계절별 지하수위 변화

356
KR-04-(T)-07 과제번호 3-1-1 21세기 프론티어연구개발사업 -수자원의 지속적 확보기술개발사업- 21st Century Frontier R&D Program - Sustainable Water Resources Research - 지질특성별 지하수 진단/평가/탐사 기법 개발 Technology for Site Characterization, Assessment and Exploration Method of Groundwater Resources 한국지질자원연구원 과 학 기 술 부

Upload: camazie

Post on 26-Nov-2014

349 views

Category:

Documents


0 download

TRANSCRIPT

KR-04-(T)-07 3-1-121 - -21stCenturyFrontier R&D Program- Sustainable Water Resources Research - // Technology for Site Characterization,Assessment andExploration Methodof Groundwater Resources -1- (// ) .2004.6. ::: ::::::::-2- 3-1-12001.10.20~2004. 6.30 1 / 321 // :25 :22 : 3 : 1,125: : 1,125 : : : : : : : : : :( 500)345 (212 ) 10-3-10-3.,,LANDSATTM , Sr Ni - . 94% . Cl, NO3 . . / / ,56 .TEM, ., Heat-pulse Flowmeter .( 5 ), , , , groundwater, site characterization, assessment, logs, exploration-3- . : // : : : : . (),,, , , . // . ,,.,, . . ,,, . () . , , , . , . . , , , , . -4- . , / ./ , . TEM , / . , , . . , . . //, .. ,1 (2001. 10. 202004. 6. 30) . - // - // - - - - - - / / - - - - - - 3 - - EM - - -5- - - - 2 - - . . (DONGWONIv1.1), . - , . (1) N30o40oE-,(2) N40o50oW,(3)N10o20oE. tracer.D= -0.713+9.265(CBa/CSr)-3.134(CNi/CRb) . - . , Sr Ni - . , . MLAEM , . , streampartitioning, , Rorabaugh . , . , . , . -6-, . EM TEM / , , . , . . . heat-pulseflowmeter . , . . , . . . , . , . . , - , - , - , .-7-SUMMARYGroundwatermodelisatooltoassessgroundwaterresourcestoawideextent.Manynumerical modelshavebeendevelopedwithdigitalcomputerdevelopment,andtheselectionoftheproper modelforthevariousconditionsbecomeaprimaryproblemtobesolvedwhenyouassessground-waterresourcesusingmodels.Variousorganizations,researchinstitutes,anduniversitieshavebeen collecting,managing,andsellingtheprograms.Weneedtoanalyzeandarrangetheirprograms,and itcanbehelpfulforresearchersandmodelerstousetheseprograms.Representativemodelsweretestedandappliedtogroundwaterresourcesevaluations.MODFLOW asafinitedifferencemodelwasusedtoevaluategroundwatercontaminationrisksstochastically. Uncertaintycanbecomplementedwiththiskindofnumericaltoolsinheterogeneousandanisotropic aquifer.HYRUS2Dasafiniteelementmodel,whichisavariablysaturatedflowandtransportpro-gram,wasappliedtoacertaincontaminanttransportscenario.And,MLAEMasaanalyticelement modelwasappliedtoaYuseongdistrictgroundwaterflowsystem.Automatedestimationmethodsforbaseflowandgroundwaterrechargewereanalyzedandmodi-fiedtobeusedinbasinscale.Digitalfilteringandstreampartitioningmethodswereappliedto GokseongandJiri-mountainareas.Thosemethodsaresopowerfulingroundwaterrechargeevalua-tionsofabasinwherelongtermstreamflowmonitoringstationsare.BothLandsatTMsatelliteimageandshadowreliefmapoftheKoreanpeninsulahavebeenan-alyzedtospeculateregional-scaleflowdirectionofgroundwaterandanisotropyofaquiferalongthe fracturedrockmass.Schematicrosediagramsshowpredominantlineamentofeachdomain,20kmx 20km.Frequency,lengthanddensitymapsoflineamentsreveallocationofthehighlyfractured rockmassarea.MaterlineamentsintheKoreanPeninsulashowvariousorientationssuchasNE-SW, WNW-ESE,E-WandN-Sdirections.EspeciallyNE-directedlineamentholdstheadvantagerather thanotherorientationoflineament.Developmentoflineamentscanbedividedinto3stagesbased ontheageofbasementandorientationoflineament:(1)PrecambriantoEarlyMesozoicageis N30o-40oE,(2)CretaceousageisN-SandN40o-50oW,(3)TertiaryageisN10o-20oE.Lineaments interpretedaregenerallyrepresentativeofgeologicaldiscontinuitiessuchasfaultzone,highlyfrac-turedzone,beddingtrace,andgeologicalboundarieswhicharecloselyassociatedwithflowpathof groundwater.Thusanalysisoflineamentcanbeexpectedasrawdatatostudyflowpathofground-waterandlocationofaquifer.ThewaterqualityanalysisofthegroundwaterfromYoungam-GangjinandJeonju-Wanjuareain-dicatesthatthefactorscontrollingthewaterqualityarewater-rockinteraction,componentinput fromthemeteoricwater,andpollutionfrompointandnon-pointsources.Discriminantanalysisbe-tweengroundwtaerandstreamwaterqualitygivesafunctionofD=-0.713+9.265(CBa/CSr)- 3.134(CNi/CRb).Thefunctionmaybeusedinestimatingtherelativeextentsofinfluenceofwa-ter-rockinteractionandpollutiononthewaterquality.REEpatternsofwaterrevealsthatitcanbe -8-usedintracingthecycleofgroundwaterandstreamwater.Aweb-baseddatabase'geoWQDB'is beingconstructedtomanageofcombinedwaterqualitydata.Athree-dimensionalnumericalmodelispresented(1)toevaluateimpactsofthepumping scheme(2)toevaluateimpactsofthetidalfluctuationofsealevel(3)toinvestigateanefficiency offreshwaterinjectiontechniqueongroundwaterflowandsalttransportintheunsaturatedlayered coastalaquifersystem.Thisnumericalmodelisdevelopedbasedonthefullycoupledgoverning equationsfordensity-dependentunsaturatedgroundwaterflowandsolutetransportandtheGalerkin finiteelementmethod.Thelayeredcoastalaquifersystemusedinthenumericalsimulationisset composedofasandaquiferoverlainbyrelativelythinclayaquitardssinceitisthemostcommon hydrogeologicalsettingobservedinthewesterncoastofKorea.Threedifferentpumpingschemes arethenappliedtoapumpingwellinstalledwithinthesandaquiferforthepurposeofcomparison: acontinuousandtwoperiodicalpumpingschemes,whichwithdrawthesameamountofground-waterduringthetotalsimulationtime.Thenumericalsimulationresultsshowthattheperiodical pumpingschemeshavesignificantadverseimpactsonthegroundwaterflowandsalttransportfields notonlyinthesandaquiferbutalsointheclayaquitard,andhencethecontinuouspumping schemeismoredesirabletominimizethegroundwatercontaminationbyseawaterintrusion.Inaddi-tion,theperiodicalpumpingschemewithahigherpumpingrateresultsinspatiallyandtemporally moredeterioratedgroundwatersalinizationthanthatwithalowerpumpingrate.Ontheotherhand, thegroundwatersalinizationpatternintheclayaquitardsisquitedifferentfromthatinthesand aquiferundereachperiodicalpimpingscheme.Suchdifferencesingroundwaterflowandsalttrans-portpatternsbetweenthesandaquiferandtheclayaquitardsarecausedbythelayeredhetero-geneityofthecoastalaquifersystemandtherelativelylowhydraulicdiffusivityoftheclayaqui-tardscomparedtothesandaquifer.AnactualtidalfluctuationdatacollectedinaweatherstationinthewesterncoastofKoreais alsoutilizedinthenumericalsimulation.Spatialdistributionsofhydraulicheadandsaltconcen-trationobtainedthroughasteady-statenumericalsimulationareusedasstaticinitialconditions.The numericalsimulationresultsshowthatthetidalfluctuationofsealevelhavesignificantimpactson thegroundwaterflowandsalttransportfieldsnotonlyinthesandaquiferbutalsointheclay aquitard.Thehydraulicheadintheaquifersystemalsooscillatesasthesealevelfluctuates,andits magnitudeishigherinthesandaquiferandnearthecoastalline.Asaresult,thegroundwaterdis-chargesintotheseaduringthelowtidewhereastheseawaterintrudesintotheaquifersystemdur-ingthehightide.Itstronglysuggeststhatthehydraulicheadchangeismainlycontrolledbythe waterflowmechanism.Ontheotherhand,thesaltconcentrationintheaquifersystemasymptoti-callyincreaseswithtimeshowingsomeslightoscillation,anditsincrementishighernearthecoast-alline.Asaresult,theisoconcentrationlinesexplainedtowardthefreshgroundwaterbody,andthe groundwatersalinizationintensifiesfurther.Itstronglyimpliesthatthesaltconcentrationvariationis mainlyinfluencedbythehydrodynamicdispersionmechanismthroughflowinggroundwater.Thenu-mericalsimulationresultsalsoindicatethatthestaticinitialconditionsusedinthenumericalsimu--9-lationshouldberevisedsincethetidalfluctuationisadynamicphenomenon.Simulationswereperformedunderfourdifferentcategoriesclassifiedbyfactorsinfluencingin-jection/extractionwell'sefficiency:injection/extractionrates,wellscreendepths,numberofwells,and distancesfromapumpingwell.Initially,anaquiferwassettobecontaminatedby5000m3/dayab-stractionfor10yearsfromthepumpingwell,andthenfourseriesofnumericalexperimentswere performedtoobservechangingpatternsofaquiferwithinjection/extractionmethod.Thenumerical simulationresultsshowedthatrateofinjection/extraction,numbersandpositionsofinjection/ex-tractionwellswerecriticalforrecoveryefficiency.Therefore,itmaybeconcludedthatinjection schemeshouldbeproperlyconsideredwhenminimizingcontaminationofcoastalaquiferisrequired, andweshouldcomparecontroltechniquecarefullyinaspectsofwaterqualityandthecon-taminationofcoastalregion.Standardizationofgeophysicalmethodbasedongeologicalcharacteristics -Comparisonandevaluationofgeophysicalmethodsbasedongeologicalcharacteristics -Determinationofthestudyareasbasedonthegeologicalcharacteristicssuchasthealluvium, crystallinerocks,limestonearea,vesicularvolcanicrock-Collectionandinterpretationoftheexistinggeophysicaldatacarriedoutinthestudyareas-Geophysicalsurveysoverthestudyareasandcomparisonofthegeophysicalresultsbasedonthe geologicalcharacteristics-Standardizationofgeophysicalmethodbasedongeologicalcharacteristicsandsurveyobjects.developmentofanelementaltechnique-DeterminationofthespatialdistributionofthefracturezonebasedonthethreedimensionalDC resistivitysurveyandthreedimensionalgeophysicalinterpretation-Asimultaneousmuti-channel/multi-functionmeasurementsystemandprobesaredevelopedforde-terminingthegroundwaterqualityandtheundergroundflowofgroundwater.Theinputchannelsof themeasurementsystemcanbeexpandedupto56channels.Thetransientelectromagnetic(TEM) techniqueforhighlyresolvingtheshallowanddeepgeologicalstructuresisaccomplishedwitha timeseriesmeasurementsystemandanoisereductiontechnique.Groundwatercanfiltervariouskindsofpollutedwaterandorganiccompounds,andcanreduce sourcesfromwaterpollution.Alsodeepwaterislesscontaminatedduetomicrobialprocessesthat abateanddetoxifyhuman-inducedcontamination.Furthermoreithasbecomeclearthatthechemistry andwater-qualityofpristinegroundwatersystemsislargelydeterminedbymicrobialprocesses. Nonethelessduetoincreasedhumanactivitiesandindustrializationsoilfunctionlessasaprotector ofpollutedwater,andriskcanbeincreasedfromacontaminationsuchasadirectinput,surface water,fragmentsfromgroundwater,seawater,etc.Oncetheincreasedpollutionfromsewageandindustrialwaterconcentrationoforganiccom-poundscanbeincreasingandmicrobialactivitiescanbereduced.Thisresultedinlackofdissolved -10-oxygeningroundwaterthatsuffocatedbiologicalorganismsingroundwater.Ontheotherhandac-tivitiesofanaerobicmicroorganismsareincreasingthatproducebadsmellingchemicalcompounds suchasH2S,fattyacidandtoxicmaterialstovertebratesorplants.Materialsthatareproducedin theprocessescandeterioratethequalityofgroundwater.Thisstudyaimsatmicro-organismsthatdeterioratethequalityofgroundwater.Suchorganisms canbelistedasplanktonofbothplantandanimal,andalgae,benthicorganisms,mossandwewill identifythespeciescompositionanddensitythatcanbeservedasfundamentalinformationforsus-tainableuseofwaterresources.Thecriteriaforgroundwaterqualitycanbestudiedinlimitingfactorsforconcentrationofor-ganiccompounds,enzymeactivities,benthicorganisms,waterplants,turbidity,concentrationof COD,etc.Thisstudywillidentifybiologicaldiversityforgroundwaterqualityandwewilllimit specieslistonlyforbothplantandanimalspeciescomposition. -11-CONTENTSChapter1.Introduction 13Section1.Purposeofresearch 13Section2.Scopeofresearch 13Section3.Necessityofresearch 14Chapter2.Statusofdomesticandforeignmethods 16Section1.Statusofcharacterizationmethods 16Section2.Statusofassessmentmethods 17Section3.Statusofgeophysicalexplorationandloggingmethods 19Chapter3.Researchperformancesandresults 20Section1.Dischargefeatureanalysesrelatedwithgeology 20Section2.Relationshipsbetweengroundwatermonitoringandrainfalldata 49Section3.AnalysesforGroundwaterlevelandqualityinnationalmonitoringwells 59Section4.Groundwaterassessmentsusingmodeling 76Section5.RegionallineamentsanalysesinKoreanpeninsula 106Section6.Groundwatercontaminationvulnerabilityassessmentsinbedrockaquifers 128Section7.Characterizationsgroundwaterqualityrelatedwithgeology 163Section8.Seawaterintrusiondiagnosesandassessments 202Section9.Geophysicalexplorationmethods 252Section10.Geophysicalloggingapplications 293Section11.Groundwaterqualityassessmentsusingbiologicalindex 323Chapter4.Levelsofresearchgoalachievementsandcontributionsonotherfields 331Chapter5.Plansforusageoftheresearchresults 334Chapter6.Collectedforeignscientificandtechnicalinformations 336Chapter7.References 338 Manual for groundwater quality classification 346-12- 1 13 1 13 2 13 3 14 2 16 1 16 2 17 3 / 19 3 20 1 20 2 49 3 59 4 76 5 106 6 128 7 163 8 202 9 252 10 293 11 323 4 331 5 334 6 336 7 338 346-13-1 1 //.(sustainabledevelopment) ,/,() . , 10 / . , , . / . 2 // . , , , , , / / . // , . 1 , / 2 . 2 , , , . .,0300m 300m ., , .-14- (sitecharacterization) . .; ;; ; . . , . 3 . , , . . , . 1970 USGS() , 80 . , SSG(ScientificSoftwareGroup) IGWMC(InternationalGroundWaterModeling Center) , , . (USEPA) 23 sourcecode , . , . , , , Kriging , MODFLOW , . , . . , -15- . . , , . 1 , ( ) . , , . . , .-16-2 1 1. . (fracture trace) (Lattman,L.H.andParizek,R.R.,1964). (reproducibility test) (Sander,P.etal,1997) (factorsinfluencingwell productivity) (Mabee,S.B.,1999). (Mabee,S.B.etal,2002). ,, (Mabee,S.B.etal.,1994). (,1996) .. , . (distributedwatershedmodel)(Abbott,M.B.etal.,1986,Singhetal.,1998) SWAT MODFLOW (quasi-distributedwatershedmodel) (Singh,R.etal.,1999,Sophocleous,M.,2000,Sophocleous,M.andPerkins,S.P., 2000),(regionalizationofhydrology)(Haberlandt,U.etal.,2001).2. (Laughlin,G.P.et.al.,2003) (Gellens,D.,2002) . .3. (Lowflowhydrology)(Smakhtin., V.U.,2001). . (Haberlandt,U.et.al.,2001). -17- (Nyholm,T.et.al.,2003).4. (,1998,,2001)(time-seriesanalysis)(,2002),(,2000). (Shevenell,Lisa,1996) (Joeson, J.M.U.etal.,2002). .5. ( , 1997; , 1997; , 1998; , 1998; , 1998; , 1999; PalmerandCherry, 1984; Soulsbyetal.,1998;IwasukiandYoshida,1999), . , , .6. , (: Landsat, ERS ) , , . , . 2 1. , . . , -18- . .2. ,DRASTIC (, 1998). , , , , . , .3. 2 , 3 . Ghyben-Herzberg (,1992;,1992;,1992;, 1994). (1997) (1997) - . 2SWIM(SaltWater IntrusionMeeting)30, , PennsylvaniaStateUniversity Saltnet . SWICA(InternationalConferenceonSaltwaterIntrusionand CoastalAquifers--Monitoring,ModelingandManagement) . , . DepertmentforUnternationalDevelopment(DFID), . .-19- , .,1996Madras,1996 MardelPlata , 1999 TrinidalandTobago . 3 / 1. (USGS) , 20 Heat-pulsetype (Hess,1982,1986),USGS packer ( ,0.048/min) (Paillet,1983,1991,1993,1994,1998,2000,2001). , 23 ( ,2001,2003,2004; ,2001). . , , .2. , ( , 1987). , . , , . 3 . , (, ,,)3(,, ) , . , , 3 ( , 2001; , 2000). 3 . EM TEM / TEM , TEM . TEM / . TEM MIC SIROTEM MK3 Zonge NANOTEM . -20-3 1 1. (atmosphere),(lithosphere),(hydrosphere),(biosphere) (Fig3-1-1). . . , (continentalwater) , . . atmosphere: p r e c i p i t a t i o n . temperature,humidity,...biosphere:plant,animal,microorganism...lithosphere:pedologygeology...hydrosphere:precipitation,surfacewater,groundwaterFig3-1-1hydrographicschemelayout.2. , . . -21- . .3. . UTM (Table3-1-1 Fig3-1-2). 16 14 14 9 12 4 7 5Table3-1-1NumberoftheNationalPrecipitationGaugingStations. 49 .Fig3-1-2TheLocationoftheNationalPrecipitationGaugingStations. 141,803 1,557. .-22- : 72 : 36 : 1994, 1995, 1997 : 96.5mm, 83.9mm : 72 36 . . 12.6mm -11.5mm . 27.9mm 54.7 . 2 100mm . , : 72 : 72 : 1993 - 1998 : 108.9mm, 115.6mm:722 . 6.7mm . 16.9mm, 18.4 . : 132 : 129 : 1988 - 1998 : 96.0mm, 120.2mm : 132 3 24 . 23.9mm(1mm ). 40.7mm 14 55.4 . 100mm 13 14 . : 98 : 74-23- : 1990. 11 - 1993, 1995 - 1997 : 120.2mm, 132.5mm:9824. 74 25 12.3mm . 19.7mm 28.5 . : 129 : 129 : 1988. 4 - 1998 : 91.3mm, 99.9mm : 129 25 .8.5mm. 19.3mm 25.0. 100mm 1996. 6 1. , : 197 : 197 : 1982. 8 - 1998 : 101.8mm, 108.4mm : 197 17 . 6.6mm 15.2mm, 24.0.100mm483,7 . : 240 : 189 : 1979 - 1998 : 105.2mm, 113.1mm : 240 51 47 . 189. 7.9mm19.8mm29.5. 100mm 6.-24- : 129 : 129 : 1988. 4 - 1998 : 81.4mm, 81.2mm : 129 24 . 14 0.2mm, 8.1mm, 12.7 . : 240 : 178 : 1979 - 1998 : 106.2mm, 113.3mm : 240 62 49 . 7.1mm 18.2mm, 29.3. 100m 7-9 5 . : 120 : 120 : 1988 - 1992, 1994 - 1998 : 86.0mm, 116.0mm:1965.4-1988393 1988 - 1988 132 24 120 . 120 12 . 30mm 34.2mm, 64.0 . 100mm 6-9 7 . : 72 : 36 : 1995 - 1997 : 91.3mm, 99.9mm-25- : 72 36 1 . 8.5mm 10.4mm 12.5. 100mm . : 213 : 189 : 1981. 4 - 1993, 1995 - 1997 : 98.2mm, 108.8mm:21324 32.10.6mm 19.2mm 25.4. 100mm 5-9 6 . : 7 : 7 : 1998. 6 - 1998. 12 : 180.4mm, 216.4mm : 7 . 36.1mm14. 39.4mm 45.5mm . 9 120.4mm . , : 72 : 72 : 1993 - 1998 : 104.1mm, 120.0mm:. 16.0mm 18.3mm, 25.5mm 100mm 8 . 1996 , 100mm 6-9 -26- . . .. . , , , 1973 2000 28 . . languageprogram MSExcel GSSurfer . class 3-1-1 .class = 0.1 2i i = 0, 1, 2, 3, ... (3-1-1) .(Py)class(: Po Py)class(Fig3-1-3) . ()05001000150020002500500 1000 1500 2000 2500:Po(mm):Py(mm)0.86.412.825.651.2()05001000150020002500500 1000 1500 2000 2500:Po(mm):Py(mm)0.86.412.825.651.2()05001000150020002500500 1000 1500 2000 2500:Po(mm):Py(mm)0.86.412.825.651.2Fig3-1-3Theexceedanceversusyearlyprecipitation. -27- (Py)classclass (Fig3-1-4).()020406080100120140160700 1200 1700 2200(mm)0.10.86.412.825.651.2()020406080100120140160500 1000 1500 2000(mm)0.10.86.412.825.651.2()020406080100120140160500 1000 1500 2000(mm)0.10.86.412.825.651.2Fig3-1-4Theyearlyprecipitationversusexceedancenumberofdays. class 28 (Fig3-1-5).()y = -16.863Ln(x) + 78.17R2 = 0.98310204060801001201400.1 1 10 100 1000class(mm) ()y = -16.737Ln(x) + 77.965R2 = 0.97820204060801001201400.1 1 10 100 1000class(mm)-28-()y = -16.525Ln(x) + 75.091R2 = 0.97990204060801001200.1 1 10 100 1000class(mm)Fig3-1-5Theexceedancenumberofdaysbytheclass. class . ()y = -0.0075x2 + 3.1159x + 23.761R2 = 0.998101002003004000 50 100 150 200 250class(mm)()y = -0.0073x2 + 3.1726x + 23.22R2 = 0.997601002003004000 50 100 150 200 250class(mm)()y = -0.0078x2 + 3.1903x + 24.349R2 = 0.997801002003004000 50 100 150 200 250class(mm)Fig3-1-6Thenumberofmaximumcontinuousnon-exceedanceprecipitationdaysbyclass. .class (Fig3-1-6). ,, .-29- : class 0.8, 6.4, 12.8, 25.6, 51.2mm 0.1mm . class . . , , , , . . Fig3-1-7 .(,)0.00.20.40.60.81.01.20 50 100 150 200 250class(mm)Fig3-1-7Thecoefficientcorrelationbetweenexceedanceprecipitationandclass. :class . . . . . Logscale . : .0.1mm . 2 .. class .class-30- . 1981 2000 20 . . class 2) class ., class = 5 x i i = 1, 2, 3, ...if Pj class thenni ni + 1 (3-1-2) i class j 365 366. 3) class .class = 5 x I i = 1, 2, 3, ...if Pj class then ni ni + 1else if ni Mi thenMi ni and ni 0 (3-1-3) class (:Fig3-1-8). ()1002003004000 20 40 60 80class(mm) ()0501001502002500 20 40 60 80class(mm)Fig3-1-8Anexampleofthenon-exceedancedays(up)andthemaximumcontinuous non-exceedancedaysofprecipitationbyclass. (Fig3-1-9). Fig3-1-9 (30 ) . 19812000 .-31- class0mmFig3-1-10. - .Fig3-1-9Thedistributionofaverage precipitationfor20years.

