tom tat ly thuyet xac suat

32
Tóm tt Lý thuyt xác sut TS. Lê Xuân Trưng Khoa Toán Thng kê TS. Lê Xuân Trưng (Institute) Tóm tt Lý thuyt xác sut 1 / 32

Upload: van-dungct

Post on 17-Nov-2015

30 views

Category:

Documents


4 download

DESCRIPTION

xác suất thống kế cực hay

TRANSCRIPT

  • Tm tt L thuyt xc sut

    TS. L Xun Trng

    Khoa Ton Thng k

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 1 / 32

  • 1. Khng gian Xc sut

    Mt khng gian xc sut l mt b ba (,F ,P), trong Khng gian mu : tp hp tt c cc kt qu c kh nng xy raca mt th nghim hay hin tng ngu nhin.

    Khng gian cc bin c F : mt -i s cc tp con ca , tc lF 2 tha cc iu kin:

    - F- A 2 F ) Ac 2 F- Nu Ai 2 F , 8i 2 N th [i=1Ai 2 F .

    o Xc sut: mt hm P : F ! R tha mn cc tnh cht sau- P (A) 0, 8A 2 F- P () = 1- Nu A1,A2, ... l cc bin c ri nhau (Ai \ Aj = , 8 i 6= j) th

    P ([i=1Ai ) = iP (Ai ) .

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 2 / 32

  • 1. Khng gian Xc sut

    V d 1: Xt th nghim "tung mt xc sc cn i v ng cht gm 6mt"

    Khng gian mu: = f1, 2, 3, 4, 5, 6g .C th xc nh nhng khng gian cc bin c khc nhau trn cngkhng gian mu

    - F0 = f,g- F1 = 2

    o xc sut

    - Trn F0: hm P : F0 ! R cho bi P () = 0 v P () = 1.- Trn F1: hm P : F1 ! R cho bi

    P (A) =i

    6,

    vi i l s phn t ca A 2 F1.

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 3 / 32

  • 2. Bin ngu nhin

    Cho (,F ,P) l mt khng gian xc sut. Mt hm s : ! Rsao cho vi mi 2 R, ta c

    f g := f 2 : () g 2 F ,

    c gi l mt bin ngu nhin (hay mt hm F -o c) trn .

    V d 2: Gi s A 2 F . Khi hm s IA () =

    1, 2 A,0, /2 A, l

    mt bin ngu nhin trn v nu 2 R, ta c

    f 2 : IA () g =

    8

  • 3. Sigma i s sinh bi bin ngu nhin

    Gi s : ! R l mt bin ngu nhin. Ta k hiu () l h ttc cc tp con ca c dng

    1 (B) := f 2 : () 2 Bg ,trong B l mt tp Borel ca R (B 2 B(R)). Khi () l mtsigma i s trn v ta gi l sigma i s sinh bi bin ngu nhin.

    V d 3: Xc nh sigma i s c sinh bi bin ngu nhin IA ()cho trong V d 2.Gii Xt B 2 B(R). Khi

    I1A (B) =

    8>>>>>:, nu 0, 1 /2 B ,A, nu 1 2 B v 0 /2 B ,Ac , nu 0 2 B v 1 /2 B ,, nu 0, 1 2 B .

    Vy (IA) = f,,A,Acg .TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 5 / 32

  • 4. Phn b xc sut ca bin ngu nhin

    Xt khng gian xc sut (,F ,P) v : ! R l mt bin ngu nhin.Ta c th xc nh mt o xc sut P xc nh trn B(R) nh sau

    P (B) = P1 (B)

    .

    Ta gi P l phn b xc sut ca bin ngu nhin .

    Hm s F : R ! [0, 1] xc nh bi

    F (x) = P ((, x ]) = P ( x) , x 2 R,

    c gi l hm phn b xc sut tch ly ca .

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 6 / 32

  • 5. Hm mt ca bin ngu nhin

    Cho l mt b.n.n xc nh trn khng gian xc sut (,F ,P).Nu tn ti mt dy s thc i mt khc nhau x1, x2, ... sao cho

    P (B) = P ( 2 B) = xi2B

    P ( = xi ) ,

    vi mi B 2 B(R), th ta ni c phn b ri rc vi cc gi trx1, x2, ... v mt f (xi ) := P ( = xi ) ti xi .

    Nu tn ti mt hm kh tch Lebesgue f : R ! R sao cho

    P (B) = P ( 2 B) =Z

    Bf (x) dx ,

    vi mi B 2 B(R), th ta ni c phn b lin tc tuyt i v fc gi l hm mt ca .

