以有機鹼催化溶 凝膠反應製備 有機 無機複合材料之研究 ·...

62
國立交通大學 材料科學與工程學系 碩士論文 以有機鹼催化溶-凝膠反應製備 有機-無機複合材料之研究 The Preparation of Organic-inorganic Nano-composite Resins via Sol-gel Reaction Catalyzed by Organic Bases 學生姓名:林佳瑩(C.-Y. Lin指導教授:謝宗雍 博士(Dr. Tsung-Eong Hsieh中華民國 96 2

Upload: others

Post on 07-May-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Microsoft Word - .docCatalyzed by Organic Bases
C.-Y. Lin
96 2
--
Sol-gel Reaction Catalyzed by Orgainc Bases
Student: C.-Y. Lin Advisor: Dr. T.-E. Hsieh



A Thesis Submitted to Department of Materials Science and Engineering
College of Engineering National Chiao Tung University
in Partial Fulfillment of the Requirements for the Degree of Master of Science
in Materials Science and Engineering
February 2007

i
--


ReactionEpoxy ResinsSiO2
Photo-initiatorUV-curable
--Nanocomposites
SiO2
Fourier-transform Infrared
SiO2 Transmission Electron MicroscopyTEM
SiO2
Thermogravimetric Analysis TGA Thermal
Decomposition TemperatureTd
TEOSEpoxy = 15100H2O/TEOS = 14 Td
10°C -Thermomechanical AnalysisTMA 40
60°C Coefficient of Thermal Expansion
CTE 65 ppm/°C
ii
Student: C.-Y. Lin Advisor: Dr. Tsung-Eong Hsieh
Department of Materials Science and Engineering
National Chiao Tung University
Organic bases (the long-chain carbon primary amine, decylamine) were adopted
to catalyze the sol-gel reaction for the preparation of UV-curable nano-composite
resins containing epoxy resins as polymeric matrix and SiO2 particles as inorganic
fillers. The samples were prepared by mixing the precursors, tetraethyl silicate (TEOS)
and epoxy resins together and then added various amounts of water and organic base
to form SiO2 particles in epoxy. The photo-initiator was subsequently added to form
the UV-curable nano-composite resin samples. The analysis of samples using Fourier
Transform Infrared spectroscopy (FTIR) showed no side reactions; the nuclear
magnetic resonance (NMR) and Raman spectroscopy analyses revealed that the SiO2
particles in network structure indeed formed and the transmission electron microscopy
(TEM) clearly observed the aggregation of SiO2 particles. The thermogravimetric
analysis (TGA) in nitrogen ambient showed that the thermal decomposition
temperaturesTdof hybrid samples were related to the quantities of precursors and
water. The sample with the constitution TEOS:Epoxy = 15100 and H2O/TEOS = 14
exhibited the highest Td improvement about 10°C. The thermomechanical analysis
(TMA) showed that the coefficient of thermal expansion (CTE) of samples could be
as low as 65 ppm/°C in the temperature range of 40 to 60°C.
iii



2-2. pH………………………..11
2-3. HNO3NH4OH-…………………..12
2-4. ……………………………………………14
2-5. …………………………………………………16
2-6. …………………………………………16
2-7. ………………………………………17
2-8. ………………………………………17
2-10. - SiO2 TEM
……………………………………………………………………..20
4-2. Epoxy FTIR………………..………………29
4-3. Decylamine FTIR ………………..……………29
4-4. Epoxy FTIR …………………………………30
4-5. FTIR………………..………………………………31
4-6. TEOSFTIR……………………………….……………………32
4-7. 3B3C3D 3ESiO2 29Si NMR………….………....33
4-8. 3A3B3C3D 3E Raman …….………………..33
4-9. TEM a3Bb3Cc3D d3E SiO2 ………35
4-10. AaTGAbDTG………………………..37
4-11. B aTGA bDTG ………………………..37
4-12. CaTGAbDTG………………………..38
vii
4-13. DaTGAbDTG………………………..38
4-14. E aTGA bDTG ………………………..38
4-15. F aTGA bDTG ………………………..39
4-16. GaTGAbDTG………………………..39
4-17. Td…………………...….…………….43
4-18. ……………..……………………………………44
4-19. TEM a3Bb3E SiO2 ……………….………44
4-20. 2ETMA……………………….……………….………45
viii

