optimum operating conditions for a laser

Upload: sutanwi-lahiri

Post on 27-Feb-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 Optimum Operating Conditions for a Laser

    1/20

    O P T I M U M O P E R A T I N G C O N D I T I O N S F O R A L A S E R

    U R A N I U M E N R I C H M E N T P L A N T

    KIMIO YAMADA an d NORIHIKO OZAKI

    Atomic Energy Research Laboratory, Hitachi Ltd, Ozenji, Tama-ku,Kawasaki, Kanagawa Japan)

    a n d

    MANABU YAMAMOTO an d KI ICHI UEYANAGI

    Central Research Laboratory, Hitachi Ltd, Higashi-Koigakubo, Kokubunji, Tokyo Japan)

    S UMMA R Y

    Operating conditions o f the laser uranium enrichment plant to obtain cheaper enriched

    uranium are optimised by using the standard optimisation procedure. A simple kinetic

    model is given to obtain the ion production rate as a function of the laser energy

    density, ultraviolet light energy density, atomic density and depth and height of the

    reaction region. The unit cost of enriched uranium is chosen as a value imction instead

    of the unit cost of the separative work. The construction cost is expressed by means of

    an exponential fi~nction to take the scale merit into account.

    Two numerical results are given. In case 1, the laser power and efficiency are subject

    to the restraints determined by the present technical levels and in case

    2,

    they arej}'ee.

    The unit cost of the enriched uranium is higher than those of the gaseous dijfitsion and

    gas centrifuge methods by a factor of 2 ~ 11. Results indicate that laser uranium

    enrichment is probably competitive with the other uranium enrichment methods,

    provided that the laser efficiency is improved by up to 1 and the laser lijetime is

    extended several times.

    1 . I N T R O D U C T I O N

    Th e t ech n i q u e fo r l a s e r i s o t o p e s ep a ra t i o n h as b een d ev e l o p ed an d r ecen t l y t h e

    sepa ra t ion o f u ran ium i so top es wa s ach ieved by the se lect ive two-s tep

    pho to ion i sa t ion p rocess , in the Uni ted S ta tes .1

    A po in t c om m on to the laser iso top e separa t ion i s to use i so tope sh if t , and exc ite

    select ively specif ic iso top es with the laser . La ser iso t op e sepa rat io n involves va rious

    methods , depend ing on the d i f fe rences in separa t ion , such as two-s tep

    287

    Applied Energy ( 3 ) ( 1 9 7 7 ) - - A p p l i e d S c i e n c e P u b l i s h e r s L t d , E n g l a n d , 1 9 7 7

    P r i n t e d i n G r e a t B r i t a i n

  • 7/25/2019 Optimum Operating Conditions for a Laser

    2/20

    288

    KIMIO YAMADA, NORIH IKO OZAKI, MANABU YAMAMOTO, KI1CHI UEYANAGI

    p h o t o i o n i s a t io n , p h o t o d e fl e c ti o n , p h o t o d i s s o c i a t i o n a n d p h o t o c h e m i s t r y . T h e

    t w o - s te p p h o t o i o n i s a t i o n m e t h o d f o r t he u r a n i u m a t o m is t he m o s t p r o m i s i n g o f

    t h e se m e t h o d s . T h e r e a s o n s a r e : ( 1) th i s m e t h o d h a s a l r e a d y a c h i e v e d su c c es s o n a

    l a b o r a t o r y s c a l e; (2 ) t h e u r a n i u m a t o m h a s w el l k n o w n a n d r e s ol v e d is o t o p e s h i ft s i n

    e l e c t ro n i c l ev e ls i n c o m p a r i s o n w i t h u r a n i u m m o l e c u l e s .

    T h e p u r p o s e o f t h is p a p e r is t o d is c u s s th e o p t i m u m c o n d i t i o n s f o r th e l a s e r

    u r a n i u m e n r i c h m e n t p l a n t. T h e t w o - s t e p p h o t o i o n i s a t i o n m e t h o d o f t he u r a n i u m

    a t o m i s s e le c te d , a n d t h e C o m p l e x m e t h o d 2 is e m p l o y e d a s a n o p t i m i s a t i o n

    p r o c e d u r e . T h e o p t i m u m c o n d i t i o n s f o r t w o t y p ic a l c a s e s a r e s u r ve y e d . I n ca s e 1 , t h e

    l a s er p o w e r a n d e ~ c i e n c y a r e s u b j e c t t o r e s t r a in t s d e t e r m i n e d b y th e p r e s e n t

    t e c h n i c a l l ev e ls , a n d i n c a s e 2 t h e y a r e f r e e f r o m t h e t e c h n i c a l r e q u i r e m e n t s ; i .e . n o

    t e c h n i c a l r e s t r i c t i o n s w e r e p u t o n t h e m .

    2.

    LASER ISOTOPE SEPARATION PROCESS AS APPLIED TO URANIUM ENRICHMENT

    2 1 Uranium energy levels

    E n e r g y l ev els f o r t h e u r a n i u m a t o m e m p l o y e d i n th e s e l ec ti ve t w o - s t e p

    p h o t o i o n i s a t i o n p r o c e s s a r e s h o w n i n F i g . 1 . T h e f a i r l y s t r o n g t r a n s i t i o n ( 7s ) 2 5 L 6

    I

    E

    4 x 1 0 4

    e--

    2 x 1 0 4

    X

    I J . J

    0

    1 s t i o n i z a t i o n l e v e l

    U V L i g h t

    _ ~ ~ 3 1 0 0

    E x c i t e d l e v e l

    Is o to p e h i ft ~ ~ k

    \ 0 . 0 8 A ) J

    L a s e r l i g h t / / ~ 7 p 7 M 7

    s 9 1 5 4 U G r o ,u n d l e v e l

    i t s ) 2 5 L 6

    6

    In

    4 a ~

    -

    _ t

    O

    o i

    2 . ~ -

    X

    0

    Fig. 1. U ra ni um energy levels for the selective two-step photoionisation proces s. The

    235U

    atom is

    selectively excite d to the 7s7p7Mr level with dye las er light of wavelength 5915-4A. The excited atom is

    successively ionised by the ultraviolet light o f wavelength between 2000 and 3100A.