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 7 / 32

  • 6. Cc c trng ca bin ngu nhin

    Cho l mt b.n.n xc nh trn khng gian xc sut (,F ,P).K vng (Expectation):

    E () =

    8

  • 6. Cc c trng ca bin ngu nhin

    Lu :

    Trong nh ngha k vng, ta hiu rng tng

    xP ( = x) hocZ +

    xf (x) dx

    phi tn ti hu hn. Lc ta ni kh tch.

    E (IA) = P (A)

    Nu c moment bc k th s c mi moment bc b hn k .

    Nu Ejjk

    < th xc sut ui (tail probability) hi t v 0, tc

    l

    limn!+

    P (jj > n)nk

    = 0.

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 9 / 32

  • 6. Cc c trng ca bin ngu nhin

    Mt s tnh cht

    E (a) = a, 8a 2 R.E (a1 + b2) = aE (1) + bE (2)

    Var (a) = 0, 8a 2 R.Var (a1) = a

    2Var (1) , Var (1 + 2) = Var (1) + Var (2)

    Nu l mt bin ngu nhin v g : R ! R l mt hm o c th

    E (g ()) = g (x)P ( = x) , khi c phn b ri rc,

    E (g ()) =R + g (x) f (x) dx , khi c phn b lin tc.

    V d 4: Gi s l bin ngu nhin c hm mt xc nh bi

    P ( = 0) = 0, 2; P ( = 1) = 0, 5; P ( = 2) = 0, 3.

    Tnh E () v E2.

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 10 / 32

  • 7. Mt s phn b thng gp

    Phn b Hm mt K vng Phng sai

    B (n; p) P ( = k) = C kn pk (1 p)nk np np (1 p)

    P() P ( = k) = e kk !

    U (a; b) f (x) =

    1ba , x 2 (a, b)0, x /2 (a, b)

    a+b2

    (ba)212

    Exp () f (x) =

    ex , x 0,0, x < 0.

    1

    12

    N; 2

    f (x) = 1

    p

    2e

    (x)222 2

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 11 / 32

  • 8. Phn b ng thi v phn b bin

    Cho 1, 2 l hai b.n.n xc nh trn (,F ,P).Vi A,B 2 B(R), ta t

    P12 (A B) = P (1 2 A, 2 2 B) .

    Khi P12 l o xc sut trn B(R2) v gi l phn b xc sutng thi ca 1, 2.

    Hm phn b xc sut tch ly ng thi ca hai bin ngu nhin 1v 2 c xc nh nh sau

    F12 (x , y) = P (1 x , 2 y) .

    Hm phn b xc sut tch ly bin

    - theo 1 : F1 (x) = P12 ((, x ]R) = P (1 x , 2 +) .- theo 2 : F2 (y) = P12 (R (, y ]) = P (1 +, 2 y) .

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 12 / 32

  • 9. Hm mt ng thi - hm mt bin

    Gi s 1 v 2 l hai bin ngu nhin c phn b ri rc v

    1 2 fx1, x2, ...g , 2 2 fy1, y2, ...g .

    Phn b xs ng thi ca 1, 2 cho bi

    P12 (A B) = xi2A,yj2B

    P (1 = xi , 2 = yj ) .

    Ta gi f12 (x , y) = P (1 = x , 2 = y) l hm mt ng thi.

    Hm mt bin theo 1 v 2 ln lt xc nh bi

    f1 (xi ) = jP (1 = xi , 2 = yj ) ,

    f2 (yj ) = iP (1 = xi , 2 = yj ) .

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 13 / 32

  • 9. Hm mt ng thi - hm mt bin

    Nu tn ti mt hm kh tch Lebesgue f12 : R2 ! R sao cho

    P12 (A B) =RR

    AB f12 (x , y) dxdy ,

    th ta ni 1 v 2 c phn phi xs ng thi lin tc tuyt i. Hmf12 c gi l hm mt xc sut ng thi ca 1, 2.

    Hm mt xc sut bin theo 1 v 2

    f1 (x) =Z +

    f12 (x , y) dy ,

    f2 (y) =Z +

    f12 (x , y) dx .