4-1. TEOS 29Si NMR δ……………………..26
4-2. FTIR …………………………...…………..………......28
4-3. Td……………………..………..........40
1

CompositesCMCPolymer-based CompositesPMC
-Organic-inorganic Composites
-
--Sol-gel

Acrylic Acid-
-Nano-composite Sealing Resins
--
Hardener


SiO2--
TGAThermal Decomposition
TemperatureTd-TMA
Coefficient of Thermal ExpansionCTE

3


[1]
2.1.1 -
-
+ +
+ +
+ +

+
-[2-5]

--
1
Polydimethyl SiloxanePDMS SiO2
5
TEOS- pH = 5.0
-
Si(OR)4 OR
Ring-openingFree-radical Polymerization
Si(OR)4 SiO2 ROH
SiO2
Non-shrinkage-
1992 Mackenzie[3]-
Poly(methyl methacrylate)PMMA SiO2 -1993
Nakata[12]-PolyimidePI SiO2
SiO2
SiO2
1996 Suzuki[13]Poly(vinyl alcohol)PVA TEOS
- SiO2
- TEOS Poly2-hydroxyethyl methacrylate
PHEMAHCl SiO2
Td SiO2 240°C 300°C
1998 Chen[15] Polyethylene glycolPEG TEOS
- PEG-SiO2 PEG
13C29Si NMR PEG

6
pH 8 SiO2
2.2 -
2.2.1 -
HydrolysisCondensation
[17-19]AlkoxideInorganic Salts
Precursors

2Monoliths
4Fibers
5Composites
Ebelmen[21]
7
-
[23]-
Roy[24]-AlSiTiZr

Stober
Methyl
EthylHeptylEsterMethanol
EthanolButanolHeptanol
1971 Dislich[26]-
--
345
6
7
8
3
-
Metal AlkoxideChloride
NitrideAcetate
OH
OH pH

Si Si
Si
AlZr

9

OC2H5
OC2H5
OC2H5
OC2H5
OC2H5
OC2H5
OC2H5
OC2H5
SiO2
2.3.3

1 R = 1 2Brinker[27] TEOS R1
SiO2
TEOS
R = 2 TEOS

2 R = 4 10Aelion[28] R = 4
TEOS SiO2
SiO2
Si(OH)4
[29] R > 2 R < 2
TEOS


11


2-2. pH [30]
12
HNO3NaOHNH4OH-

1995 Tilgner[31] HClNH4F NaOH TEOS -
HCl NH4F TEOS
SiO2 NaOH 50 80
nm
2-3. HNO3 NH4OH -[32]
1997 Chu [32] HNO3 NH4OH -
HNO3 SiO2 NH4OH

2-3 HNO3 - SiO2 NH4OH
HNO3 NH4OH

13
HCl SiO2 0.91 µm
NH4OH 0.6 µm
AEAPTS HCl
SiO2
FormicAceticPropanoic
Pentanoic HClHNO3H2SO4 H3PO4
pH
SiO2 10 60 µm
2.10 2.16 g/cm3
2005 Huang [35] Poly2-hydroxyethylmethacrylatePHEMA
HCl TEOS - SiO2 2 40 nm
150 600 nm-
2.3.5 -
-


1930 Pierre Castan Greenlee
Epoxy Resin 1933 Schlack ABisphenol A
BPA1936 Castan A
1939 Greenlee A
1940 Gastan 1946

15




SHH
Complex Ion

Lewis Base 2-5 2-8
16
C NN
2-7.
2-8.

