soldar. Este tipo de máquinas no son de compleja manipulación pero sí debe tener cuidado al utilizarse ya que estamos trabajando con un elemento muy peligroso, el fuego; por esto debemos necesariamente tomar medidas para evitar cualquier tipo de accidentes tanto sobre nuestro físico como sobre el lugar en donde estamos trabajando.

La máquina de soldar, como toda herramienta, fue evolucionando con el tiempo, sus aplicaciones fueron transformándose, se convirtieron en herramientas mucho más perfectas. Su objetivo o aplicación principal es calentar las piezas para luego provocar una unión entre ellas; calentando los materiales y las mezclas se logra que el material se

Electricidad Industrial Página 63

Page 64: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

vuelva más resistente al ejercer alguna fuerza sobre ellos. Hoy podemos encontrar distintos tipos de máquinas de soldar, con varias formas y estilos, pero todas ellas sólo cuentan con dos tipos de salida: C.A. y C.D.

El conocimiento eléctrico es fundamental, ya que será la energía eléctrica la que estaremos empleando; debemos estar al tanto de los riesgos que corremos y tomar medidas de seguridad.

COMPONENTES DE UNA MAQUINA DE SOLDAR

A) MÁSCARA DE SOLDAR

Máscara de soldadura 3M es líder en seguridad para soldadura, ofreciendo una amplia gama de productos de protección personal para soldadores. Gracias a nuestra experiencia y conocimiento sobre las condiciones de trabajo de los soldadores hemos desarrollado.

Es un elemento de seguridad importantísimo que nos protege la vista al momento de soldar

B) MANDIL DE SOLDAR

Mandil de soldadura, fabricada en piel de color gris, con ataduras de piel, contra los riesgos de soldadura o actividades similares.

Electricidad Industrial Página 64

Page 65: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Es un elemento también importante que protege de salpicaduras de soldadura y que debemos llevarlo siempre al momento de soldar y así evitar quemaduras.

C) GUANTES DE SOLDAR

Guantes de soldadura de cuero: Estos guantes son fabricados de cuero, resistentes al calor. Costuras internas protegidas y con forrado interior de franela, son importante usarlos para protegernos de quemaduras y salpicaduras en el momento de soldar.

8.- TORNILLO DE BANCO

El tornillo de banco es una herramienta que sirve para sujetar firmemente piezas o componentes a los que se les quiere aplicar alguna operación mecánica. Es un conjunto metálico muy sólido y resistente que tiene dos mordazas; una de ellas es fija y la otra se abre y se cierra cuando se gira con una palanca un tornillo de rosca cuadrada.

Cuando las piezas a sujetar son delicadas o frágiles se deben proteger las mordazas con fundas de material más blando llamadas galteras y que pueden ser de plomo, corcho, cuero, nailon, etc.

La presión de apriete tiene que estar de acuerdo con las características de fragilidad que tenga la pieza que se sujeta.

Es una herramienta que sirve para sujetar firmemente piezas en las cuales hay que ejecutar algún trabajo mecánico (limar, cincelar, granete, etc.) es construido de fundición especial prácticamente irrompible o de acero forjado. El tamaño del tornillo de banco se determina por el ancho de las mordazas (normalmente entre 60-150mm)

Electricidad Industrial Página 65

Page 66: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

PARTES: (TORNILLO DE BANCO)

Mandíbula fija Mandíbula móvil Mordazas Palanca Guía Base fija

9.- ARCO DE SIERRA

Es la herramienta que se usa generalmente para el aserrado manual en la industria metal- mecánica.

Partes:

El arco

El mango El tensor El porta hoja

CARACTERÍSTICAS Y ELECCIÓN DE LA HOJA DE SIERRA.

Las dimensiones principales de las hojas de sierra son:

A= La longitud de la hoja: medida entre los centros de los agujeros de sujeción.

B= El ancho de la hoja.

C= El espesor de la hoja.

Electricidad Industrial Página 66

Page 67: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Nota:

las hojas de sierra para maquinas varían en sus dimensiones. Las hojas de sierra manual se fabrican mayormente de un solo

tamaño.

EL NÚMERO DE DIENTES POR PULGADA.

Según la dureza o espesor del material a serrar, se escoge una hoja con un número determinado de dientes por pulgada.

La regla general es:

Para materiales blandos y de gran espesor se emplean dentado ordinario = 14 z /”.

Electricidad Industrial Página 67

MATERIAL ESPESOR DIENTES

Aluminio, latón, asbesto, plástico, acero

de construcción

Mas de 6 mmMas de 25 mm

14

Aluminio, latón, perfiles

de acero

3-6 mm6-25 mm

18

Acero de construcción

Perfiles de acero chapas

en general

Menos de 6 mm Menos de 6 mm

12-3 mm

24

Aceros aliados Acero plata

Tubos

Menos de 6 mm menos de 3 mm

menos de 1.2 mm

32

Page 68: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Para materiales duros y tenaces, dentado fino = 18-24 z /”.

Para materiales duros y blandos, dentado muy fino = 32 z /”.

Los tipos más comunes tienes: 14, 18, 24, 32 dientes por pulgada.

10.- REGLAS DE ACERO PARA MEDIR

Se usan como mecanismo de medición lineal, estas reglas nos van a ayudar para hacer la medición del fiero que vamos a habilitar. El material utilizado generalmente para la fabricación de las reglas es acero de resorte.

SS.HH: Mantener las reglas alejadas de partes en movimiento de las herramientas de uso general como limas, martillos, etc. Limpiar la reglas después del uso con un trapo aceitado (prevenir oxidación).

MONTAJE DE ELEMENTOS EN EL MODULO.

Electricidad Industrial Página 68

Page 69: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

GENERALIDADES

Nosotros realizamos el montaje de los componentes en la melamina del módulo confeccionado con ayuda de pernos pasantes de acuerdo al plano.

PROCESO DE EJECUCIÓN

1.-FABRICACION DE CABEZAS DE PISTONES.

Habilitar materia prima: acero inoxidable. Ø1” x 2”de longitud.

Electricidad Industrial Página 69

Page 70: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Interpretación de plano de trabajo

Acondicionar torno paralelo.

Montar, sujetar y centrar el material con gramil.

Tornear cabeza de pistón

a RPM. 600. S: manual.

Pasar broca Ø 11/32” a

profundidad 18mm.

Pasar macho M10 x1.25 a 15mm profundad

La verificación de componentes es muy importante para que así nosotros podamos darnos cuentas de los componentes que estén en mal estado para poder reemplazarlos antes de colocarlos en la placa impresa.

Realizar esta operación con la ayuda de los instrumentos de medición como un multitester, Capacímetro, etc. Revisando cada componente:

Transformador Rectificador Condensador Resistencias Diodo Zener Transistor

Electricidad Industrial Página 70

Page 71: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

1.1.- PRUEBAS DEL TRANSFORMADOR MONOFÁSICO(Reductor 220/24 VAC)

Verificar la placa característica de transformador

Probar ohm aje de los devanados de transformador

Con la ayuda de un multitester en la escala de ohm, mediremos la resistencia de los bobinados para así poder identificar el bobinado Primario (red) y bobinado Secundario (Salida)

Para probar la tensión de salida del transformador utilizaremos un voltímetro de corriente alterna estando el transformador energizado

SS/HH: Tener cuidado a la hora de aplicarle tensión no confundirse con las entradas y salidas

1.2.- PRUEBAS DIODO RECTIFICADOR

Electricidad Industrial Página 71

Page 72: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Determinar las características del diodo (usar el manual de semiconductores ECG)Verificar el estado del diodoPar esta operación utilizaremos un Multitester en la escala de diodos y mediremos en polarización directa y en polarización inversa (las medidas de polarización serán dependiendo del instrumento a usar analógico / digital)

1.3.- PRUEBAS DE UN CONDENSADOR (Electrolítico)

Par esta operación utilizaremos un Capacímetro. El instrumento nos ayudara a verificar la capacidad del Condensador.Para probar si el condensador se encuentra en buen estado utilizaremos la ayuda de una fuente de alimentación para medir la carga y descarga el condensador. SS/HH: Verificar si esta descargado para su utilidad

1.4.- PRUEBAS DE UNA RESISITENCIA (lineales)

Electricidad Industrial Página 72

Page 73: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Verificar valor óhmico por código de coloresProbar estado del resistor Par esta operación utilizaremos un Multitester en la escala de Ohm. El instrumento nos ayudara a verificar el Ohmiaje de la resistenciaSS/HH: Tener cuidado con los terminales no Quebrarlos

1.5.- PROBAR DIODO ZENER

Determinar las características del diodo zener usando el manual de semiconductores ECG Tomar código de tensión y potencia del zener Par esta operación utilizaremos un Multitester en la escala de diodos. El instrumento nos ayudara a verificar el estado de Diodo ZENER y la polaridad del mismo

1.6.- PRUEBA DEL TRANSISTOR

Determinar características del transistor usando el manual de semiconductores ECG Existen dos maneras de averiguar la polaridad de un transistor, una de ellas es la utilizando el catalogo de fabricantes o de reemplazos y la otra es haciendo uso de un multímetro en la escala de diodos y para ellos primero hay que identificar la polaridad del instrumento. Se busca terminal común en el transistor, el cual tenga baja resistencia con los otros dos, si se encuentra que el terminal común esta conectado en positivo del instrumento quiere decir que es un

Electricidad Industrial Página 73

Page 74: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

NPN y si esta conectado al terminal negativo del instrumento será un transistor PNP.

Medición Base-Colector en polarización directa

Medición Base-Emisor en polarización directa

Medición Colector-Emisor

2.- PREPARAR LA PLACA DE IMPRESO

Para esta operación tenemos que contar con las medidas de cada componente electrónico a utilizarse según el esquema dado, Para adquirir el tamaño de la placa impresa.

Calcar el esquema en papel ganso(Es un tipo de papel transparente) para luego traspasar el esquema a la parte del Cobre de la placa (Pintado de la Placa con Lapicero indeleble).

Seguidamente de haber dibujado el esquema en la placa, en un recipiente colocamos el acido sulfúrico para quemar la placa por un tiempo accesible. Después de haber observado que la placa esta quemada se limpiara con la ayuda de bencina todos los caminos trazados según el esquema

Luego pasamos a elaborar los agujeros según las dimensiones y formas de los componentes con la ayuda de un pequeño taladro utilizando una broca deseada

SS.HH: Tener cuidado con el acido sulfúrico a la hora de utilizarlo.Tener cuidado al momento de hacer los agujeros con el taladro (Utilizar Equipos adecuados par esta Operación)Para mejor estética instalar en caja protector el circuitoProtegiéndolo y dándolo una mejora apariencia

Electricidad Industrial Página 74

Page 75: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

3.- MONTAR Y SOLDAR COMPONENTES Transformador Rectificador Condensador Resistencias Diodo Zener Transistor

Primero fijaremos todos los componentes (en la placa impresa) según el esquema realizado teniendo cuidado con los terminales (pines) en no quebrarlos a la hora de montar los componentes

Luego soldaremos con la ayuda del cautín, estaño, pasta de soldar cada terminal (pines) de los componentes a ensamblar. Cortar con alicate de corte diagonal los Terminales (pines) sobrantes después de haber soldado. Luego limpiar con bencina la superficie soldada de los componentes soldados

SS/HH: Tener cuidado a la hora de soldar con el cautín (Quemadura) Tener cuidado a la hora de cortar los Terminales

Electricidad Industrial Página 75

Page 76: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

4.- PROBAR FUNCIONAMIENTO DE LA TARJETA

Aplicar tensión al circuito ensamblado. Probar la tensión de entrada en corriente alterna y la tensión de salida de corriente continua

Visualizar que cada componente no recaliente para su buen funcionamiento de la fuente de alimentación

NOTA: Medir si la tensión de salida si es la adecuada para lo requerido en el modulo de PLC

SS/HH: No tocar los materiales en funcionamiento

Electricidad Industrial Página 76

Page 77: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

FUNDAMENTOS TEÓRICOS

Para operar los circuitos electrónicos, módulos y dispositivitos electrónicos, estos no pueden trabajar directamente a la red con corriente alterna. Necesita estar alimentados por una fuente de energía con tensión de salida continua. La energía requerida generalmente no se puede proveer de baterías es decir sin involucrar grandes gastos .En la practica esta energía se obtiene de la red de alimentación principal. La tensión alterna de la red tiene que ser convertida necesaria mente en tensión continua.