  • 7/25/2019 Optimum Operating Conditions for a Laser

    3/20

    OPERATING CONDITIONS FOR URANIUM ENRICHMENT

    289

    7 s 7 p 7 M 7 , 2 = 5 9 1 5 . 4 A , i s c h o s e n f o r i s o t o p e s p e c if i c e x c i t a t i o n , b e c a u s e t h i s

    le ve l h a s a r e m a r k a b l e i s o t o p e s h i ft , a p p r o x i m a t e l y 0 -0 8 A , a n d a f a i r l y s t r o n g

    a b s o r p t i o n c r o s s - s e c t i o n . A l s o t h e e x c i t a t i o n e n e r g y o f t h i s l e v e l a g r e e s w i t h t h e

    w a v e l en g t h o f th e m a x i m u m o u t p u t p o w e r o f t h e d y e l as er . T h e i o n i s a t io n l im i t f r o m

    t h is e x c i t a ti o n l e v e l i s 3 1 0 0 A f o r a si ng le q u a n t u m p h o t o i o n i s a t i o n . T h e l o w e r l im i t o f

    w a v e l e n g t h t o p r e v e n t d i r e ct i o n i s a t i o n f r o m t h e g r o u n d s t a te is 2 0 0 0 A . T h e

    u l t r a v i o l e t li g h t in th i s w a v e l e n g t h r a n g e i s o b t a i n a b l e b y f r e q u e n c y d o u b l i n g o f

    v i s ib l e l a se r l i gh t such a s the Ar ion l a se r l i ne s .

    T h e 7 s 7 p 7 M 7 e x c i t e d le v el o f 2 3 5U a t o m i s s p l i t i n t o e i g h t h y p e r f i n e s t r u c t u r e s d u e

    t o t h e i n t e r a c t i o n b e t w e e n s p i n s o f t h e e l e c t r o n s a n d n u c l e u s . I n t h e s e l e ct iv e t w o - s t e p

    p h o t o i o n i s a t i o n p r o ce s s , o n l y o n e c o m p o n e n t o f t h e h y p e r fi n e s tr u c t u re is us e d .

    2 .2 .

    h o t o i o n p r o d u c t i o n r a t e

    I n t h i s s e c t io n , a s i m p le k i n e t ic m o d e l t o c a l c u l a te t h e p h o t o i o n p r o d u c t i o n r a t e i s

    g iv e n . T h e t h e r m a l i s a t i o n p r o c e s s e s to b e c o n s i d e r e d a r e i l l u s tr a t e d i n F i g. 2 . M a j o r

    t r a n s i t i o n p r o c e s s e s a r e r e s o n a n t e x c it a t i o n , p h o t o i o n i s a t i o n , i n d u c e d e m i s s i o n a n d

    t h e r m a l r e l a x a t io n . T h e r e s o n a n t e x c i t a t io n a n d p h o t o i o n i s a t i o n t a k e p l ac e w h e n

    t h e a t o m a b s o r b s a p h o t o n w i t h e n e r g y h v= a n d h v r e sp e c ti v el y .

    I f w e n e g l ec t c h a r g e t r a n s f e r a n d e n e r g y t r a n s f e r b e t w e e n 235U i n t h e g r o u n d s t a te ,

    s t i o n i z a t io n C h a r g e t r a n s f e r

    l a v e l / / ~ / / ~ , ~ ~ / ~ ~ / / ~ ~

    Vi

    E x c i te d l e v e l

    W i

    E n e r g y t r a n s f e r

    l 1 V e

    p o n t a n e o u s d e c a y

    I n d u c e d e m i s s i o n

    W e

    G r o u n d l e v e l

    35U 38u

    Fig. 2. A three-levelsystem llustrating a selective wo-step photoionisationprocess. M ajor transition

    processes are resonan t excitation, photoionisation, induced emission and thermal relaxation.

  • 7/25/2019 Optimum Operating Conditions for a Laser

    4/20

  • 7/25/2019 Optimum Operating Conditions for a Laser

    5/20

    O P E R A T I N G C O N D I T IO N S F O R U R A N I U M E N R I C H M E N T 291

    3.

    O P T I M I S A T I O N P R O C E D U R E

    3 1 Op t imisat ion calculat ion

    T h e c o m p l e x m e t h o d 2 w a s u s e d a s t he o p t i m i s a t i o n p r o c e d u r e . I n o r d e r t o

    o p t i m i s e w i t h t h i s m e t h o d , t w o p r e r e q u i s i t e s a r e i n g e n e r a l n e c e s s a r y . F i r s t l y , o n e

    h a s t o d e f in e t he i n d e p e n d e n t v a r i a b l e s o f t h e o p t i m i s a t i o n p r o b l e m . T h e n e c e s s a r y

    c o n d i t i o n s f o r i n d e p e n d e n t v a r i a b l e s a r e : ( 1) t he e f f ec t u p o n t h e v a l u e f u n c t i o n is

    g r e a t a n d ( 2) th e y h a v e f in i te o p t i m u m v a l u e s. S e c o n d l y , a s u i t a b l e v a l u e f u n c t i o n h a s

    t o b e d ef in e d . O p t i m i s a t i o n o f t h e o p e r a t i n g c o n d i t i o n s o f th e l a s er u r a n i u m

    e n r i c h m e n t p l a n t m e a n s t h e d e t e r m i n a t i o n o f t h e o p t i m u m c o m p o s i t i o n s a n d t he

    s p e c i fi c a ti o n s w h i c h m i n i m i s e t h e u n i t c o s t o f e n r i c h e d u r a n i u m . I t is th e r e f o r e

    d e s i r a b l e t o c h o o s e t h e u n i t c o s t o f e n r ic h e d u r a n i u m i n s t ea d o f t h e u n i t c o s t o f

    s e p a r a t i v e w o r k a s a v a lu e f u n c t i o n . T h e v a l u e f u n c t i o n is , o f c o u rs e , e x p r e s s e d a s a

    f u n c t i o n o f th e i n d e p e n d e n t v a r i a b le s .