Fig3-1-10Thedistributionofnon precipitationdays. class 5mm Fig3-1-11 .Fig3-1-11Thedistributionofnon-exceedance daysof5mmprecipitation. 5mm -32- . 0mm . 5mm . 10mm Fig3-1-12 . .class5mm . . class . . . class 5mm 3-4mm .Fig3-1-12Thedistributionofnon-exceed-ancedaysof10mmprecipitation. Fig3-1-13Thedistributionofmaximum continuousnon-precipitationdays. . Fig3-1-13 20 . -33- . Fig3-1-14 class 5mm .Fig3-1-14Thedistributionofthe maximumcontinuousnon-exceedance precipitationdaysof5mm. Fig3-1-15Thedistributionofthe maximumcontinuousnon-exceedance precipitationdaysof10mm. class5mm0mm . . class 10mm Fig3-1-15 . . . 5mm 10mm class .. classclass. .classclass class .-34- class class 1 . class class .4. . , , , . , . . 1-2 . .. . .Fig3-1-16 . , GS-1,GS-2,GS-3,GS-4,GS-5,GS-6,GS-7 GS-11, GS-12,GS-13,GS-21,GS-31,GS-32,GS-33,GS-34,GS-35,GS-36, ... . . 1972 (Landsat-1) , global structure, tectonics, . 1 2 . Table3-1-2 .-35-Fig3-1-16ThewatershedsofGokseongarea. (km2) (km)GS-1gs-11 19.7 33.7gs-12 59.6 46.3gs-13 53.9 108.2GS-2 gs-21 38.5 67.5GS-3gs-31 16.6 25.2gs-32 21.6 30.3gs-33 26.0 27.3gs-34 23.9 27.3gs-35 16.7 17.0gs-36 11.2 9.9GS-4 gs-41 42.3 64.0GS-5gs-51 12.1 14.0gs-52 29.8 30.2gs-53 11.2 18.4gs-54 38.8 47.3gs-55 21.1 19.0gs-56 7.0 2.8GS-6gs-61 10.2 3.2gs-62 24.9 4.6gs-63 15.4 19.9gs-64 22.9 29.0gs-65 13.2 14.1GS-7 gs-71 11.2 6.1 548.2 664.6Table3-1-2Areaandtotallengthofthelineamentsineachwatersheds.-36- ., . , . .13(gss1~13). . gss-1 () . , , , , .,,400- 500m588m. , , . 31.5km2 3.5km2. gss-2 () . 650m . 53.0km2 . , , , , , , , , , , , , , , , .(485.7m),(666.9m),(498.5m), , , (402.5m), , , , , , , , , , , , 9.3km2. gss-3 () , , , , , . 500m .(716.5m),(655.0m) , , . 24.7 km2 3.1km2. gss-4 ()-37- ..(511.9m)(678.4m) 0.7km2. 11.0km2. gss-5 () . ,(511.9m), 8.3km2 0.2km2 . gss-6 () ,(714.8m) . , . 4.8km2 . gss-7 () (682.0m) , . , . , , (647.9m), (362.4m), (682.0m) . , , 2 1.9 km2 .gss-8 () , , , , , , . (gss-7) (362.4m),(682.0m)(666.9m),(487.9m),(348.1m),(511.9m). 38.4km2 (gss-2) , , 5.3km2 . gss-9 () (678.4m), , , . 300m 29.2km2 -38-2.2km2.,,(678.4m),(673.0m) (454.2m), (172.4m) . gss-10 () , , , .(583.0m),(425.0m),(530.2m), , 1 . 22.3km2 2.6km2.gss-11 () (542,8m) , , . 300m 700m . , (690.9m), , (542.8m), , (752.5m) . 23.4km21 0.8km2 . gss-12 () . 1km 5.9km2 . (752.5m) (570.8m) 0.2km2 . gss-13 () . 800m 7.6km2. table3-1-3 2000 5 2001 7 11 . . gss-1 gss-2 gss-3 gss-4 gss-5 gss-6 gss-7(km) 18.2 108.2 27.1 15.2 8.5 3.2 18.8 gss-8 gss-9 gss-10 gss-11 gss-12 gss-13(km) 46.5 30.7 28.3 8.4 4.0 3.7Table3-1-3Totallengthsoflineamentsineachwatersheds.(unit:km)-39- 1 (2000. 5. 30 - 5. 31) (gss-1)(gss-6)11. 5 gss-3, 4, 5 1-2mmgss-136.1mm,7 8-10mm.gss-7,8,10 . 2 (2000. 8. 1 - 8. 2) 13 . 5 gss-1, 2, 3, 4, 5, 6 30mm,20-21mm.gss-1,2, 3 . 3 (2000. 10. 4 - 10. 5) 13 .5 gss-3, 4, 5, 6 11mm, gss-13 14.7mm, 20mm . gss-1, 3 gss-7, 11 . 4 (2000. 10. 30 - 10. 31) 13 . 5 1-2mm . gss-1 gss-2 . 5 (2000. 12. 5 - 12. 6) 13 . 5 . gss-1 gss-8 . 6 (2001. 2. 26 - 2. 27) 13 . . gss-7, 9 . 7 (2001. 4. 3) 13.52-3mm gss-8 . 8 (2001. 4. 17 - 4. 18)gss-2 12 . 5 gss-1 -40- 7mm, gss-7, 8, 10 3.4mm, 3.0mm gss-7 gss-1 . . 9 (2001. 5. 7 - 5. 8) 13 . 5 gss-3, 4, 5, 6 50mm 15-20mm. gss-2gss-8. . 10 (2001. 5. 31) gss-12, 13 11 . 5 1mm . 11 (2001. 7. 30 - 7. 31)gss-1, 3 11 . 5 gss-2, 11, 12 10mm , gss-13 8.6mm 5mm . Table3-1-4 . 1 2 3 4 5 6 7 8 9 10 11gss-1 475.8223.660.766.7434.4103.316.391.930.2 gss-2 29.9971.6681.1742.1221.2695.9255.627.176.1517.8 gss-3 5.0465.0179.9173.599.7296.976.150.9215.8103.7 gss-4 18.684.1144.385.653.1153.953.734.1155.714.096.3 gss-5 16.862.669.035.626.1117.427.811.943.56.145.2 gss-6 75.775.215.99.655.520.32.045.02.822.3 gss-7 70.0170.0422.8137.5134.2349.479.482.4104.668.1348.6 gss-8 164.8239.8558.7356.2283.5458.4467.9110.0530.2104.6721.1 gss-9 20.7241.4346.2167.3109.6521.1112.689.2104.548.0337.9 gss-10 130.1131.5354.7144.7123.1264.9137.351.476.6111.9132.2 gss-11 23.7201.1456.6130.281.1281.0123.140.0131.610.5239.1 gss-12 4.1102.685.347.216.873.217.09.48.139.6 gss-13 19.4114.8113.857.034.290.320.013.628.049.8 Table3-1-4PointdischargeofnaturalwatershedsinGokseong.(unit:liter/sec.) Fig3-1-17 .-41- 1 Fig3-1-17 . gss-7, 8, 10 (Q1') gss-2, 3, 9, 11 (Q1) 0.8 . 3 gss-1, 3 gss-7, 11 . 6 . 11 Table3-1-5 .Fig3-1-17Correlationbetweenlineamentsanddischarges.Table3-1-5 2 7 0.7 B 0.8 . A B R21 1.503 1.216 0.782 gss-1, 6 2 38.639 0.574 0.5533 32.234 0.667 0.870 gss-1, 3, 7, 11 4 11.707 0.814 0.768 gss-1, 2 5 7.229 0.803 0.799 gss-1, 86 33.770 0.699 0.8247 8.423 0.761 0.795 gss-8 8 1.581 1.154 0.772 gss-1, gss- 29 9.854 0.797 0.538 gss-2, 810 0.942 1.177 0.749 gss-12, 13 11 12.729 0.893 0.748 gss-1, 3 Table3-1-5Correlationbetweenlineamentsanddischarges.. .Table 3-1-5 . . -42- . .5. DONGWONI .. programDONGWONI 1.1 (DONGWONI 1.0 upgrade .) program.t1,t2 . t1 (anteriorlevel) t2 (posteriorlevel)t1>t2 risingrim ()t1 0 0:ifxi '-xi=01:ifxi '-xi< 0. Table3-3-13 Mann-KendallTest SUMof +" SUMof -" .Measurementorderedbytimex1 x2 x3 ... x(n-1) x(n) No.+ No.-x2-x1 x3-x1x3-x2... x(n-1)-x1x(n-1)-x2....x(n-1)-x(n-2)x(n)-x1x(n)-x2....x(n)-x(n-2)x(n)-x(n-1)Sumof+ Sumof-Table3-3-13Mann-KendallTestmethod. Table3-3-13 Mann-Kendallteststatistics .S=n -1i =1i ' =k+1sgn(xi '-xi) S . S n S=0( : Noincreasingtrend) Kendall . , S< 0 .. (1) 163Sen'stest Mann-Kendalltest . 97 66 , 6 8 . 69 6, 94 8 . Table3-3-14 163 154(,,COD ) . Sen , Mann-Kendall -74- .(a)Mann-KendallmethodSen'smethod .(b) , .(c) .(d) COD , .(e) .(a)Sen'stest Totalwells Deepwells ShallowwellsColiform Cl COD Coliform Cl COD Coliform Cl CODMWswithupwardtrends 0 22 3 0 10 3 0 12 0MWswithdownwardtrends 39 3 10 19 1 7 20 2 3TotalMWswithtrends 39 25 13 19 11 10 20 14 3%ofMWswithupwardtrends 0.088.023.10.090.930.00.085.70.0 %ofMWswithdownwardtrends 100.012.076.9100.09.170.0100.014.3 100.0 %ofupwardoftotalMWs 0.012.51.80.06.11.80.07.4 0.0 %ofdownwardoftotalMWs 23.91.86.111.70.64.312.31.21.8 (b)Mann-Kendalltest Totalwells Deepwells ShallowwellsColiform Cl COD Coliform Cl COD Coliform Cl CODMWswithupwardtrends 0 28 3 0 16 3 0 12 0MWswithdownwardtrends 49 4 10 24 2 7 25 2 3TotalMWswithtrends 49 32 13 24 18 10 25 14 3%ofMWswithupwardtrends 0.087.523.10.088.930.00.085.70.0 %ofMWswithdownwardtrends 100.012.576.9100.011.170.0100.014.3100.0 %ofupwardoftotalMWs 0.017.21.80.09.81.80.07.40.0 %ofdownwardoftotalMWs 30.12.56.114.71.24.315.31.21.8 Table3-3-14Resultoftrendanalysisof4componentsin163stations. Table3-3-15 . , . , . , .-75- (+) (-) (+) (-) COD(+) COD(-) 0 39 22 3 3 10 - 13 8 2 - 1 - 7 4 1 - 2() - 7 8 - 1 3() - 6 1 - 2 3() - 1 - - - - - 2 - - - -/ - 3 1 - - 1Table3-3-15Correlationandtrendinlandusesofmonitoringstations.(2) Sen'stest , , . . Sen'stest Non-Detect (n-1)/2 . Gilbert (1987) Kendall (1975) S (n10) , Ties . 6 8 , . . . , , . , .-76- 4 ,., , , , , . , , , 3 . ,, . USGS MODFLOW , (stochastic) . HYRUS2D, . MLAEM .1. ( ) , . , . . (fieldgenerator) (lognormal) ,3.410-4m/s,0.5,(correlationlength) 60m . , . . . .(fieldgenerator) MODFLOW MODPATH . . . . -77- . Fig3-4-1 . , . Fig3-4-2.Fig3-4-1Modelingdomainandboundary conditions.

