第一章 电磁现象的普遍规律

195
第第第第第第第第第

Upload: laith-lopez

Post on 31-Dec-2015

106 views

Category:

Documents


0 download

DESCRIPTION

第一章 电磁现象的普遍规律. 第一章 电磁现象的普遍规律. 1 、电磁场与实物物体的相同点 电磁场与实物物体一样,都具有能量、动量和质量 ( 运动质量 ) 。. 第一章 电磁现象的普遍规律. 2 、电磁场与实物物体的不同点 ( 1 )实物物体是由分子原子组成,有它的内部结构;而电磁场不是由分子原子组成,没有内部结构。 ( 2 )实物物体是定域在空间的确定区域内,即实物物体具有一定的形状,占据一定的空间;而电磁场没有一定的形状,是弥散在整个空间中。 ( 3 )几个实物物体不能同时占据同一个空间;而几个不同的电磁场可以同时占据同一个空间。. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 第一章  电磁现象的普遍规律

第一章 电磁现象的普遍规律

Page 2: 第一章  电磁现象的普遍规律

第一章 电磁现象的普遍规律

1 、电磁场与实物物体的相同点

电磁场与实物物体一样,都具有能量、

动量和质量 ( 运动质量 ) 。

Page 3: 第一章  电磁现象的普遍规律

第一章 电磁现象的普遍规律

2、电磁场与实物物体的不同点

( 1 )实物物体是由分子原子组成,有它的内部结

构;而电磁场不是由分子原子组成,没有内部结构。

( 2 )实物物体是定域在空间的确定区域内,即实

物物体具有一定的形状,占据一定的空间;而电磁场

没有一定的形状,是弥散在整个空间中。

( 3 )几个实物物体不能同时占据同一个空间;而

几个不同的电磁场可以同时占据同一个空间。

Page 4: 第一章  电磁现象的普遍规律

第一章 电磁现象的普遍规律

§1 电荷和电场§2 电流和磁场§3 麦克斯韦方程§4 介质的电磁性质§5 电磁场的边值关系§6 电磁场的能量和能流

Page 5: 第一章  电磁现象的普遍规律

§1 电荷和电场

库仑定律 电场 高斯定理和静电场的散度 静电场的环路定理和旋度 小结

Page 6: 第一章  电磁现象的普遍规律

一、库仑定律

1 、库仑定律的内容

在真空中,静止点电荷 Q对另一个静止点电荷 Q′ 的作

用力 F 为

rF3

04

1

rQQ

Page 7: 第一章  电磁现象的普遍规律

一、库仑定律

ε0=8.85×10-12 库仑 2/( 米 2• 牛 )

其中 F 是 Q′ 受到的力。 r 是由 Q 指向 Q′ 的矢量,

r 是 r 的模,也就是两个点电荷之间的距离。 ε0 是真

空中的介电常数,其数值与单位为

r204

1eF

rQQ

Page 8: 第一章  电磁现象的普遍规律

2 、说明

( 1 )定律的中的静止,是相对于观察者的参考系

而言的

( 2 )静止点电荷对另一个点电荷的作用力遵从库

仑定律,不论第二个点电荷的运动状态如何

( 3 )库仑定律运用于真空,并不意味着存在介质

时它就失效

一、库仑定律

Page 9: 第一章  电磁现象的普遍规律

( 1 )近距离作用观点

( 2 )超距作用观点

( 3 )场的观点

rF3

04

1

rQQ

rF 34

1

rQQ

一、库仑定律

Page 10: 第一章  电磁现象的普遍规律

二、电场1 、定义

电荷的周围的空间存在着一种物质,这种

物质叫做电场。

相对于观察者静止的电荷激发的电场叫

做静电场。

Page 11: 第一章  电磁现象的普遍规律

二、电场

2 、电场的两条性质

( 1 )电场对处于电场中的电荷有力的作用,

这种力叫做电场力

( 2 )电荷在电场中运动,电场力会做功,

这说明电场具有能量

Page 12: 第一章  电磁现象的普遍规律

3 、电场强度

( 1 )定义

Q

FxE )(

二、电场

单位试探电荷在电场中某点 x 处所受的电场力,叫做

该点的电场强度。用 E(x) 表示。

Page 13: 第一章  电磁现象的普遍规律

其中 Q′ 是试探电荷的电量, F 是 Q′ 处于 P 点时

受的电场力

E(x)=E(x,y,z)