Las fuentes de alimentación de potencia reguladas entregan tensión de salida estabilizada y ajustable. Diferentes fabricantes ofrecen fuentes de tensión constante completas, que emplean técnicas de circuitos integrados. Hay varios tipos de fuentes de alimentación rectificadas

Fuente de alimentación rectificada de Media Onda Fuente de alimentación rectificada de Onda Completa Fuente de alimentación rectificada de Diodo Puente

Pero nosotros solo utilizaremos par esta tarea la Fuente de Alimentación Rectificada de Diodo Puente

ESQUEMA:

Electricidad Industrial Página 77

Page 78: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

PLACA IMPRESO

La placa de impreso es un tipo de material usado en la electrónica esta hecho a base de Baquelita y Cobre y sirven para diseñar múltiples Circuitos Electrónicos.

TRANSFORMADOR MONOFASICO.

Se compone de dos bobinados, el primario y el secundario, sin contacto eléctrico y también se compone sobre un núcleo de hierro.

El núcleo esta compuesta de chapas de hierro dulce. Además se aíslan las chapas unas de las otras para que sean pequeñas las perdidas de Foucault al quedar limitada una de la otra

Electricidad Industrial Página 78

Page 79: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Es núcleo de hierro puede tener diferentes formas pero generalmente en estos tipos de transformadores se suelen usar el de tipo “EI” apilados (unidas) de tal manera que conforman una estructura cerrada en la cual los dos bobinados (Primario y Secundario) de cobre esmaltado van sobre la parte central del núcleo de manera aislada

Si bien el primario suele tener dos terminales de entrada el secundario

puede tener dos, tres, cuatro o más terminales de salida

FUNCIONAMIENTO

Su función principal es de transformar o cambiar un voltaje en otro diferente siempre y cuando este sea voltaje de corriente alterna.

Al aplicarle al bobinado primario de transformador una tensión alterna, circulara una corriente alterna en sus espiras generando en el núcleo un campo magnético alterno, el cual circulara por e núcleo magnético e inducirá en el bobinado secundario una tensión alterna. La capacidad de transformar voltaje en otro diferente dependerá de la composición del transformador

Electricidad Industrial Página 79

Page 80: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

CLASES DE TRANSFORMADORES

1. EL TRASFORMADOR ELEVADOR

El uso de este tipo de transformadores es "aumentar" eléctricamente la tensión. Son aquellos transformadores Que al recibir un voltaje

(Bobinado primario) entregan por su bobina secundaria un voltaje mayor. Estos transformadores son utilizados en Electricidad industrial

2. EL TRASFORMADOR REDUCTOR

Este transformador tiene la función de “reducir” la tensión, que al aplicarle una tensión al bobinado primario (220V) esta entregara al bobinado secundario un voltaje diferente (menor) dependiendo del modelo

DIODOS RECTIFICADOR

IMPORTANCIA

Los diodos son muy importantes para diseñar una fuente de alimentación DC ya que estos nos ayudan a transformar (Rectificar) la energía de corriente alterna a corriente continua pulsante.

DEFINICIÓN

Se llama rectificador a todo dispositivo eléctrico que sólo permite el paso de la corriente eléctrica en un sentido.

Electricidad Industrial Página 80

Page 81: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

La figura muestra los símbolos utilizados para representar un diodo PN. La zona P donde va la flecha, se llama ánodo, y la zona N cátodo. Sabemos que un diodo posee elevada conductividad cuando el polo negativo de la fuente de tensión se conecta a su cátodo y el polo positivo de la misma a su ánodo (Polarización).

Entonces se cierra el circuito desde el polo negativo al positivo a través del cátodo, del ánodo y de la carga.

CONDENSADOR

DIFINICIÓN

Dentro de la gran variedad de tecnologías de fabricación de condensadores, los electrolíticos son los de mayor capacidad, debido a que se recurre a reducir la separación entre las placas, a aumentar

Electricidad Industrial Página 81

Page 82: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

el área enfrentada de las mismas y a la utilización de un dieléctrico de elevada constante dieléctrica.

Los condensadores electrolíticos deben su nombre a que el material dieléctrico que contienen es un ácido llamado electrolito y que se aplica en estado líquido. La fabricación de un condensador electrolítico comienza enrollando dos láminas de aluminio separadas por un papel absorbente humedecido con ácido electrolítico. Luego se hace circular una corriente eléctrica entre las placas para provocar una reacción química que producirá una capa de óxido sobre el aluminio, siendo este óxido de electrolito el verdadero dieléctrico del condensador. Para que pueda ser conectado en un circuito electrónico, el condensador llevará sus terminales de conexión remachados o soldados con soldadura de punto. Por último, todo el conjunto se insertará en una carcasa metálica que le dará rigidez mecánica y se sellará herméticamente, en general, con un tapón de goma, que evitará que el ácido se evapore en forma precoz.

Al contrario que la mayoría de los condensadores, los electrolíticos tienen polaridad. La polaridad correcta se indica en el envoltorio con una franja indicando el signo negativo y unas flechas indicando el terminal que debe conectares al potencial menor (terminal negativo). También, el terminal negativo es más corto que el positivo. Esto es importante porque una conexión con voltaje invertido de más de 1,5

Electricidad Industrial Página 82

Page 83: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Voltios puede destruir la capa central de material dieléctrico por una reacción de reducción electroquímica

El condensador es dispositivo almacenador de energía y lo hace en forma constante o momentánea es decir se carga y se descarga y este trabajo lo hace constantemente esta función es indispensable dentro de un circuito electrónico y justamente para almacenar energía.

Un condensador es también un componente que se opone a las variaciones del voltaje pero aun así debemos de saber que el condensador deja pasar libre mente la corriente alterna pero más no la corriente directa.

El tamaño de un condensador depende de la capacidad de un almacenamiento que puede almacenar el condensador la cual indica su valor en micro Faradios (uF) que está impresa en el plástico que en vuelve al condensador.

En conclusión diremos que la capacidad de almacenamiento de energía depende entonces de cuantos (uF) sea el condensador que a

Mayor (uF) mayor almacenamiento de energía lo que casi esta siempre a su tamaño.

RESISTENCIAS

IMPORTANCIA

Electricidad Industrial Página 83

Page 84: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Las resistencias son importantes ya que permiten distribuir adecuadamente la tensión y corriente eléctrica.

Se denomina resistencia eléctrica, simbolizada habitualmente como R, a la dificultad u oposición que presenta un cuerpo al paso de una corriente eléctrica para circular a través de él. En el Sistema Internacional de Unidades, su valor se expresa en ohmios, que se designa con la letra griega omega mayúscula, Ω. Para su medida existen diversos métodos, entre los que se encuentra el uso de un ohmímetro.

Hay varios tipos de resistencias (Resistencias Lineales Fijas, Resistencias Variables, Resistencias no Lineales) nosotros utilizaremos para la fuente de alimentación resistencias Lineales fijas. (Presentan un valor de resistencia constante y es determinado por el fabricante)

DIODO ZENER

El diodo Zener, que recibe este nombre por su inventor, el Dr. Clarence Melvin Zener, es un diodo de silicio que se ha construido para que funcione en las zonas de rupturas. Llamados a veces diodos de avalancha o de ruptura, el diodo zener es la parte esencial de los reguladores de tensión casi constantes con independencia de que se presenten grandes variaciones de la tensión de red, de la resistencia de carga y temperatura.

SIMBOLO ESQUEMÁTICO

Electricidad Industrial Página 84

Page 85: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

El diodo Zener se representa en los esquemas con el siguiente símbolo: en cambio el diodo normal no presenta esa curva en las puntas (Z):

CARACTERÍSTICAS DEL DIODO ZENER

El diodo zener es un tipo especial de diodo, que siempre se utiliza polarizado inversamente.

Recordar que los diodos comunes, como el diodo rectificador (en donde se aprovechan sus características de polarización directa y polarización inversa).

En este caso la corriente circula en contra de la flecha que representa el diodo.

Si el diodo zener se polariza en sentido directo se comporta como un diodo rectificador común.

Cuando el diodo zener funciona polarizado inversamente mantiene entre sus terminales un voltaje constante.

En el gráfico se ve el símbolo de diodo zener (A - ánodo, K - cátodo) y el sentido de la corriente para que funcione en la zona operativa

Se analizará el diodo Zener, no como un elemento ideal, si no como un elemento real y se debe tomar en cuenta que cuando éste, se polariza en modo inverso si existe una corriente que circula en sentido contrario a la flecha del diodo, pero de muy poco valor.

Electricidad Industrial Página 85

Page 86: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

TRANSISTOR

El transistor es un elemento semiconductor que tiene la propiedad de poder gobernar a voluntad la intensidad de corriente que circula entre dos de sus terminales (Emisor y Colector), mediante la circulación de una pequeña corriente aplicada en el tercer terminal (base)

Este efecto se conoce como el nombre de AMPLIFICACION DE CORRIENTE

Se utilizan fundamentalmente en circuitos que realizan funciones de amplificación, control, proceso de datos, etc.

Su fabricación es básicamente la unión de tres regiones y por esta razón se construyen según los dos tipos básicos los transistores NPN y transistores PNP

Son algo así como un diodo pero con otra región más aunque en realidad un transistor no es más que la unión de dos diodos literalmente su

Su representación es por una Q

Electricidad Industrial Página 86

Page 87: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

PROCESO DE EJECUCION:

I. MANTENIMIENTO DE MOTOR TRIFÁSICO.

El mantenimiento consiste en una coordinación eficiente de todas las operaciones indispensables tendientes a conservar en buenas condiciones todos los equipos, máquinas e instalaciones para lograr una mayor producción e involucrar el menor costo posible.

Electricidad Industrial Página 87

Page 88: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

1. ANOTAR DATOS TECNICOS

Para tener un mantenimiento esta operación es necesaria porque permite ver las partes externas principales del motor como las partes deterioradas

Ver placa de Características: es necesario porque permite comparar las mediciones que se dan en la práctica

2. DESMONTAR MOTOR TRIFÁSICO:

Esta operación nos permite desmontar en forma ordenada todo el componente constituyente al Motor para así verificar y dar el mantenimiento adecuado

Marcar puntos de referencia. Es importante realizar este paso ya que nos permite de mucha ayuda en el momento del montaje del motor. Se utiliza un punzón y un martillo de baquelita.

Electricidad Industrial Página 88

Page 89: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Desajustar y retirar los pernos de sujeción. Para realizar dicho trabajo es necesario tener las herramientas (llaves) adecuadas de acuerdo a las medidas de las tuercas y pernos del motor.

Retirar tapas. Golpeando con un martillo de goma todo el contorno de la tapa para ir aflojándola, luego extraerla utilizando un extractor.

3. Verificar partes de motor trifásico:

Permite verificar cada uno de los elementos mecánicos manualmente del motor para que estén en perfectas condiciones y así poder tener un funcionamiento adecuado; los pasos a seguir son las siguientes:

Verificar rodajes: limpiar con la ayuda de un trapo industrial y en seguida engrasamos correctamente.

Verificar ventilador: Limpiamos con la ayuda de trapo industrial, brocha, etc.

Verificar carcasa de estator: hacer limpieza con trapo industrial y una brocha y retirar todo el polvo.

Electricidad Industrial Página 89

Page 90: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Verificar pernos de sujeción: verificamos que no estén doblados o robados (en mal estado); y/o cambiarlos por otros pernos o tuercas.

Verificar rotor: limpiar cuidadosamente ya sea con trapo industrial y/o tinner.

4. Montar motor trifásico:

Después de haber terminado con el mantenimiento de cada una de sus partes del motor, en esta operación nos dedicaremos al montaje de cada una de sus partes ya mencionadas.

Montar tapas: Para montar dichas tapas es necesario tener en cuenta los puntos de referencia marcados al inicio del desmontaje del motor

Fijar y ajustar pernos de sujeción: Con la ayuda de las

Electricidad Industrial Página 90

Page 91: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

herramientas adecuadas que ya se utilizó en el momento del desmontaje se vuelven colocar cuidadosa y correctamente.