Fig3-4-2Groundwaterlevelandvelocity distributions.Fig3-4-3Firstrealizationandcapturezone.-78-Fig3-4-3 MODPATH , 65% . , , . Fig3-4-4 0.012 , 10 . 10 10% . Fig3-4-5 0.12 10 10 . 42% .Fig3-4-4Capturezoneat0.012dischargerate. -79-Fig3-4-5Capturezoneat0.12dischargerate. 2. ( ) ., . . . . . HYDRUS . HYDRUS .(1) 1 Richardso0oloozK(h ) ohoz-K(h )-S(2) oCp(0 )1olooz[`(0 ) o1oz[ -Cwoo1oz-CwS1(3) ojsol-o(0c )olooz(0D ocoz-oc ) -o-80- 4 .. 1 - 2 50m 5m , .,100, 0.001, 0.00001, 5. 1,5, 10,25,50,100. 0.0005, 1, , 0.001, 1000 . Loam 1989 Carsel .Fig3-4-6Finiteelementmeshes. Fig3-4-7Boundaryconditions. , . . 1 100 .Fig3-4-8Pressureheaddistributions.-81- 0 , .. 2 1 x=16-17m , .

t = 0 t=5

t=10t=100Fig3-4-9Pressuredistributionsastime.. 3 2 . 3, 10,1,3.

t = 0 t=5

t=10t=100Fig3-4-10Contaminantinfiltrationastime.-82-. 4 100 100, 1200, 0.001, 0.001, 0.00001 , 3 . , 0.05cm/d . 100 , (plume) . , 900 . , , ( ) . t=100t=600 t=200t=700 t=300t=800 t=400t=900-83- t=500t=1000concentrationFig3-4-11Contaminanttransportintoastream.3. 23. . . box , . Strack MLAEM_2.Fig3-4-12Regionaldomain.

Fig3-4-13Interesteddomain. , controlpoint . 50m 50m 2-3m . ,.,,,, .-84-40-72m2/day,55m2/day,23m2/day, , 0.1-0.2m/day, 0.19m/day,0.11m/day.Domenico Schwartz. 0.15m/day . Table3-4-1 . . 350m 350m , , . 0.1 , Fig3-4-8 Fig3-4-9 . Fig 3-4-14 . () (m) (/)42522858274143294837513136333249323030293439322543003003503003253003203091002853502002843103003003502501201003003201,5861,8806714963354206302351923101922646567100192150496384 8,857Table3-4-1WellinventoriesofYuseongdistrictin2001. * : ( 1 , a: , b: ) -85-Fig3-4-14Regionaldomainintointeresteddomain.Fig3-4-15 Fig 3-4-17 path . () .Fig3-4-15Capturezonemadeby1well. -86-Fig3-4-16Capturezonemadeby2wells. Fig3-4-17Capturezonesmadebywellsin Yuseongdistrict. . 1 1200mm , 10% .Table3-4-2Groundwaterlevelvariationsashydraulicconductivity.K 0.05 -116.63-107.78-75.09-33.26 0.075 -42.43-40.23-36.52-2.52 0.09 -23.78-23.78-20.264.30 0.1 -20.92-25.98-13.7713.26 0.15 -2.402.448.4321.44 0.2 16.6511.9518.8026.22 1 39.4939.6039.6641.99 5 44.5244.6144.4244.81 10 45.2445.0945.0145.20 -140.00-120.00-100.00-80.00-60.00-40.00-20.000.0020.0040.0060.000 2 4 6 8 10 12Fig3-4-18Groundwaterlevelvariationsashydraulicconductivity.-87- 1 . 1 calibration .4. FDM,FEM,AEM , , , Table3-4-3 . . , .Table3-4-3ComparisonsamongFDM,FEM,AEM. ( ).Solver. . grid .tensor . . . Solver () ,,GIS . -88-5. . , . . , . . , , , , . , , . , () .. Graphicalmethod . (crest) (lagtime) , . (basetime). (risinglimb), (fallinglimb), (crest) .Fig3-4-19Componentsofdischargehydrograph. 2 storm . storm , . ., NRCSTR-20 HEC-I,HEC-HMS,HEC-RAS -89- . . , . . . , . . Constantdischargemethod . storm . , storm timebase , .. Constantslopemethod . storm , .Fig3-4-20Constantdischargemethod.