    T h e s t a n d a r d d e v i a t i o n o f i n d e p e n d e n t v a r i a b l e s is a p p l i e d t o a c o n v e r g e n c e

    j u d g e m e n t in th e o p t i m i s a t i o n c a l c u l a t io n . T h e c o n v e n t i o n a l j u d g e m e n t f o r

    c o n v e r g e n c e i s t o c o m p a r e t h e s t a n d a r d d e v i a t i o n o f th e v a l u e f u n c t i o n w i th a s m a l l

    p o s i ti v e n u m b e r . H o w e v e r , it is d e s ir a b l e t o u s e t h e s t a n d a r d d e v i a t io n o f t h e

    i n d e p e n d e n t v a r i a b l e s a s a j u d g e m e n t c o n d i t i o n f o r c o n v e r g e n c e in c a se o n e i s

    i n t e r e st e d in t h e c o n v e r g e n c e v a lu e s o f th e i n d e p e n d e n t v a r ia b l e s.

    l

    S ~ l o n c o lle c to r

    R e a c t i o ne g i o n

    S l i t

    ruc ib le

    Fig. 3. The schem aticview of the isotope separation region. The uranium atom evaporating from the

    high temp erature crucible is irradiated by laser light and ultraviolet light in the reaction region , and

    ionised 235U atoms are collected by the ion collector electrodes. Distance a = 50mm .

  • 7/25/2019 Optimum Operating Conditions for a Laser

    6/20

    2 9 2 KIMIO YAMADA, NORIHIKO OZAKI, MANABU YAMAMOTO, KIICHI UEYANAGI

    3.2.

    ndependent variables

    Figure 3 shows the schematic view of the isotope separation region. The

    arrangement of the laser, ultraviolet light and atomic beam and the related

    independent variables are shown in Fig. 4. The isotope separation region is

    composed of a crucible for making the uranium vapour, a slit for the atomic beam

    collimation and ion collector. The uranium metal in the crucible is heated using the

    electron gun. The uranium atoms evaporating from it enter the reaction region with

    a cross-section ofSuv cm in width and 1 cm in depth, and are irradiated by laser and

    ultraviolet beams. The laser light, being perpendicular to the atomic beam, is Suv cm

    in width and Sa cm in height. The ultraviolet light with cross-section of 1 cm in

    depth and S a cm in height meets orthogonally both the atomic beam and the laser

    light. The

    235U

    ions are selectively produced in the reaction region and are collected

    by the ion collector located downstream of the reaction region.

    Five independent variables are selected according to the reasons described in

    section 3.1 ; these are laser energy density, ultraviolet light energy density, atomic

    density, depth 1 and height S, of the reaction region. The important variables which

    might have influence on the unit cost of enriched uranium besides the independent

    variables are distance between the crucible and the reaction region, gap o f the ion

    collector electrodes and width Su~ of the reaction region. It is, of course, desirable for

    React ion region

    W i d t h

    t y = P i

    Laser l i gh t

    E n , r . d . , . , = p , )

    tomic beam

    ( n e n s i t y = N o )

    F i g . 4 . T h e i n d e p e n d e n t v a r i a b le s f o r o p t i m i s a t i o n o f l as er u r a n i u m e n r i c h m e n t p l a n t . T h e u r a n i u m

    atom is i r rad ia ted by laser l i gh t and u l t rav io le t ] i gh t w i th energy dens i t i es Pc and P~ , respec t i ve ly .

  • 7/25/2019 Optimum Operating Conditions for a Laser

    7/20

    OPERATING CONDITIONS FOR URANIUM ENRICHMENT

    293

    a t o m i c d e n s i t y t o r e d u c e t h e d i s t a n c e b e t w e e n t h e c r u c i b le a n d t h e r e a c t i o n r e g i o n .

    H o w e v e r , i t i s n e c e s s a r y fo r t h e t h e r m a l s h i el d a n d c o l l i m a t i n g sl it to s e p a r a t e t h e m

    b y a t l e a st 5 c m . T h e d e n s i t y o f 2 3 5U i o n s d e c r e a s e s b y c h a r g e t r a n s f e r a s t h e y g o

    a c r o s s th e a t o m i c b e a m t o t h e i o n c o l le c t o r . T h e r e f o r e , th e s m a l l e r g a p o f t h e i o n

    co l l ec to r e l ec t r o d es i s d e s i r a b l e . T h e w id th S uv o f t h e r e a c t i o n r eg io n i s 1 cm . Th e

    u l t ra v i o l e t l ig h t e n e r g y d e n s i t y d if fe r s o n b o t h s id e s o f t h e r e a c t i o n r e g i o n b e c a u s e o f

    t h e a b s o r p t io n o f th e e xc it e d u r a n i u m a t o m s . H o w e v e r, th e a m o u n t o f a t t e n u a t i o n

    lo s s w i ll s c a r ce ly b e n o t i c ed s i n ce t h e p h o to io n i s a t i o n c r o s s - s ec t i o n o f u l t r a v io l e t

    l ig h t is e x t r e m e l y s m a l l. A s l o n g a s t h e a m o u n t o f a t t e n u a t i o n l os s c a n b e n e g l e c te d ,

    u l t r a v io l e t l i gh t m a y b e u s ed . A s a r e s u l t , i t is p o s s ib l e t o u s e u l t r a v io l e t li g h t a t l e a s t

    500 t imes.

    3.3.

    Value un ction

    (1) Prod uction rate o f enricheduranium.

    T h e c o n c e n t r a t i o n o f 2 35 U i o n s d e c r e a se s

    b y c h a r g e t r a n s f e r c o l l is i on s b e t w e e n z 3 5U i o n s a n d 2 3 8 U a t o m s w h e n i o n s a r e

    s e p a r a t e d f r o m t h e n e u t r a l b e a m b y t h e s t a t ic e l e ct ri c fi el d. T h e n u m b e r o f z 35 U i o n s

    co l l e c t ed b y t h e i o n co l l e c to r p e r u n i t t im e i s g iv en b y t h e f o l l o w in g eq u a t io n ( s ee

    A p p e n d i x ) :

    n

    1 1 0 )

    n

    ~ S, . S..V(N~5 + N~) - A , (11)

    A s = n

    1

    w h e r e n i s t h e n u m b e r o f d i vi s io n s o f d e p t h S Z n t h e r e a c t i o n r e g i o n , N d a n d d a r e t h e

    n u m b e r a n d t h e g a p o f t h e i o n co l l e c to r e l ec t r o d es , r e sp ec t iv e ly , v i s t h e a v e r a g e

    t h e r m a l v e l o c i ty o f t h e a t o m i c b e a m , a n d a r~ is t h e c h a r g e t r a n s f e r c ro s s -s e c t io n .