5. Realizar protocolo de pruebas:

Ya concluido con el montaje adecuado ahora realizaremos las pruebas y mediciones correspondientes para así hacer la comparación con la placa de características del motor.

Realizar pruebas de rodamientos: Hacer girar el eje del motor manualmente en vacío y también aplicando tensión, si el ruido producido es demasiado entonces los rodajes o cojinetes está en mal estado o fijados incorrectamente además revisar el entrehierro puede ser irregular, lo normal es de 1 mm- 3mm la separación del rotor y estator.

Realizar pruebas de ventilación: La ventilación es muy importante en el funcionamiento del motor por largo tiempo girar manualmente o en vació el eje del motor y asegurarse que el ventilador no esté flojo o roto de lo contrario ocasionará recalentamiento por falta de ventilación.

Medir RPM: Para realizar esta medición es necesario tener un instrumento llamado tacómetro que tiene la función de medir las revoluciones (velocidad) del motor.

Electricidad Industrial Página 91

Page 92: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Medir tensión y corriente: En este trabajo vamos a realizar las mediciones de tensión de entrada y la corriente de entrada al motor para esto utilizaremos un Voltímetro y un Amperímetro a escala indicada.

I. MONTAJE DE MOTORES TRIFÁSICOS.

En esta operación el montaje de los motores trifásicos debe ser correcta y cuidadosamente para que así no sufra ningún movimiento en el momento de trabajo en el módulo y también se debe mantener el espacio correcto entre motor a motor y entre los ejes del motor.

ALINEAMIENTO

La máquina eléctrica debe estar perfectamente Alineada, Un alineamiento incorrecto puede causar defectos en los rodamientos, vibraciones y hasta ruptura del eje.

1. Medir base del motor:

2. Trazado de ejes:

Para realizar un montaje adecuado es necesario realizar el trazado adecuado utilizando una regla graduada de 60 cm. Trazamos los ejes en el módulo de acuerdo a la ubicación de los motores trifásicos. Cómo se indica a continuación:

Electricidad Industrial Página 92

Page 93: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Sacar las medidas en el módulo correctamente donde se va a montar los motores trifásicos.

Trazar los puntos de referencia.

Taladrar y limar agujeros.

3. Montar motor trifásico en módulo:

Realizado el trabajo anterior en esta operación vamos a hacer el montaje de cada uno de los motores trifásicos de acuerdo a las medidas dadas en el módulo correspondiente.

Alinear motores Colocar los pernos de sujeción y ajustar

correctamente

II. INSTALACION DE MOTORES TRIFÁSICOS.

La instalación de los motores trifásicos debe ser muy eficaz de acuerdo al esquema de conexiones y no debe tener ninguna falla ya que puede ocasionar un cortocircuito o algún desperfecto en el momento de su funcionamiento. En el motor existe una placa de identificación indicando el código del esquema de conexión que deberá ser utilizado.

Las máquinas eléctricas deben ser instaladas en locales que permitan fácil acceso para inspección y mantenimiento, principalmente en lo referente a los cojinetes (re lubricación) e inspección de las escobas. Si la atmósfera es húmeda, corrosiva o contiene partículas abrasivas, es importante asegurar el correcto grado de protección.

Para la instalación de los motores se debe tener en cuenta el grado de aislamiento, la tensión de placa, tipo de conexión según indique la placa de características del motor.

Electricidad Industrial Página 93

Page 94: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

1. Verificar continuidad de bobinas: Comprobar la continuidad de las bobinas con un multímetro en escala de ohmios.

2. Verificar el grado de aislamiento: Con un meghómetro hacer la medición correspondiente del grado de aislamiento de cada una de las bobinas del motor…etc.

3. Verificar caja de terminales: Conexión en caja de bornes de acuerdo placa de características y a la tensión que se va a aplicar a dicho motor respectivamente.

4. Conectar caja de terminales: Conectar terminales de motor a borneras de la red, teniendo en cuenta la tensión a aplicarse, de acuerdo al esquema de instalación ya mencionado. En este paso vamos a verificar los terminales

FUNDAMENTOS TECNOLÓGICOS

Motor Asíncrono Trifásico

El motor de inducción trifásico se compone fundamentalmente de un rotor y un estator. Ambas partes están formadas por un gran numero de laminas ferro magnéticas, que disponen de ranuras en la cual se alojan los devanados retóricos y estatóricos respectivamente. En ellos se transformara la potencia eléctrica absorbida en potencia mecánica.

Concepto:

Electricidad Industrial Página 94

Page 95: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Un motor eléctrico es una máquina eléctrica que transforma energía eléctrica en energía mecánica por medio de interacciones electromagnéticas. Algunos de los motores eléctricos son reversibles, es decir, pueden transformar energía mecánica en energía eléctrica funcionando como generadores.

Los motores asíncronos o de inducción son un tipo de motores eléctricos de corriente alterna.

Los motores de corriente alterna se clasifican en motores síncronos y asíncronos pero hablaremos de los motores asíncronos y en especial del motor jaula de ardilla.

EL MOTOR ASÍNCRONO TRIFÁSICO:

Está formado por un rotor, que puede ser de dos tipos: a) de jaula de ardilla; b) bobinado, y un estator, en el que se encuentran las bobinas inductoras. Estas bobinas son trifásicas y están desfasadas entre sí 120º. Cuando por estas bobinas circula un sistema de corrientes trifásicas, se induce un campo magnético giratorio que envuelve al rotor. Este campo magnético variable va a inducir una tensión en el rotor según la Ley de inducción de Faraday.

Como esta corriente inducida se encuentra en el seno de un campo magnético, aparecen en el rotor un par de fuerzas que lo ponen en movimiento.

Electricidad Industrial Página 95

Energía eléctrica

Energía mecánica

Page 96: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

El campo magnético giratorio gira a una velocidad denominada de sincronismo.

Sin embargo el rotor gira algo más despacio, a una velocidad parecida a la de sincronismo.

El hecho de que el rotor gire más despacio que el campo magnético originado por el estator, se debe a que si el rotor girase a la velocidad de sincronismo, esto es, a la misma velocidad que el campo magnético giratorio, el campo magnético dejaría de ser variable con respecto al rotor, con lo que no aparecería ninguna corriente inducida en el rotor, y por consiguiente no aparecería un par de fuerzas que lo impulsaran a moverse.

El rotor puede ser de dos tipos, de jaula de ardilla o bobinado. En cualquiera de los dos casos, el campo magnético giratorio producido por las bobinas inductoras del estator genera una corriente inducida en el rotor.

MOTORES DE JAULA DE ARDILLA:

La mayor de los motores, que funcionan con corriente alterna de una sola fase, tiene el rotor de tipo jaula de ardilla.

Los motores de jaula de ardilla realizo mucho más compactos y tienen un núcleo de hierro laminado. Los conductores longitudinales de la jaula de ardilla son de cobre y van asoldados a las piezas terminales de metal. Cada conductor forma una espira con el conductor opuesto conectado. Por las dos piezas circulares de los extremos.

Cuando este rotor está entre dos polos de campo electromagnéticos que han sido magnetizados por una corriente alterna, se induce una fem. En las espiras de jaula de ardilla, una corriente muy grande las recorre y se

Electricidad Industrial Página 96

Page 97: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

produce un fuente campo que contrarresta al que ha producido la corriente (ley de Lenz). Aunque el rotor pueda contrarrestar el campo de los polos estacionarios, no hay razón para que se mueva en una dirección u otra y así permanecer parado. Es similar al motor síncrono el cual tampoco se arranca solo. Lo que se necesita es un campo rotatorio en lugar de un campo alterno.

Cuando el campo se produce para que tenga un efecto rotatorio, el motor se llama de tipo jaula de ardilla. Un motor de fase partida utiliza polos de campo adicionales que están alimentados por corrientes en distinta fase, lo que permite a los dos juegos de polos tener máximos de corriente y de campos magnéticos con muy poca diferencia de tiempo. Los arrollamientos de los polos de campo de fases distintas, se deberían alimentar por corriente alterna bifásicas y producir un campo magnético rotatorio, pero cuando se trabaja con una sola fase, la segunda se consigue normalmente conectando un condensador (resistencia) en serie con los arrollamientos de fases distintas.

Con ello se puede desplazar la fase en más de 20º y producir un campo magnético máximo en el devanado desfasado que se adelanta sobre el campo magnético del devanado principal.

Desplazamiento real del máximo de intensidad del campo magnético desde un polo al siguiente, atrae al rotor de jaula de ardilla con sus corrientes y campos inducidos haciéndole girar. Esto hace que el motor arranque por sí mismo.

Electricidad Industrial Página 97

Page 98: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

El devanado de fase partida puede quedar en circuito o puede ser desconectado por medio de un conmutador centrífugo que le desconecta cuando el motor alcanza una velocidad predeterminada. Una ves que el motor arranca, funciona mejor sin el devanado de fase partida, el rotor de un motor de inducción de fase partida siempre se

desliza

produciendo un pequeño porcentaje de reducción de la sería la velocidad de sincronismo.

Si la velocidad síncrona fuera 1800 rpm, el motor de jaula de ardilla con cierta carga podría girar 1750 rpm, cuando más grande sea la carga en el motor, más se desliza el motor. En condiciones óptimas de funcionamiento un motor de fase partida con los polos en fase desconectados, puede funcionar con un rendimiento aproximado de 75 a 100.

Otro modo de producir un campo rotatorio en un motor consiste en sombrear el campo magnético de los polos de campo. Esto se consigue haciendo una ranura en los polos de campo y

Electricidad Industrial Página 98

Page 99: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

colocando un anillo de cobre alrededor de una de las partes del polo. Mientras la corriente en la bobina de campo está en la parte creciente de la alternancia, el campo magnético aumenta e induce una fem. Y una corriente en el anillo de cobre. Esto produce un campo magnético alrededor del anillo que contrarresta el magnetismo en la parte del polo donde se halla él. El rendimiento de los motores de polos de inducción sombreados no es alto, varía de 30 al 50 %. Una de las principales ventajas en todos los motores de jaula de ardilla, particularmente en aplicaciones de radio, es la falta de colector y anillos colectores y escobillas. Esto asegura el funcionamiento libre de interferencias cuando se utilizan tales motores.

RELACIÓN DE VELOCIDAD DE ROTACIÓN CON FRECUENCIA ELECTRICA.

Le velocidad del campo rotatorio, ósea la velocidad síncrona, es:

En donde: f=frecuencia y p=numero de polos.

Hay dos tipos generales de rotores. El de jaula de ardilla consiste en barras gruesas de cobre, puesta en cortocircuito por anillos de extremo o, las barras y los anillos de extremo pueden ser una sola pieza fundida de aluminio.

Conclusiones:

En aplicaciones especiales se emplean algunos tipos de máquinas dinamoeléctricas combinadas. Por lo general es deseable cambiar la corriente continua a corriente alterna o a la inversa, o cambiar voltaje

Electricidad Industrial Página 99

Page 100: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

de alimentación de corriente continua, o la frecuencia, o fase con alimentación de corriente alterna.

Una forma de realizar dichos cambios es usar un motor que funcione con el tipo disponible de alimentación eléctrica para que haga funcionar un generador que proporcione a su vez la corriente y voltaje deseados.

GENERALIDADES:

Para el controlar los diferentes sistemas industriales es necesario la elaboración de un tablero eléctrico que este acorde con los necesidades del sistema a operar.

Un tablero eléctrico es una unidad cuya finalidad es agrupar los elementos que permitan proteger, controlar, vigilar y operar un sistema eléctrico. Para considerar un mejor mantenimiento y trabajo.

Es por eso que hemos creído conveniente ensamblar el “MODULO DE ENSAYO DE MOTORES TRIFÁSICOS ASISTIDO PO PLC”. Que contribuirá a complementar la formación práctica de los aprendices de nuestra institución.

PROCESO DE EJECUCIÓN

Electricidad Industrial Página 100

Page 101: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

I.- MONTAJE E INSTALACION DEL CIRCUITO DE FUERZA.

1.- VERIFICAR COMPONENTES.