Fig3-4-21Constantslopemethod.. Concavemethod storm . Fig3-4-23 . -90-Fig3-4-22Concavemethod.Fig3-4-23D-dayconcavemethod.. Depletioncurvemethod . .. . , , 0 . (mastercurve) , , . . (constantdischargemethod) . , (masterrecessioncurve) . , . . , , . 6. , . .. (baseflowindex,BFI)-91- (InstitituteofHydrology).(wateryear)5 , 5 , (turningpoint) . .(base flowindex) , , , , . 90,(turningpoint) . . ., ,(1980) , (indicative) . .BFI (InstituteofHydrology) . 0 , 0 , . , . 5 (N ) 0.9(f).0.9 . N , . , . , .BFI N f ,N , . f N . f 0.9 .. Streamflowpartitioningmethod(PART) Streamflowpartitioning Knisel Sheridan(1983) . Rutledge(1998) . Rutledge(1998) PART , , . PART (1)1-92- (2) KniselSheridan(1983).,Knisel Sheridan(1983),PART . . . Nathan McMahon (1990) , . .(Nathan McMahon,1990)fk=fk -1+( 1+)2( yk-yk -1)(7) fkk,yk, ., . , fk . Arnold (1995) 3 . 7. PART Arnold , . , 650m OTT Orphimedes 2000 6 2001 9 30 .200281 2003 86 30 . 53.0km2, 70.3km2. - , (UC-2),( SENNSA2300),, - ,. 2000 11 2001 3 1 2 . -93- ( )0.00.51.01.52.02.53.000/6 00/7 00/8 00/9 00/10 00/11 00/12 01/1 01/2 01/3 01/4 01/5 01/6 01/7 01/8 01/9 (m)0110100100000/06 00/08 00/10 00/12 01/02 01/04 01/06 01/08 (m3/sec) ( )0.00.51.01.52.02.53.000/6 00/7 00/8 00/9 00/10 00/11 00/12 01/1 01/2 01/3 01/4 01/5 01/6 01/7 01/8 01/9 (m)0110100100000/06 00/08 00/10 00/12 01/02 01/04 01/06 01/08 (m3/sec)Fig3-4-24StreamstagesanddischargesatPyeongjanggyo.8/1/02 9/20/02 11/9/02 12/29/02 2/17/03 4/8/03 5/28/03 7/17/03 9/5/03Date00.511.522.5Water level (cm)0100200300Q(m3/sec)Stream stagestream dischargeFig3-4-25Streamstages,precipitationanddischargesatBanyagyo.Fig3-4-26 Fig3-4-27 streampartitioning , Fig3-4-28 Fig3-4-29 streampartitioning . -94-streampartitioning #1, #2, #3 N-dayN=A0.2(day) #1, #2,#3#2 .#1,#2,#3 2.N 1.83, N 1.94 . Arnold(1994) Pass1, 2, 3 . ,Arnold . Fig3-4-30 Fig3-4-31 . (BFI) , 1 % . 6, 7, 8 , . , .Fig3-4-32 Fig3-4-33 streampartitioning 1 .Q,DF,SP streampartitioning.DFpass1pass2 , SP #1 #2 .Fig3-4-34 streampartitioning . 94% . Table3-4-4 Table3-4-5 . 10% 90% . . , .-95-011 01 0 01 5 1 1 0 1 1 5 1 2 0 1 2 5 1 3 0 1 3 5 1 4 0 1 4 5 1Day(m3/sec)S tre amflo w( m3 / se c )#1#2#3Fig3-4-26BaseflowseparationbystreamflowpartitioningatPyeongjanggyo.011 01 0 01 5 1 1 0 1 1 5 1 2 0 1 2 5 1 3 0 1 3 5 1 4 0 1 4 5 1Day(m3/sec)S treamflowP ass1P ass2P ass3Fig3-4-27BaseflowseparationbyDigitalfilteringbyatPyeongjanggyo.011010010001 51 101 151 201 251 301 351Day(m3/sec)Streamflow(m3/sec)#1#2#3Fig3-4-28BaseflowseparationbystreamflowpartitioningatBanyagyo.-96-011010010001 51 101 151 201 251 301 351Day(m3/sec)StreamflowPass1Pass2Pass3Fig3-4-29BaseflowseparationbyDigitalfilteringbyatBanyagyo.0501001502002506 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9Month(m3/sec)S treamflowP ass1P ass2P ass3(a)0.00.10.20.30.40.50.60.70.80.91.06 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9MonthBFI P ass1( BFI)P ass2( BFI)P ass3( BFI)(b)Fig3-4-30DigitalfilteringresultsatPyeongjanggyo,(a)monthlybaseflow(b)monthlybaseflow index(BFI).-97-01 0 02 0 03 0 04 0 05 0 06 0 07 0 08 0 09 0 08 9 1 0 1 1 1 2 1 2 3 4 5 6 7M o n th(m3/sec)S tre a mflo wP a s s 1P a s s 2P a s s 3(a)0 .00 .10 .20 .30 .40 .50 .60 .70 .80 .91 .08 9 1 0 1 1 1 2 1 2 3 4 5 6 7M o nthBFIP ass1 ( B FI)P ass2 ( B FI)P ass3 ( B FI)(b)Fig3-4-31DigitalfilteringresultsatBanyagyo,(a)monthlybaseflow(b)monthlybaseflow index(BFI).012345678Jun-00 Jul-00 Aug-00 Sep-00 Oct-00MonthQQDFSP0123456Apr-01May-01Jun-01 Jul-01 Aug-01Sep-01MonthQQDFSPFig3-4-32MonthlybaseflowatPyeongjanggyo(DF:Digitalfiltering,SP:streamflow partitioning).-98-051015202530Aug-02Sep-02Oct-02Nov-02Dec-02Jan-03Feb-03Mar-03Apr-03May-03Jun-03Jul-03Aug-03MonthQQDFSPFig3-4-33MonthlybaseflowatBanyagyo(DF:Digital filtering,SP:streamflowpartitioning).y = 1.0218x + 0.0321R2 = 0.945502468100 5 10DFSPFig3-4-34RelationbetweenDFand SP. Q DF SP bfi(%)Jun-00 0.93 0.33 0.36 0.37 Jul-00 4.34 0.93 0.78 0.20 Aug-00 7.6 1.82 1.75 0.23 Sep-00 5.05 1.79 1.89 0.36 Oct-00 0.74 0.66 0.72 0.93 Apr-01 0.45 0.3 0.3 0.67 May-01 0.56 0.35 0.36 0.63 Jun-01 4.49 0.94 0.66 0.18 Jul-01 4.88 1.52 1.28 0.29 Aug-01 0.67 0.43 0.49 0.69 Sep-01 0.58 0.37 0.39 0.66 Table3-4-4BaseflowindexatPyeongjanggyo(bfi:baseflowindex). Q DF SP bfi(%)Aug-02 26.09 7.81 9.63 0.33 Sep-02 3.37 1.7 1.27 0.44 Oct-02 0.67 0.55 0.62 0.87 Nov-02 0.89 0.66 0.8 0.82Dec-02 1.35 0.81 0.99 0.67 Jan-03 0.93 0.6 0.62 0.66 Feb-03 1.75 0.93 1.23 0.62Mar-03 2.67 1.84 2.27 0.77 Apr-03 7.59 3.42 4.09 0.49 May-03 8.28 2.2 2.26 0.27 Jun-03 4 1.96 2.17 0.52Jul-03 26.05 8.58 7.19 0.30 Aug-03 2.23 1.93 2.22 0.93 Table3-4-5BaseflowindexatBanyagyo(bfi:baseflowindex). -99-8. . Meyboom Meyboom(1961) (baseflow) .,, , . , . . Q=Q0e-at(1)Q : t Q0 : a : t : , , a . (1) 0 (totalpotentialgroundwaterdischarge) .Vtp=Q0t12.3(2)Vtp : t1 : t (1) t , .Vt=Vtp10t/t1(3)Vt : t : (2) , (3) , . -100- . ,, , . .. Rorabaugh(PULSE) Rorabaugh(1964) (4) . , , , . , .q =2T(h0a)m=1,3,5e( -m22Tt)/( 4 a2S)(4)q : ()T : h0 : (instantaneouswatertablerise)a : S : t : Fig.3-4-35RorabaughmodelAssumption (4) , L (5) .Q=2Lq(5)Q : L : L (6) .-101-L=A2a(6)A : (4)(recessionindex),K(7) ,, .Q=1.866ARiKm=1,3,5e( -0.933 m22t )/( 4 K)(7)Ri=h0Sy : , Sy : K=0.933a2ST : (K), (A), (Ri) .(baseflowhydrograph)(baseline) . 0 , .. (RORA) RutledgeDaniel(1994)Meyboom(1961) (recessioncurvedisplacementmethod) . (Meyboom,1961). V=QK2.3026(8)V : Q : , , () . (4) (7) ,Rorabaugh(1964) (9) . Tc=0.2144K(9)-102-Tc : Glover(1964) Rorabaugh(1964) ,(10) .R=2( Q2-Q1)K2.3026(10)R : Q1 : ( )Q2 : ( )Q1Q2TCTimeRecharge event of interestQ1Q2TCTimeRecharge event of interestFig.3-4-36Rechargecalculation .step 1. .step2. .step 3. , .step4. Q1, Q2 .step5. (10) .-103-Rutledge Daniel(1994) ,Rorabaugh(4)(11) . dQ=Ct'(11)dQ : t' : C : Linsley(1982) (12) , C . N=A0.2(12)N : A : , [mile2] (11)dQ, . (13) .Q= Q010-t''/K(13)Q : t'' Q0 : t'' : 9. . Rorabaugh Rutledge(1997)PULSE.,KFig3-4-24 117 . .Fig3-4-37 Fig3-4-38 1 2 .-104-010020030040050060070080090010000 50 100 150 200TIME IN DAYSDISCHARGE IN CUBIC FEET PER DAY11010010000 50 100 150 200TIME IN DAYSDISCHARGE IN CUBIC FEET PER DAYFig3-4-37Baseflowseparationduringfirstperiod010020030040050060070080090010000 50 100 150 200TIME IN DAYSDISCARGE IN CUBIC FEET PER SECOND11010010000 50 100 150 200TIME IN DAYSDISCARGE IN CUBIC FEET PER SECONDFig3-4-38Baseflowseparationduringsecondperiod 2 , , 1 . , 1 1318% , 2 1420% .Table3-4-6GroundwaterrechargebyRorabaughmodel.1stperiod(173days) 2ndperiod(195days)rainfall(inch) 59.9 33.7recharge(inch) 815 511ratio(%) 1325 1430-105-. Rutledge(1994) RORA , , . Table3-4-7Resultsfromautomaticgroundwaterrechargeestimations.1stperiod(173days) 2ndperiod(195days)rainfall(inch) 59.9 33.7recharge(inch) 11.294 8.933ratio(%) 18.9 26.5. . , . . ,, , , . , , . , () .-106- 5 (lineament)1. (lineament) . 1800Sedwick, , . , , , . , , , . LandsatTM , , 1:50,000 1:1,000,000 . , ( , 2001) . .2. LandsatTM 23(fullscene)(Fig3-5-1).1(coverage) 180km x 180km . LandsatTM 7 (7bands) 6band (groundresolution) 30m. NIMA(NationalImageryandMappingAgency) , 3(arcsecond) (DigitalElevationModel) , , ( 1997) 4 . Landsat TM Band . Band1:EMRspectrumrange 0.45- 0.52 bluebandLandsatTM . , .lowcontrast,lowradiancehistogram,2 mode . -107-Fig3-5-1Path/rowindexmapofLandsatTM.Band2: 0.52 - 0.60 greenband . 6 band contrast,radiance histogram , band1 . Band3: band 0.63 - 0.69 redband. contrast band , . Band4: near infrared (0.7 - 2.5) 0.76 - 0.9 water body , . Band5: nearinfrared 1.55- 1.75 (soilmoisture) band. 6 band contrast,vegetation soil . Band6: LandsatTM 7 band band6 (thermalinfrared)10.4 -12.5(spatialreso-lution) 120. thermalmapping SST(SeaSurfaceTemperature) .-108- Band7: geologicband NIR 2.08- 2.38 . , .. (imageenhancement)lowcontrast,low brightness histogram , , . (coverage) (fullscene)(mosaicking) . Fig3-5-2 ., linearstretch , GCP(GroundControlPoint) , .Affine, (resampling)convolution.rms(rootmeansquare)error 0.9 pixel . , . 7 band band 4,band3,band2 , , , (falsecolorcomposite),Fig3-5-3 LandsatTM .LandsatTMDEMGCP correctionMosaicEnhancementImage ProcessingInterpretationLineament map Lineament mapShaded reliefStatistical analysis Statistical analysisFrequency Frequency Length Length Orientation OrientationFig3-5-2Schematicworkflowforlineamentanalysis. -109-Fig3-5-3LandsatTMimageriesofKorean peninsula Fig3-5-4ShadedreliefimageoftheKorean peninsula.. ( ) Landsat,SPOT IRS-1C passiveremotesensingsystem () (shadeeffect) . . , , . . (shadeeffect),,, , -110-. (shadedreliefmap) , , program algorithm .I= 11 -co(c)co(d)whereI :theintensityofthereflectancec:theanglebetweensunazimuthandslopenormalofgroundsurfaced:theanglebetweensunelevationandslopenormalofgroundsurface DEM I . Fig3-5-4 .3. . directionalfilter,Laplacian,Hough,Mooremethod edge edge . , . , , , . , . , . .1)linesofvariablelength,straitnessandcontinuitywhicharedifferentiatedbytonalcontrastin image.2)tonaldiscontinuites.-111-3)bandofvariablewidthswhichcontrastintotheareaimmediatelyadjacent.4)alignmentoftopographicforms.5)alignmentofdrainagepatterns.6)associationofvegetationalonglineartrends.7)andcoalignmentofculturalfeatureswithunderlyingstructuraland/orsurroundingtopographical control.. (RosediagramV.1) .(1) Fig3-5-5 Fig3-5-6 LandsatTM .LandsatTM9,370,1.2km, 144.0 km . 5.4 km, 52,094 km . 2743,2.2km,197km. 13.1km, 41,155 km.LandsatTM . LandsatTM 20km, 40km . , LandsatTM , - , -, -, -, - (directionalfamilies) . LandsatTM . Fig3-5-7. -, ,.- , - . - Nahm(1970) . - , .------ , .-, .-112-Fig3-5-5LinearmentInterpretationmapofLandsatTMimageries,andits rosediagramandcartesianhistogram.FrequencyLengthN0 30 60 90 120 15 0050100150200250300FrequencyL en gth(km)Fig3-5-6Lineamentinterpretationmapofshadedreliefmap,andits rosediagramandcartesianhistogram.- 113 -Fig 3-5-7 Major directional families of Lineament. E-W, WNW-ESE, N-S, NNE-SSW and NE-SW directions, from left to right of figure.-114-. ,, 10 (Fig3-5-8), , , LandsatTM .(2001)( 1) ( 1a), -( 1b), ( 1c), ( 2) ( 2a), ( 2b), ( 2c), (5)(5a),(5b),( 3), ( 4), ( 6), ( 7), -(8),(9),(10). , , . 10o((10o/)x 100) . . .10o ((10o / ) x100) .Fig3-5-8TectonicdomainmapofKoreanPeninsulabasedonthe geologicalandtectoniccharacteristics(afterHwangetal.,2001).(1) (1:50,000, 1,000,000) (1:50,000 1:1,000,000) 6228 (Fig3-5-9). -115-5.1427km,1km2 0.026 1.25km. 1688 1 N40o50oE, NSN10oE, N40o50oW .1aN40o50oE,2NSN10oE, N40o50oW . 1b N40o50oW , N40o50oE, NSN10oE . .1cN30o40oE , N20o70oW . 1c 8 . 2 1341 . 2a 1 . N40o50oE, NSN10oE, N40o50oW , .2bN10o50oW , N80oWEW . N10o50oW 45% . 2c - N70oEN80oW , 35% . NSN10oE . 3861. NSN10oE , N10o50oE, N40o50oW . N10o50oE . NSN10oE 15% , - . - . 4412.NSN10oE, N20o50oE , 2N40o50oW.N40o50oE 16% . - . 5 - . 5a 5b NSN50oE 60%,N20o40oE 30% .-116-Geologicalfaultsfromgeologicalmap(1:50,000,1:1,000,000)Tectonic domainNumbers measuredAverage length(m)Rosediagramfororientation(%)Rosediagramforcumulativelength vsorientation(%)1a 1140 5325.01b 540 4390.31c 8 3224.12a 1170 4778.12b 100 5519.22c 71 5829.43 861 5121.34 412 3563.65a 68 8069.35b 125 6875.76 1132 3465.57 475 4356.08 56 8236.29 70 3244.8allof domain6228 5142.7Fig3-5-9Analysisoffaultsineachtectonicdomainfromgeologicalmap.-117- 6N20o50oE,NSN10oE,N40o50oE,N80oWEW 4 . N20o50oE , . - . 7 -NSN10oE N40o50oW, N60o70oW . - N40o50oW, N60o70oW . 56 8-.NSN50oE, N20o30oE . N10o30oE 50% . 9 70 , NSN10oE, N40o50oE, N40o50oW . N40o50oE, . N40o50oE . 10 .(2) Fig3-5-10,2291a N30o60oE, N50o60oW . 1bN50o60oW,2N10o30oE .N50o60oW.1c . 2 433 . 2a NS40oE, N60o80oE, N50oWEW . N10o30oE , N70o80oW, N60o80oE.2bN10oWN10oE,N20o30oW N80oWEW . 2c N10o40oE N80oWN80oE -N10o40oE . 521 3 NSN40oE NSN20oE,N20o40oE.- - - . 332 4 ,NSN40oE,N80oWEW. , 3 4 (Fig3-5-9&3-5-10).-118-LineamentsforshadowreliefmapTectonic domainNumber measuredAverage length(m)Rosediagramforfrequence(%)Rosediagramforcumulativelength vsorientation(%)1a 229 21930.091b 44 23038.701c 2 36863.662a 310 15032.822b 83 11728.352c 40 10793.953 521 13029.124 332 11760.765a 30 21822.435b 26 19562.906 712 11125.347 371 11327.678 12 230007.099 31 10325.22all of domain2743 17239.2Fig3-5-10Analysisoflineamentineachtectonicdomainfromshadowreliefmap. -119- 565 . 5a N20o40oE , 2 N30o40oW . 5b N20o30oE . 712 6 NSN50oE , 2 N80oWEW N30o40oW . NSN10oE , N20o30oE . 7 .NSN30oE2N60o70oW,N80oWEW ,NSN10oE . N20o30oE . 8 N10o30oE , 9 NSN10oE N20o30oE 2 N80oWEW.(3)LandsatTM Fig3-5-11 , 1034 1 - , 2 - . 1a . N30o50oE , N50o60oW . 1b 1a , N20o50oE,N60o70oW.N20o50oE,N60o70oW,N80oWEW .1c N20o30oEN50o60oW,N80oWEW. 1755 2 2a , NSN50oE N50oWEW . N20o30oE , NSN50oW . 2b .2cN80oEN80oW,2N30o50oE . 1627 3 90o , NSN30oE ,2N80oEN80oW.11924N10o40oE, N80oEN80oW . 3 4 - .5a5bN10o50oE,N20o30oE . 1718 6 1718 . NSN60oEN30o40oE 2 N80oWEW . 1517 7 . N20o30oE , N60oWEW . 8 N10o30oE , 9 N10o20oE, N30o40oE . 9 N20o30oE , .-120- LineamentsforLandsatTMTectonic domainNumber measuredAverage length (m)Rosediagramforfrequency(%)Rosediagramforcumulative lengthvsorientation(%)1a 790 9421.071b 220 8283.661c 24 9276.5052a 1517 5018.942b 123 4857.662c 115 4743.253 1627 5090.814 1192 4720.575a 163 8257.655b 88 7951.776 1718 5193.927 1517 4198.488 65 4676.919 211 2719.33all ofdomain9370 6029.33Fig3-5-11AnalysisoflineamentineachtectonicdomainfromLandsatTM.

-121- ,,LandsatTM Fig3-5-12 .Geologicalmap Shadedreliefmap LandsatTMNumberoflin-eamentsfor tectonicdomainlength/unitarea (m/km2)Number/unit area(m/km2)Representative orientationof lineamentFig3-5-12DiagramshowingcharacteristicsoffaultsandlineamentsoftheKoreanPeninsula.-122-4. . 20km x 20km , LandsatTM . , . , (MultiroseV. 1) . . 20 km x 20 km , .. .. window , window 10 km , window .(runningaverage),win-dow . .. window X,Y . X,Y window .. window 0 1 (normalization)..5(interpolation) .Fig3-5-13 , , . 20km x 20km . , . , , . -123- . , 1a , - , , - . - - . 1b -, -, - - .1c- . 2a - , - - .2b-, - . 2c -, -, -, - , . 3 - , -, - . 4() , - - . 5a , - , - . 5b - , . 6 , -, -, -, - . 7, -, -, -, - . 8 ,- . 9 - . , - . , , , . (Cressleretal.1983), (Mabeeetal., 1990) . 20 km x 20 km, , -124- , .Fig3-5-13Rosediagramoflineamentswithineachgrid.Gridsizeis20kmby20km.-125- , , ,,(Hardcastle, 1995). , , . , . Fig3-5-14 , - . ( 2a) ( 3) , . . Fig 3-5-15 , .(1a) - - , - . -- - . -. , . - . , . Fig3-5-16 . . , . , ( 1a) . , . , . , , , .-126-Fig3-5-14Iso-contourmapof lineamentfrequency.