    T h o u g h h i g h e n r i c h m e n t is o b t a i n e d a t t h e i o n c o l l e c to r , t h e e n r i c h m e n t r e q u i r e d

    f o r t h e f u e l u s ed i n a n u c l ea r p o w e r p l a n t i s a b o u t 3 % . Th e r e f o r e , i t i s n ece s s a r y t h a t

    h i g h l y e n r i c h e d u r a n i u m i s b l e n d e d w i t h n a t u r a l u r a n i u m t o f o r m a n u c l e a r f u e l. T h e

    q u a n t i t i e s o f 3 % p r o d u c t a n d n a t u r a l u r a n i u m f o r b l e n d i n g c a n b e w r i t t e n a s :

    M s M s A s ( I - ~ e) - ~ e ( 3 M s A s +

    M~A8)

    w . = 1 2 )

    N a[M sM s(~ e - ce .) - 9a . ae]

    M s A 5 + M s A s

    W e = W n + (13)

    N ,

    w h e r e W . a n d /,Iz a r e t h e q u a n t i t i e s o f n a t u r a l u r a n i u m a n d 3 % p r o d u c t

    r e sp e c ti v el y , M s a n d M s t h e m a s s n u m b e r s o f 2 3 sU a n d z 3 s u r e sp e c ti v el y , a e t h e

    e n r i c h m e n t o f t h e u r a n i u m o b t a i n e d , ~ , th e n a t u r a l a b u n d a n c e r a ti o o f u r a n i u m a n d

    N a A v o g a d r o ' s n u m b e r .

  • 7/25/2019 Optimum Operating Conditions for a Laser

    8/20

    2 9 4 K I M I O Y A M A D A , N O R I H I K O O Z A K I , M A N A B U Y A M A M O T O , K I l C H I U EY A N A GI

    (2 ) O p e r a t i n g c o s t . T h i s i n c l u d e s c o s t s f o r m a i n t e n a n c e , e m p l o y m e n t , m a t e r i a l s

    a n d e l e ct r ic p o w e r . T h e e q u i p m e n t t o b e m a i n t a i n e d i n c lu d e s t h e d y e l a se r ,

    u l t r a v i o le t la s e r a n d e v a c u a t i o n s y s t e m s . T h e m a i n t e n a n c e c o s t c a n b e w r i t te n a s

    m r = s t C l / t l + ~;,vCuv/tuv + ~vCv/tv (14 )

    w h e r e C , 5, t a r e r e s p e c t i v e l y u n i t c o s t , t h e r a t i o o f m a i n t e n a n c e c o s t t o i n i ti a l c o s t

    a n d t h e l i f e t im e o f t h e e q u i p m e n t : t h e s u b s c r i p t s 1, u v , v r e p r e s e n t t h e d y e l a s e r,

    u l t r a v i o l e t l a s e r a n d e v a c u a t i o n s y s t e m s , r e s p e c t i v e l y .

    I t is a s su m e d t h a t t h e e m p l o y m e n t c o s t is p r o p o r t i o n a l t o t h e n u m b e r o f l as er s. A s

    a l a s e r i r r a d i a t e s t h e a r e a o f S a x S a a t t h e r e a c t i o n r e g i o n , t h e n u m b e r o f l a s er s is

    g iven a s

    N , = [ S , / ( . a p ) ]

    + [Suv/Sa] (15)

    I[ 1]: ga uss sy m bo l

    w h e r e AD is t h e n u m b e r o f r e - u t il i s a ti o n s o f th e u l t r a v i o l e t l a se r , W i t h t h e n u m b e r o f

    l a se r s , th e e m p l o y m e n t c o s t c a n b e w r i t t e n a s :

    G e m : A e m N l + B e rn (16)

    w h e r e

    Aem

    a n d

    Bern are

    c o n s t a n t .

    A m a t e r i a l c o s t is g i ve n b y n a t u r a l u r a n i u m q u a n t i t i e s p a s s in g t h r o u g h t h e

    r e a c t i o n r e g i o n a n d t h a t f o r b l e n d i n g a s :

    C m a = U m ( W n -'~ M s N o V S r / N ~ ) (17)

    w h e r e IV , is t h e n a t u r a l u r a n i u m q u a n t i t y f o r b l e n d i n g c a l c u l a te d f r o m e q n . ( 1 2) , U m

    t h e u n i t c o s t o f n a t u r a l u r a n i u m a n d S r t h e c r o s s - s e ct i o n o f t h e a t o m i c b e a m .

    T h e e l e c t r i c p o w e r c o s t i s

    E p : U p P e S e / ~ e + P i S i / t ] i A p ) + E g + O r ) (18)

    w h e r e P a n d S a r e e n e r g y d e n s i t y a n d i r r a d i a t i o n a r e a r e s p e c ti v e ly , q t h e l a s e r

    e f f ic i e n c y , s u b s c r i p t s e a n d i r e p r e s e n t t h e d y e l a s e r a n d u l t r a v i o l e t l a s e r r e s p e c ti v e l y ,

    U p t h e u n i t c o s t o f e l ec t ri c it y , E g t h e p o w e r c o n s u m e d b y t h e e l e c t r o n g u n a n d O t t h e

    e l e c tr i c p o w e r c o s t in c l u d i n g t h a t f o r e v a c u a t i o n a i r c o n d i t i o n e r a n d c o o l i n g w a t e r

    s y s t e m s .

    (3 ) P l a n t c o n s t r u c t i o n c o s t a n d c a p i t a l c o s t. T h e c o n s t r u c t i o n c o s t h a s t o b e d e f in e d

    a s a f u n c t i o n o f t h e i n d e p e n d e n t v a r ia b l e s . F o r t h i s p u r p o s e , w e e x p r e s s t h e

    c o n s t r u c t i o n c o s t b y m e a n s o f a n e x p o n e n t i a l f u n c t i o n

    Cj = A j (DPj)kJ (19)

    I n t h i s e x p r e s s i o n , t h e c o s t e x p o n e n t k j is a d i m e n s i o n l e s s q u a n t i t y b e t w e e n z e r o a n d

    u n i t y w h i c h d e t e r m i n e s t h e v a r i a t i o n s i n t h e c o s t o f c o n s t r u c t i o n w i th t h e s i ze o f t h e

    c o m p o n e n t . B o t h A j a n d k j m u s t b e d e t e r m i n e d e m p i r ic a l ly b y m e a n s o f c o s t

  • 7/25/2019 Optimum Operating Conditions for a Laser

    9/20

    OPERATING CONDITIONS FOR URANIUM ENRICHMENT 2 9 5

    e v a l u a t i o n s t u d ie s . T h e d e s i g n p a r a m e t e r s , DPj a r e q u a n t i t ie s c h a r a c t e r i s i n g t h e c o s t

    o f t h e i n d iv i d u a l c o m p o n e n t s a n d m u s t t h em s e l ve s b e th e i n d e p e n d e n t v a ri a b le s o r

    f u n c t i o n s o f t h e m .