Photo-polymerization



BF3 RNH2 + CH2
R
H
CH ~
OH
O
O CH2 CH ~
O
Internal
H2C O
ii
Cl−
2-9 NMR
2-10 SiO2 Transmission Electron
MicroscopyTEM 6 25 nm
-

-
2-10. - SiO2 TEM
[39]
Chemical shift (ppm)
II nn tt ee nn ss ii tt yy [[ aa rr bb .. uu nn ii tt ]]
−−((SSiiOO))SSii((OOEEtt))((OOHH))22
−−((SSiiOO))SSii((OOEEtt))22((OOHH))
−−((SSiiOO))22SSii((OOHH))22
−−((SSiiOO))22SSii((OOEEtt))((OOHH))
−−((SSiiOO))22SSii((OOEEtt))22
21


Aldrich

CH3(CH2)8CH2NH2
I
Raman TGA TMA
NMR TEM
- SiO2 TEOS
Decylamine

Decylamine


3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate
4-vinyl-1-cyclohexene Diepoxide Bisphenol A Diglycidyl EtherDGEBA
4-Vinyl-1-cyclohexene Diepoxide DGEBA
3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate


Epoxy 3.5 wt.%
3 UV CU-1000
UV 5 UV 365 nm
80 W
24
3-1. TEOSEpoxy H2O/TEOS* TEOSEpoxy H2O/TEOS 1A 5100 0 1E 5100 10 2A 10100 0 2E 10100 10 3A 15100 0 3E 15100 10 1B 5100 2 1F 5100 14 2B 10100 2 2F 10100 14 3B 15100 2 3F 15100 14 1C 5100 4 1G 5100 18 2C 10100 4 2G 10100 18 3C 15100 4 3G 15100 18 1D 5100 8 2D 10100 8 3D 15100 8
*
3 5
85°C 1 SiO2 10
SiO2
0.01 g
NMR
Varian UnityInova 500 NMR
FTIR Nicolet Protégé 460
3.3.3 Raman Spectroscopy
85°C
TEM TEM Philips TECNAI F20 200 kV
3.3.5 Thermal Analysis
TGAQ500TA Instruments 5 wt.%
Td 5 10 mg 20°C/min
800°C TdTMATA 2940Du Pont Instruments
CTE 5 mm×25 mm
Epoxy PE
TMA PE
TMA 5°C/min 40 150°C

26


Decylamine - TEOS
SiO2 4-1 TEOSH2ODecylamine = 8161 29Si NMR
NMR
[18] TEOS Si Si(OH)x(OC2H5)y(OSi)z
xyz = 4 x y z
Q0Q1Q2Q3 Q4 Q0 TEOS
Q1 Q2
Q3Q4
Qi NMR 4-1
4-1 Q3Q4 Decylamine TEOS
- SiO2
Methyl Ethyl δ TEOS
Q0 δ −74 −82 ppmTetramethyl SilicateTMOS
Q0 −73 −78 ppm
4-1. TEOS 29Si NMR δ [18]
δ ppm
Q0 Si(OH)x(OC2H5)4x −74 −82 Q1 Si(OH)x(OC2H5)3x(OSi) −80 −89 Q2 Si(OH)x(OC2H5)2x(OSi)2 −91 −95 Q3 Si(OH)x(OC2H5)1x(OSi)3 −99 −103 Q4 Si (OSi)4 −110
27
0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200
4-1. TEOS - 29Si NMR
4.2
Epoxy -
Epoxy Epoxy
3,4-Epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate
C C O
- Epoxy
C C O
[40]
Q4110
4-2. FTIR [40] FTIR cm−1
C C O
O
O
4-2 Epoxy FTIR
12501173 802 cm−1 C C O
1728 cm−1
O
OH
Epoxy
OH
4-3 Decylamine FTIR 3332 cm−1 1574 cm−1
FTIR
4-4 Epoxy FTIR EpoxyDecylamine
= 201 Epoxy Epoxy
-Epoxy
Decylamine = 1251 Epoxy 4-4 12501173
802 cm−1 C C O