Fig3-5-15Iso-contourmapof lineamentlength.Fig3-5-16Iso-contourmapof lineamentdensity.-127-5. LandsatTM ,RosediagramMultiroseV.1, . , , , , . ,,,, . , . .. -, -, - - .- , .. (1) N30o40oE -,(2)N40o50oW,(3) N10o20oE (Fig3-5-9,Fig3-5-10,Fig3-5-11).. (Fig3-5-13), (Fig3-5-14,Fig 3-5-15,Fig3-5-16).. , , , .-128- 6 1. , , , ,. . 40, 70, 13, - 55 1-3 . . , 30, 60 . 25m .,(1999)(10,2) . DOC, APHA-AWWA-WEF (1995) StandardMethod .2. 1km1.5km (ThermalWellFieldinFig3-6-1), 38 130 . Moonetal.(1999),(cold groundwater) (Table3-6-2). (thermalgroundwater) , . 25 .Moonetal.(1999) , 106ppm . 160-300m . 10-50m, 100-140m (Moonetal. 1999). () . , -129- .Fig3-6-1Onyangspasurveyarea. Moonetal.(1999) . , , (Fig3-6-2). Fig3-6-2 (LMWL) (1999), (1994) ,LMWL (KIGAM,KBSI) 1 . -130--65-60-55-50-45-10 -9 -8 -7 -6dO-18 (permil)dD(permil)Thermal WaterCold WaterLMWLFig3-6-2OxygenandhydrogenisotopeanalysisresultsbyKIGAM(1999).ThermalWater ColdWater2002 2004 2007 2008 2009 2010 2011 2015 2016 2022 2023 2029 2031 KIGAM(1999)* WellNo.Temp() 49.1 49.9 49 43.8 40.1 49.2 45.3 46.4 53.5 51.8 53.9 52 42.3 18.4(2.89)pH 8.79 8.77 8.68 8.44 7.93 8.64 8.33 8.17 8.81 8.67 8.86 8.76 8.01 7.09(0.29)EC(S/cm) 340 327 353 385 424 349 376 371 325 325 318 331 395 502(179)Alk(eq/L) 1830 1910 2090 2060 2210 1670 1950 1830 1670 1580 1590 1610 1940 2213(897)F(mg/L) 1.49 1.69 1.39 1.30 1.03 1.56 1.35 1.26 1.80 1.64 1.79 1.83 1.15 0.027(0.023)Cl(mg/L) 29.8 27.4 30.3 33 38.7 32.5 32.4 33.4 26.5 28.2 26.1 28.1 37.1 67.4(51.7)NO3(mg/L) 1.39 1.25 2.04 1.6 5.86 3.81 2.41 3.98 1.16 3.06 0.97 2.2 6.31 27.7(19.0)SO4(mg/L) 19.3 18.1 19.6 25.4 26.4 20.5 23.7 22.9 17.2 17.5 16.6 17.5 24.6 30.8(27.4)Ca(mg/L) 7.2 4.2 8.3 7.1 22.7 6 8.8 15.5 3.2 6.3 2.8 4.1 22.2 52.7(20.4)Mg(mg/L) 0.74 0.33 0.92 0.2 2.91 0.34 0.78 2.03 0.07 0.45 0.02 0.32 3.16 15.2(5.95)Na(mg/L) 65.2 66.6 66.8 78.8 66 68.6 72.9 63.4 67.6 62.5 65.7 63.9 61.5 20.6(6.63)K(mg/L) 1.48 1.48 1.48 1.39 1.17 1.56 1.27 1.4 1.49 1.39 1.49 1.56 1.25 1.86(0.79)Si(mg/L) 26.5 27.7 26.4 26.6 26.4 27.5 26.9 26 28.7 27.7 28.1 28.2 25.9 19.2(3.71)*Average(standarddeviation) Table3-6-1WateranalysisresultsforthethermalgroundwatersinOnyang-oncheonarea.Nitrate concentrationforcoldgroundwaterswereestimatedbymatchingionbalances. . , EC, , , alkalinity , ,(Table -131-3-6-1). , (60ppm) ,0.6-6.3 ppm . (0 - 106ppm) .,(1.0~1.8 ppm),(0.0270.023 ppm) (Table3-6-1). , . Fig3-6-3 . , , EC, (r2>0.9)., , , ( standarddeviation ) (Fig3-6-3,Table3-6-2). , , , , pH, . . EstimatedColdWaterChemistry ObservedColdWaterChemistrybyKIGAM(1999)F(mol/L) - 1.41.2temp() 25.1(24.7to25.6) 18.42.9pH 6.91(6.88to6.93) 7.090.29alk(eq/L) 2.78(2.77to2.80) 2.20.9EC(S/cm) 528(525to531) 502179Cl(mol/L) 1459(1450to1468) 1457535SO4(mol/L) 403(400to406) 286225NO3(mol/L) 159(158to161) 585504Ca(mol/L) 1062(1049to1076) 1315510Mg(mol/L) 240(237to244) 624245Na(mol/L) 3049(3047to3052) 898288K(mol/L) 22.3(22.0to22.5) 47.720.2cation(eq/L) 5678(5712to5643) 48241745SiO2(mol/L) 801(798to803) 684132Table3-6-2Thepredictedcoldwaterchemistryfromflourideconcentrationandtheobservedcold waterchemistryreportedbyKIGAM(1999).-132-Fig3-6-3PlotsofwaterchemistrywithrespecttoFconcentration. ,, . , , . -133- . . . , (cation) (Kim, 2002). , (Fig3-6-3; Table3-6-2) . (fraturenetwork) , , . (Eichingeretal.1984;DarlingandBath,1988;Veldermanetal.,1993; ClarkandFritz, 1997). , , . , (Fig3-6-4). , . ConcentrationSURFACE INPUTDepthMean Input ConcentrationFig3-6-4Schematicillustrationofconcentration homogenizationduringinfiltration. -134- casing . , Fig3-6-3 .(confiningunit) . , . .Fig3-6-5PredictionofendmemberFconcentrationforthermalgroundwaters. . . KIGAM (1999) , 0 (Fig3-6-5) . (Chaeetal., 2001), . , 10-50% (Table3-6-3). Fig3-6-6 bubblediagram . -135-ThermalWellNo.ColdWaterFraction(%)max median min2002 35 28 192004 26 18 82007 39 33 242008 43 37 292009 55 50 442010 31 24 152011 41 35 272015 45 39 322016 21 12 22022 28 20 112023 21 13 22029 19 11 02031 50 44 38Table3-6-3EstimatedcoldgroundwaterfractionsinthethermalgroundwatersinOyang-oncheonarea.3. . , , . Table3-6-4 . DRASTIC . Fig3-6-6Estimatedcold-waterfractions(%)inthethermalwells. Thesurveyareaisthesameasfigure1b. DRASTIC -136- . . , . * * * * * * * *DRASTIC Table3-6-4Factorsthathavetobeconsideredfortheassessmentofcontaminationvulnerability ofbedrockgroundwaters.4. (capturing) . . , () , . . (, ) ( ) .(United StatesGeologicalSurvey) MODFLOW MODPATH , , .(1) , -137-(2) (pumpingwell) , (3) 200m2000 m (39 columns)1000m(29rows)layer 1layer 2layer 3layer 4layer 5(h=195m)(h=185m)recharge (220mm/year)Fig3-6-7Modelillustration20016012080400185Contaminated areaFlow line for contaminated groundwaterFlow line for uncontaminated groundwater-1000 -800 -600 -300 0 300 600 800 1000 (m)186 187188 189190 191195 m194 193192(m)195 m Equipotential lineGroundwater TableFig3-6-8Modelresultsforthecasewhennosignificantgroundwaterabstractionistaking placeatthedeeperpartofaquifer.Fig3-6-9Modelresultsforthecasewhendeepgroundwaterisintensivelypumped (Q=2000m3/day).-138- 39 column x 29 row x 5 layer , layer 40m(Fig3-6-7).Rowcolumn0.2-100m , . 3m/day, 0.15 10-5m-1 , 0.2 0.15 . 195m,185m(ConstantHeadBoundary), 220mm/year(RechargeBoundary),(NoFlowBoundary) . . 120-160m 2000m3 , 200m3 . . , (Fig3-6-8). 2000m3 , (Fig3-6-9). (Fig3-6-10), .Fig3-6-10Modelresultsforthecasewhengroundwatersarepumpedfromthe shallowandthedeeppartsoftheaquiferatthesametime(Q=2000m3/dayinthe deeperpart,200m3/dayintheshallowerpart). , , . , -139- . , . . ( 10 %), , , , . , . 5. (, Fig3-6-11) . , (95%) , , lime . , . , . 1.8 m2.22.42.83.84.23.22.01.8 mKOREAFig3-6-11SamplingpointsinBuyeoarea(a),waterlevel(b),andsurfacegeology(c). -140- pointbar , finingupward . , (Fig3-6-11C). . 33 2001 2002, 2 51 . 2001 , 755mm . 2002 (1274mm) . (grouping)(hierachicalclustering), group group , .Davis(1986),SukandLee(1999), Swansonetal.(2001),pH,Eh,DO,TDS,Na,K,Ca,Mg,SiO2,Cl, HCO3,SO4,NO3,Fe,Mn . 2001 2002 , 3 group .groupt-/.t- group(),p0.05, .Temp(C)pHEh(mV)DO(ppm)Alk(meq/L)TDS(ppm)Na(ppm)K(ppm)Ca(ppm)Mg(ppm)SiO2(ppm)Cl(ppm)HCO3(ppm)SO4(ppm)NO3(ppm)Fe(ppm)Mn(ppm)Group I-1 (n=5)17.3 5.4 339 2.9 0.3 487 18.6 3.6 83.5 24.1 31.5 45.4 17.8 65.6 194.7 0.05 0.05Group II-1 (n=6)16.3 6.2 100 2.0 2.5 308 22.0 3.4 13.6 13.8 49.2 24.1 149.7 5.6 0.9 23.5 1.91Group III-1(n=17)17.6 5.7 121 3.5 0.6 249 15.8 2.7 33.4 11.8 31.2 27.3 36.4 30.0 58.4 2.46 0.33Group I-2(n=7)18.1 5.5 362 3.7 0.2 488 17.7 4.9 75.8 23.9 31.0 44.4 15.0 56.5 218 0.23 0.26Group II-2(n=6)16.0 6.5 151 1.1 2.7 355 21.0 3.1 13.5 12.6 48.8 28.7 162.7 18.5 2.1 41.5 2.14Group III-2(n=14)16.6 5.9 334 2.5 0.8 236 14.6 1.7 23.3 11.4 33.1 32.1 49.6 28.6 37.9 3.06 0.47Group I(n=12)17.8 5.5 353 3.4 0.3 487 18.1 4.4 79.0 24.0 31.2 44.8 16.2 60.3 208 0.48 0.33Group II(n=12)16.1 6.3 125 1.5 2.6 332 21.5 3.2 13.6 13.2 49.0 26.4 156.2 12.1 1.5 32.5 2.03Group III(n=31)17.1 5.8 217 3.0 0.7 243 15.3 2.2 28.8 11.6 32.0 29.4 42.3 29.4 49.1 2.35 0.34Table3-6-5Averagewaterchemistryoftheclusteredgroups. , 2001 I-1, II-1, III-1 , 2002 I-2, II-2, III-2 (Table3-6-5). group t- , I-1 I-2, II-1 II-2, III-1 III-2 (Table3-6-6). -141-.I-1I-2, II-1 II-2, III-1 III-2 group . Group I (I-1, II-1), Group II (I-2, II-2), Group III (I-3, II-3) 3 group . 3 group t- , 3 group (Table3-6-6).Fig3-6-12Locationofeachgroup(A.2001;B,2002). Fig3-6-12 group . group . , Group III , group (Group I), (Group II) . group , Group I .2001GroupI,2002.group group . . Group I Group IIIComparisonpairTemp pH Eh DO TDS Na K Ca Mg SiO2 Cl HCO3 SO4 NO3 Fe MnI-1 I-2 0.050 0.116 0.526 0.466 0.985 0.731 0.456 0.451 0.918 0.723 0.916 0.590 0.421 0.478 0.514 0.597II-1 II-2 0.678 0.190 0.130 0.022 0.094 0.918 0.599 0.996 0.627 0.960 0.259 0.609 0.327 0.199 0.089 0.706III-1 III-2 0.160 0.031 0.000 0.156 0.545 0.420 0.056 0.046 0.707 0.251 0.143 0.088 0.848 0.156 0.553 0.687I II 0.000 0.000 0.000 0.007 0.000 0.486 0.205 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000I III 0.263 0.000 0.000 0.595 0.000 0.047 0.022 0.000 0.000 0.427 0.000 0.000 0.000 0.000 0.312 0.844II III 0.104 0.000 0.003 0.001 0.000 0.206 0.042 0.000 0.210 0.000 0.291 0.000 0.014 0.000 0.000 0.000Table3-6-6Thet-testresults.-142- Group I Group III TDS,Na,K,Ca,Mg,SO4,NO3 pH,Eh(Table3-6-5;Table3-6-6).SiO2,Fe,Mn . SiO2 , group , group . Group I (Fig3-6-12)(Fig. 3-6-11C), .(Minetal., 2003).,lime(CaO)(:MgSO4,K2SO4 ) , GroupIII . Group I TDS,Na,K,Ca,Mg,SO4,NO3 . Group I 2001 , 2002 . 2001 , , (GroupIII) .2001GroupIII .2002, , lime . Group I pH Group III , lime . . Group II Group II group . group Eh Fe Mn ,Group II . Group II . Group II 10m .1m (9m ) . . . , . (Robertson etal.,1996;Kelly,1997). , , Eh Fe Mn . Group I Group III -143- Group II . . , . , Group I , Group II . , (Group III ) , GroupI . . , . , . , , (, lime) .6. , . , . . (, ) . , . . .. Fig3-6-13 . (QET) (QIF) . , . .-144- dmdt=-QIFmV(3-6-1) , m solutemass, V , t . m(t) =C(t)V(t)(C: ) (1) , . d(CV)dt=CdVdt+VdCdt=-QIFC(3-6-2) , . V=Vo+dV=Vo-( QET+QIF)t(3-6-3)QETQIF watertablesoil moisturesamplermonitoringwellAB1234QOUTFig3-6-13Anillustrationforthewater rechargeinthepaddyfield.