Fundamento: La verificación de los componentes es un paso que debe realizarse obligatoriamente antes de proceder a cualquiera de las de los siguientes pasos ya que si no se hace no podemos estar seguros de que los componentes funcionaran correctamente en tablero eléctrico.

a) Verificar Interruptor Termo Magnético

Energizar interruptor Termo magnético y medir

Tensión entre sus Bornes de salida.

b) Verificar Relé Térmico.

Simular la sobrecarga y verificar que sus contactos se hayan accionado.

c) Inspeccionar Canaleta

Visualizar que la canaleta y su tapa se encuentren en buen estado.

d) Inspeccionar Borneras.

Chequear que las borneras se encuentren en buen estado.

Electricidad Industrial Página 101

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Page 102: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

SS/HH: Tener cuidado al momento de chequear cada componente.

2.- MONTAR COMPONENTES.

Fundamento: el montaje de los componentes es una de las prioridades a tener en cuenta en un tablero eléctrico ya que si no se tiene especial cuidado al montar los componentes se pude causar el deterioro de los mismos y así acortando su vida útil de trabajo.

a) Diseñar Tablero.

Dividir los espacios adecuados para los componentes considerando su distribución en el tablero.

b) Montar Canaleta. Medir y cortar la canaleta de acuerdo al

diseño del tablero. Fijar la canaleta de acuerdo a la

distribución de los espacios del tablero. Montar riel DIN

Cortar el riel DIN y montarlo en el lugar distribuido.

c) Montar Interruptor Termo Magnético

Colocar el interruptor termo magnético encima del riel y presionarlo hasta escuchar un clic.

Nota:

Esto se hará con todos los interruptores termomagneticos a montar.

Entre cada interruptor termico abra una distancia máxima de 5mm.

Electricidad Industrial Página 102

Page 103: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

d) Montar Relé Térmico

Colocar terminales de entrada del relé térmico en los de salida del contactor y asegurar con el destornillador 3/16 “x 6”.

e) Montar Borneras.

Colocar las borneras en el tablero y asegurar con tornillos autorroscantes adecuados.

SS/HH: Al momento de cortar la canaleta tomar una medida exacta. Al momento de montar cada componente observar que se encuentre correctamente insertado en el riel.

3.- CABLEAR CIRCUITO DE FUERZA.

Fundamento: El circuito de fuerza es de gran importancia ya que es para alimentar a los motores y por donde circulara la corriente de consumo de los mismos por lo que es necesario tener especial cuidado con el dimensionamiento del cable a utilizarse ya que de lo contrario podría ocasionar el daño de los componentes del tablero y de las maquinas a mover.

Esquema de conexionElectricidad Industrial Página 103

Page 104: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

a) Cablear sección de interruptor termo magnético Contactores inversores de giro.

Medir y cortar cable.

Cablear adecuadamente esta sección.

b) Cablear sección de contactores inversores a contactores de motor.

Medir y cortar cable.

Cablear esta sección.

c) Cablear sección relés a borneras.

Medir y cortar cable.

Cablear esta sección.

SS/HH:

Tener cuidado al momento de cortar el cable que no esté muy tensado. Al pelar el cable para embornar en los componentes ver que tenga una Buena superficie de contacto.

Electricidad Industrial Página 104

Page 105: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

FUNDAMENTOS TECNOLÓGICA

EL INTERRUPTOR TERMOMAGNÉTICO

Generalidad: Los interruptores como tal, son elementos que se accionan manualmente. Su función principal es la de aislar un circuito o conectarlo a la red, según sea el caso. Presentan diversas variantes según sea su misión en el circuito. Generalmente los interruptores termo magnéticos se encuentran en el circuito de fuerza.

Concepto: Es un dispositivo de control y de protección magneto-térmico tripolar. La protección térmica tiene compensación de temperatura y sensibilidad a una ausencia de fase. Garantiza el control y la protección de los motores eléctricos.

Elección del interruptor termo magnético

Selectividad: La selectividad puede ser total o parcial.

Es total cuando, sea cual sea el valor de la corriente de fallo, desde la sobrecarga hasta el cortocircuito franco, el aparato situado aguas

abajo se abre mientras que el aparato situado aguas arriba permanece cerrado.

Es parcial cuando las condiciones de selectividad solo se respetan en un rango limitado de la corriente de fallo.

DETERMINACIÓN DEL INTERRUPTOR SITUADO AGUAS ARRIBA

Electricidad Industrial Página 105

Page 106: MONOGRAFIA  2012

Diseño, Construcción Y Montaje De Un Módulo De Ensayos De Mandos

Neumáticos

Para elegir el calibre del termo magnético situado aguas arriba en función del calibre de los aparatos que conforman los arrancadores I1, I2, I3;....In, se deben cumplir dos condiciones:

La corriente del interruptor debe ser mayor o igual a la suma de I1, I2, I3,….In.

La corriente debe ser superior o igual a 3 veces el calibre del aparato que conforma el arrancador más potente.

Características:

Poder de corte.

Poder cierre.

Autoprotección.

Poder de limitación.

SÍMBOLO:

Protección térmica.

Protección contra mayor

Electricidad Industrial Página 106

Page 107: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

ESTRUCTURA

Electricidad Industrial Página 107

Page 108: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

CATEGORIAS DE EMPLEO

ESTRUCTURA

Electricidad Industrial Página 108

Page 109: MONOGRAFIA  2012

è 01 - Carcasa inferiorè 02 - Núcleo fijoè 03 - Anillo de corto circuitoè 04 - Bobinaè 05 - Resorte de cursoè 06 - Núcleo móvilè 07 - Cabezal móvilè 08 - Contactos móviles principalesè 09 - Contactos móviles auxiliaresè 10 - Resortes de contactoè 11 - Contactos fijos principalesè 12 - Contactos fijos auxiliaresè 13 - Tornillo con arandelasè 14 - Carcasa superiorè 15 - Tapa

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Electricidad Industrial Página 109

Page 110: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

EL RELÉ TÉRMICO

Los relés térmicos se utilizan para proteger a los motores de las sobrecargas, pero durante la fase de arranque deben permitir que pase la sobrecarga temporal que provoca el pico de corriente, y activarse únicamente si dicho pico, resulta excesivamente larga.

Principio de funcionamiento.

Los relés térmicos tripolares poseen tres biláminas compuesta cada uno por dos metales con coeficiente de dilatación muy diferente unidos mediante laminación y rodeadas de un bobinado de calentamiento.

Cada bobinado de calentamiento está conectado en serie a una fase del motor. La deformación de las biláminas provoca el movimiento giratorio de una leva o un árbol unido al dispositivo de disparo.

Características:

Tripolares.

Compensados, es decir; insensibles a los cambios de temperatura ambiente.

Sensible a una pérdida de fase, por lo evitan el funcionamiento monofásico del motor.

Rearme automático o manual

Graduación en “amperios motor”

Reglaje

La rueda graduada permite regular el relé con mucha precisión. La corriente límite de disparo está comprendido entre 1,05 y 1,20 veces el valor indicado.

Electricidad Industrial Página 110

Page 111: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Clases de disparo

La norma IEC947-4-1-1 responde a esta necesidad definiendo tres tipos de disparo para los relés de protección térmico:

i. Relés de clase 10:

Validos para todas las aplicaciones de corrientes con una duración de arranque inferior a los 10 segundos.

ii. Relés clase 20:

Admiten arranques de hasta 20 segundos de duración.

iii. Relés clase 30:

Para arranques con un máximo de 30 segundos de duración.

SELECCIÓN DEL RELÉ TÉRMICO

El relé térmico se selecciona en función de en función de la corriente nominal del motor. Siempre que sea posible esta corriente debe estar ubicada en el punto medio de la amplitud comprendida entre el índice mínimo y máximo deberá existir una relación de 1 a 1,6.

Índice de regulación mínimo.

Imin = In x 0.8

Índice de regulación máximo.

Imax = In ÷ 0.8

Electricidad Industrial Página 111

Page 112: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

ESTRUCTURA

Electricidad Industrial Página 112

Page 113: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

CALCULO DE LA SECCIÓN DE LOS CONDUCTORES

Para calcular la sección de de los conductores en un tablero eléctrico se recomienda aplicar dos métodos: por capacidad de corriente y por caída de tensión.

Cálculo por capacidad de corriente:

Esto se calcula observando la tablas de los conductores tipo THW.

Ejemplo:

Para un capacidad de corriente de 20A para la instalación en tubo, que corresponde a un conductor # 12AWG.

A este valor se le aplica los factores de corrección de temperatura y por agrupamiento de conductores en tubo (tablas 02 y 03).

o 20 x 0.88 x 0.8 = 14ª

El valor obtenido es mayor que la corriente consumida por el motor a plena carga (11A)

Cálculo por caída de tensión:

El cálculo por la caída de tensión se realiza mediante la siguiente fórmula:

S=0.0309∗∑ I∗L∗cosФ

%∆V∗V∗100

Electricidad Industrial Página 113

Page 114: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

PROCESO DE EJECUCCION

I. VERIFICAR COMPONENTES

1. VERIFICAR INTERRUPTOR DIFERENCIAL

Verificar sus contactos con un multitester en la escala de ohmios

2. VERIFICAR PULSADOR

Verificar continuidad accionando el pulsador con un multitester en la escala de ohmios

Nota:

El pulsador debe verificarse que no estén en malas condiciones o rotos

Esto se ara con todos los pulsadores

3. VERIFICAR LÁMPARAS DE SEÑALIZACIÓN

Probar continuidad en sus contactos

Electricidad Industrial Página 114

Page 115: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Verificar su funcionamiento aplicando una tensión de 220v

Nota: Esto se ara con todas las lámparas de señalización

4. VERIFICAR BOYAS

Probar continuidad en sus contactos Medir el aislamiento en la escala de ohmios

accionando para arriba y para abajo

5. VERIFICAR CONTROLADOR DE NIVEL ELECTRÓNICO

Identificar sus contactos Verificar los pernos de los contactos que no estén robados

6. VERIFICAR SELECTOR

Identificar sus contactos con un multitester probar continuidad y apuntar en una hoja

Nota: Esto se medirá en la posición “0 “y posición “1”

7. VERIFICAR FINALES DE CARRERA

Verificar sus contactos con un multitester medir continuidad accionando para arriba y para ABAJO

Electricidad Industrial Página 115

Page 116: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

8. VERIFICAR PLC

Verificar módulos de entrada Verificar módulos de salida Identificar contactos

II.MONTAR COMPONENTES

1.-MONTAR INTERRUPTOR DIFERENCIAL

Fijar en el riel correspondiente con precisión

2. MONTAR PULSADOR

Trazar ejes de la caja botonera en compartimiento

De tablero eléctrico, con la ayuda de una regla metálica,

De acuerdo a las medidas en la figura.

Fijar las cajas botonera incluido los pulsadores en el tablero

Nota: esto se ara con todas las cajas botoneras

Electricidad Industrial Página 116

Page 117: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

3. MONTAR LÁMPARAS DE SEÑALIZACIÓN

Fijar las lámparas de señalización en la caja botonera

Fijar las cajas en el tablero

4. MONTAR CONTROLADOR DE NIVEL ELECTRÓNICO

Fijar riel Fijar CNE sobre el riel jalando el seguro que tiene debajo

5. MONTAR SELECTOR

Armar selector Fijar selector en el tablero

6. MONTAR FINALES DE CARRERA

Fijar finales de carrerea con sus respectivos tornillos en el tablero

Electricidad Industrial Página 117

Page 118: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

7. MONTAR PLC

Fijar riel Montar PLC sobre el riel

Nota: Se debe fijar el PLC cuidadosamente para evitar romperlo

III. CABLEAR CIRCUITO DE MANDO

1. CABLEAR DE DE FUENTE DE ALIMENTACIÓN A PLC

2. CABLEAR DE LAS ENTRADAS DEL PLC

Electricidad Industrial Página 118

.01.00.01L

L27.06.05.04.03.02.01.00.0L1

200-7SIMATIC S

+LMINPUTS

24-12VDC

OUTPUTSRELAY

5S4S5S3S2S1S32F31F

1.10.1 + -7.0L36.05.04.02L3.02

Page 119: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Cablear pulsadores, finales de carrera, boyas, relés a entradas al PLC.