    F i g u r e 5 s h o w s t h e e m p i r i c a l c o s t f u n c t i o n s w h i c h a r e u s e d t o d e s c r i b e t h e

    c o n s t r u c t i o n c o s t s o f th e v a r i o u s p l a n t c o m p o n e n t s . T h e a b s c is s a e in d i c a t e t h e

    d e si g n p a r a m e t e r o f t h e c o n s t r u c t i o n c o s t f u n c t i o h ; t h e o r d i n a t e s s h o w t h e c o st o f

    c o m p o n e n t s . T e n d i f f e re n t c o s t f u n c t i o n s a r e c o n t a i n e d i n F ig . 5 , e a c h o f t h e m

    d e r i v e d b y t h e u s e o f g o o d s o n t h e m a r k e t . H o w e v e r , t h e e x p o n e n t k j o f th e e le c t ri c

    p o w e r s o u r c e a n d c o o l i n g w a t e r s y s t em w a s q u o t e d f r o m a p a p e r b y M .

    M ~t r t ensson . 3

    A s s u m i n g t h e p l a n t l i f e ti m e a n d a n n u a l c a p i t a l c h a rg e , w e c a n d e d u c e t h e c a p i ta l

    c o s t f r o m t h e c o n s t r u c t i o n c o s t.

    ( 4 ) The unit cost of enriched uranium. T h e u n i t c o s t o f e n r i c h e d u r a n i u m is

    o b t a i n e d f r o m t h e c o s t d e s c r i b e d a b o v e a s f o l l o w s :

    U = (Cop + Cp /We (20)

    w h e r e C op i s t h e o p e r a t i n g c o s t a n d C v t h e c a p i t a l c o s t .

    4 .

    CASESTUDY

    T a b l e 1 s h o w s t h e p a r a m e t e r s u s e d t o o p t i m i s e t h e o p e r a t i n g c o n d i t i o n s o f t h e la s e r

    u r a n i u m e n r i c h m e n t p l a n t . T h e m o s t f a v o u r a b l e o n e s a t t h e p r e s e n t t i m e a r e

    e m p l o y e d i n t h is c a l c u l a t io n , b u t s o m e o f t h e m p o s s e ss t h e p o s s i bi l it y o f c h a n g i n g t o

    TABLE

    PARAMETERS USED IN THE COMPUTATION

    No tatio n xplanation Value

    Ap

    Up

    Um

    i

    T

    T I

    T u v

    ? v

    The number o f re-utilisations of the ultraviolet laser

    Unit cost of electricity, S/kWh

    Unit cost of natural uranium, /kg

    Fixed charge rate,

    Lifetime, years

    Dye laser

    Ultraviolet laser

    Evacuation systems

    500

    0.017

    33

    10

    0.5

    0-5

    2

    m o r e f a v o u r a b l e v a l u e s in t h e f u t u r e . F o r e x a m p l e , i t is p o s s i b le t o e x t e n d t h e l if e ti m e

    o f a l a s e r b y a f a c t o r o f 5 if t h e l a s e r t u b e i s i m p r o v e d . H o w e v e r , th e u n i t c o s t s o f

    e l e c t ri c i ty a n d n a t u r a l u r a n i u m r is e g r a d u a l l y , a n d t h e r is e s i n th e s e p ri c es h a v e

    m i n o r i n fl u en c e s u p o n t h e u n i t c o s t o f en r i c h e d u r a n i u m .

  • 7/25/2019 Optimum Operating Conditions for a Laser

    10/20

    2 9 6 K I M I O Y A M A D A , N O R I H I K O O Z A K 1 , M A N A B U Y A M A M O T O , KII CH 1 U E Y A N A G I

    106

    10s

    Dye laser

    k= 0.67

    J

    I

    J

    J

    /

    101 102 103

    Dye lase r po w er ( w )

    105

    1 4

    J

    i

    U ltrav io le t I ~ ' ~

    k -0 .67

    f

    1 2 1 3 1 4

    Ultrav io le t l as e r pow er ( w )

    F i g . 5 . T h e e m p i r i c a l c o n s t r u c t i o n c o s t f u n c t i o n s . I n t h e fi g u r e s, t h e a b s c i s s a i n d i c a t e s t h e d e s i g n

    p a r a m e t e r o f t h e c o n s t r u c ti o n c o s t f u n c t io n . T h e o r d i n a t e s h o w s t he c o s t o f c o m p o n e n t s i n d ol la r s.

  • 7/25/2019 Optimum Operating Conditions for a Laser

    11/20

    OPERATING CONDITIONS FOR URANIUM ENRICHMENT

    297

    10 5

    10 4

    E l e c t r i c p o w e r s o u r c e

    k = 0 . 6

    /

    /

    /

    /

    /

    I

    w

    10 6 10 7 10 8

    T o ta l e l e c tr ic p o w e r ( w )

    B u i l d i n g

    k = 0 . 8

    10 3

    10 2

    /

    /

    J

    10 0

    /

    J

    f

    101

    F loo r space ( m 2 )

    10 2

    Fig.

    5 contd.

  • 7/25/2019 Optimum Operating Conditions for a Laser

    12/20

    7

    z

    ~

    e

    o

    2

    ,

    o

    i

    ~

    0

    ~

    I

    -

    7

    o

    e

    I

    i

    A

    v

    I

    -

    7

    .

