sde_a

36
7/31/2019 sde_a http://slidepdf.com/reader/full/sdea 1/36 Stochastic Differential Equations

Upload: alexandrubratu6

Post on 05-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 1/36

Stochastic Differential

Equations

Page 2: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 2/36

Brownian Motion

• Fundamental example of a stochasticprocess.

• Standard Wiener Process.

Page 3: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 3/36

Pollen Grain

zn +1 = z

n + ∆ zn

.

∆ z n N (0, 1) ,

E (∆ zn ) = 0 ,Var( ∆ zn ) = E (∆ z 2

n ) − µ2 = E (∆ z 2n ) = 1 .

Page 4: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 4/36

Particle Track

Page 5: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 5/36

100 Particle Tracks

Page 6: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 6/36

Probability Density Function at differenttimes

Page 7: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 7/36

Standard deviation as a function of time

Page 8: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 8/36

If start time is s then standard

deviation is

√ t

s

Change ∆ t = 1 to ∆ t = t − s

∆ z n

√t −sN (0, 1) ,

zn +1 = z

n + ∆ zn

.

∆ z n N (0, 1) ,

Page 9: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 9/36

Page 10: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 10/36

Useful to discretise Brownian motion

• Set δ t = T/N

• Let W (t j ) = W j , t j = j δ t

• W 0 = 0

• W j = W j − 1 + dW j , dW j = √ δ tN (0, 1)

Page 11: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 11/36

Page 12: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 12/36

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1–0.5

0

0.5

1

t

W(t)

Page 13: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 13/36

u (W (t )) = e t + 12

W ( t )

Evaluate the function

along 1000 discretized Brownian paths

Page 14: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 14/36

Page 15: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 15/36

Page 16: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 16/36

N J

N

Trajectory of the differential equation

Page 17: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 17/36

Random Di ff erential Equations

It may happen that function is not completely known and contain somerandom parameters. It is also possible that starting condition is random.These equations can be called random di ff erential equations.

Example:

dx = a (ω )xdt + b(t, ω )dt

x (t 0 ) = c(ω )

Page 18: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 18/36

Stochastic Di ff erential Equations

The randomness can appear inside the underling function. The solutionhas irregular stochastic behavior. Then we talk about stochasticdiff erential equations.

Symbolically they are written as:

X t = a (t, X t )dt + b(t, X t )dW t

X t 0 = X 0

More precisely we obtain integral representation :

X t = X 0 + t

t 0

a (s, X s )ds + t

t 0

b(s, X s )dW s

d

Page 19: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 19/36

Page 20: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 20/36

Applications

Investment nance

Option Pricing

Seismology

Hydrology...

Page 21: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 21/36

Solutions of equations

Stochastic Di ff erential Equation

dX t = a (t, X t )dt + b(t, X t )dW t

X t =?

the solution is a stochastic process

Page 22: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 22/36

0 5 10

X*E2

0

2 0

4 0

6 0

Y

Page 23: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 23/36

0 5 10

X*E2

- 1 0 0

- 5 0

0

5 0

Y

Page 24: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 24/36

Discrete stochastic integrals

We would like an approximate solution to the simplied stochastic di ff erential equation

dx (t ) = W (t )dW (t ) , (1)

where the behavior of W (t ) is governed by the rules of Brownian motion. Integrating bothsides, we obtain

x (t ) = t

0W (s )dW (s ) , (2)

where we have assumed that x (0) = 0 for simplicity.

Page 25: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 25/36

The It o integral

In the It o integral, the integral (2) is approximated with the Riemann sum

x (t ) =N − 1

j =0

W j (W j +1 − W j ) , (3)

where we have assumed that t = N ∆ t , W N = W (t ) and W 0 = W (0). This can be written as

x (t ) =12

N − 1

j =0

W 2 j +1

− W 2 j

− W 2 j +1

− 2W j W j +1 + W 2 j ,

= 12

N − 1

j =0

W 2 j +1

− W 2 j

− (W j +1 − W j )2 ,

=12

(W 21

− W 20 ) + ( W 2

2− W 2

1 ) + . . . + ( W 2N − 1

− W 2N − 2 ) + ( W 2

N − W 2

N − 1 )

−N − 1

j =0

(W j +1 − W j )2 ,

= 12

W 2N − W 2

0 − 12

N − 1

j =0

(W j +1 − W j )2 ,

=12

W 2N

− W 20

− 12

N − 1

j =0

∆ W 2 j .

]

Page 26: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 26/36

The sum can be written asN − 1

j =0

∆ W 2 j = N 1N

N − 1

j =0

∆ W 2 j ,

the discrete form of the variance of a random variable with zero mean,

Var( ∆ W ) = E (∆ W 2 ) =1N

N − 1

j =0

∆ W 2 j .

Page 27: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 27/36

Since we know that ∆ W j = W j +1 − W j is normally distributed with mean 0 and variance∆ t because it governs the jump for Brownian motion, then, as N → ∞ ,

1N

N − 1

j =0

∆ W 2 j = ∆ t , (6)

The approximation of the integral becomes

x (t ) =12

W 2N − W 20 −12

N ∆ t .