0204060801000 20 40 60 80 100 V ((Vo-V(t))/Vo; (%))02550751001 1.2 1.4 1.6 1.8 2concentration change (=C(t)/Co)QIF, QET (relative %)QIF, QET (relative %)9 0 ( V % ) 1 0 3 0 5 0 7 01 . 1 1 . 3 1 . 5 1 . 7 1 . 9( = C ( t ) / C o )1 . 1 1 . 3 1 . 5 1 . 7 1 . 9( = C ( t ) / C o )Q I FQ E TQ I FQ E TFig3-6-14Relativefractionsfortheinfiltrationand evapotranspirationforthegivenchangesinwater volumeandconcentrationduringatimeperiod(t). , Vo . , , dVdt=-QET-QIF(3-6-4) (2) . VdCdt=C QET(3-6-5) (3) (5) .-145- dCC=QETVo-(QET+QIF)tdt(3-6-6) DtCoC(t), . C( t)CodCC=t0QETVo-( QET+QIF)tdt =Kt01t -VoQET+QIFdt

here, K=-QET( QET+QIF)(3-6-7) . lnC(t)Co=Kln (Vo-t( QET+QIF)Vo) =ln [( Vo+V)Vo]K(3-6-8) , ( QET+QIF)t =-V=V(t)-Vo,. C(t) =Co [( Vo+V)Vo]K(3-6-9) K=lnC(t)Coln( Vo+V)Vo(3-6-10)Vo,Co,V,C(t) , K , (4) (7) , QIF QET .

QIF=KVt(3-6-11)