    E

    ~

    x

    O

    0

    ,

    z 0

    0 0

    > z> >

    > 0

    o

    m

    >

    z> 0

  • 7/25/2019 Optimum Operating Conditions for a Laser

    13/20

    OPERATING CONDITIONS FOR URANIUM ENRICHMENT

    2 9 9

    1

    10 3

    Vacuum vessel

    k = 0 . 4 J

    ~P

    f

    10 0 101 10 2

    Vo lume in vacuum v ess e l (m 3 )

    E vacuatio n s y s t ~

    10 4

    J

    10 3

    10 0 101 10 2

    Volume in vacu um vess e l ( m 3 )

    Fig.

    5 contd.

  • 7/25/2019 Optimum Operating Conditions for a Laser

    14/20

    300

    K I M I O Y A M A D A , N O R I H I K O O Z A K I , M A N A B U Y A M A M O T O , K II C HI U E Y A N A G I

    1 4

    103

    ; C o o l i n g w a t e j

    system

    k=0.78 J

    J

    i f

    1 5 1 6 1 7

    Power of cooling wa ter pum p(w )

    105

    1 4

    f

    Electron g u n j

    k=0.68

    . /

    /

    f

    105 10 6

    Electric gun power ( w

    J

    10 7

    Fig .

    5 contd.

  • 7/25/2019 Optimum Operating Conditions for a Laser

    15/20

    O P E R A T IN G C O N D I T I O N S F O R U R A N I U M E N R I C H M E N T

    301

    Table 2 shows the physical quantities used in the optimisation programme. The

    excitation cross-section of uranium is from the paper by Tvccio

    e t a l 1

    The

    photoionisat ion cross-section is the one approximated to theoretically. The charge

    transfer cross-section is estimated from the experimental values of the other

    elements. 4 The energy transfer cross-section is the calculated value f rom those of

    inert gases. These values are possibly overestimated, and this has a minor influence

    on the unit cost of enriched uranium.

    T A B L E

    P H Y S I C A L Q U A N T I T I E S

    npu t da ta N um e r i c a l v a lue

    C r o s s - s e c t i o n , c m z

    Ex c i t a t i on 1 .3 x 10 ~4

    l o n i s a t i o n 1 . 5

    x 1 0 - 1 7

    C h a r g e t r a n s f e r 1 .3 x 1 0 13

    E n e r g y t r a n s f e r 1 . 0 x 1 0 13

    W a v e l e n g t h , A

    D y e l a s e r 5 9 1 5 . 4

    U l t r a v i o l e t l a s e r 2 6 0 0

    E

    . ,m

    m

    e-

    ,,-=

    e-

    e-

    F.

    2 5 0 0

    2 3 0 0

    2 1 0 0 ,

    T

    1 0 - 2 1 0 -1 1 0 0

    E f f ic i e n c y o f d y e l a s e r ~ x

    F i g . 6 . T h e u n i t c o s t o f e n r i c h e d u r a n i u m p l o t t e d a s a f u n c t i o n o f d y e l a s e r e t ~c i en c y . T h e u n i t co s t o f

    e n r i c h e d u r a n i u m i s o p t i m i s e d v i a t h e f iv e i n d e p e n d e n t v a r i a b l e s . T h e u l t ra v i o l e t l a se r et ~ c ie n c y is t a k e n a s

    5 x 1 0 - 2 % .

  • 7/25/2019 Optimum Operating Conditions for a Laser

    16/20

    3 0 2 KIMIO YAMADA, NORIHIKO OZAKI, MANABU YAMAMOTO, KIICHI UEYANAGI

    F i g u r e 6 s h o w s th e u n i t c o s t o f e n r ic h e d u r a n i u m a s a f u n c t i o n o f t h e d y e la s e r

    e f fi c ie n c y , a n d F i g . 7 s h o w s t h e u n i t c o s t o f e n r i c h e d u r a n i u m v e r s u s u l t r a v i o l e t l a s e r

    e f f i c i e n c y . O n t h i s c a l c u l a t i o n , a n y t e c h n i c a l r e s t r i c t i o n s a r e n o t i m p o s e d o n t h e

    i n d e p e n d e n t v a r i a bl e s . T h e u n i t c o s t o f e n r i c h e d u r a n i u m d e c r e a s e s e x p o n e n t i a l l y as

    l a s e r e f fi c ie n c y i n c r e a s e s t o 1 ~o w h e r e i t t a k e s t h e a s y m p t o t i c v a l u e . I t m i g h t b e s a i d

    t h a t t h e e f f o r t s t o i m p r o v e t h e l a s e r e t fi c ie n c y a b o v e 1 ~o a r e r a t h e r f r u i tl e s s f o r

    i s o t o p e s e p a r a t i o n .

    H o w e v e r , t e c h n i c a l r e s t r i c t i o n s e x i s t w i t h r e s p e c t t o l a s e r e n e r g y d e n s i t y a n d

    e f fi c ie n c y . F o r e x a m p l e , t h e u l t i m a t e v a l u e o f th e d y e l a s e r e ff ic i en c y i s a b o u t

    2 x 10-3~o , a n d t h e u l t r a v i o l e t l a s e r e f fi c ie n c y i s a b o u t 3 x 1 0 - 2 ~ o f o r t h e

    p r e s e n t t e c h n i c a l l e v e l s . I t i s h i g h l y f a v o u r a b l e f o r e c o n o m i c l a s e r u r a n i u m

    e n r i c h m e n t t o i m p r o v e t h e l a s e r e f fi c ie n c y u p t o o n e p e r c e n t .

    = 6 0 0 0

    4 0 0 0

    C

    2 0 0 0

    0

    E

    1 0 2 1 0 1 1 0 0

    E f f i c i e n c y o f u l t r a v i o l e t l i g h t s o u r c e I ~

    Fig. 7. The un it cost of enriched uranium plotted as a func tion of ultraviolet laser efficiency.A un it cost

    of enriched uranium is optimised by the five ndepen dent variables. The dye las er efficiency s taken a s 2-5

    10 2~, .