F=Q′E

二、电场

Page 14: 第一章  电磁现象的普遍规律

( 2 )说明

① E(x) 的物理意义

② E(x) 与 F 和 Q′ 无关,由电场本身的性质来决定

4 、点电荷的场强公式

304

1

rQr

E

二、电场

Page 15: 第一章  电磁现象的普遍规律

二、电场

5 、场强的叠加性(线性叠加)

多个点电荷所激发的电场等于每个点电荷单独存

在时激发电场的矢量和。

Page 16: 第一章  电磁现象的普遍规律

设第 i 个点电荷的电量为 Qi, 它在 P 点激发的场强为

i i

ii

rQ

304r

E

二、电场

304 i

ii

rQ

r

Page 17: 第一章  电磁现象的普遍规律

二、电场

( 1 )场强叠加原理中,说的是点电荷

( 2 )场强叠加原理的另一种表述

多个电荷所激发的电场,等于每个电荷所

激发的电场的矢量和。

Page 18: 第一章  电磁现象的普遍规律

二、电场

源点 (source poin

t) 的坐标用 xˊ 表示。

场点 (field point)

的坐标用 x 表示。

304

d)(d

d)(d

rV

VQ

rx

E

x

Page 19: 第一章  电磁现象的普遍规律

其中

xx

kjir

)()()( zzyyxx

V r

V3

04

d)()(

rx

xE

二、电场

Page 20: 第一章  电磁现象的普遍规律

1 、高斯定理

在电场中,通过任意闭合曲面上的电通量等于闭合

曲面包围电荷的代数和除以 ε0 。即

三、高斯定理与静电场的散度

S

i QQ

00 SE d

Page 21: 第一章  电磁现象的普遍规律

三、高斯定理与静电场的散度

Q 为闭合曲面包围

电荷的代数和。

Page 22: 第一章  电磁现象的普遍规律

三、高斯定理与静电场的散度

值得说明的是

(1) 高斯定理是以库仑定律和电场叠加原理为基础

(2) 通过闭合曲面上的电通量仅与闭合面内的电荷

有关

Page 23: 第一章  电磁现象的普遍规律

2 、静电场的散度 当电荷连续分布时

三、高斯定理与静电场的散度

S V

Vi

V

VQ

d1

d

d

0

SE

其中 S 是 V 的边界(表面), V 是 S 所包围的区域。

Page 24: 第一章  电磁现象的普遍规律

三、高斯定理与静电场的散度

VS

Vd)(d ESE

VV

VV d1

d0

E

0d)(0

VV

E

Page 25: 第一章  电磁现象的普遍规律

这就是高斯定理的微分形式。它反映了电荷与电

场之间的局域关系,即在空间无穷小区域内的关系。

00

E

0

E

三、高斯定理与静电场的散度

Page 26: 第一章  电磁现象的普遍规律

3 、对微分形式的说明

( 1 )电场是有源场,电荷是电场的源

电场中某点的散度,只与该点电荷的密度有关,

与别处的电荷密度无关

三、高斯定理与静电场的散度

Page 27: 第一章  电磁现象的普遍规律

( 2 )电场线的发出与会聚

当 ρ>0 ,▽ •E >0 ,说明电场线从该点发出。

当 ρ<0 ,▽ •E <0 ,说明电场线在该点会聚。

当 ρ=0 ,▽ •E = 0 ,说明该点既无电场线发出,

又无电场线终止。

三、高斯定理与静电场的散度

Page 28: 第一章  电磁现象的普遍规律

结论(书上 P.8 第 7 行):

电场线起自于正电荷,终止于负电荷,在无

电荷的地方,既无电场线发出,又无电场线终止。

但可以有电场线连续通过该处,即电场线不会在没

有电荷的地方中断。

三、高斯定理与静电场的散度

Page 29: 第一章  电磁现象的普遍规律

(3) 注意电场散度的局域性

电场中某点的电场强度的散度,只与该点的电荷

密度有关,即散度只存在于有电荷分布的区域内。

(4) 高斯定理的微分形式及积分形式在非稳恒情况下

也成立。

三、高斯定理与静电场的散度

Page 30: 第一章  电磁现象的普遍规律

四、静电场的环路定理和旋度

1 、静电场的环路定理

0L lE d

lE d

由环路定理可知,静电场力做功与路径无关,只与起

点和终点的位置有关。静电场是保守力场,静电场的

环流(也叫做环量,即 )为零

Page 31: 第一章  电磁现象的普遍规律

2 、静电场的旋度

0dd SElESL

0d)( SE

0 E

四、静电场的环路定理和旋度

由此可知静电场是无旋场

Page 32: 第一章  电磁现象的普遍规律

1 、静电场的两个方程

五、小结

00

E

E

Page 33: 第一章  电磁现象的普遍规律

五、小结

2 、静电场的性质和图像

电荷是电场的源,电场线从正电荷发出而终止

于负电荷,在自由空间中电场线连续通过;在静电情

形下,电场没有涡旋结构。

例: P.9 下面。

Page 34: 第一章  电磁现象的普遍规律

§2 电流和磁场

电流密度

电荷守恒定律的数学表达式

磁场

磁场旋度与散度公式的证明

安培力公式(安培定律)