QET=-V-QIF(3-6-12) , QIF QET Fig3-6-14 . Fig3-6-14A (V) 30% , 1.4 , 90% (QET) 10% (QIF) .-146-Si ltFi ne Sand7 cm20 cm10 cmMedium SandCoarse SandGravel10 cm25 cmh (=30cm)SamplingFront View65 cm20 cm frame50 cmK=10-5 cm/sWater drainingper day= app. 10 liter0.7 cm4 cmPebbleSampl ingport 1Sampl ingport 2StopperPE t ubi ngShoul d be glued15 cmScr eenPH, Eh, DOmeasurementFig3-6-15Illustrationforthecolumnexperimentandthephotographsfor thestudysiteinKunsan.. , . Fig3-6-15 , . (Table3-6-7), . , .ABCDE 1.0 5 34 88.26 87.451.0 7 23 74.11 73.231.1 12 25.44 25.571.21 25 33.74 34.0 31.22 34 52.14 52.89 (%)-0 .9-1.20 .50 .91.4Table3-6-7Verificationoftheinfiltrationmodelinthepaddyfieldbasedonthe columnexperiment. -147-6. 40,70, 30, 60 , 2 3 . . Fig3-6-16 . 0 10km0 10kmYellowSeaMankyung RiverGeum RiverNBed Rock AquiferAlluvial AquiferFig3-6-16Locationofgroundwatersampling points.. - ,Piperdiagram, , Ca-HCO3type Na-Cltype (Fig3-6-17). . . , , , . -148-Na-Cltype,EC . Mg1000Ca0 0Cl + NO3100100 0SO40 100 10010001001000Mg1000Ca0 0Cl + NO3100100 0SO40 100 10010001001000a) NamwonBed rock GWAlluvial GWb) GunsanBed rock GWAlluvial GWFig3-6-17PlotsofgroundwaterchemistryofGunsanandNamwonareasonthePiperdiagrams.. , , - . ,Sinclair(1976)ClNO3(threshold value) 4 (Fig3-6-18). S . Cl , NO3 , Fig3-6-3 Group 1 , Group 3 Cl NO3 , . Group 2 Cl NO3 , -149-. Fig3-6-18GroundwaterclassificationbasedonClandNO3concentrations. Cl,NO3 Group 4 Clvs.NO3 (Fig 3-6-3b) Group 2 , .,Group4Cl (NaCl,deicer)., Group 4 Group 3 Cl (Fig3-6-19).Fig3-6-19Waterchemistryoftheclassified groups. Fig3-6-20PlotsofpHandalkalinityasa functionofNO3-150- , Group 2 4 pHvs.NO3 pHvs.alkalinity (Fig3-6-20). , , NO3 Group 2, 4 NO3 H+ pHalkalinity.. . Table3-6-8 . ReactionsStoichiometric Relation*(in Equivalent)NO3 Cl cationalkalin-ityAnthropogenic EffectAerobic decomposition of organic matterC106H263O110N16P+38O2 => 106CO2+16NO3-+HPO42-+122H2O+18H+ NitrificationNH4+ + 2O2=>NO3- + H2O + 2H+Denitrification 5CH2O + 4NO3- + 4H+=>5CO2 + 2N2 + 7H2ONaCl saltNaCl => Na+ + Cl-DeicerCaCl2 => Ca2+ + 2Cl-11-1000001100011-1.125-2100Seawater InputSeawater => 100Cl -+ 10.35SO42- + 0.42HCO3- + 0.15Br- + 3.77Ca2+ + 19.44Mg2+ + 85.81Na+ + 1.87K+0 1 1.1 0.00Mineral WeatheringPlagioclase (Na0.8Ca0.2)Al1.2Si2.8O8 + 1.2CO2 + 1.8H2O => 0.8Na+ + 0.2Ca2+ + 1.2HCO3-+ 0.6Al2Si2O5(OH)4+ 1.6SiO2 carbonate (Ca1-x, Mgx)CO3 + CO2 + H2O => (1-x)Ca2+ + xMg2+ + 2HCO3- 00001111*: minus sign (-) indicates decrease in concentrations for the forward reactionTable3-6-8Suggestedchemicalreactionsaffectingalkalinity,andconcentrationsofcationand nitrateinthestudyareaandtheirstoichiometricratios. Kim(2003) , (cation = Ca+Mg+Na+K, ) alkalinity 1:1 .vs.alkalinity, (1:1mineraldissolutionline)(Fig 3-6-21). Group 1 1:1 -151- , .,,1:1 Table3-6-8 , ,Cl-saltNO3.,NaCl,deicer, Cl-salt,alkalinity, ,ammonium() , alkalinity , Fig3-6-21 vs.alkalinity .Fig3-2-21Aplotoftotalcationversusalkalinity. Cl-salt NO3 ,alkalinity (Fig3-6-22) NO3 (nitrification,ammonium ) , , NO3 . (Table3-6-7) , 2 NO3 2alkalinity,2NO3 . , alkalinity 1:1 . Fig3-6-22 (cation) alkalinity . , Group1 3 Cl-salt 1:1 , Group 2 4 Cl-salt nitrification 1:1 . Cl-salt nitrification Group 1 3 1:1 , Group 2 4 . , , . NO3 -152- . , NO3 , . , NO3 , , , . NO3 1NO31.125alkalinity(Table3-6-7). 2 .Fig3-6-22PlotsoftotalcationcorrectedforCl-salts(a),nitrification(b), andCl-saltsandnitrification(c)withrespecttoalkalinity.Theshadedlines inthefigurerepresentthestoichiometricrelationformineraldissolution. -153- NO3 . alkalinity cation-Cl' (Kim, 2003), cation-Cl-alkalinity' NO3 alkalinity . 2 . cation-Cl-alkalinity=2.0xa+1.125xbNO3=a+b a b NO3 , . a(b) , 0 b ( a) NO3 . a b Table3-2-9 . Table3-2-9 , Cl-salt . cation-Cl, Cl-salt Cl . TotalCation NitrateCl-saltMineral weatheringTotal NitrificationOxidationof organic matterTotalGroup10.490.28 (2513%)1.610.83 (7513%)2.090.900.070.08 (7140%)0.060.09 (2940%)0.120.11Group20.830.25 (3311%)1.760.61 (6711%)2.590.690.200.18 (3229%)0.520.33 (6829%)0.710.28Group35.957.53 (5020%)4.652.97 (5020%)10.609.160.100.12 (8039%)0.150.81 (2039%)0.260.80Group42.561.36 (4812%)2.681.02 (5212%)5.241.820.370.31 (4233%)0.640.56 (5833%)1.010.53Table3-6-9Calculationresultsforthecontributionsofvariouschemicalprocessestothe concentrationsoftotalcationandnitrate.Unitsaremeq/landthenumbersintheparentheses representtherelativecontributionsforthetotalconcentration. , (Group 2, 4) , NO3 , Group1 Group 3 NO3 . , . , Group 3 , -154- . Group 2 4 Group 1 , (Zilberbrandetal.,2001;Desimoneetal.,1997).. , . , . , . , . . , . , . , .7. : ,(lithogeniccontaminants) . -. 614 , 13 . (1.5 mg/L) . 1 mg/L , (;fluorosis)(Manahan,1994). (, 1997; , 1998; , 1999; , 2000). (2001, 2002) , .-155-, . - .. Fig3-6-23 . 3 . , Fig3-6-23 .Leeetal.(1995)1%(fluorite; CaF2),(1.4wt%)(1.4wt%) , . . 35km(Changetal., 1990), , . 780m 300 m . 3km (BaagandKang, 1994), . , ,. 500m . , 422 . , , ., ,55 ,(Ca, Mg,Na,K), (Cl,SO4,NO3,F,HCO3), , Li, / . . - (422) (Fig3-6-23), , . .(t-test)(Table3-6-10), .-156- , (Fig3-6-23). Table 10./ .Fig3-6-23Locationandgeologyofthestudyarea,andtheFleveldistributionin groundwaters.TheFdataarefromtheME(MinistryofEnvironment)databaseforthe422 publicwater-supplywells(B)andfromtheanalysisof55groundwatersamplescollected duringthisstudy(C).OnlyFlevelsareavailableintheMEdatabase.Thus,fullchemical analysisforpH,majorcations/anions,SiO2,andstableisotopes(18O,D)werecarriedoutfor thewatersamplescollectedfrom55wellsduringthisstudy. -157-(a)Betweenfaultzoneandnon-faultzonegroundwaters(basedonMEdata)n Well depth (m) F (mg/L) D () 18O ()Faultzone 323 15382a 1.332.45 - -non-faultzone 99 12838 b 0.270.73 - -p-value 0.137 0.000 - -(b)BetweenfaultzonegroundwatersingraniteareasofGyeongjuandPohang(dataofthisstudy)AllPohang 7 246179 9.405.97 -68.36.5 -9.550.86Gyeongju 12 242241 1.773.36 -55.96.2 -7.930.90p-value 0.968 0.014 0.002 0.002 400min welldepthPohang 5 14340 7.926.47 -66.46.9 -9.280.88Gyeongju 10 14694 0.610.83 -54.75.7 -7.760.86p-value 0.944 0.003 0.014 0.012Table3-6-10Resultsforthet-testsbetweenfaultzoneandnon-faultzonegroundwaters(a)andbe-tweenfaultzonegroundwatersinthegraniteareaofGyeongjuandPohang(b).Forthesecond comparisons,samplescollectedfromthewellsthatarelocatedonthealluviumwereclassified basedonthegeologyofthenearbyareas.Group1 Group2 Group3 Group4 Group5Flevelrange(mg/L) 5.0n 15 15 10 6 9LogF(mol/L) -5.300.17 -4.830.10 -4.470.09 -3.810.18 -3.300.17Welldepth(m) 12846.6 13137.8 139102 226260 322228D() -52.75.5 -55.43.1 -57.82.7 -59.63.8 -67.46.118O() -7.590.77 -7.880.41 -8.210.38 -8.540.39 -9.530.70Slopea 6.880.90 7.051.37 6.771.04 9.302.18 8.411.62Intercepta -0.486.9 0.1110.8 -2.278.6 19.818.7 12.815.5deutriumexcess(=D-818O)8.011.66 7.641.20 7.840.77 8.690.96 8.841.62pH 6.630.63 7.080.69 7.390.70 7.530.27 8.850.76LogAlkb(eq/L) -3.050.32 -2.760.25 -2.820.33 -2.500.27 -2.830.29LogCl(mol/L) -3.530.29 -3.410.19 -3.420.29 -3.260.37 -3.060.37LogNO3(mol/L) -4.120.54 -4.250.83 -4.430.90 -4.940.86 -5.800.76LogSO4(mol/L) -4.210.51 -3.940.43 -3.860.53 -3.300.50 -3.500.45LogNa(mol/L) -3.240.22 -3.020.25 -3.000.22 -2.490.31 -2.450.22LogCa(mol/L) -3.540.47 -3.250.23 -3.270.31 -3.300.26 -3.630.45LogK(mol/L) -4.560.28 -4.650.28 -4.570.25 -4.320.24 -4.760.44LogMg(mol/L) -3.920.56 -3.580.26 -3.660.35 -3.660.38 -5.001.07LogSiO2(mol/L) -3.380.31 -3.300.24 -3.310.18 -3.420.20 -3.360.29SIcforcalcite -2.060.96 -1.040.96 -0.821.11 -0.450.56 0.200.22SIcforfluorite -3.620.70 -2.420.3 -1.740.42 -0.540.26 0.140.33aRegressedvaluefromtherelationshipbetween18OandD(Figure2)90%confidencelevel.bAlkalinitycSaturationIndex(=logIAP/Ksp)calculatedusingPHREEQC(ParkhurstandAppello,1999).Table3-6-11Summaryofthewateranalysisresults(mean standarddeviation)foreachgroup classifiedbasedonFconcentrations. -158-. 55 , pH,Cl,Na,Li,SO4,Br,NO3(Table3-6-11), alkalinity,Ca,Mg . (CaCO3) .PHREEQC(ParkhurstandApello,1998),(Fig3-6-24), (CaCO3) . - alkalinity , , alkalinity,Ca,Mg .Fig3-6-24Changesinsaturationindices (=logIAP/Ksp)forcalcite(a)and fluorite(b)asafunctionofF concentration. Group 5 (F > 5.0 ppm)Group 4 (1.0 < F< 5.0 ppm)Group 3 (0.5 < F< 1.0 ppm)Group 2 (0.2 < F < 0.5 ppm)Group 1 (F < 0.2 ppm)Fig3-6-25Stableistopeanalysisresults.The Precipitation-weightedaveragesofrainwatersare -51permil(D)and-7.78permil(18O)(IAEAdata obtainedfromPohangduring1961-76;Leeand Chung,1997). - . (CaF2) , . ,(commonioneffect).,-,Ca,Mg, alkalinity,F , ,,, -159-.alkalinity Ca , F.Mg Ca . , , / . , (18O= -7.78 permil, D= -51 permil; IAEAdata) ,(Fig3-6-25). . , , . (deutriumexcess). , /, . , . . (Fig 3-6-26)., , . , .Fig3-6-26Abubbleplotoffluorideconcentrationonthe18Ovs.NO3diagram.-160-. , . . , . . , , (Fig3-6-27). , , (Fig3-6-27b). , . . , , . . l ow F level High F levelFaul t zonea) Enhanced weathering of rock fragmentsb) Upward flow of deep groundwaterFig3-6-27TwopossibleexplanationsforthehighFlevelsinthefaultzone:(a) enhancedweatheringoftheinsitugranitefragmentsgeneratedduringthefault displacementsand(b)upwardflowingofF-enricheddeepgroundwaters.-161-a) Fluoride levelb) Nitrate leveld18O (permil)-11.0-10.0-9.0 -7.0 -8.0 -6.00200400600800Well depth (m)d18O (permil)-11.0-10.0-9.0 -7.0 -8.0 -6.00200400600800Well depth (m)0 8 32 mg/L0 4 16 mg/LFault-zone GW in Gyeongju graniteFault-zone GW in Pohang graniteOthersFig3-6-28Concentrationsoffluoride(a)andnitrate(b)asbubblesonthe18Ovs.depthdiagram forthegroundwatersclassifiedbasedontheiroccurrences(faultzoneingraniteareaofPohang, faultzoneingraniteareaofKyeongju,andotherarea).Samplescollectedfromthewellsthatare locatedonthealluviumwereclassifiedbasedonthegeologyofthenearbyareas. ,. , 18O-depth (Fig3-6-28). Fig3-6-28 , 600m , . , , . , . , . .. ,-,, , , -162- . , . , . -163- 7 1. --(Fig3-7-1).(, 1999, 2001).-199811999122, , , , , , , ., , .Fig3-7-1Locationsofthestudyareas,Youngam-Gangjinand Jeonju-Wanju(WanjuisacountysurroundingJeonju). -200012001122,-, . 8(Fig3-7-2). ,-164-. 20024, 200368, 200311. 60msubmersiblewellpump., pH,Eh,, . 0.2m , 200mL0.2mL. -. .Fig3-7-3-.Fig3-7-2Drainagesystemandthelocationsofthesamplingsitesin Jeonju-Wanjuarea.-165-Fig3-7-3GeologicmapofJeonju-Wanjuarea. . (alkalinity)(Granmethod;WetzelandLikens,1991). ICP-AES(Si,Al,Ca,Mg,Na,K, Fe),ICP-MS(Sr,Ba,Li,Co,Cd,U,As,Zn,Pb,Rb,Ni),IC(Cl,SO4,NO3,F)HR ICP-MS(RareEarthElements).ICP, IC .CO3pH(APHAetal.,1992).. X-. -166-XRFREEICP-AESICP-MS.. , , .SPSSfor Windows(V.11.5). . PHREEQC(Parkhurst, 1995) .2. . - (1) Table3-7-1 19989. Table3-7-1 , .(charge balance).Fig3-7-4 pH(EC), , pH .1998919995 , . 19989.Fig3-7-519989(Gibbsdiagram; Gibbs,1970).,- . (Piper,1944).Fig3-7-619989-.Cl SO4, .Ca(Na+K), Ca . (HCO3),, . , -167-.Table3-7-1Waterqualityparametersofthegroundwaterinvariousaquifersofdifferentlithologies inYoungam-Gangjinarea.a.September,1998Sample No. Lithology pH mV mg/L Ca Mg Na K Cl SO4 HCO3 NO3 SiO2 CO2 F PO4 Fe Mn Al Sr Ba Li Cu Zn Pb Nichargebal-ance(%)BYKS3 YAW*3Granite16.8 6.94 98 126 12.9 2.2 12.6 0.66 7.4 1.47 74.7 1.64 55.8 9.9 0.63 0 0 0 0 0.007 0.001 0.01 0 0 0 0 3.18BYKS8 YAW8 16.8 6.2 181 240 20.7 7.3 21.2 2.21 57.3 0.19 35.1 28 40 0.04 0 0 0 0 0.038 0.045 0.02 0 0.018 0 0 -18.89BYKS13 YAW13 17.1 6.66 88 102 12.7 1.9 9.6 0.68 6.22 4.68 64.1 0 38.9 6.1 0.63 0 0 0 0 0.009 0.002 0.01 0 0.12 0 0 10.27BYDP12 YAW45 17.7 6.25 87 101 14.2 1.4 11.8 1.7 17.8 1.54 41.2 0.47 46.2 14.3 0.05 0 0 0 0 0.011 0.009 0.01 0 0.15 0 0 22.08BYMA3 YAW51 16.6 6.55 148 131 11.5 2.7 14.2 0.58 15.8 4.47 36.1 18.2 47.5 18.7 0.12 0.2 0 0 0 0.009 0.002 0.02 0 0.49 0 0 -20.31BYMA12 YAW60 17.1 6.37 83 78 4.6 2 9.1 1.38 10.4 0.37 33.3 1.23 40 25.9 0.09 0.12 0 0 0 0.006 0.005 0.01 0 0.021 0 0 11.5BYSJ13 YAW97 18.9 7.04 84 101 9.6 2.3 9.5 0.55 9.9 0.34 61 0 43.2 0.27 0.007 0 0 0 0.009 0.001 0.02 0 0.11 0 0 -0.35BYSJ15 YAW99 18.6 6.96 291 218 46.4 5.5 17.2 0.43 18 25.1 148 1.49 33.4 4.4 1.11 0 0 0 0 4.65 0.013 0.15 0 0.031 0 0 6.79BYSJ19 YAW103 17.8 5.86 1006 825 95 32.4 83.5 7.56 238 11.4 106.8 133 32.3 41.8 0 0 0 0 0 0.095 0.059 0.07 0 0.042 0 0 -20.25BYSB2 YAW105 17.1 7.29 111 131 17.4 3.1 16.6 0.9 24.7 0.72 56.4 8.86 34.6 2.27 0 0 0 0 0.027 0.005 0.04 0 0.26 0 0 -10.14BYSB6 YAW109 16.3 5.82 232 279 33.6 6.6 31.4 1.96 61.4 17.1 64.1 31 40.6 30.3 0.05 0 0 0 0 0.025 0.003 0.04 0 0.4 0 0 -10.53BYSB25 YAW128 17.1 6.98 149 178 19.6 5.8 17.5 0.85 19.9 4 67.1 34.9 43.4 16.5 0.19 0 0 0 0 0.016 0.003 0.03 0 0.29 0 0 -27.76BYSB27 YAW130 17 6.7 114 113 13.3 3.2 13.9 0.94 15.7 5.66 56.4 7.15 35.9 30.8 0.13 0 0 0 0 0.01 0.003 0.02 0 0.17 0 0 -5.05BYYA3 YAW135 16.7 6.74 102.5 119 11.7 2.3 13.9 0.87 16.7 2.41 61 4.8 52.6 0.53 0 0 0 0 0.009 0.003 0.02 0 1.13 0 0 -3.95BYYA9 YAW141 16.3 6.92 70 81 7.1 2.7 10.2 0.76 6.43 0.6 54.9 0.23 39.1 