    O p t i m i s a t i o n o f t h e o p e r a t i n g c o n d i t i o n s is p e r f o r m e d f o r tw o c a s es : c a s e 1, t h e

    l a s e r e n e r g y d e n s i t y a n d e f fi c ie n c y a r e s u b j e c t t o r e s t r a i n t s d e p e n d i n g o n t h e p r e s e n t

    t e c h n i c a l l e v e ls ; w h e r e i n c a s e 2 t h e r e i s n o r e s t r i c t i o n . I n c a s e 2 , t h e e f fi c ie n c i e s o f t h e

    d y e l a s e r a n d t h e u l t r a v i o l e t l a s e r a r e c h o s e n a s 1 ~,,, a c c o r d i n g t o t h e r e s u l ts

  • 7/25/2019 Optimum Operating Conditions for a Laser

    17/20

    OPERATING CON DITIONS FOR URAN IUM ENRICHMENT

    303

    TABLE 3

    TECHNICALRESTRICTIONS

    A s s u m p t i o n C a s e 1 C a s e 2

    Power density, W /cm 2

    Dye laser 200 free

    Ultrav iolet laser 4000 free

    Efficiency, %

    Dye laser 2 10 -3 1

    Ultraviolet laser 3 x 10 -2 1

    TABLE 4

    OPTIMUM OPERATINGCONDITIONSAND CONSEQUENTCOSTS

    R e s u l t s C a s e 1 C a s e 2

    Optimum values

    Dye laser power density, W /cm 2 200 314

    Ultraviolet laser power density, kW /cm 2 4.00 16.7

    A tom ic density, cm -3 7-83 x 1013 8.23 x 1013

    De pth Sj, cm 511 510

    Height S a cm 1.02 0-998

    3 % uraniu m prod uction , kg/year 998 2470

    To tal electricity, M W 26.0 3.06

    Co nst ruct ion cost, $/kg 197 132

    Electric power cost, $/kg 3830 182

    Ma intenance cost, $/kg 462 359

    M ate rial cost, $/kg 888 395

    U nit cost of enriched uranium, $/kg 5380 1070

    m e n t i o n e d a b o v e . T h e t e c h n i c a l r e s t r ic t i o n s i m p o s e d o n t h e la s e r e n e r g y d e n s i t y a n d

    e ff ic ie n cy a re s u m m a r i s e d i n T a b l e 3 .

    T a b l e 4 s h o w s t h e o p t i m i s e d o p e r a t i n g c o n d i t i o n s o f t h e la s e r u r a n i u m

    e n r i c h m e n t p l a n t . T h e a t o m i c d e n s i t y a n d d e p t h S l a n d h e i g h t Sa o f t h e r e a c t i o n

    r e g i o n a r e h a r d l y a f f e c te d b y c h a n g i n g t h e l a s e r e n e r g y d e n s i t y a n d e ff ic ie n c y, a n d t h e

    e l e c t r ic p o w e r c o s t d e c r e a s e s a s a r e s u l t o f t h e i m p r o v e m e n t o f l a s e r e f fi c ie n c y . T h e

    o t h e r r e m a r k a b l e r e s u l t is t h a t t h e e n e r g y d e n s i t y r e q u i r e d b y t h e d y e la s e r a n d

    u l t r a v i o l e t la s e r w i t h a n d w i t h o u t t h e r e s t r i c t i o n s a r e n o t a p p r e c i a b l y d if f er e n t. T h e

    l a s e r e n e r g y d e n s i t y s h o w n i n T a b l e 4 i s p r o b a b l y r e a l is e d ev e n a t t h e p r e s e n t

    t e c h n i c a l l e v e l s, w h e r e a s a t t a i n m e n t o f a l a s e r e f fi c ie n c y o f 1 ~o i s v e r y d i f fi c ul t. A h i g h

    m a i n t e n a n c e c o s t e n s u e s i n c a s e 2 b e c a u s e t h e l i f e t i m e o f t h e l a s e r i s r e l a t i v e l y s h o r t .

    H e n c e , i t is i m p o r t a n t t o e x t e n d t h e l i f e t i m e o f t h e l a s e r f o r t h e r e d u c t i o n o f th e u n i t

    c o s t o f e n r i c h e d u r a n i u m .

    T h e o p t i m i s e d u n i t c o s ts o f e n r i c h e d u r a n i u m a r e 5 3 8 0 5 / k g i n c a s e 1 a n d

    1 07 0 $ / k g i n c a s e 2. T h e u n i t c o s t o f s e p a r a t i v e w o r k d o n e b y t h e g a s e o u s d i f f u s i o n

    a n d g a s c e n t r i f u g a l m e t h o d s i s e s t i m a t e d a t a b o u t 1 00 $ / k g S W U w i t h a p o s s i b l e c o s t

    e s c a l a t i o n . S u p p o s i n g t h a t t h e a s s a y i s 0 .3 ~o, w e n e e d s e p a r a t i v e w o r k 3 .5 k g S W U

  • 7/25/2019 Optimum Operating Conditions for a Laser

    18/20

    304

    K I M I O Y A M A D A , N O R I H I K O O Z A K I , M A N A B U Y A M A M O T O , K I 1C HI U E Y A N A G I

    and 10 kg of feed material for the production of 1.0 kg of 3.0 ~o product. Then the

    unit cost of enriched uranium including the material cost is approximately 500 /kg.

    Compared with the costs of the other uranium enrichment methods, the obtained

    opt imum values are greater by a factor of 11 in case 1 and by a factor of 2 in case 2.

    However, the opt imum value of the unit cost of enriched uranium depends largely on

    the unit cost of electricity Up, the lifetime z of the laser and the efficiencies of the

    lasers. The electricity cost of 0.017 S/kWh is probably high and the improvement of

    the lifetime and efficiency of the laser can reasonably be expected in the near future.

    It can be concluded from the results of case 2 that laser uranium enrichment is able to

    compete with the other methods.

    5 . C O N C L U S I O N

    Optimum operating conditions of the laser uranium enrichment plant, in which the

    selective two-step photoionisation process of atomic uranium is employed, has been

    studied. The unit cost of enriched uranium at present is fairly expensive in

    comparison with those by the gaseous diffusion and gas centrifuge methods.

    However, we can reasonably say that laser uranium enrichment is competitive with

    the other uranium enrichment methods provided that the following requirements

    are satisfied:

    (1) the laser efficiency is improved to about one percent.

    (2) the laser lifetime is extended to about one year.

    A C K N O W L E D G E M E N TS

    The authors would like to thank Drs K. Taniguchi, S. Yamada and A. Doi of the

    Atomic Energy Research Lab orat ory for their constant encouragement throughout

    the study.

    R E F E R E N C E S

    1 . S . A . T v c c I o et al . T w o - s t e p s el ec ti v e p h o t o i o n i z a t i o n o f 235U n u r a n i u m v a p o r , 8th In terna t iona l

    ConJerence on Quantum Electronics S a n F r a n c i s c o , U S A ( 1 9 7 4 ) .

