review of qcd introduction to hqet applications conclusion

24
Review of QCD Introduction to HQET Applications Conclusion Paper: M.Neubert PRPL 245,256(1994) Yoon yeowoong( 윤윤윤 ) Yonsei Univ. 2004.04.30

Upload: alessa

Post on 12-Jan-2016

55 views

Category:

Documents


0 download

DESCRIPTION

Introduction to HQET (Heavy Quark Effective Theory). Yoon yeowoong( 윤여웅 ) Yonsei Univ. 2004.04.30. Review of QCD Introduction to HQET Applications Conclusion. Paper: M.Neubert PRPL 245,256(1994). Confinement. Barrier. Color charge. Distance from the bare quark color chage. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Review of QCD  Introduction to HQET  Applications  Conclusion

Review of QCD

Introduction to HQET

Applications

ConclusionPaper:M.Neubert PRPL 245,256(1994)

Yoon yeowoong( 윤여웅 ) Yonsei Univ. 2004.04.30

Page 2: Review of QCD  Introduction to HQET  Applications  Conclusion

•Introduction to HQET - Review of QCD

Bjorken scaling : structure function only depend on . (1969)

→ Point-like structure inside proton, Asymtotic freedom

→ Non-Abelian gauge field theory. Yang, Mills

→ Asymtotic freedom in Non-Abelian gauge field theory. t’Hooft(1973)

→ Gell-Mann propose extra symmetry of non-Abelian color symmetry(1972) QCD was born

→ Quark confinement( Only colorless states are physically observable) is explained in QCD by infrared divergences due to the massless gluons

22 2

12( )

(33 2 ) log( / )sf QCD

Qn Q

2Q

v

High Energy probe

Asymtotic freedom

Colo

r ch

arg

e

Con

fin

em

en

t

1 fermi

1S

Barr

ier

Distance from the bare quark color chage

Page 3: Review of QCD  Introduction to HQET  Applications  Conclusion

•Introduction to HQET - Review of QCD

Summary of Non Abelian Gauge theory SU(3)

[ , ]a b abc cT T if T

i ij jU exp( ) , 1,2,..,8a aU iT a

( )L i D m a aD igT G

a a a abc b cvG G G gf G G [ , ] a a

vD D igT G

1a abc b c aG f Gg

1( )

4a aL i D m G G

1( ( ) )

4

qNk k a ai ij ij j

k

L i D m G G

Page 4: Review of QCD  Introduction to HQET  Applications  Conclusion

•Introduction to HQET - physical picture

Heavy Quark : m Q > ΛQCD

Heavy Quark limit : mQ →∞

Heavy Quark + light quark system

Qq

q

Q

“Brown muck”

light quark q cannot see the quantum numbers of Heavy Quark

Comptom wavelength of Q : λQ~1

Qm

To resolve the quantum number of Heavy quark,need a hard probe with 2 2

QQ m

Page 5: Review of QCD  Introduction to HQET  Applications  Conclusion

•Introduction to HQET - physical picture

The configuration light Degree of freedoms with different heavy quark flavor, spin system of hadron does not change if the velocity of heave quark is same.

Heavy Quark velocity ≒ Meson velocityMomentum transfer ~ ΛQCD ⇒ velocity change ~ ΛQCD /mQ ~ 0

We can regard heavy quark velocity as conserved quantity

vv

Therefore this picture gives spin – flavor symmetry in QCD under mQ →∞ limit. Nh heavy quark flavor → SU(2Nh) spin-flavor symmetry group

It provide the relations between the properties of hadrons with different flavor and spin of heavy quark.Such as B, D, B*,D*, Λb Λc

Page 6: Review of QCD  Introduction to HQET  Applications  Conclusion

•Introduction to HQET - details with elementary field theory

Heavy quark momentum almost on-shell Q QP m v k 2 1v

Divide quark field by large and small component respectivelyQ

( ) ( )

( ) ( )

Q

Q

im v x

v

im v x

v

h x e P Q x

H x e PQ x

,v vh H

(1 )

2

vP

( ) [ ( ) ( )]Qim v x

v vQ x e h x H x

v v

v v

v h h

vH H

QCD Lagrangian

( )

( )( )( )

( 2 )

( 2 )