4.4 0.1 0.13 0 0 0 0.007 0.007 0.01 0 0.17 0 0 7.2BYHS9 YAW157 17.1 6.41 313 222 33.3 6.6 21.4 1.34 34.7 12.1 88.9 17.5 42.3 63 0.33 0 0 0 0 0.019 0.002 0.03 0 1.68 0 0 -1.6BKKJ3 KJW**3 15.9 6.86 207 147 19.8 5.5 14 1.65 22.2 5.55 70.8 10.5 46.4 0 0 0 0 0 0.021 0.002 0.02 0 0.6 0 0 -6.42BKKJ12 KJW12 16.5 6.72 191.7 147 19.2 2.2 13.1 0.74 11.8 3.69 83 13.8 47.3 0.09 0 0 0 0 0.017 0 0.02 0 0.12 0 0 -15.41BKKD9 KJW24 17.1 6.88 85.5 69 6.8 2.1 7.8 1.43 7.61 1.29 33 4.55 28.4 17 0 0 0 0 0 0.009 0.005 0.01 0 0.057 0 0 -5BKDG4 KJW38 16.9 6.98 72.8 66 4.2 1 8.4 0.95 5.54 0.88 32.4 0 36.6 18 0.09 0.2 0 0 0 0.004 0.003 0 0 0 0 0 6BKBY3 KJW85 16.7 7.12 376 237 48.1 11.7 18.1 1.13 26.5 11.9 164.5 7.99 33.6 22.9 0.08 0 0 0 0 0.03 0.001 0.03 0 0.022 0 0 4.07BKSJ16 KJW106 15.5 6.86 216 180 26.1 6.2 11.6 1.13 17.7 4.86 78.6 21.6 41.1 0.06 0 0 0 0 0.021 0.001 0.01 0 0.036 0 0 -14.79BKCC3 KJW140 16.2 6.82 170 123 17.1 3.9 11.1 0.73 13.7 4.49 49.6 20.6 33.6 13.9 0.08 0 0 0 0 0.015 0 0.02 0 0.22 0 0 -21.35BKCC4 KJW141 16.8 6.39 70 68 6 1.4 7.2 0.75 5.05 0.43 32.1 0.54 41.1 24 0.03 0 0 0 0 0.008 0.005 0.01 0 0.26 0 0 24.91BKCC7 KJW144 15.8 6.29 314 217 45.4 6.5 15.4 0.75 19.3 26.3 126.8 1.01 46.6 121 0 0 0 0 0 0.031 0 0.04 0 0.022 0 0 25.22BKCC9 KJW146 17 7.08 164 107 19.8 4.8 10.5 1.11 6.88 0.8 89 1.67 31.4 13.5 0.04 0 0 0 0 0.017 0.001 0.01 0 0.19 0 0 9.98BYKJ1 YAW16Gneiss18.4 7.01 308 213 24.2 3.5 44 1.9 19.2 24.6 129.7 6.35 25.7 6.6 3.15 0 0 0 0 0.071 0.003 0.11 0 0 0 0 0.78BYKJ5 YAW20 17.8 5.86 77 126 18.3 5.7 11.2 2.12 15.8 13 71.7 8.08 17.6 45.1 0.1 0 0 0 0 0.028 0.004 0.02 0 0.04 0 0 8.73BYKJ6 YAW21 16.2 5.84 139 130 13.4 3.9 13.4 1.91 17.3 8.2 58 15 32.7 18.7 0 0 0 0 0 0.012 0.003 0.01 0 0.11 0 0 -9.37BYKJ7 YAW22 7.03 435 310 29.1 5.5 59.3 1.99 29.1 31.2 175.4 7.65 24.4 7.2 2.84 0 0 0 0 0.092 0.005 0.15 0 0.1 0 0 0.66BYDJ4 YAW28 16.4 7.07 97.9 112 13.6 2.5 10.8 1.36 9.23 2.48 73.2 5.06 39.6 12.1 0.09 0 0 0 0 0.012 0.003 0.02 0 0.095 0 0 -8.46BYYA12 YAW144 16.4 7.02 90.6 97 12.3 3.3 10.2 0.9 7.69 0.85 79.3 0.59 38.5 13.2 0.07 0 0 0 0 0.011 0.004 0.02 0 0.094 0 0 0.25BKDA9 KJW58 18.4 6.74 294 193 24 5.8 28.7 0.76 48.2 9.37 80.4 3.98 32.3 0.34 0 0 0 0 0.03 0.003 0.03 0 0.41 0 0 3.85BKDA10 KJW59 18.5 6.51 148 122 28.8 3.4 11.3 1.47 11.2 2.38 104 4.56 7.9 0.07 0 0 0 0 0.051 0.002 0.03 0 0.7 0 0 15.02BKSH10 KJW122 15.9 6.47 79.7 79 5.6 2.1 7.8 0.61 8.43 1.87 29.2 2.86 34.4 24 0.05 0 0 0 0 0.004 0 0.01 0 0.018 0 0 3.51BKSH18 KJW130 16.5 6.39 225 202 19.2 3.3 18.2 2.55 30 0.76 23.4 56.3 31.4 18 0 0 0 0 0 0.017 0.008 0.01 0 0.039 0 0 -41.9BKSH20 KJW132 16.8 6.34 75.4 66 4.3 1.7 7.7 0.72 8.03 1.06 16 12.7 31.4 14 0 0 0 0 0 0.004 0.002 0.01 0 0.033 0 0 -29.18BKCR10 KJW156 17 6.79 139.5 107 11.7 4.4 11.4 0.9 11.3 2.08 58.6 5.68 49 0.08 0 0 0 0 0.008 0.001 0.01 0 0.061 0 0 0.15BYSM2 YAW63Volcanics17.1 7.65 340 237 47 4.2 23.6 0.53 35.8 19.4 111.7 2.66 46.6 4.54 0.66 0 0 0 0 0.026 0.003 0.07 0 0.02 0 0 5.06BYSM3 YAW64 16.8 6.43 611 409 74 9.8 39.6 2.35 109 44.2 99 10.8 25.2 67.4 0.07 0 0 0 0 2.14 0.016 0.18 0 0.045 0 0 6.37BYSM4 YAW65 17.8 6.75 532 358 59 3.2 48.6 0.44 112 16.2 81.7 3.98 50.9 26.1 0.12 0.13 0 0 0 0.004 0.002 0.17 0 0 0 0 6BYSM5 YAW66 16.5 6.47 440 343 44.4 8.6 41.3 2.65 72 23 67 45.5 53.3 41.8 0.03 0 0 0 0 0.017 0.004 0.05 0 0.041 0 0 -15.07BYSM6 YAW67 17.6 7.34 219 149 24.9 2.5 21.1 0.42 25 3.83 82.4 1.11 31 6.79 0 0.13 0 0 0 0.008 0.002 0.06 0 0.039 0 0 7.05BYSM8 YAW69 17.8 7.5 611 379 56 2.4 75.9 0.22 81 65.6 138.7 0 29.7 7.88 0.06 0 0 0 0 0.036 0.003 0.13 0 0.072 0 0 4.49BYSM10 YAW71 18 5.69 292 202 11.6 5.2 29.2 8.57 61.1 7.34 10.6 26 44.3 0.03 0 0 0 0 0.01 0.014 0.01 0 0.012 0 0 -19.97BYSH2 YAW73 17.1 6.64 308 247 35.3 6 17 1.46 43.5 5.74 62.5 22.3 51.8 26.1 0.22 0.22 0 0 0 0.021 0.002 0.05 0 0 0 0 -8.55BYSH3 YAW74 18.7 6.15 278 187 31.4 5.3 15.1 5.88 22.2 18.3 118 20.2 39.6 148 0.1 0 0 0 0 0.021 0.006 0.03 0 0.37 0 0 -7.1BYSH7 YAW78 16.8 7.26 296 181 53 3 14.7 0.59 11.6 11.2 150.5 0 20 15.1 0.95 0 0 0 0 0.038 0.004 0.1 0 0.32 0 0 11.82BYSH11 YAW82 16 6.65 252 182 31.8 5.4 15 0.83 27.1 3.66 85.7 15.6 38.9 35.6 0.11 0 0 0 0 0.025 0.003 0.04 0 0.076 0 0 -3.83BYHS4 YAW152 17.3 6.79 239 186 35.4 2.4 17.3 0.77 15 43.5 75.5 0.52 28.4 22.2 1.96 0 0 0 0 0.034 0.004 0.17 0 0 0 0 7.09BYHS14 YAW162 16.8 6.11 539 414 56 13.5 32.5 0.86 90.6 19.4 111.3 37 49.8 158 0.13 0 0 0 0 0.041 0.001 0.05 0 0.023 0 0 -7.33BKDG6 KJW40 18 7.48 534 443 71 14.5 19.3 0.72 28.5 18.2 94.4 4.02 35.3 12 0.06 0 0 0 0 0.028 0 0.04 0 0.09 0 0 32.27BKDG9 KJW43 18.3 7.42 155.4 114 15 4.4 13.3 0.31 11.1 1.95 77.6 2.44 40.6 25 0.07 0 0 0 0 0.005 0 0.01 0 0 0 0 -0.24BKDG10 KJW44 15.8 6.72 207 164 19.3 8.1 14.3 1.85 27 4 74.6 8.13 48.1 30 0.05 0 0 0 0 0.017 0.002 0.01 0 0.11 0 0 0.56BKDG12 KJW46 16.1 7.11 160.5 119 14.6 3.5 14 1.01 17 4.03 50 17.9 30.8 24 0.09 0 0 0 0 0.008 0.001 0.01 0 0.061 0 0 -20.64BKDG14 KJW48 16.3 7.01 181.4 149 24 5.8 11.3 1.2 185 2.58 65 13.7 32.1 0.11 0 0 0 0 0.012 0.003 0.02 0 0 0 0 -53.22BKMR10 KJW79 16.5 7.11 120.1 109 10.5 2.8 10.4 1.03 8.66 4.65 51 4.97 48.1 16 0.26 0 0 0 0 0.007 0.001 0.01 0 0.029 0 0 -6.6BKMR12 KJW81 16.6 6.79 123.2 113 11 3.3 10.8 0.68 8.23 0.61 62.2 2.51 52 34 0.07 0.22 0 0 0 0.009 0.001 0.01 0 0.69 0 0 7.01BKBY2 KJW84 15.8 6.73 291 179 44 4.2 16.9 0.9 12.9 7.55 149.4 0.58 17.2 51.8 0.05 0 0 0 0 0.026 0.002 0.05 0 0.014 0 0 19.87BKBY4 KJW86 16.2 6.3 366 214 28.3 3.9 18.1 1.13 25.8 7.85 48.8 44 40.4 45.3 0.06 0 0 0 0 0.026 0.002 0.03 0 0.025 0 0 -27.08BKSJ9 KJW99 15.6 6.28 247 215 27.3 6.5 11.8 1.29 32.3 1.97 50.4 27 48.8 49.5 0.11 0.15 0 0 0 0.028 0.002 0.01 0 0 0 0 -14.32BKCR6 KJW152 17.8 6.52 335 192 24.8 6.7 25.5 12.7 42 22 92 6.51 19.3 58 0.09 0 0 0 0 0.018 0.012 0.02 0 0.3 0 0 4.72BKCR13 KJW159 16.5 6.6 231 144 20.1 3.3 15.9 1.19 20.6 4.31 72.6 11.4 49.4 0.04 0 0 0 0 0.013 0.001 0.02 0 0 0 0 -5.13BKOC4 KJW136SeolokriFm.735.85 48 7.1 1.6 5 1.57 6.61 3.39 23.6 0.9 9.9 57.6 0 0 0 0 0 0.004 0.002 0.01 0 0.039 0 0 28.66(Unit; ppm)-168-b.May,1999Sample No. lithology pH mVmg/L Ca Mg Na K Cl SO4 HCO3 NO3 SiO2 CO2 F PO4 Fe Mn Al Sr Ba Li Cu Zn Pb Ni CoBYKS3 YAW3Granite16.2 5.85 123 119 10.5 1.71 13.6 0.71 7.47 1.55 76.28 0.8 47.7 9.9 0.56 0 0 0 0 0 0 0.01 0 0.02 0 0 0BYKS8 YAW8 16.2 5.78 304 253 19.4 7.17 24 2.2 59.5 0.3 48.82 29 34.4 18.71 0.05 0 0 0 0 0.12 0.47 0.02 0 0.02 0 0 0BYKS13 YAW13 16.5 7.39 98 93 7.9 1.21 11.3 0.76 6.33 2.55 64.07 0 35.9 6.6 0.28 0 0 0 0 0.02 0 0.01 0 0.26 0 0 0BYDP12 YAW45 16.4 6.84 368 338 32.4 5.14 32.2 2.65 107 5.7 39.66 0.78 34.2 17.06 0.05 0 0 0.1 0 0.47 0.3 0.05 0 0.27 0 0 0BYMA3 YAW51 17 7 154 122 13.7 2.07 13.8 0.53 13.7 4 50.4 12 30.8 9.2 0.14 0 0 0 0 0.02 0 0.02 0 0.67 0 0 0BYMA12 YAW60 17.6 6.6 92 88 5.5 1.22 10.2 1.46 11.1 0.47 34.8 0.68 33.8 15.8 0.07 0 0 0 0 0 0.03 0 0 0 0 0 0BYSJ13 YAW97 17.8 8.04 98 101 8.5 1.84 9.91 0.58 9.32 1.2 64.07 0 37.2 3.3 0.26 0 0 0 0 0.02 0 0.02 0 0.07 0 0 0BYSJ15 YAW99 18.2 8.12 333 225 43.4 4.78 17.9 0.39 15.3 25.1 158.7 0.49 26.7 4.95 1.22 0 0 0 0 3.61 0.13 0.14 0 0 0 0 0BYSJ19 YAW103 18.9 8.17 732 658 64.3 14 47 2.76 136 185 88.48 84.2 31.2 30.81 0.12 0 0 0 0 0.56 0.39 0.06 0.06 4.95 0 0 0BYSB6 YAW109 16.8 7.57 400 323 31 6.15 34.3 2.02 65.5 15.9 67.12 36.2 32.5 36.32 0.05 0 0 0 0 0.1 0.01 0.02 0 0 0 0 0BYSB25 YAW128 17.5 7.83 198 192 17.2 5.02 18.4 0.91 20.3 3.91 65.6 32.2 34.8 20.91 0.11 0 0 0 0 0.04 0.01 0.02 0 0.15 0 0 0BYSB27 YAW130 17 7.95 146 122 12.2 2.25 15.8 1.02 13.9 6.33 67.12 6.71 29.7 34.12 0.15 0 0 0 0 0.03 0 0.01 0 0.15 0 0 0BYYA3 YAW135 16.7 6.97 136 126 10.2 1.11 15.2 0.96 14.8 2.48 57.97 4.27 42.7 12.11 0.48 0 0 0 0 0.02 0 0.01 0 1.6 0 0 0BYYA9 YAW141 16.5 7.02 89 83 6.6 1.47 10 0.78 6.29 0.68 54.92 0 31.4 5.5 0.8 0 0 0 0 0.01 0 0 0 0.15 0 0 0BYHS9 YAW157 16.2 6.14 303 215 26.4 5.37 20.7 1.24 34.6 12.1 85.8 16.4 33.8 115 0.2 0 0.1 0 0 0.05 0 0.02 0 0.47 0 0 0BKKJ2 KJW2 15.9 6.33 367 269 19.3 4.46 35.6 3.2 57 2.88 33.53 58.5 23.3 24 0.3 0 0 0 0 0.08 0.01 0.02 0.01 0.15 0 0 0BKKJ3 KJW3 16.1 6.84 208 150 16.8 4.76 12.4 1.64 21.5 4.6 62.8 8.73 32.7 30 0.25 0 0 0 0 0.09 0.01 0.02 0 0.36 0 0 0BKKD9 KJW24 18.2 6.9 90.4 75 5.8 1.62 7.97 1.44 7.49 1.12 36.05 3.96 22.8 18 0.03 0 0 0 0 0.02 0.04 0.01 0 0.15 0 0 0BKKD14 KJW29 16.5 6.54 195 204 19.6 6.19 14.3 1.24 24.9 8.94 42.86 38.5 26.9 20 0.03 0 0 0 0 0.61 0.01 0.01 0 0.01 0 0 0BKDG4 KJW38 18.4 6.73 79.9 69 3.7 0.6 8.18 1.02 5.36 0.9 30.76 0 32.3 23 0.08 0 0 0 0 0 0.02 0.01 0 0.31 0 0 0BKBY3 KJW85 16.7 7.29 372 244 40.5 10.6 16.6 1.2 29.4 11.9 168.4 8.13 28.6 15.8 0.28 0 0 0 0 0.17 0 0.03 0 0.03 0 0 0BKCC3 KJW140 16 7.51 169 150 15.4 3.52 10.3 0.75 5.02 4.94 52.9 21 27.5 3 0.08 0 0 0 0 0.07 0 0.02 0 0.57 0 0 0BKCC4 KJW141 16.1 6.7 72 82 5.4 0.97 6.88 0.75 16.5 0.47 32.8 0.13 32.9 12.1 0.03 0 0 0 0 0.03 0.04 0 0 0.24 0 0 0BKCC7 KJW144 15.4 7.23 308 215 34.3 5.22 13.5 1.01 6.92 18.2 154.5 0 30.3 17.1 0.04 0 4.8 1.2 0 0.14 0 0.04 0 0.88 0 0 0BKCC9 KJW146 16.9 7.55 164 120 17.3 4.24 10.2 1.11 30.7 0.83 92 1.49 25.6 4.7 0.04 0 0 0 0 0.08 0 0.02 0 0.11 0 0 0BYKJ1 YAW16Gneiss17.7 7.2 324 183 22.3 4.87 22.5 2.97 20.5 21.8 97.63 16.4 23.7 19.81 0.68 0 0 0 0 0.17 0.02 0.03 0 0.01 0 0 0BYKJ5 YAW20 16.8 7.47 129 118 11 3.05 17.5 1.73 11.5 10.7 73.2 3.29 12.5 20 0.31 0 0.1 0 0 0.11 0.02 0.03 0 0.03 0 0 0BYKJ6 YAW21 16.8 7.5 288 232 21.2 6.06 24.4 2.72 31.5 17.5 67.12 37.7 28.4 33.02 0.03 0 0 0 0 0.06 0.03 0.01 0 0.07 0 0 0BYKJ7 YAW22 17.7 7.38 446 286 33 5.78 48.7 1.96 36.4 37.6 167.8 8.23 22.4 13.21 2.08 0 0 0.2 0 0.51 0.08 0.11 0.03 0.06 0 0 0BYDJ4 YAW28 17.1 7.12 125 104 11.3 2.07 11.9 1.41 8.96 2.51 70.2 4.67 32.9 13.2 0.07 0 0 0 0 0.03 0.02 0.02 0 0.1 0 0 0BYYA12 YAW144 16.3 7.07 112 101 10.3 2.07 11.4 0.95 7.88 1.06 82.38 0 31.8 14.31 0.07 0 0 0 0 0.03 0.01 0.01 0 0.05 0 0 0BKDA9 KJW58 17.3 6.66 243 149 17 5.37 16.1 0.78 9.19 6.86 82.4 2.65 28 34 0.26 0 0 0 0 0.08 0.01 0.02 0 0.1 0 0 0BKSH10 KJW122 16.5 6.37 79.4 64 4.8 1.61 7.32 0.58 28.5 1.9 31.51 1.93 24.1 24 0.29 0 0 0 0 0.02 0 0 0 0.01 0 0 0BKSH18 KJW130 16.5 6.59 240 204 17.5 2.74 18 2.34 8.06 1.03 29.25 49.9 25.2 20 0.03 0 0 0 0 0.07 0.05 0.02 0 0.73 0 0 0BKSH20 KJW132 16.8 6.44 81.6 78 3.9 1.32 7.49 0.72 7.5 1.17 15.88 12.8 21.3 24 0.24 0 0 0 0 0.03 0.01 0.01 0 0.03 0 0 0BKCR10 KJW156 17.9 6.84 146.5 116 10.4 3.96 10.4 0.91 20.2 2.43 62.53 6.28 34.8 44 0.33 0 0 0 0 0.03 0 0.01 0 0.03 0 0 0BKCR15 KJW161 17.3 7.13 139.7 97 16.6 1.46 6.69 1.22 1.83 60.3 7.75 15.5 22 0.09 0 0 0 0 0.12 0 0.01 0 1.18 0 0 0BYKJ2 YAW17Volcanics14.9 7.32 190 145 30.3 4.61 8.53 0.76 6.53 4.74 128.1 3.06 17.9 5.5 0.05 0 0 0 0 0.14 0.2 0.03 0 0.26 0 0 0BYSM2 YAW63 16.8 7.74 333 226 38.7 2.83 24.7 0.57 33.4 19.6 120.8 1.55 38.5 4 0.69 0 0 0 0 0.09 0 0.05 0 0.02 0 0 0BYSM3 YAW64 15.8 6.85 655 460 61.5 9.23 38.5 2.46 104 44.9 103 11.8 19.5 27.1 0.06 0 0 0.1 0 1.53 0.16 0.12 0 0.04 0 0 0BYSM4 YAW65 17.1 7.03 708 551 66.8 3.16 61 0.64 159 23.3 83.5 2.94 41.5 14.2 0.09 0 0 0 0 0.03 0 0.18 0 0.02 0 0 0BYSM5 YAW66 16.2 6.47 502 384 37 7.5 45.2 3.25 76.5 26 71.1 52.5 41.7 44.6 0.04 0 0 0 0 0.07 0.02 0.03 0 0.1 0 0 0BYSM6 YAW67 16.8 8 231 147 20.8 1.36 22.9 0.43 26.2 4.45 84.5 0.47 23.1 1.5 0.04 0 0 0 0 0.04 0 0.05 0 0.03 0 0 0BYSM8 YAW69 16.9 7.56 605 376 48.4 1.36 75.9 0.27 80 65 143.2 0 24.1 7.2 0.04 0 0 0.1 0 0.25 0 0.1 0 0.03 0 0 0BYSM10 YAW71 16.7 5.66 293 230 10.2 3.93 30.7 8.5 58.5 8.01 12.6 27.2 35.9 51.1 0.03 0 0 0 0 0.02 0.13 0 0 0.02 0 0 0BYSH2 YAW73 16.7 6.65 342 277 32.8 5.44 18.5 1.54 48.4 6.05 71.6 25.6 42.7 29.4 0.03 0 0 0 0 0.08 0 0.04 0 0.02 0 0 0BYSH7 YAW78 15.9 7.83 230 152 28.8 1.73 17.1 0.63 9.72 15.1 108 0 16.7 3 1.49 0 0 0 0 0.15 0.02 0.08 0 0.06 0 0 0BYSH11 YAW82 16.7 6.8 255 196 25.5 4.24 16.3 0.94 27.1 4.55 80.7 18.1 31.6 24 0.09 0 0 0 0 0.08 0.01 0.03 0 0.09 0 0 0BYHS4 YAW152 16.3 7.26 258 177 29.4 1.83 17.9 0.94 14.9 46.7 59.2 1.02 20.5 6 1.6 0 0 0 0 0.14 0.02 0.13 0 0 0 0 0BYHS14 YAW162 16.8 6.13 532 448 46.6 7.21 38 1.12 100 16 58.7 42.3 44 79.8 0.08 0 0 0 0 0.24 0 0.03 0 0.03 0 0 0BKDG9 KJW43 17.5 6.35 177.4 149 8.6 2.3 18.3 0.55 22 5.01 52.44 4.76 52.1 62 0.03 0 0 0 0 0 0 0.01 0 0.77 0 0 0BKDG10 KJW44 16.7 6.43 258 181 18.1 7.5 16.4 2.09 31.2 5.82 80.93 7.26 36.7 73 0.05 0 0.3 0 0 0.03 0.01 0.02 0 0.13 0 0 0BKDG12 KJW46 15.5 6.34 211 154 11.2 3.29 14.8 7.79 20.6 8.45 38.57 27.9 20.4 42 0.05 0 0 0 0 0.02 0.04 0.01 0 0.51 0 0 0BKDG13 KJW47 16 6.61 70.4 47 4.7 1.3 5.44 1.24 7.15 4.03 21.18 1.5 7.8 18.4 0.05 0 0 0 0 0 0.01 0 0 0.03 0 0 0BKDG14 KJW48 18.2 6.88 190.9 146 15.6 5.13 11.8 1.4 28.2 2.75 65.55 12.4 25.4 30 0.11 0 0 0 0 0.05 0.01 0.02 0 0 0 0 0BKMR10 KJW79 17.4 7 128.4 112 8.1 2.85 10.8 1.05 7.83 3.64 48.66 7.87 37.4 39 0.22 0.28 0 0 0 0.01 0 0 0 1.3 0 0 0BKMR12