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 14 / 32

  • 10. Hm ca cc bin ngu nhin

    Cho 1 v 2 l hai b.n.n trn khng gian (,F ,P) c hm mt ngthi l f12 (x , y) v g : R

    2 ! R l hm Borel. Khi

    g (1, 2) l mt bin ngu nhin trn (,F ,P).K vng

    - nu 1 v 2 ri rc

    E (g (1, 2)) = x

    yg (x , y) f12 (x , y)

    - nu 1 v 2 lin tc

    E (g (1, 2)) =Z +

    Z +

    g (x , y) f12 (x , y) dxdy

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 15 / 32

  • 10. Hm ca cc bin ngu nhin

    Cho 1 v 2 l hai b.n.n trn khng gian (,F ,P) c hm mt ngthi l f12 (x , y). Gi s

    1 = g1 (X ,Y ) , 2 = g2 (X ,Y ) ,

    trong X ,Y l hai b.n.n v nh thc Jacobi

    J =

    g1X g1Yg2X

    g2Y

    6= 0.Khi hm mt ng thi fXY (x , y) ca X ,Y tha mn

    fXY (x , y) = f12 (g1 (x , y) , g2 (x , y)) jJ j .

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 16 / 32

  • 11. Mt s v d

    V d 5: Cho hai bin ngu nhin ri rc X ,Y vi hm mt xc sutng thi fXY xc nh bi

    fXY (1, 1) = P (X = 1,Y = 1) = 0, 5

    fXY (1, 2) = P (X = 1,Y = 2) = 0, 1

    fXY (2, 1) = P (X = 2,Y = 1) = 0, 1

    fXY (2, 2) = P (X = 2,Y = 2) = 0, 3

    Tnh xc sut P (X = 1) v P (Y = 1) .

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 17 / 32

  • 11. Mt s v d

    V d 6: Cho hai bin ngu nhin X ,Y vi hm mt ng thi

    fXY =

    6xy (2 x y) , (x , y) 2 (0, 1) (0, 1) ,0, (x , y) /2 (0, 1) (0, 1) .

    Tm fX (x) v fY (y) .

    V d 7: Cho hai bin ngu nhin X ,Y c hm mt ng thi

    fXY =

    x + y , (x , y) 2 (0, 1) (0, 1) ,0, (x , y) /2 (0, 1) (0, 1) .

    Tnh E (X ) ,E (Y ) ,Var (X ) ,Var (Y ) v cov (X ,Y ) .

    (cov (X ,Y ) = E ((X E (X )) (Y E (Y )))= E (XY ) E (X ) .E (Y ))

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 18 / 32

  • 11. Mt s v d

    V d 8: Cho hai bin ngu nhin X ,Y vi hm mt ng thi

    fXY (x , y) =

    x + y , 0 x y 1,0, otherwise.

    t Z = X + Y . Xc nh hm mt v hm phn phi tch ly ca Z .

    V d 9: Gi s X ,Y l hai bin ngu nhin c hm mt ng thi l

    fXY (x , y) =

    ex1 , 0 x2 x1 < +,0, otherwise.

    t Z1 = X + Y v Z2 = X Y . Tm hm mt ng thi ca Z1,Z2v hm phn b tch ly bin ca Z2.

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 19 / 32

  • 12. Xc sut c iu kin. Tnh c lp

    Cho A,B 2 F sao cho P (B) 6= 0. Xc sut c iu kin ca A khicho trc B xc nh bi

    P (AjB) = P (A\ B)P (B)

    .

    Hai bin c A,B 2 F c gi l c lp nu

    P (A\ B) = P (A) .P (B)

    Hai bin ngu nhin v c gi l c lp nu vi mi A,B 2B(R) ta c

    f 2 Ag v f 2 Bgl hai bin c c lp.

    Ta ni hai sigma i s F1 v F2 l c lp nu 8A 2 F1, 8B 2 F2th A,B c lp.

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 20 / 32

  • 12. Xc sut c iu kin. Tnh c lp

    Theorem

    Nu v l hai bin ngu nhin kh tch th chng khng tng quan,tc l

    E (.) = E ()E () hay suy ra cov (, ) = 0.

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 21 / 32

  • 13. Hm sinh monment

    Hm sinh moment ca bin ngu nhin c xc nh bi

    M (t) = Eet,

    nu k vng tn ti. Nh vy, nu f l hm mt ca th

    M (t) = x etx f (x) , khi ri rc,

    M (t) =R + e

    tx f (x) dx , khi lin tc.

    Ch :

    - Hm sinh moment cho php xc nh cc moment Mk () = E

    k.

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 22 / 32

  • 13. Hm sinh monment

    Theorem

    Nu M (t) hu hn trn mt khong m cha 0 th hm t 7! M (t) khvi mi cp v

    M(k) (t) = E

    et .k

    .

    H qu l

    M(k) (0) = E

    k= Mk () .