Q

v v Q Q v v

v v v Q v v v v v

v v v Q v v v v v

L Q i D m Q

h H m v m iD h H

h iDh H iD m H h iDH H iDh

h iv Dh H iv D m H h iDH H iDh

a aD igT G

1 1

2 2

1 1 1,

2 2 2

1 1

2 2

1 1

2 2

v v v v

v v

v v

v v

v vh iDh h iD h

vand iD ivD iD

iv D iDv iD

h iDh

v vh iv D iD h

h iv Dh

where

,D D v v D then v D

Page 7: Review of QCD  Introduction to HQET  Applications  Conclusion

•Introduction to HQET - details with elementary field theory

On a classical level, DOF of H v can be eliminated by EOM of QCD

( 2 )Q v v v Q v v v v vL h iv Dh H iv D m H h iDH H iDh

( 2 ) ,Q v viv D m H iD h 1

( 2 )v vQ

H iD hiv D m

1

( 2 )eff v v v vQ

L h iv Dh h iD iD hiv D m

0

1

2 2

n

eff v v v vnQ Q

iv DL h iv Dh h iD iD h

m m

21 1

1x x

a x a a a

Variation of Lagrangian with respect to vH

Considering order of 1/mQ (n=0)

And using the relation

2( )2

giD iD iD G

Page 8: Review of QCD  Introduction to HQET  Applications  Conclusion

2

2

2

1 1{ , } [ , ]

2 21

( ) [ , ] ( , )2

12 2( ) [ , ] ( , )

21

[ , ] ( , )2

1( ) [ , ][ , ]

4

iD iD iD iD

iD iD iD iD

iD iD iD Commute

iD iD iD iD iD Commute

iD iD Commute

iD iD iD iD iD

•Introduction to HQET - details with elementary field theory

Inserting gluon field strength tensor [ , ] a aiD iD igT G igG

It can be shown by

and, 1

[ , ]2

Then the effective Lagrangian of order 1/mQ is

2 21(1/ )

2 4eff v v v v v v QQ Q

gL h iv Dh h iD h h G h O m

m m

Kinetic termFrom residual mome

ntum kPQ=mQv+k

hv=eimQv·xP+Qv

Chromo-magnetic momentum interaction

(Halzen Ex6.2)

v c vQ

gh S B h

m

1

2i ijk jkcB G

Page 9: Review of QCD  Introduction to HQET  Applications  Conclusion

•Introduction to HQET - details with elementary field theory

Now we consider heavy quark limit mQ →∞

eff v vL h iv Dh

1. It has spin symmetry

Associated group is SU(2) symmetry group under which Leff is invariant

An infinitesimal SU(2) transformation

05

01 1

2 20

ii i

iS

5

1

2i iS ve 0iv e

[ , ]i j ijk kS S i S [ , ] 0iv S

(1 )v vh i S h

[ , ] 0eff vL h iv D i S h

On-Shell condition satisfied

5

5

5

1

21

22

1

2

i i

i i

i i

vS v ve

v v e e v

ve v S v

(1 ) (1 ) (1 )v v vv i S h i S vh i S h

Page 10: Review of QCD  Introduction to HQET  Applications  Conclusion

•Introduction to HQET - details with elementary field theory

2. It has flavor symmetry

When there are Nh heavy quark flavor

hNi i

eff v vi i

L h iv Dh

Because this Lagrangian do not contain heavy quark mass, It is invariant under rotations in flavor space

Combined with spin symmetry the effective Lagrangian belong to SU(2Nh) symmetry group.

Page 11: Review of QCD  Introduction to HQET  Applications  Conclusion

•Introduction to HQET - details with elementary field theory

Now consider Feynman rules

Feynman propagator, and vertex factor can be derived by effective Lagrangian

eff v vL h iv Dh

Propagator ,v k

i j1

2 ji

i v

v k

Vertex ( )a jiig T v

It can be also derived by taking the appropriate limit of the QCD Feynman rules

2 2 2 2 2

( ) ( ) ( ) 1

( ) 2 2Q Q Q Q Q Q

Q Q Q Q Q

i p m i m v m k i m v m k v i

p m i m v k m i m v k k i v k i

i j

,a

v

Page 12: Review of QCD  Introduction to HQET  Applications  Conclusion

For the heavy quark gluon vertex

•Introduction to HQET - details with elementary field theory

aigT

Using the relation P P P v P

21 1 1

2 2 2 2

1 1 1

2 2 2

v vv v vP P

v v vv v v P

v P P P v P

Therefore vertex factor in Heavy quark limit become

aigT v

Page 13: Review of QCD  Introduction to HQET  Applications  Conclusion

•Application - Spectroscopy

Strong Interaction dynamics is independent of the spin and mass of the heavy quark by heavy quark symmetry.