    2 . M . J . B o x , A n e w m e t h o d o f c o n s t r a i n e d o p t i m i z a t io n a n d a c o m p a r i s o n w i th o t h e r m e t h o d s ,

    Co m p u t e r J . , 8 , 42 ( 1965) .

    3. M . MARTEr~SSON,S w e d i sh s t u d i e s o n t h e e c o n o m i c s o f u r a n i u m e n r i c h m e n t ,

    J . o f the Br i t ish Nuc lear

    E n er g y S o c i e t y

    10, 191 (1971) ,

    4 . B . M. SMIRNOV an d M . 1 . CHIBISOV,R e s o n a n c e c h a r g e t r a n s f e r i n i n e r t g a s e s , S o v i e t P h ys . - Tech .

    Phys . 10 , No . 1 , 88 ( 1965) .

  • 7/25/2019 Optimum Operating Conditions for a Laser

    19/20

    O P E R A T I N G C O N D I T I O N S F O R U R A N I U M E N R I C H M E N T 305

    A P P E N D I X

    Th e n u m b e r o f 23 5 U io n s co l l e c t ed a t t h e i o n co l l e c to r s i s g iven b y co n s id e r in g t h e

    ch a r g e t r a n s f e r co l l i si o n s w h ich t a k e p l a ce w h en th e i o n is ex t r a c t ed f r o m th e n eu t r a l

    b ea m . A s t h e r e i s n o ex c i t ed a to m in th e co l l e c t io n r eg io n , th e eq u a t i o n s d e s c r ib in g

    t h e p o p u l a t i o n s o f t h e i o n i s a t io n a n d g r o u n d s t a t e s o f u r a n i u m i s o to p e s a s a

    f u n c t i o n o f th e d i s t a n c e b e t w e e n t h e i o n a n d i o n c o l le c t o r c a n b e w r i t t e n a s :

    dA~ _

    d x a r ~(A s A g 5 - A g s A i s ) ( A . I )

    d A ~ g i

    d x - - a r ~ ( A s A 5 - A i s A ~ )

    (A .2 )

    d A ~

    d x = a r ( A ~ A ~ - A g sA is )

    (A .3 )

    dAg8

    d x - a v ~ (A ~ A ~ - A i s A ~ )

    (A .4 )

    w h e r e A i s t h e p o p u l a t i o n ( s u b sc r ip t s 5 a n d 8 in d i c a t e t h a t t h e q u a n t i t y b e l o n g s to

    2 3 5 U a n d 2 3 S u r e s p ec t iv e ly , s u p e r s c r ip t s g a n d i i n d i ca t e g r o u n d a n d i o n i s a t i o n

    s t a t e s r e s p ec t iv e ly ) , a n d x i s t h e d i s t a n ce b e tw een th e i o n a n d i o n co l l e c to r .

    F r o m eq n s . ( A . I ) t o ( A . 4 ) , w e h a v e

    dA~ dA~ dA~ dA~ dA~ dA~ dA~ dA~

    + - - - - + . . . . 0 (A .5 )

    d x d x d x d x d x d x d x d x

    Th e s o lu t i o n s o f eq n . ( A . 5 ) is giv en a s :

    ~ 1~ = A ~ + f l A ~ = 6 - A ~ A . 6 )

    w h e r e 7 , fl, 7 a n d 6 a re c o n s t a n t . T h e n , w e o b t a i n t h e f o l lo w i n g e q u a t i o n :

    dA~

    + ar~(cc + fl + 27) A~ - crrY(~ + 7) = 0 (A .7)

    d x

    E l i m i n a t i n g t h e c o n s t a n t s a , f l a n d 7 f r o m e q n . ( A . 7) b y u s i n g t h e s o l u t i o n s (A . 6) a n d

    th e i n i t i a l co n d i t i o n t h a t a t x = 0 , t h e p o p u l a t i o n s A ~ = N ~ , A ~ = N ~a, A ~ = N ~ a n d

    A ~ = N ~ , w e o b t a in t h e s o lu t i o n o f th e l i n ea r d i f fe r en t i a l eq u a t io n a s f o l lo w s :

    A ~ 5 (x ) = N~ol [ ( N ~ N ~ - N ~ N ~ ) e x p ( - a r ~ N o x ) + (U g 5 +

    N s ) ( N~ i + N i s ) ] ( A . 8 )

    w h e r e N ~, N ~ , N~ a n d N ~ a r e t h e i o n a n d a t o m d e n s i ti e s a f t e r p a s s in g t h r o u g h t h e

    r ea c t i o n r eg io n .

    A s s u m i n g t h a t t h e d e n s i t y d i s t r i b u t i o n o f t h e i n c i d e n t i o n b e a m t o t h e i o n

  • 7/25/2019 Optimum Operating Conditions for a Laser

    20/20

    306

    KIM10 YAMADA, NORIHIKO OZAKI, MANABU YAMAMOTO, KI1CH1 UEYANAGI

    co l lec to r e lec t rode s is un i fo rm an d the ion ve loc i ty occurr ing f r om the e lec tr i c f ie ld o f

    t h e i o n co l le c t o r e l ec t ro d es is m u ch f a s t e r t h an t h e t h e rm a l v e l o c it y o f a t o m i c b eam ,

    we h av e t h e t o t a l n u m b er o f 2 3 s u i o n s :

    n

    2 s f

    , t 5 = - ~ V N d A ~ ( x ) d x

    0

    1

    n

    = Y / ~ SvNdFNiN~-~NgsNinO L N o a r ~ ( 1 - e x p ( - o r ~ N o d ) ) + N g s + N i s ) N i + N i s ) d ]

    (A.9)

    wh e re v is th e av e rag e t h e rm a l v e l o c i t y o f t h e a t o m i c b eam , Nd t h e n u m b er o f th e i o n

    co l l ec to r e l ec tro d es , d t h e e l ec t ro d e g ap , t h e s u m m a t i o n is b a s ed o n co n s i d e ri n g t h e

    d ec reas e o f la s e r en e rg y d en s i t y i n t h e r e ac t i o n r eg i o n an d n is t h e n u m b er o f

    d iv i s ions o f the dep th S , o f the reac t ion reg ion .