3. CABLEAR DE LAS SALIDAS DEL PLC

Cablear bobinas de los contactares, a la bobina del CNE, lámparas de señalización

Electricidad Industrial Página 119

Page 120: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

4. CABLEAR DE PLC A SELECTOR

Clasificar los cables que sobra al momento de cablear en residuos sólidos

Electricidad Industrial Página 120

5S4S5S3S2S1S32F31F

Page 121: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

FUNDAMENTO TECNOLÓGICO

1. INTERRUPTOR O RELE DIFERENCIALEl interruptor diferencial es un aparato cuya misión es desconectar una red de distribución eléctrica, cuando alguna de sus fases se pone a tierra, bien sea directamente o a través de humedades generalmente. El interruptor diferencial se activa al detectar una corriente de defecto Id, que sea superior a su umbral de sensibilidad Is. La protección diferencial está basada en la 1ª Ley de Kirchoff, hace que cuando se produce la derivación a tierra de una fase, exista un desequilibrio entre la suma geométrica de las intensidades de la red; este desequilibrio, que es precisamente la corriente de defecto Id, es lo que detecta el interruptor diferencial, provocando a continuación la desconexión de la red defectuosa. Los interruptores diferenciales más empleados domésticamente y en instalaciones de poca potencia, que se suelen fabricar compactos y para intensidades nominales de entre 5 y 125 A, suelen tener dos tipos de sensibilidad fija que son:           Interruptores de media sensibilidad........ Is = 0,3 A = 300 mA           Interruptores de alta sensibilidad............ Is = 0,03 A = 30 mA La sensibilidad es el valor que aparece en catálogo y que identifica al modelo, sirve para diferenciar el valor de la corriente a la que se quiere que "salte" el diferencial, es decir, valor de corriente que si se alcanza en la instalación, ésta se desconectará. El tipo de interruptor diferencial que se usa en las viviendas es de alta sensibilidad (30 mA) o de muy alta sensibilidad (10 mA), ya que son los que quedan por debajo del límite considerado peligroso para el cuerpo humano. Por regla general, en viviendas no se utilizan interruptores diferenciales de 10mA de sensibilidad, ya que

Electricidad Industrial Página 121

Page 122: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

se utiliza cuando los cabes de instalación son cortos, por lo que en una vivienda lo único que provocaría es que el interruptor "saltara" constantemente. La sensibilidad en un interruptor diferencial, viene marcada como 0,030A.    

Se utiliza para proteger a las personas contra los efectos de contactos eléctricos directos e indirectos

ELEMENTOS DE COMANDO Y SEÑALIZACION

Electricidad Industrial Página 122

Page 123: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

LOS FINALES DE CARRERA son ideales industrias eléctricas. Tienen especificaciones completas y los varios tipos, estructura compacta, aspecto agradable, funcionamiento excelente, acción flexible y confiable, instalación fácil, operación, mantenimiento y ajuste. Los interruptores son aplicables a circuitos de control de la A C de 40 a 60Hz, con un voltaje hasta los circuitos de 500V o de control de la D.C. con un voltaje hasta 660V, y a una corriente hasta

Electricidad Industrial Página 123

è Se Se destina al comando de circuitos auxiliares, principalmente de llaves de

partida;

è Atiende de la mas simple a la mas sofisticada aplicación;

è Formas ergonómicas y elegante design;

è Permite intercambio de fijación (30mm - 22mm);

è Montaje rápida y fácil a través de brida (enganche rápido);

è Alto desempeño en bajas corrientes (12v - 5mA).

CARACTERISTICAS /

Page 124: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

10A convertir una señal mecánica en una señal eléctrica con el fin de controlar el movimiento mecánico o de realizar control secuencial.

Interruptor de Nivel de Tipo Boya

El interruptor de nivel de tipo boya puede utilizarse para operaciones de control por medio del nivel del líquido. El interruptor de nivel tipo boya es apto para contacto con agua residual, en el interruptor, una bola acciona un micro ruptor en función de la posición de flotación, el embudo por el que rueda la bola que produce la conmutación, permite que el dispositivo funcione perfectamente incluso si se retuerce el cable.CONTROLADOR DE NIVEL ELECTRONICOFIGURA 3- Controlador del nivel del agua ON/OFF.La figura muestra el controlador de nivel de agua donde SW representa las bollas de control de nivel. Donde una es dependiente de la otra después de su iteración estas activan los niveles para los terminales de salida "CN" donde estas serán dirigidas hacia las bobinas del contactor o directamente a otro subsistema del sistema de control. De este modo controlando el nivel del agua en el reservorios para la vida útil del equipo donde este controlador se le agrega uno a cada. Reservorio dependiente de que lugar vaya lugar X o lugar Y.

EL PLC

Un autómata programable ejecuta un programa de control creado para solucionar gran partede las tareas de automatización. El micro-PLC S7-200 le ayudará a aumentar la seguridad,

Electricidad Industrial Página 124

Page 125: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

la calidad y la velocidad de producción, reduciendo al mismo tiempo los costes del proyecto.El micro-PLC S7-200 se utiliza para cada vez más campos de aplicación, puesto que combina un elevado rendimiento con un precio atractivo y un funcionamiento sencillo.

INTRODUCCIÓN

El PLC es un equipo electrónico programable diseñado para controlar en tiempo real y en ambientes industriales un proceso secuencial. Se produce una reacción a la información recibida por los captadores del sistema automatizados como son. Finales de carrera, pulsadores, sensores…etc. y se actúa sobre los accionadores de la instalación (motores electroválvulas indicadores luminosos...etc.) En definitiva, se trata de un lazo cerrado entre un dispositivo que controla (PLC) y la instalación en general.

CLASIFICACION DE LOS PLC

Debido a la gran variedad de tipos distintos de PLC, tanto en sus funciones, capacidad, aspecto físico y otros, es que es posible clasificar los distintos tipos en varias categorías

a) PLC tipo Nano:Generalmente el PLC de tipo compacto (fuente, CPU e I/O integradas) que puede manejar un conjunto reducido de I/O generalmente en un número inferior a 100. Permite manejar entradas y salidas digitales y algunos módulos especiales.

b) PLC tipo Compactos:

Estos PLC tienen incorporado la Fuente de Alimentación, su CPU y módulos de I/O en un solo módulo principal y permiten manejar desde unas pocas I/O hasta varios cientos

Electricidad Industrial Página 125

Page 126: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

(Alrededor de 500 I/O), su tamaño es superior a los Nano PLC y soportan una gran variedad de módulos especiales, talescomo:

Entradas y salidas analógicas Módulos contadores rápidos Módulos de comunicaciones Interfaces de operador.

c) PLC tipo Modular:Estos PLC se componen de un conjunto de elementos que conforman el controlador final, estos son:

Rack Fuente de alimentación Modulo de CPU Modulo de I/O

De estos tipos existen desde los denominados Micro PLC que soportan gran cantidad de I/O, hasta los PLC de grandes prestaciones que permiten manejar miles de I/O.

PARTES

Estructura Externa:

Electricidad Industrial Página 126

Page 127: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

El término estructura externa o configuración externa de un autómata programable industrial se refiere al aspecto físico exterior del mismo, bloques o elementos en que está divididoActualmente son tres las estructuras más significativas que existen en el mercado:

Estructura semimodular

Se caracteriza por separar las E/S del resto del autómata, de tal forma que en un bloque compacto están reunidas las CPU, memoria de usuario o de programa y fuente de alimentación y separadamente las unidades de E/S.

Son los autómatas de gama media los que suelen tener una estructura semimodular (Americana).

Estructura modular

Su característica principal es la de que existe un módulo para cada uno de los diferentes elementos que componen el autómata como puede ser una fuente de alimentación, CPU, E/S, etc. La sujeción de los mismos se hace por carril DIN, placa perforada o sobre RACK, en donde va alojado el BUS externo de unión de los distintos módulos que lo componen.

Son los autómatas de gama alta los que suelen tener una estructura modular, que permiten una gran flexibilidad en su constitución.

VENTAJAS DEL PLC

Menor tiempo empleado en la elaboración de proyectos debido a que no es necesario dibujar el esquema de contactos.

Electricidad Industrial Página 127

Page 128: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

No es necesario simplificar las ecuaciones lógicas, ya que, por lo general la capacidad de  almacenamiento del módulo de memoria es lo suficientemente grande.

Posibilidad de introducir modificaciones sin cambiar el cableado ni añadir aparatos.

Mínimo espacio de ocupación

Menor coste de mano de obra de la instalación.

Economía de mantenimiento. Además de aumentar la fiabilidad del sistema, al eliminar contactos móviles, los mismos autómatas pueden indicar y detectar averías.

Menor tiempo para la puesta en funcionamiento del proceso al quedar reducido el tiempo cableado

Si por alguna razón la máquina queda fuera de servicio, el autómata sigue siendo útil para otra máquina o sistema de producción.

INCONVENIENTES

Como inconvenientes podríamos hablar, en primer lugar, de que hace falta un programador, lo que obliga a adiestrar a uno de los técnicos en tal sentido, pero hoy en día ese inconveniente está solucionado porque las universidades ya se encargan de dicho adiestramiento.

El coste inicial también puede ser un inconveniente.

CAMPOS DE APLICACIÓNEl PLC por sus especiales características de diseño tiene un campo de aplicación muy extenso. La constante evolución del hardware y software amplía constantemente este campo para poder satisfacer las

Electricidad Industrial Página 128

Page 129: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

necesidades que se detectan en el espectro de sus posibilidades reales.Su utilización se da fundamentalmente en aquellas instalaciones en donde es necesario un proceso de maniobra, control, señalización, etc., por tanto, su aplicación abarca desde procesos de fabricación industriales de cualquier tipo a transformaciones industriales, control de instalaciones, etc.Sus reducidas dimensiones, la extremada facilidad de su montaje, la posibilidad de almacenar los programas para su posterior y rápida utilización, la modificación o alteración de los mismos, etc., hace que su eficacia se aprecie fundamentalmente en procesos en que se producen necesidades tales como:

Electricidad Industrial Página 129

Page 130: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

I. - INSTALAR EL SOFTWARE:

INSTALAR STEP 7--MICRO/WIN:

Electricidad Industrial Página 130

Page 131: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Insertar el CD de STEP 7--Micro/WIN en la unidad de CD--ROM.

Seleccionar el idioma para la instalación del STEP 7--Micro/WIN.

Aparecerá el asistente de instalación en el cual debemos de seguir las instrucciones que aparecerán en la pantalla.

Iniciar STEP 7-Micro/WIN:

Abrir el menú inicio y hacer “click” en TODOS LOS PROGRAMAS.Dirigirse al programa SIMATIC hacer “click”

Electricidad Industrial Página 131

Page 132: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Buscar el STEP 7--Micro/WIN y hacer “click”

II.- CONFIGURAR CONFIGURACIONES:

a) Conectar el cable multimaestro RS--232/PPI:

Electricidad Industrial Página 132

Page 133: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

1. Debemos unir el conector RS—232 (identificado con ”PC”) del cable multimaestro RS--232/PPI al puerto de comunicación de la PC. (En el presente ejemplo, conectar a COM 1.)

2. Debemos unir el conector RS—485 (identificado con ”PPI”) del cable multimaestro RS--232/PPI al puerto 0 ó 1 del S7—200 (PLC).

3. Debemos vigilar q los interruptores DIP en el cable multimaestro RS--232/PPI estén configurados a la velocidad q se requiera.

b) Ingresar a cuadro de comunicaciones:

1. Buscar en el árbol de operaciones el parámetro de comunicaciones y desglosar el comando.

2. Hacer click en el comando comunicaciones.

Electricidad Industrial Página 133

Page 134: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Verificar los parámetros de comunicación de STEP 7--Micro/WIN:

1. Debemos verificar que la dirección del cable PC/PPI esté ajustada a 0 en el cuadro de diálogo ”Comunicación”.

2. Debemos verificar que la interfaz del parámetro de red esté configurada para el cable PC/PPI (COM1).

3. Debemos verificar que la velocidad de transferencia esté ajustada a 9,6 kbit/s.

Electricidad Industrial Página 134

Page 135: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

c) Establecer la comunicación con el S7- 200.

1. En el cuadro de diálogo “Comunicación”, haga doble clic en el icono “Actualizar”. STEP 7--Micro/WIN buscará el S7--200 y visualizará un icono “CPU” correspondiente a la CPU S7--200 conectada.