Therefore hadronic states can be classified by the quantum number of the light DOF such as flavor, spin, parity, etc.

Spin-flavor symmetry in HQET predict some relations of properties of hadron states, typically mass spectrum of different Hadrons states

Meson Constituent Quarks J P

D c, (u or d) 0 -

D* c, (u or d) 1 -

D1 c, (u or d) 1 +

D2* c, (u or d) 2 +

Ds c, s 0 -Ds* c,s 1 -

Meson Constituent Quarks J P

B b, (u or d) 0 -

B* b, (u or d) 1 -

B1 b, (u or d) ? ?

B2* b, (u or d) ? ?

Bs b, s 0 -Bs* b,s 1 -

Page 14: Review of QCD  Introduction to HQET  Applications  Conclusion

•Application - Spectroscopy

1. Ground state mesons

1

2l lj s 1

2lJ j 0 1J or J

*

*

*

46MeV

142MeV

142MeVSS

BB

DD

DD

m m

m m

m m

Experimentally

degenerate states

Need a hyperfine correction of order 1/mQ

*

1~MM

Q

m mm

Quite small as expected

So we can expect * *

2 2 2 2 .B DB Dm m m m const

*

*

2 2 2

2 2 2

0.49GeV

0.55GeV

BB

DD

m m

m m

Page 15: Review of QCD  Introduction to HQET  Applications  Conclusion

•Application - Spectroscopy

2. Excited state mesons

1 3,

2 2l ls j 1*2

1: (2420)

2 : (2460)

J D

J D

degenerate states

*12

35MeVDDm m

It is small mass splitting supporting our assertion

One can expect also

* *1 12 2

2 2 2 2 20.17 GeVB DB Dm m m m

3. Excitation energy

1 1

* *2 2

100MeV

557 MeV

593MeV

S SB B D D

B B D D

B DB D

m m m m

m m m m

m m m m

Page 16: Review of QCD  Introduction to HQET  Applications  Conclusion

•Application - Weak decay form factors

Physical picture of weak decay

b

d

c

d

0B D

e

eW

5(1 )2 2

gi

5(1 )cbV

(*)5( ) | (1 ) | ( )D p c b B p Hadronic matrix element

parameterized by several form factors.

5( ) (1 ) ( )2 e

Fcb e

GM V u p v p

(*)

5( ) | (1 ) | ( )D p c b B p

Page 17: Review of QCD  Introduction to HQET  Applications  Conclusion

2 2'0 ( )M Mq m m

•Application - Weak decay form factors

Q

q

Kinematical picture

Q’

qv v

0t t 0t t

w v v 2 2 2

2 2' '

( ) ( )

2

Q Q

Q Q Q Q

q P P m v m v

m m m m v v

2 2 2

2M M

M M

m m qv v

m m

Maximum q2=(mM’-mM)2 ; minimum w=1 Zero recoil

Q

q

Q’

Qq

Minimum q2=0 ; maximum w

Q’

M M e

e

e

Page 18: Review of QCD  Introduction to HQET  Applications  Conclusion

•Application - Weak decay form factors

0

3 32' | ( ) (2 ) ( )

M

pM p M p p p

m

0 3 3' | ( ) 2 (2 ) ( )M p M p p p p

1( ) ( )

M

M v M pm

2 2 2( ) 2 ( 1)light QCD QCD QCDq v v v v 1 1.6w

*

*

2

2 2 2 22 2

1 02 2

* * 2

** * 2

1

( ') | | ( ) ( )( )

( ') | | ( ) ( ) ( ) ( ) ( ) ( )

2( ') | | ( ) ( )

( ') | | ( ) ( ) ( )

el

cb B D B D

cb

B D

cbB D

B

B p b b B p F q p p

m m m mD p V B p F q p p p p F q p p

q q

iD p V B p p p V q

m m

qD p A B p m m A q

m m

*

*

*

*2 2

2 32

*2

02

( ) ( ) 2 ( ) ( )

2 ( )

DD

D

qp p A q m p p A q

q

qm q A q

q

Typical hadronic matrix element M.Wirbel ZPHY C29,637(1985)

5,cb cbV c b A c b 0 1(0) (0)F F

* *

* *

2 2 23 1 2, ( ) ( ) ( )