    Chng minhddtM (t) =

    ddt

    R + e

    tx f (x) dx =R + xe

    tx f (x) dx = Eet

    ,

    d2

    dt2M (t) =

    ddt

    R + xe

    tx f (x) dx =R + x

    2etx f (x) dx = E2et

    ,

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 23 / 32

  • 13. Hm sinh monment

    V d 10:

    U (a, b)

    M (t) =1

    b a

    Z ba

    etxdx =ebt eat(b a) t .

    Exp()

    M (t) = Z +

    0etx .exdx =

    t (t < ) .

    N; 2

    M (t) = exp

    t +

    2t

    2

    P()

    M (t) =

    k=0etk

    ek

    k != exp ( exp (t) )

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 24 / 32

  • 13. Hm sinh monment

    Theorem

    Nu hm sinh moment M (t) ca b.n.n tn ti trong ln cn ca 0

    th n xc nh duy nht hm phn phi xc sut, ngha l khng thc hai bin ngu nhin khc nhau c cng hm sinh moment.

    Nu v l hai bin ngu nhin c lp th

    M+ (t) = M (t) .M (t)

    V d 11: Gi s hm sinh moment ca mt bin ngu nhin X l

    MX (t) = e3(et1).

    Tnh P (X = 0).

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 25 / 32

  • 14. S hi t ca cc bin ngu nhin14.1. Mt s bt ng thc quan trng

    Lemma

    (Bt ng thc Markov) Cho l bin ngu nhin khng m, ngha lP ( 0) = 1. Khi , vi mi c > 0,

    P ( c) 1cE () .

    Lemma

    (Bt ng thc Chebyshev) Cho l bin ngu nhin c k vngE () = v phng sai Var () = 2. Khi , vi mi c > 0, ta c

    P (j j c) 2

    c2

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 26 / 32

  • 14. S hi t ca cc bin ngu nhin14.2. Hi t theo xc sut

    Ta ni dy bin ngu nhin (n) hi t theo xc sut n bin ngunhin nu vi mi > 0,

    limn!

    P (jn j > ) = 0.

    K hiu nP! .

    V d 12: Gi s Xn l bin ngu nhin c hm mt

    fXn (x) =

    8

  • 14. S hi t ca cc bin ngu nhin14.3. Hi t theo phn b

    Cho dy b.n.n (n) c cc hm phn b l Fn (x) v b.n.n c hm

    phn b l F (x). Ta ni n hi t theo phn b v , k hiu

    nd! , nu

    limn!

    Fn (x) = F (x) ,

    ti mi x sao cho F lin tc.

    V d 13: Gi s Xn = 1+1n l b.n.n hng s. Hm phn b ca Xn

    l

    FXn (x) =

    0, x < 1+ 1/n,1, x 1+ 1/n.

    Ta c Xnd! X , trong X = 1 l b.n.n hng s.

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 28 / 32

  • 14. S hi t ca cc bin ngu nhin14.4. Hi t trung bnh

    Ta ni dy b.n.n (n) hi t theo trung bnh bc p v b.n.n , k hiu

    nLp! , nu

    limn!+

    E (jn jp) = 0.

    Quan h gia cc loi hi t

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 29 / 32

  • 14. S hi t ca cc bin ngu nhin14.5. Lut s ln

    Theorem (Lut s ln)

    Gi s (n) l dy cc b.n.n c lp c cng phn b xc sut v

    E (n) = ,Var (n) = 2, 8n 2 N.

    Khi

    n =1 + 2 + + n

    n

    P! khi n ! +.

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 30 / 32

  • 14. S hi t ca cc bin ngu nhin14.6. nh l gii hn trung tm

    Theorem (nh l gii hn trung tm)

    Gi s (n) l dy cc b.n.n c lp c cng phn b xc sut v

    E (n) = ,Var (n) = 2, 8n 2 N.

    Khi

    n =(1 + 2 + + n) n

    pn

    d! Z N (0, 1) .

    V d 14: Gi s n B (1, p) , 8n 2 N. Khi = 1 + 2 + + n B (n, p). Theo nh l gii hn trung tm, ta c

    nppnp (1 p)

    xp x vi b.n.n Z N (0, 1) .TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 31 / 32

  • 14. S hi t ca cc bin ngu nhin14.6. nh l gii hn trung tm

    V du 15: Gi s

    - thi gian s dng mt loi pin c k vng 40 gi v phng sai 20 gi

    - khi mt cc pin ht nng lng, ngi ta thay n bng mt cc khc

    - ta s dng 25 cc pin v tui th ca chng l c lp

    Tnh xc sut tng thi gian s dng ln hn 1100 gi.

    TS. L Xun Trng (Institute) Tm tt L thuyt xc sut 32 / 32

    Khng gian Xc sut