2. Seleccione el S7--200 y haga clic en “Aceptar”.

d) Crear un proyecto:

1. Ingresar al STEP 7--Micro/WIN.

Electricidad Industrial Página 135

Page 136: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

2. Programar el proyecto. En el editor Kop o cualquier otro editor del STEP 7--Micro/WIN.

e) Guardar el proyecto:

1. Ir al comando Archivo y desglosar el comando.2. Hacer clic en sub comando Guardar. Aparecerá la siguiente

ventana.

}

3. Elegir la unidad o carpeta donde se desea guardar el Archivo.4. Dar nombre al proyecto y hacer click en el botón guardar.

Electricidad Industrial Página 136

Page 137: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

f) Abrir un Archivo:

1. Ir al comando Archivo y desglosar el comando

Electricidad Industrial Página 137

Page 138: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

2. Hacer click en el sub comando Abrir y aparecerá la siguiente ventana.

Electricidad Industrial Página 138

Page 139: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

3. Elegir la unidad o carpeta donde se ha guardado el proyecto.

4. Elegir el proyecto q se desea abrir. Hacer clic en el botón abrir.

III. TRANSFERIR UN PROYECTO:

a) Cargar un proyecto en el PLC.

Electricidad Industrial Página 139

Page 140: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

1. En la barra de herramientas, hacer clic en el botón”Cargar en CPU” o elegir el comando de menú Archivo > Cargar CPU para cargar el programa en el PLC.Hacer clic en “Aceptar” para cargar los elementos de programa en el S7--200.

b) Extraer un proyecto del PLC a la PC:

1. En la barra de herramientas, hacer clic en el botón ”Cargar PG” o elegir el comando de menú Archivo > Cargar PG para cargar el programa en la PC.

2. Hacer clic en ”Aceptar” para cargar los elementos de programa en la PC.

Electricidad Industrial Página 140

Page 141: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

c) Poner el S7--200 en modo RUN.

1. En la barra de herramientas, hacer clic en el botón”RUN” o elija el comando de menú CPU > RUN.

2. Hacer clic en “Aceptar” para cambiar el modo de operación del S7--200.

FUNDAMENTO TEORICO.

MemoriaDentro de la CPU dispondremos de un área de memoria, la cual emplearemos para diversasFunciones:✗ Memoria del programa de usuario: aquí introduciremos el programa que el autómata va a ejecutar cíclicamente.✗ Memoria de la tabla de datos: se suele subdividir en zonas según el tipo de datos (como marcas de memoria, temporizadores, contadores, etc...).✗ Memoria del sistema: aquí se encuentra el programa en código máquina que monitoriza el Sistema (programa del sistema o firmware). Este programa es ejecutado directamente por el Microprocesador/micro controlador que posea el autómata.✗ Memoria de almacenamiento: se trata de memoria externa que empleamos para almacenar el programa de usuario, y en ciertos casos parte de la memoria de la tabla de datos. Suele ser de uno de los siguientes tipos: EPROM, EEPROM, o FLASH.

Electricidad Industrial Página 141

Page 142: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Cada autómata hace subdivisiones específicas según el modelo y fabricante.

Unidades de entrada y salidaPodemos disponer de dos tipos de módulos de entrada y/o salida:✗ Digitales. Se basan en el principio de todo o nada, es decir o no conducen señal alguna o poseen un nivel mínimo de tensión. Estas E/S se manejan a nivel de bit dentro del programa de usuario.✗ Analógicas. Pueden poseer cualquier valor dentro de un rango determinado especificado porEl fabricante. Estas señales se manejan a nivel de byte o palabra (8/16 bits) dentro delPrograma de usuario.Las E/S son leídas y escritas dependiendo del modelo y del fabricante, es decir, pueden estarIncluidas sus imágenes dentro del área de memoria o ser manejadas a través de instruccionesEspecíficas de E/S.

InterfacesTodo autómata, salvo casos excepcionales, posee la virtud de poder comunicarse con otrosDispositivos (como un PC)

Lo normal es que posea una E/S serie del tipo RS-232 (puerto serie). A través de esta línea sePueden manejar todas las características internas de la autómata, incluida la programación del mismo,y suele emplearse para monitorizar el proceso.

Unidades de programaciónLa programación del autómata puede realizarse, generalmente, empleando alguno de losSiguientes elementos:✗ Consola de programación: suele tener la forma de calculadora.✗ PC: es el modo más empleado en la actualidad. Permite programar desde un ordenadorPersonal estándar, con todo lo que ello supone: herramientas más potentes, posibilidad de

Electricidad Industrial Página 142

Page 143: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Almacenamiento, impresión, transferencia de datos, monitorización mediante softwareSCADA, etc...Cada autómata, dependiendo del modelo y fabricante, posee una conexión a uno o a varios de losElementos anteriores.

PROCESO DE EJECUCION

I.CREAR UNA TABLA DE SIMBOLOS

Para ingresar a la Tabla de símbolos; primero vamos árbol de comando KOP hacemos clic el usuario, para poder ejecutar la tabla de símbolos.

Electricidad Industrial Página 143

Page 144: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Luego ingresamos símbolos, direcciones y comentario si fuese necesario.

Electricidad Industrial Página 144

Hacemos clic Tabla de símbolos

Page 145: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Nota:

En el caso de los nombres simbólicos se distingue entre mayúsculas y minúsculas. El nombre que introduzca deberá coincidir exactamente con el indicado en la tabla de símbolos.

Electricidad Industrial Página 145

Page 146: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

II. CREAR UNA TABLA DE ESTADO

Para acceder al editor de la tabla de estado, haga clic en el icono

Correspondiente que aparece en la barra de navegación de la pantalla principal. Para crear la tabla de estado del programa

Luego ingresamos las direcciones y si tuviésemos algún valor adicional.

IV. PROGRAMAR EDITOR DE KOP

Electricidad Industrial Página 146

Hacemos clic

Tabla de estado

Page 147: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Para ingresar al editor de kop; realizamos los siguientes pasos; primero hacemos clic en la barra de menú ver; luego a la opción KOP.

Barra de operaciones del editor KOP

También puede elegir el comando de menú Ver-Árbol de operaciones para visualizar el árbol de operaciones KOP.

Electricidad Industrial Página 147

Hacemos clic

Page 148: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

IV. EDITAR SEGMENTOS DE TAREA A REALIZAR

1. Haga doble clic en el cuadro ”Network” numerado o cerca del mismo para acceder al campo ”Título” del editor de comentarios. Introduzca el comentario que muestra la figura 10 y haga clic en “Aceptar.”

2. Pulse la tecla con flecha abajo. El cursor del editor KOP se desplazará hacia abajo y se situará en la primera posición de la columna izquierda. ENTER para confirmar el primer elemento y su nombre simbólico. El cursor del editor KOP se desplazará a la segunda posición de la columna. Para introducir los demás elementos del primer segmento:

3. Pulse la tecla F4 para introducir el segmento. 2. Introduzca el nombre Nivel Superior sobre el contacto y pulse la tecla ENTER.

Electricidad Industrial Página 148

Page 149: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

4. Aparecerá una lista de contactos. Se visualizará destacado que no tiene nombre simbólico (”??.?”).

Electricidad Industrial Página 149

Pulsando la tecla F4

Page 150: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

3. Introduzca el nombre Nivel Superior sobre el contacto y pulse la tecla ENTER.

Electricidad Industrial Página 150

Pulsando la tecla F4 + Enter

Page 151: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

El segmento KOP debería ser entonces similar al que muestra la siguiente figura.

Electricidad Industrial Página 151

Ingresar nombre a segmento

Page 152: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

4. Introducir el segundo segmento Para introducir el segundo segmento del programa de ejemplo:

4.1 Utilice el ratón o pulse la tecla con flecha abajo para desplazar el cursor al segmento (Network)

4.2 En el campo de comentario del segmento, introduzca el comentario que muestra la figura. (Puesto que el comentario del segmento 2 es prácticamente idéntico al comentario del segmento 1, puede seleccionar y copiar el texto del segmento 1 y pegarlo en el campo de comentario del segmento 2, cambiando luego el número del componente de 1 a 2).

4.3 Repita los pasos realizados para introducir los elementos del segmento 1, utilizando los nombres simbólicos que muestra.

4.4 Una vez finalizado el segmento 2, desplace el cursor hacia abajo hasta el segmento 3.

5. Introducir los demás segmentos Para introducir los demás segmentos puede seguir el mismo

procedimiento utilizado hasta ahora. La figura demás segmentos.

Electricidad Industrial Página 152

Page 153: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

ARRAQUES ETRELLA - TRIANGULO CON INVERSION DE GIRO DE UN MOTOR TRIFASICO CON FINES DE CARRERA

Electricidad Industrial Página 153

Page 154: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

VI. Compilar el programa Una vez completado el programa de ejemplo, compruebe la sintaxis

eligiendo el comando de menú CPU Compilar Todo o haciendo clic en el botón”Compilar Todo”:

Si ha introducido correctamente todos los segmentos como muestra el programa de ejemplo, obtendrá el mensaje “Compilación finalizada” que incluye también información sobre el número de segmentos y la cantidad de memoria utilizada por el programa. En caso contrario, el mensaje de compilación indicará qué segmento(s) contiene(n) errores.

VII. Cargar el proyecto en la CPUAntes de cargar el programa en la CPU, asegúrese de que ésta se encuentre en modo STOP. Para cargar el programa en la CPU:

1. Coloque el selector de modos de operación de la CPU (ubicado bajo la tapa de acceso de la misma)en la posición TERM o STOP.

Electricidad Industrial Página 154

Page 155: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

2. Elija el comando de menú CPU-STOP o haga clic en el botón correspondiente en la ventana principal. Elija “Sí” para confirmar esta acción.

3. Elija el comando de menú Archivo-Cargar en CPU... o haga clic en el botón “Cargar en CPU” en la ventana principal:

Electricidad Industrial Página 155

Page 156: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

El cuadro de diálogo “Cargar en CPU” permite indicar los componentes del proyecto que desee cargar. Pulse la tecla ENTER o haga clic en “Aceptar.”Un mensaje le informa si la operación de carga se realizó satisfactoriamente.

Electricidad Industrial Página 156

Page 157: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Cambiar la CPU a modo RUN

Si la operación de carga se efectuó con éxito, podrá cambiar la CPU a modo RUN:1. Elija el comando del menú CPU-RUN o haga clic en el botón correspondiente en la ventana principal.2. Elija ”Sí” para confirmar esta acción.. Test-Estado del programa.Si tiene un simulador de entradas conectado a los terminales de su CPU puede colocar los interruptores en posición “ON” para observar la circulación de la corriente y la ejecución de la lógica. Por ejemplo, si activa los interruptores I0.0 y I0.2, estando desactivado el interruptor de I0.4 (”Nivel Superior”), se completará el flujo de corriente del segmento 1. El aspecto del segmento será como el que muestra la figura

Si el programa de STEP 7-Micro/WIN no es igual al de la CPU, aparecerá el mensaje de advertenciaQue muestra la figura 17. Allí tiene la opción de comparar el programa con la CPU o bien, continuar la acción o cancelar.

Electricidad Industrial Página 157

Page 158: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

FUNDAMENTOS TEORICO

1. LENGUAJE DE PROGRAMACION

Los primeros autómatas programables surgieron debido a la necesidad de sustituir los enormes cuadros de maniobra construidos con contactores y relés. Por lo tanto, la comunicación hombre máquina debía ser similar a la utilizada hasta ese momento. El lenguaje utilizado, debería se interpretado, con facilidad, por los mismos técnicos electricistas que anteriormente estaban enContacto con la instalación. Con el tiempo estos lenguajes evolucionaron de tal forma que algunos de ellos ya no tenían nada que ver con el típico plano eléctrico a relés, además de haber evolucionado siguiendo caminos distintos. Todo esto unido al incremento en la complejidad de los procesos a automatizar, no hizo más que complicar el uso de aquello que se creo con una finalidad bien distinta. Con el fin de subsanar este problema la dirección del IEC (estándar internacional) ha elaborado el estándar IEC 1131-3 para la programación de PLC's, con la idea de desarrollar el estándar adecuado para un gran abanico de aplicaciones. Los lenguajes gráficos y textuales definidos en el estándar son una fuerte base para entornos de programación potente en PLC's. Los lenguajes más significativos son:

✗ Lenguaje de contactos (KOP): es el que más similitudes tiene con el utilizado por un electricista al elaborar cuadros de automatismos.✗ Lenguaje por lista de instrucciones (AWL): consiste en elaborar una lista de instrucciones.✗ Plano de funciones lógicas (FUP): resulta especialmente cómodo de utilizar cuando estamos habituados a trabajar con circuitos de puertas lógicas, ya que la simbología usada en ambos es equivalente.✗ GRAFCET: es el llamado Gráfico de Orden Etapa-Transición. Ha sido especialmente diseñado para resolver problemas de automatismos secuenciales. Las acciones son asociadas a las etapas y las condiciones a cumplir a las transiciones. Este lenguaje resulta enormemente sencillo de interpretar por operarios sin conocimientos de automatismos eléctricos.