20
40
60
80
Epoxy
802
1173
1250
3518
1728
3600 3200 2800 2400 2000 1600 1200 800
40
60
80
1574
3332
Base
OH
O
O
20
40
60
80
100
3518
802
1173
1250
1728 cm−1 O
O
SiO2 4.3
4-3
Epoxy Decylamine C C O
O
20
40
60
80
All Samples
4.3 -
Epoxy SiO2

4.3.1
Epoxy SiO2
4-6 TEOS FTIR 4-5 FTIR
1095 cm−1 SiO2 4-6 1095 cm−1
SiOC2H5 4-5 1095 cm−1
[41] SiO2 [42]1095
cm−1 SiO2 TEOS
SiO2 FTIR 1095 cm−1 SiO2
29Si NMR
20
40
60
80
1095TEOS
SiO2 NMR 4-7
3B3C3D 3E SiO2 29Si NMR
3-1 4-7 3B3C3D 3E SiO2 Q3 Q4
Epoxy TEOS - SiO2
Q4 Q3 Q2 TEOS
SiO2 Q2 4-1
Epoxy TEOS

SiO2 Raman
NMR 4-8 3A3B3C3D 3E Raman
3A 3B 3E
[43-47] SiO2 Raman 795 830 cm−1
795 cm−1 830 cm−1 SiO2
Si O C2H5
cm−1

33
3A 795 830 cm1
3A 3B3C3D 3E SiO2
NMR
0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200
3E
3C
3D
3B
4-7. 3B3C3D 3E SiO2 29Si NMR
650 700 750 800 850 900 950
3C 3D
3E
3B
3A
4-8. 3A3B3C3D 3E Raman
Si
O
O
O
OSi
Si
Si
Si

SiO2 4301060 cm−1

A
SiO2 NMR Raman 3A SiO2
TEOS -
SiO2
NMR Raman A
SiO2 2.3.3 R = 1 2R =
H2O/TEOS molar ratio SiO2 R = 4 10

TEOS -
SiO2
Epoxy SiO2

4.3.1 Decylamine TEOS Epoxy -
SiO2 TEM SiO2 4-9a
4-9d 3B3C3D3E SiO2 TEM
35
3B 3E
4-9. TEM a3Bb3Cc3D d3E SiO2
4-9 SiO2 150 200 nm

SiO2

TEOS
a b
c d
2 TEOS


SiO2
SiO2
TGA
TGA
5 wt.%TdTd
TGA DTG DTG
[48,49]

DTG

Tmax
TEOS 4-10
4-16 A G Epoxy PE TGA
DTG 4-3 Td
A G 1 3 EpoxyTEOS
100510010 10015 3-1
0 100 200 300 400 500 600 700 800
0
20
40
60
80
100
4-10. A aTGA bDTG
0 100 200 300 400 500 600 700 800
0
20
40
60
80
100
4-11. B aTGA bDTG

0
20
40
60
80
100
200 400 600
4-12. C aTGA bDTG
0 100 200 300 400 500 600 700 800
0
20
40
60
80
100
200 400 600
4-13. D aTGA bDTG
0 100 200 300 400 500 600 700 800
0
20
40
60
80
100
4-14. E aTGA bDTG

0
20
40
60
80
100
200 400 600
4-15. F aTGA bDTG
0 100 200 300 400 500 600 700 800
0
20
40
60
80
100
4-16. G aTGA bDTG