2 2B BD D

D D

m m m mA q A q A q

m m

Page 19: Review of QCD  Introduction to HQET  Applications  Conclusion

Now in HQET

•Application - Weak decay form factors

| | ( ) ( )( )v vP v h h P v v v v v Why not ( )( )v v v v

' | | ( ) ( )( )v vP v h h P v v v v v

Using flavor symmetry

( )v v

Is called Isgur-Wise function 2

| | ( ) ( )( ) ( )( )

| ( ') | ( ) 0 ( )( )

0 2 ( )(1 2 )

v v

v v

P v h h P v v v v v v v v v

P v h v v h P v v v v v

v v v v

Normalized at zero recoil as (1) 1

( )v v

For equal velocityv v v vJ h h h v h is conserved current

3 0 3( ) ( ) ( )Q Q v vN d xJ x d x h x h x

( ) ( )QQN P v P v ( ) ( )Q QN P v P v

explained by following

0 3 3

3 0 2 0 3 3 0 3 3

'( ) ( ) ( ) | ( ) 2 (2 ) (0)

'( ) ( ) ( )2 (2 ) (0) 2 (1)(2 ) (0)

Q Q

v v

P v N P v P v P v v

P v d x h h P v v v v

Page 20: Review of QCD  Introduction to HQET  Applications  Conclusion

•Application - Weak decay form factors

Using spin symmetry

3 3( , ) 2SQV v P v

3 3

3

( , ) ( ) ( ) | 2[S , ] | ( )

( ) | (2 ) | ( )

v v Q v v

v v

V v h h P v P v h h P v

P v h S h P v

( )

*( )

3 ( ) *( )

10

21

12

1

2

Q

Q l Q l

Q

Q l Q l

Q QQ

P J

P J

S P P

3

3 0 35

(1,0,0,0)

(0,0,0,1)

1

2

v

S

3 0 0 3 3

3 3 3 0 0

3 1 1 2 2

3 2 2 1 1

2[S , ]

2[S , ]

2[S , ] ( )

2[S , ] ( )

Q

Q

Q

Q

V A A V

V A A V

V A i A V

V A i A V

In the rest frame of the final state meson

3 *

3 * *5

( , ) ( ) ( )

( , ) ( ) ( ) ( 1)

v v

v v

V v h h P v v v i v v

V v h h P v v v v v v v

Page 21: Review of QCD  Introduction to HQET  Applications  Conclusion

HQET

Typical

•Application - Weak decay form factors

Summarize parameterization

*

*

2

2 2 2 22 2

1 02 2

* * 2

** * 2

1

( ') | | ( ) ( )( )

( ') | | ( ) ( ) ( ) ( ) ( ) ( )

2( ', ) | | ( ) ( )

( ', ) | | ( ) ( ) ( )

el

cb B D B D

cb

B D

cbB D

B p b b B p F q p p

m m m mD p V B p F q p p p p F q p p

q q

iD p V B p p p V q

m m

qD p A B p m m A q

*

*

*

*2 2

2 32

*2

02

( ) ( ) 2 ( ) ( )

2 ( )

DB D

D

qp p A q m p p A q

m m q

qm q A q

q

3 *

3 * *5

( , ) ( ) ( )

( , ) ( ) ( ) ( 1)

v v

v v

V v h h P v v v i v v

V v h h P v v v v v v v

' | | ( ) ( )( )v vP v h h P v v v v v

| | ( ) ( )( )v vP v h h P v v v v v

Bp m v

(*)Dp m v

Page 22: Review of QCD  Introduction to HQET  Applications  Conclusion

•Application - Weak decay form factors

2( ) ( )elv v F q

Relations between form factors and Isgur-Wise function.

21( ) ( )v v RF q

122

02( ) 1 ( )

( )B D

qv v R F q

m m

* 2( ) ( )v v R V q

* 20( ) ( )v v R A q

* 22( ) ( )v v R A q

*

12

* 212

( ) 1 ( )( )B D

qv v R A q

m m

2 22 (1 ) 0Bq m v v

2 2 2 2 0B D B Dq m m m m v v

20.88B D

B D

m mR

m m

* *

2 2 2 2 0B BD Dq m m m m v v

*

*

20.89

B D

B D

m mR

m m

Page 23: Review of QCD  Introduction to HQET  Applications  Conclusion

•Application - Weak decay form factors

Page 24: Review of QCD  Introduction to HQET  Applications  Conclusion

Renormalization group equation

Study hard !

Model independent Vcb

Inclusive decay with HQET

Conclusion - more study