Electricidad Industrial Página 158

Page 159: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

2. INSTRUCCIONES DE BITS

✗ Bit. Unidad del símbolo binario, solamente puede tomar los valores “0” y “1”.En ocasiones, el bit es insuficiente para definir determinados aspectos de una automatización. Debiendo recurrir a conjuntos formados por varios símbolos binarios (byte).✗ Byte. Conjunto de 8 símbolos binarios, es decir, el byte tiene una longitud de 8 bits, cada uno de lo cuales puede tomar cualquier valor entre 0 y 1.✗ Palabra. En un PLC los bits se asocian en grupos. Con se ha dicho, 8 bits se denominan byte. Y cada bit en dicho grupo está exactamentedefinido por una posición propia que tiene una dirección específica.Un byte tiene una dirección de byte y direcciones de bit 0...7.

Direccionamiento de bytesEl direccionamiento de bytes es similar al de bits, pero en este caso solo se utiliza el identificador de parámetro, seguido de la letra B (byte) más la dirección de byte. De este modo podemos accederá distintos bits con una sola “llamada”:

Electricidad Industrial Página 159

Page 160: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

3. BOBINAS:

Tenemos diferentes tipos de bobinas y su clasificación es la siguiente:

3.1 BOBINAS DIRECTASCuando se asigna una dirección a esta instrucción que corresponde a la dirección de una salida física, el dispositivo de salida cableado a este borne de salida se activa cuando se establece el bit.Cuando las condiciones del reglón se hacen falsas (después de ser verdaderas), el bit se desactiva y el dispositivo de salida correspondiente, se activa.

SIMBOLO 3.2 BOBINAS INVERSASEl bit asociado establece cuando las condiciones del reglón se hacen falsas

SIMBOLO

3.3 BOBINAS DE CONEXIÓNEl bit asociado se pone a 1 cuando el resultado de la ecuación =1

SIMBOLO 3.4 BOBINAS DE DESCONEXIONEl bit asociado se pone a 0 cuando el resultado de la ecuación =1

Electricidad Industrial Página 160

Page 161: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

SIMBOLO

IV.TEMPORIZADORES

Dentro de la temporización hemos de diferenciar entre tres tipos de “relojes”:

A. Temporizador de retardo a la conexión (TON): Este tipo de temporizador permite gestionar los retardos de conexión. Este retardo es programable y puede ser modificada o no desde el terminal.B. Temporizador monoestable TP: Este tipo de temporizador permite elaborar un impulso de duración precisa. Esta duración programable y puede ser modificado o no desde el terminal.C. Temporizador de retardo a la desconexión (TOF): Este tipo de temporizador permite elaborar un impulso de duración precisa. Esta duración es programable y puede ser modificado o no desde el terminal

Electricidad Industrial Página 161

Tipo de temporizador Resolución Valor máximo Nº temporizador

TON

1ms32'767 s (0'546 min) T0 - T64

10ms327'67 s (0'546 min)

T1 a T4 -T65 a T68

100ms3276'7 s (0'546 min)

T5 a T31 - T69 a T95

TOP-TOF

1ms32'767 s (0'546 min) T32 -T96

10ms327'67 s (0'546 min)

T33 a T36 - T97 a T100

100ms3276'7 s(0'546 min)

T37 a T63 - T101 a T255

Page 162: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

GENERALIDADES

Este tipo de arranque especial dentro de este modulo se ha hecho debido a que a nivel industrial existen muchas aplicaciones de la energia electrica;

Electricidad Industrial Página 162

Page 163: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Para poner remedio a los inconvenientes que causa los motopres con un arranque directo de provocar una caida de tension que afectaria el funcinamiento de otros receptores .

Por lo que las normas electricas tambien prohiben el uso de motores electricos que superen una cierta potencia.

1.- PROCESO DE OPERACIÓN Y PUESTA EN MARCHA

Este arranque en el tablero eléctrico su maniobra se puede hacer de dos formas:

Manual donde el operador tendrá la facilidad de acceso para su

maniobra de los equipos de fuerza instalados.

Automática este sistema sustituye total o parcial al hombre en

determinadas tareas ejerciendo las acciones de forma fiable y

satisfactoria.

El tablero eléctrico consta de dos circuitos:

Circuito de control. Son los dispositivos que controlan a los

actuadores y estos son:

Pulsadores, finales de carrera mecánico...etc. Circuito de fuerza. En este circuito se conecta el motor, Que se

instalara mediante el, Interruptor termo magnético, contactores

relé de sobre carga.

El motor realiza el arranque estrella triangulo en sentido horario

o en sentido antihorario segun las ordenes asignadas por los

pulsadores.

Electricidad Industrial Página 163

Page 164: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Despues de haber hecho la selección , el montage, conexionado

y programacion de la tarea es necesario hacer la regulacion del

tiempo de arranque en estrella.

ESQUEMA DE CONEXIÓN DEL MOTOR

CIRCUITO DE FUERZA

CIRCUITO DE CONTROL

Electricidad Industrial Página 164

Page 165: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Electricidad Industrial Página 165

Page 166: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

1.1 FUNCIONAMIENTO

A) Activar el interruptor termo magnético tripolar (circuito de fuerza).

B) Pulsar S1 se energiza la bobina del contactor KD “Q0.0”, y la

lámpara H1 “I2.4” (verde), al cerrar su contacto auxiliar “Q0.0”,

energiza la bobina del contactor KP y contactor “Q0.6” (conexión

estrella). Activa el temporizador “T32”. El motor arranca en

conexión estrella, al 58% de su tensión nominal y gira en sentido

horario.

C) Transcurrido el tiempo regulado, el motor cambia de CONEXIÓN

ESTRELLA “Q0.6” a CONEXIÓN TRIANGULO “Q0.5” y trabaja al

100% de su tensión nominal.

D) Mida tensión entre líneas, amperaje en cada línea.

E) Pulse FINAL DE CARRERA 1”I2.0” el motor Para. Mediante su

contacto activa al temporizador “T33”.

F) Transcurrido un tiempo EL MOTOR CAMBIA DE SENTIDO DE

GIRO, energiza la bobina del contactor KI “Q0.1” y la lámpara H1

“I2.4” (verde), al cerrar su contacto auxiliar KP “Q0.1”, energiza la

bobina del contactor KP y contactor “Q0.6” (conexión estrella).

Electricidad Industrial Página 166

Page 167: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Activa el temporizador “T32”. El motor arranca en conexión

estrella, al 58% de su tensión nominal y gira en sentido

ANTIHORARIO

G) Transcurrido el tiempo regulado, el motor cambia de CONEXIÓN

ESTRELLA “Q0.6” a CONEXIÓN TRIANGULO “Q0.5” y trabaja al

100% de su tensión nominal.

H) Pulse FINAL DE CARRERA 1 ”I2.2” el motor Para. Mediante su

contacto activa al temporizador “T36”.

I) Transcurrido un tiempo EL MOTOR regresa a su posición inicial

J) Ídem. B, C, D, E y F.

CONSIDERACIONES TÉCNICAS:1. El conductor eléctrico para control se utilizara es del tipo GPT

#18 AWG

2. El conductor eléctrico para el circuito eléctrico se utilizara el tipo

THW #12 AWG

3. Interruptor termo magnético trifásico general de 3x32A

4. Los contactores “KD” , “KI” y KP, Kest., Ktr. será del tipo LC1

D25 clase AC3

5. El relé térmico será del tipo LRD 08/ Ie 2.5-4

Electricidad Industrial Página 167

Page 168: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

FUNDAMENTOS TECNOLOGICOS

2.1 CONEXIÓN ESTRELLA

Consiste en unir los terminales (X-Y-Z) de las tres bobinas del

estator, alimentando sus terminales (U-V-W) con las tres fases

de la red (L1, L2, L3) de manera que recibirá una tensión

equivalente a la tensión de fase (tensión de línea dividida por √ 3

: 58%de la tensión nominal).

2.2 CONEXIÓN TRIANGULO

Consiste en unir los terminales U-Z, V-X, W-

Y.

La velocidad del motor se estabiliza cuando

se equilibra el par motor, normalmente entre

el 70% y 80% de la velocidad nominal.

En este momento los devanados se acoplan

en triangulo y el motor trabaja con sus

valores nominales de tensión, corriente y

potencia. Un temporizador se encarga de

Electricidad Industrial Página 168

Page 169: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

controlar la transición del acoplamiento en estrella al

acoplamiento en triangulo. El cierre del contactor en triangulo se

produce con un retardo de 30 a 50 milisegundos tras la apertura

del contactor estrella, lo que evita un corto circuito entre fases al

no poder encontrarse ambos cerrados al mismo tiempo

PRECAUCIONES DE SEGURIDAD

Para el arranque estrella triangulo para evitar que los

contactores que realizan la conexión estrella (K4) y la conexión

triangulo (K3) trabajen al mismo tiempo se ha establecido un

enclavamiento eléctrico ya que debido a esto se puede producir

un corto circuito entre faces y quemar el bobinado de los

contactores.

PRECAUCIONES DE SEGURIDAD EN LA TEMPORIZACIÓN DE LA CONMUTACIÓN ESTRELLA –TRIANGULO

La conmutación de estrella triangulo debe realizarse tan pronto

el motor alcance el entre el 70 y 80% de su velocidad nominal ,

porque si esta se produce demasiado pronto, la intensidad de

pico puede alcanzar valores muy altos, y en caso contrario podía

provocar el paro del motor, con el peligro de dañar los

bobinados,

Para esto influirá determinar correctamente el tiempo de

arranque.

Electricidad Industrial Página 169

Page 170: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

1.- INTERRUPTOR TERMOMAGNETICO TRIPOLAR

Calculo de dimensionamiento ID=¿ x2.5

Donde:In= intensidad nominal del motor En base a la corriente nominal del motor se selecciona el disyuntor motor, se selecciona el inmediato superior,2.- CONTACTORESCalculo de dimensionamiento de contactor principal y el contactor triangulo Se selecciona en función a la corriente de fase del motor

If= ¿√3

Calculo de dimensionamiento de contactor estrella

Se seleccione con el 33% de la corriente nominal del motor.

3.- RELE TERMICOCalculo para determinar el rango de los relés

Para seleccionar un relé térmico es en función a la corriente de fase del motor

Índice de regulación mínimo

Imin=Ifx0.8

Índice de regulación máximo

Imax=If /0.8

4.- PULSADORES

Electricidad Industrial Página 170

Page 171: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Dispositivo el que contiene dos contactos NA/NC y su aplicación es para la apertura y sierre del circuito de MANDO y se caracteriza por capacidad de corriente y voltaje.

5.- LAMPARAS DESEÑALIZACION

Al igual que los pulsadores se caracterizan por su capacidad de corriente y voltaje, además por el tiempo de duración en horas.

VENTAJAS DEL ARRANQUE ESTRELLA TRIANGULO POR PLC EN COMPARACIÓN A LA LÓGICA DE RELES

No es necesario simplificar las ecuaciones lógicas, ya que, por lo general la capacidad de  almacenamiento del módulo de memoria es lo suficientemente grande.

 Posibilidad de introducir modificaciones sin cambiar el cableado ni añadir aparatos.

Mínimo espacio de ocupación

Menor coste de mano de obra de la instalación.

Economía de mantenimiento. Además de aumentar la fiabilidad del sistema, al eliminar contactos móviles, los mismos autómatas pueden indicar y detectar averías.