DTG
PE DTG 4-10b Tmax
Tmax Epoxy


40
4-3. Td TEOSEpoxy H2O/TEOS Td°C wt.% wt.%
PE 0100 0 264.12 0.709 0 1A 5100 0 228.20 1.627 1.877 2.793 2A 10100 0 222.09 1.863 3.026 4.337 3A 15100 0 207.56 3.046 4.149 5.834 1B 5100 2 256.26 1.926 1.877 2.793 2B 10100 2 247.02 3.930 3.026 4.337 3B 15100 2 237.44 4.848 4.149 5.834 1C 5100 4 232.76 2.179 1.877 2.793 2C 10100 4 239.95 3.594 3.026 4.337 3C 15100 4 247.32 4.944 4.149 5.834 1D 5100 8 225.06 2.450 1.877 2.793 2D 10100 8 221.87 3.729 3.026 4.337 3D 15100 8 230.15 4.833 4.149 5.834 1E 5100 10 222.93 2.364 1.877 2.793 2E 10100 10 242.35 3.587 3.026 4.337 3E 15100 10 268.69 5.139 4.149 5.834 1F 5100 14 230.63 2.274 1.877 2.793 2F 10100 14 255.84 3.546 3.026 4.337 3F 15100 14 274.03 5.093 4.149 5.834 1G 5100 18 246.90 2.204 1.877 2.793 2G 10100 18 254.65 4.178 3.026 4.337 3G 15100 18 245.87 4.685 4.149 5.834
A Tmax 1A 3A
4-10b TEOS A
B G 4-3 A
SiO2 4-3 A Td
PE 1A 3A Td A
TEOS 4.3.1 SiO2
A -
41
TEOS 1A 3A
B DTG Tmax 4-11b
A TEOS B
A B Td 4-3
A B Td PE TEOS
1B 3B Td B TEOS
Decylamine SiO2 TEOS
Td A
Epoxy
1TEOS 2H2O 3 C2H5OH 4SiO2
AB Epoxy TEOS
C G Epoxy H2O
- SiO2 C2H5OH
Epoxy
C D TGA Td
4-3 TEOS 3D DTG
4-13b 1D
2D 3D Td 1D2D C
4-12 4-3 CD Epoxy
H2O TEOS SiO2
SiO2 C2H5OH
42
E F Td TEOS
SiO2 Td 1E 3E 1F 3F
4-3 3E3F Td PE
Epoxy EF DTG Epoxy
4-14b 4-15bTmax
A D 3E3F

3G Td 3F
4-3 DTG
4-16b2.3.3 TEOS
Le Chatelier’s
Principle
SiO2 Epoxy G

OC2H5
OC2H5
OC2H5
OC2H5
TEOS Td
SiO2 Td
CD TEOS EF Td
G SiO2 Epoxy
43
TEOS SiO2 Epoxy

-2 0 2 4 6 8 10 12 14 16 18 20 200
210
220
230
240
250
260
270
280 TEOS : Epoxy = 5 : 100 TEOS : Epoxy = 10 : 100 TEOS : Epoxy = 15 : 100
A B C D E F G
4-17. Td
4-3 TGA TEOS
SiO2 SiO2 4-7 29Si
NMR
G 4-3 4.3.2
TEOS
SiO2
SiO2 4-19

°C
SiO2


-2 0 2 4 6 8 10 12 14 16 18 20
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
TEOS : Epoxy = 5 : 100 TEOS : Epoxy = 10 : 100 TEOS : Epoxy = 15 : 100
4-18.
4-19. TEM a3Bb3E SiO2
a b
CTE TMA
TMA

SiO2 CTE 8 ppm/°C [37] PEEpoxy
CTE 99 ppm/°C CTE 8 99 ppm/°C
CTE 2E CTE 65 ppm/°C
2B 2F CTE 120 ppm/°C
PE 4-20 2E TMA CTE
-
0
100
200
300
400
500
600
2E
°C
Q4 Q2Q1 Q0 SiO2

Epoxy C C O
12501173 802 cm−1 O
O
Epoxy
SiO2 Epoxy TEOS
TEOS SiO2
4 TEM SiO2


-R =
14 SiO2
R = 18
3FTEOSEpoxy = 15100R =
14Td 10°C 3ETEOSEpoxy = 15100R = 10
Td 4.5°C
6 TMA CTE 2ETEOSEpoxy = 10100
R = 10 99 ppm/°C 65 ppm/°C-