Page 28: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 28/36

From the denition of Brownian motion, W 0 = W (0) = 0, and after substituting in forW N = W (t ) and N ∆ t = t , we have

x (t ) =12W (t )

2−

12 t . (8)

Page 29: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 29/36

The Stratonovich integral

Rather than approximating the integral at the left side of the interval, the Stratonovichintegral approximate the integral (2) with the midpoint rule

x (t ) =N − 1

j =0

W t j + t j +1

2(W j +1 − W j ) . (9)

We will approximate the value of W (t j +1 / 2 ) with

W (t j +1 / 2 ) =12

(W j + W j +1 ) + C j , (10)

C must be determined to satisfy the rules of Brownianmotion

Let Z (t j ) = W (t j +1 / 2 ) satisfy the rules of Brownian motion.

Then∆ Z j = Z (t j + ∆ t ) − Z (t j )

hasE (∆ Z j ) = 0 , V ar (∆ Z j ) = ∆ t

Page 30: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 30/36

∆ Z j =12

[(W j +1 + W j +2 ) + 2 C j +1 − (W j + W j +1 ) − 2C j ] ,

=12

(W j +2 − W j ) + ( C j +1 − C j ) .

The increment is given by

SinceW j +1 = W j + ∆ W j

W j +2 = W j +1 + ∆ W j +1

ThenW

j+2 = W

j+ ∆ W

j+ ∆ W

j+1

and

∆ Z j =12

(∆ W j + ∆ W j +1 ) + ∆ C j ,

Page 31: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 31/36

E (∆ Z j ) = E 12

(∆ W j + ∆ W j +1 ) + ∆ C j ,

= 12

[E (∆ W j ) + E (∆ W j +1 )] + E (∆ C j ) ,

but since E (∆ W j ) = 0 and E (∆ W j +1 ) = 0, and we require that E (∆ Z j ) = 0, then we knowthat the behavior of C j must satisfy E (∆ C j ) = E (C j +1 ) − E (C j ) = 0. This is most easilysatised by requiring that C j have a zero mean. Taking the variance of ∆ Z j yields

Var( ∆ Z j ) = E (∆ Z 2 j ) − E (∆ Z j )2 ,

but since we require that E (∆ Z j ) = 0, then the variance is given by

Var( ∆ Z j ) = E (∆ Z 2

j ) .

Page 32: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 32/36

Substituting in the values from above we have

Var( ∆ Z j ) = E 14

(∆ W j + ∆ W j +1 + 2 ∆ C j )2 ,

= 14

E (∆ W j + ∆ W j +1 )2 + 4 E (∆ C j ∆ W j ) + 4 E (∆ C j ∆ W j +1 ) + 4 E ∆ C 2 j ,

=14

E ∆ W 2 j + 2 E (∆ W j ∆ W j +1 ) + E ∆ W 2 j +1

+4 E (∆ C j ∆ W j ) + 4 E (∆ C j ∆ W j +1 ) + 4 E ∆ C 2 j .

Because ∆ W j , ∆ W j +1 , and ∆ C j are all independent of each other, then we know that

E (∆ W j ∆ W j +1 ) = E (∆ W j )E (∆ W j +1 ) = 0 ,

E (∆ C j ∆ W j +1 ) = E (∆ C j )E (∆ W j +1 ) = 0 ,E (∆ C j ∆ W j ) = E (∆ C j )E (∆ W j ) = 0 ,

Page 33: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 33/36

we have

Var( ∆ Z j ) =14

E (∆ W 2 j ) + E (∆ W 2 j +1 ) + E (∆ C 2 j ) .

Because ∆ W j and ∆ W j +1 satisfy the rules for Brownian motion, and we want ∆ Z j to satisfythe rules for Brownian motion, then we must have

Var( ∆ Z j ) = ∆ t ,

E (∆ W 2 j ) = ∆ t ,

E (∆ W 2 j +1 ) = ∆ t ,

we haveE (∆ C 2 j ) =

∆ t2

.

Substituting in for ∆ C j = C j +1 − C j , we have

E (C 2 j +1 ) − 2E (C j +1 C j ) + E (C 2 j ) = ∆ t2

.

Page 34: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 34/36

Page 35: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 35/36

x(t) =12

N − 1

j =0

(W j + W j +1 − 2C j ) (W j +1 − W j ) ,

=12

N − 1

j =0

W 2 j +1 − W 2 j −

N − 1

j =0

C j (W j +1 − W j ) ,

=12 W

21 − W

20 + W

22 − W

21 + . . . + W

2N − 1 − W

2N − 2 + W

2N − W

2N − 1

N − 1

j =0

C j (W j +1 − W j ) ,

=12

W 2N − W 20 − N 1N

N − 1

j =0

C j ∆ W j .

Page 36: sde_a

7/31/2019 sde_a

http://slidepdf.com/reader/full/sdea 36/36

The last term corresponds to an approximation of NE (C j ∆ W j ), which, since C j and ∆ W jare independent, approaches 0 as N → ∞ . Therefore, with W 0 = W (0) = 0 and W N = W (t),

x(t) =12

W (t)2 .

Comparing the two methods, we see that, depending on where W (t) is evaluated whenapproximating

x(t) = t

0W (s)dW (s) ,

the result can be very di ff erent, since

x(t) = 1

2W (t)2

− t

2It o

x(t) = 12 W (t)2 Stratonovich .