SS/HH: Asi como para el montage y conexionado de la tarea es necesario utilizar los implementos de seguridad

Electricidad Industrial Página 171

Page 172: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Electricidad Industrial Página 172

Page 173: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

ESQUEMA: ARRANQUE Y PARADA SECUENCIAL DE TRES MOTORES TRIFASICOS

ESQUEMA LADDER

Electricidad Industrial Página 173

Page 174: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

1.- GUARDAR EL PROGRAMA Para guardar su proyecto puede elegir el comando de menú Proyecto Guardar todo o hacer clic en el correspondiente botón.

2.- CREAR UNA TABLA DE SIMBOLOS

Abra el editor de tablas de símbolos con objeto de definir los nombres simbólicos utilizados para representar las direcciones absolutas en el programa de ejemplo. Haga clic en el icono de la Tabla de Símbolos en la barra de navegación Alternativamente, puede elegir el comando de menú.

1. La figura muestra una lista de las direcciones absolutas y los correspondientes nombres simbólicos para el programa de ejemplo. Para introducir los nombre simbólicos:

Electricidad Industrial Página 174

PULSAR ANTICLICK

Page 175: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

CREAR TABLA DE SIMBOLOS

3.- CREAR UNA TABLA DE ESTADOCrear la tabla de estado del programa

Para observar el estado de los elementos seleccionados en el programa de ejemplo es preciso crear una tabla de estado que

Electricidad Industrial Página 175

Page 176: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

contenga los elementos que desee observar mientras se ejecuta el programa.

Para acceder al editor de la tabla de estado, haga clic en el icono correspondiente que aparece en la barra de navegación de la pantalla principal. Para crear la tabla de estado del programa de ejemplo:

1. Seleccione la primera celda de la columna “Dirección” y teclee PULSADOR STOP

2. Pulse la tecla ENTER para confirmar su entrada. Este tipo de elemento sólo se puede visualizar en formato binario (1 ó 0), por lo que no será posible cambiar el tipo de formato.

3. Seleccione la siguiente fila y repita los pasos descritos arriba para cada uno de los elementos restantes como muestra la figura.

4. Si está destacada una celda donde figure una dirección y la fila debajo de la misma está vacía, las direcciones contenidas en las filas siguientes se incrementarán automáticamente al pulsar la tecla ENTER. Para obtener más información acerca de la tabla de estado, consulte la Ayuda online. Puede utilizar el comando de menú.

CREAR TABLA DE ESTADO

Electricidad Industrial Página 176

Page 177: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

5. Para guardar la tabla de estado, elija el comando de menú Proyecto-Guardar todo o haga clic en el correspondiente botón

Electricidad Industrial Página 177

Page 178: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

4.- CARGAR EL PROYECTO EN LA CPU

(MENÚ PROYECTO)

Antes de cargar el programa en la CPU, asegúrese de que ésta se encuentre en modo STOP. Para cargar el programa en la CPU:

a. Coloque el selector de modos de operación de la CPU (ubicado bajo la tapa de acceso de la misma) en la posición TERM o STOP.

b. Elija el comando de menú CPU-STOP o haga clic en el botón correspondiente en la ventana principal.

c. Elija “Sí” para confirmar esta acción.d. Elija el comando de menú Archivo-Cargar en CPU... o haga clic

en el botón ”Cargar en CPU” en la ventana principal:e. El cuadro de diálogo “Cargar en CPU” permite indicar los

componentes del proyecto que desee cargar. Pulse la tecla ENTER o haga clic en “Aceptar.”

Electricidad Industrial Página 178

Page 179: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

f. Un mensaje le informa si la operación de carga se realizó satisfactoriamente.

CAMBIAR LA CPU A MODO RUNSi la operación de carga se efectuó con éxito, podrá cambiar la CPU a modo RUN:

1. Elija el comando del menú CPU-RUN o haga clic en el botón correspondiente en la ventana principal.

2. Elija “Sí” para confirmar esta acción.

Electricidad Industrial Página 179

Page 180: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Electricidad Industrial Página 180

Page 181: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Electricidad Industrial Página 181

Page 182: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

PROCESO DE EJECUCION

I.-PUESTA EN MARCHA

Este arranque en el tablero eléctrico su maniobra se puede hacer de dos formas:

Manual donde el operador tendrá la facilidad de acceso

para su maniobra de los equipos de fuerza instalados.

Automática este sistema sustituye total o parcial al

hombre en determinadas tareas ejerciendo las acciones de

forma fiable y satisfactoria.

El tablero eléctrico consta de dos circuitos:

Circuito de control. Son los dispositivos que controlan a

los actuadores y estos son:

Pulsadores, finales de carrera mecánico...etc. Circuito de fuerza. En este circuito se conecta el motor,

Que se instalara mediante el, Interruptor termo magnético,

contactores relé de sobre carga.

Electricidad Industrial Página 182

Page 183: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

ESQUEMA DE CONEXIÓN DEL MOTOR

CIRCUITO DE FUERZA

Electricidad Industrial Página 183

Page 184: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

II-. FUNCIONAMIENTO

A) Activar el interruptor termo magnético tripolar (circuito de

fuerza).

B) Arranca el motor 1 Activa el temporizador “T32”.

Transcurrido el tiempo regulado, el motor2 cambia de

CONEXIÓN ESTRELLA “Q0.6” a CONEXIÓN

TRIANGULO “Q0.5” y trabaja al 100% de su tensión

nominal

C) Luego de 5 segundos se activa el temporizador t33

activado al contacto Q2.1cativando el motor3 en arranque

directo Mediante su contacto activa al temporizador “T36”.

D) Transcurrido un tiempo EL MOTOR regresa a su posición

inicial y su secuencia es cíclica

PRECAUCIONES DE SEGURIDAD EN CAMBIO DE SECUENCIA DELOS MOTORES

Los tiempos de cada temporizador debe ser después de 5

segundos para que se un arranque secuencial.

Para esto influirá determinar correctamente el tiempo de arranque.

Electricidad Industrial Página 184

Page 185: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

PRECAUCIONES DE SEGURIDAD EN LA MANIOBRA

Asi como para el montage y conexionado de la tarea es necesario utilizar los implementos de seguridad tambien para la maniobra se utilizara el EPP correcto.

DONDE SE EMPLEA ESTOS ARRANQUES

Este arranque secuenciales utilizado en chancadoras para

chancar minerales.

Y es utilizado para transportar materiales en plantas

industriales Motores elevadores.

Mescladores.

LINEAS TENSION CORRIENTE RPM

MOTOR1 R-S 222.3 V R 3.4

3470

R-T 225.4 V S 2.9

S-T 221.5 V T 3.5

TOTAL R-S-T 223.6 V R-S-T 3.2

MOTOR2 R-S 220.3 V R 1.8

Electricidad Industrial Página 185

Page 186: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

3425

R-T 220.7 V S 1.6

S-T 224.5 V T 1.9

TOTAL R-S-T 221.8 V R-S-T 1.8

MOTOR3 R-S 221.2 V R 1.9

1720

R-T 220.3 V S 1.8

S-T 222.0 V T 1.6

TOTAL R-S-T 221.2 V R-S-T I.8

MEDICIONES ELECTRICAS

CUADRO DE COSTOS DE MATERIALES

Nª CANTIDADUNIDAD DENOMINACION C. UNITARIO TOTAL

1 1Pieza

PLC Siemens CP224 -14 entradas 24VDC -10 salidas a relé digitales 1,694.00 1,694.00

2 1Pieza

Modulo de entradas y salidas digitales EM223-8-224VDC-8 relé 742.00 742.00

Electricidad Industrial Página 186

Page 187: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

3 1Pieza

Cable de comunicación Siemens RS/232/PPI MULTI MASTER 810.00 810.00

4 7Pieza

Contactor 25A C/bobina 220V/60HZ Telemecanique 158.00 1,267.00

5 3Pieza

Relé térmico 2T-4A Telemecanique 110.00 330.00

6 1Pieza

Interruptor termo magnético 3X32A a riel 68.00 136.00

7 1Pieza

Interruptor termo magnético 2X2A a riel 66.00 66.00

8 1Pieza

Interruptor termo magnético diferencial 2X25A a riel 105.00 105.00

9 5Pieza

Canaleta plástica ranurada de 30X30X2 metros Legrand 35.00 105.00

10

1Pieza

Caja botonera 3 agujero plástica Stronger 10.00 30.00

11

1Pieza

Caja botonera con 03 pulsadores Stronger 21.50 43.00

12

3Piezas

Lámparas de señalización 220V/60HZ color verde 15.00 45.00

13

3Pieza

Lámparas de señalización 220V/60HZ color rojo 15.00 45.00

14

3Pieza

Lámparas de señalización 220V/60HZ 15.00 45.00

15

2Pieza Final de carrera tipo codillo 22.50 45.00

16

2Pieza boya con contactos NC/NA 30.00 30.00

17

1Pieza Riel Din de 2metros 25.00 25.00

18

1Pieza

Plancha de melanina 250cmX180cmX1.9m 207.00 207.00

19

4Pieza

Tubo de fierro cuadrado de 11/2X6m 52.00 104.00

20

1Pieza Angulo de fierro 1X5m 17.50 17.50

21

1Galón Thinner acrílico 14.00 14.00

Electricidad Industrial Página 187

Page 188: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

22

1Galón Esmalte acrílico 25.00 25.00

23

1Rollo Cable GPT# 18AWG Indeco 48.50 48.50

24

10Rollo Cable GPT # 14AWG Indeco 105.00 105.00

25

10Pieza Lija de fierro 80X1metro 1.50 1.50

26

1Docena Electrodo Cellocord 3/16 4.00 4.00

27

1Docena Estoboles 3/16 X 11/2 8.00 8.00

28

1Pieza Transformador 220V/12-0-12VAC 28.00 28.00

29

1Pieza

Condensador electrolítico 330 Mf-25V 2.00 2.00

30

1Pieza Diodo puente 10A 6.00 6.00

31

1Pieza Diodo zener 24V-2A 2.50 2.50

32

1Pieza Resistencia 330ohm -1W 0.50 0.50

33

1Pieza Resistencia 1K-2W 1.00 1.00

34

1Pieza Porta fusible con fusible 2A-250V 2.00 2.00

35

1Pieza Selector rotativo 40.00 40.00

36

3Metros Cable vulcanizado 3X16+ 1 tierra 4.50 13.50

37

1Pieza Enchufe industrial 3X16+1 tierra 28.00 28.00

38

1Pieza

Regleta de bornera para cable #16 5.00 5.00

TOTAL 6,226.00

Electricidad Industrial Página 188

Page 189: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

TIEMPO EMPLEADO PARA LA ELABORACION Y FUNCIONAMIENTO DEL PROYECTO

Nª DENOMINACION TIEMPO

01 Diseño del Modulo 18 Horas

02 Compra de materiales 48 Horas

03 Construcción de la estructura del Modulo 72 Horas

04 Cortes y montaje de la melamine 72 Horas

05 Fijación y montaje de las canaletas, accesorios y Equipos

24 Horas

06 Montaje de los motores 12 Horas

07 Cableado de los circuito (hardware) del PLC 12 Horas

08 Pruebas de los accesorios 6 Horas

09 Instalación del Software 6 Horas

10 Pruebas de funcionamiento 12 Horas

Electricidad Industrial Página 189

Page 190: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

11 TIEMPO TOTAL 282 Horas

CONCLUSIONES FINALES

Ante todo mencionamos lo útil que es este modulo de ensayo de motores trifásicos asistidos por PLC, que con su adecuado uso; será de mucha importancia y mucha ayuda para los aprendices de la especialidad de Electricidad Industrial.

Además hacemos de mención lo importante que es elaborar dicho modulo u otro proyecto por lo que incitamos a los futuros egresantes ir mejorando los proyectos de innovación para el beneficio de la especialidad y los futuros aprendices de nuestra especialidad.

Electricidad Industrial Página 190

Page 191: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

BIOGRAFIA

www.electrical/ind.com www.google.com www.motores/asincros.ce Libro: GTZ (elemental)

Electricidad Industrial Página 191

Page 192: MONOGRAFIA  2012

Módulo de ensayo de motoresTrifásicos asistidos por PLC

Electricidad Industrial Página 192