48


SiO2 -

ii
SiO2
2. H. Dislich, Glastechn. Ber., 44(1971), p.1.
3. John D. Mackenzie, Y.J. Chung, and Y. Hu, “Rubbery Ormosils and Their
Applications”, J. Non-cryst. Solids., 147(1992), p.271-279.
4. Z. Ahmad, M.I. Sarwar, and J.E. Mark, “Dynamic-Mechanical Thermal Analysis
of Aramid-Silica Hybrid Composites Prepared in a Sol-Gel Process”, J. Appl.
Polym. Sci., 51(1997), p.1345-1352.
5. R.A. Ryntz, V.E. Gunn, H. Zon, Y.L. Duan, H.X. Xiao, and K.C. Frisch, J. Coat.
Tech., 64(1992), p.83.
8. 2003
9. G.L. Wilkes, B. Orler and H. Huang, Polym. Prepr., 26(1985), p.300-302.
10. T. Saegusa, J. Macromol. Sci. Chem. A, 28(1991), p.817.
11. Mark W. Ellsworth and Bruce M. Novak, “Mutually Interpenetrating
Inorganic-Organic Networks. New Routes into Nonshrinking Sol-gel Composite
Materials”, J. Am. Chem. Soc., 113(1991), p.2756-2758.
12. S. Nakata, M. Kawata, M.A. Kakimoto and Y. Imaj, “Synthesis and Properties of
New Block Copolymers Based on Polydimethylsiloxane and Tetraphenylene
Containing Polyimide”, J. Polym. Sci., Part APolym. Chem., 31(1993), p.3425.
13. F. Suzuki, K. Nakane and J.S. Piao, “Formation of a Compatible Composite of
Silica/Poly(vinyl Alcohol) Through the Sol-gel Process and a Calcinated Product
of the Composite”, J. Mater. Sci., 31(1996), p.1335-1340.
14. Yen Wei, Danliang Jin, Chuncai Yang, Michael C. Kels and Kun-Yuan Qiu,
“Organic-inorganic Hybrid Materials: Relations of Thermal and Mechanical
Properties with Structures”, Materials Science and Engineering C, 6(1998),
p.91-98.
15. Weibin Chen, Hanqiao Feng, Dayong He and Chaohui Ye, “High Resolution
Solid-State NMR and DSC Study of Poly(ethylene glycol)-Silicate Hybrid
Materials Via Sol-gel Process”, J. Appl. Polym. Sci., 67(1998), p.139-147.
50
16. John T. Pavne, David A. Reuschle and Kenneth A. Mauritz, Polymer Preprints,
38-1(1999), p.247.
17. R.W. Jones, Fundamental Principles of Sol-gel Technology, The Institute of
Metals, (1989), London.
18. C.J. Brinker and G.W. Scherer, Sol-gel Science, Harcourt Brace Jovanovich,
(1990), Academic Press, Boston.
19. Y.A. Attia, Sol-gel Processing and Application, International Symposium on
Advances in Sol-gel Process, (1994), Plenum Press, New York.
20. M. Ebelmen, Ann. Chim. Phys., 15(1845), p.319.
21. M. Ebelmen, Ann. Chim. Phys., 16(1846), p.129.
22. Thomas Graham and F.R.S., “On the Properties of Silicic Acid and other
Analogous Colloidal Substances”, J. Chem. Soc., 17(1864), p.318-327.
23. W. Geffcken and E. Berger, German Patent 736 411(1939).
24. R. Roy, J. Am. Ceram. Soc., 52(1969), p.44.
25. R.K. Iler, The Chemistry of Silica, Wiley-Interscience, (1979), John Wiley & Sons,
New York.
26. Helmut Dislich, “New Routes to Multicomponent Oxide Glasses”, Angewandte
Chemie International Edition, 10[6](1971), p.363-370.
27. C.J. Brinker, K.D. Keefer, D.W. Schaefer, R.A. Assink, B.D. Kay and C.S. Ashley,
“Sol-gel Transition in Simple Silicates ”, J. Non-cryst. Solids., 63(1984),
p.45-59.
28. R. Aelion, A. Loebel and F. Eirich, “Hydrolysis of Ethyl Silicate”, J. Am. Chem.
Soc., 72(1950), p.5705-5712.
29. R.A. Assink and B.D. Kay, J. Non-cryst. Solids., 99(1988), p.359.
30. C.J. Brinker, J. Non-cryst. Solids., 100(1988), p.30-51.
31. I.C. Tilgner, P. Fischer, F.M. Bohnen, H. Rehage and W.F. Maier, “Effect of Acidic,
Basic and Fluoride-catalyzed Sol-gel Transitions on the Preparation of
Sub-nanostructured Silica”, Microporous Materials, 5(1995), p.77-90.
32. L. Chu, M.I. Tejedor-Tejedor and M.A. Anderson, “Particulate Sol-gel Route for
Microporous Silica Gels”, Microporous Materials, 8(1997), p.207-213.
33. Cesar R. Silva and Claudio Airoldi, “Acid and Base Catalysts in the Hybrid Silica
Sol-gel Process”, Journal of Colloid and Interface Science, 195(1997), p.381-387.
34. Basudeb Karmakar, Goutam De and Dibyendu Ganguli, “Dense Silica
51
Microspheres from Organic and Inorganic Acid Hydrolysis of TEOS”, J.
Non-cryst. Solids., 272(2000), p.119-126.
35. Shu-Ling Huang, Wei-Kuo Chin and W.P. Yang, “Structural Characteristics and
Properties of Silica/poly(2-hydroxyethyl Methacrylate) (PHEMA)
Nanocomposites Prepared by Mixing Colloidal Silica or Tetraethyloxysilane
(TEOS) with PHEMA”, Polymer, 46(2005), p.1865-1877.
36. 1993
37. “”10 199454
11 1994120 12 1994129 1 1995166
38. 2003
39. Yen-Chun Chou, Yu-Young Wang and T.-E. Hsieh, “Transparent Photo-curable
co-Polyacrylate/Silica Nanocomposites Prepared by Sol-gel Process”, J. Appl.
Polym. Sci., accepted.
40. L.G. Wade, Jr., Organic Chemistry, Prentice Hall, (2003), Pearson Education, New
Jersey, Chapter 12.
42. Plinio Innocenzi, “Infrared Spectroscopy of Sol-gel Derived Silica-based FilmsA
Spectra-microstructure overview”, J. Non-cryst. Solids., 316(2003), p.309-319.
43. F.L. Galeener, “Planar Rings in Vitreous Silica”, J. Non-cryst. Solids., 49(1982),
p.53-62.
44. V. Gottardi, M. Guglielmi, A. Bertoluzza, C. Fagnano and M.A. Morelli, “Further
Investigations on Raman Spectra of Silica Gel Evolving Toward Glass”, J.
Non-cryst. Solids., 63(1984), p.71-80.
45. D.M. Krol and J.G. van Lierop, “The Densification of Monolithic Gels”, J.
Non-cryst. Solids., 63(1984), p.131-144.
46. A. Bertoluzza, C. Fagnano, M.A. Morelli, V. Gottardi and M. Guglielmi, “Raman
and Infrared Spectra on Silica Gel Evolving Toward Glass”, J. Non-cryst. Solids.,
48(1982), p.117-128.
47. T.W. Zerda, I. Artaki and J. Jonas, “Study of Polymerization Processes in Acid and
Base Catalyzed Silica Sol-gels”, J. Non-cryst. Solids., 81(1986), p.365-379.
48. T. Hatakeyama and F.X. Quinn, Thermal Analysis : fundamentals and applications
to polymer science, Chichester, (1999), John Wiley & Sons, New York, Chapter 4.
52
1 .pdf
2 .pdf
3 .pdf