Page 35: 第一章  电磁现象的普遍规律

一、电流密度

1 、 电流密度的定义

   导体中某点电流密度 J 的方向与正电荷在该点处

的运动方向一致。 J 的大小定义为单位时间内流过

该点单位垂直面积上的电量,即单位垂直面积上的电

流强度。

Page 36: 第一章  电磁现象的普遍规律

一、电流密度

S

ISI

JS d

dlim

0

SJI dd

SJ ddcosd SJI

S

I SJ d

Page 37: 第一章  电磁现象的普遍规律

2 、电流密度与电荷的平均定向飘移速度的关

J =nq v

其中, n 为单位体积内的电荷个数(即数密度),

q 是一个电荷的电量。显然 nq 就是单位体积内的电

量,即电荷体密度

一、电流密度

Page 38: 第一章  电磁现象的普遍规律

ρ=nq

J =ρv

一、电流密度

i

i ivJ

其中 ρi 和 vi 分别为第 i 种载流子的电荷体密度和定

向漂移速度。

Page 39: 第一章  电磁现象的普遍规律

二、电荷守恒定律的数学表达式

dI =J •dS 是 dS 面元上的电流强度,即单位时

间内( 1秒钟)从 dS 上流出的电量。

S

SJ d

Page 40: 第一章  电磁现象的普遍规律

     是闭合面 S 上的电流强度,即单位时间

内从 S 上(由内向外)流出的电量。

二、电荷守恒定律的数学表达式

S

SJ d

S

SJ d 就应该等于单位时间( 1秒钟)内 V 内电量 q

的减小量,即 q 的减小率。

Page 41: 第一章  电磁现象的普遍规律

从数学上来讲  是 q 的增加率,它和减小率的关

系是数值相等,符号相反。

二、电荷守恒定律的数学表达式

tq

dd

S t

qd

ddSJ

Page 42: 第一章  电磁现象的普遍规律

二、电荷守恒定律的数学表达式

VVq d

V V

Vt

Vtt

qdd

dd

dd

Page 43: 第一章  电磁现象的普遍规律

求导过程说明:

( 1 ) V 与 t 无关,因而 V 不用对 t求导。

( 2 )

二、电荷守恒定律的数学表达式

),( tx

S V

Vt

dd

SJ

因而对 t 求导时,只求偏导数

Page 44: 第一章  电磁现象的普遍规律

二、电荷守恒定律的数学表达式

称为电流的连续性方程,这是电荷守恒定律的微分形式。

S V

Vdd JSJ

0d)(

V Vt

J

0

t

J

Page 45: 第一章  电磁现象的普遍规律

讨论:

( 1 )若    ,即电荷的体密度在增大,

表示该点有吸收通量之负源,有电流线会聚,对闭

合面来说,有电流线从面外穿入面里。

二、电荷守恒定律的数学表达式

0t

0 J

Page 46: 第一章  电磁现象的普遍规律

( 2 )若   ,即电荷的体密度在减小, 表

示该点有散发通量之正源。有电流线散发,即有电

流线从内向外穿出。

二、电荷守恒定律的数学表达式

0t

表示在全空间的总电荷守恒。

V

Vt

0dd

d

0 J

Page 47: 第一章  电磁现象的普遍规律

在稳恒电流场中,一切物理量不随时间变化,因

而    ,因此得

二、电荷守恒定律的数学表达式

0t

0 J

Page 48: 第一章  电磁现象的普遍规律

这表示稳恒电流的电流线是连续的,即

穿入闭合面的电流线条数等于穿出闭合面的

条数。或者说稳恒电流场( J 场)为无源场。

其电流线为闭合曲线,没有发源点和终止点。

二、电荷守恒定律的数学表达式

Page 49: 第一章  电磁现象的普遍规律

三、磁场

1 、毕奥—萨伐尔定律

30

2r0

d

4

d

4d

rI

rI

rl

elB

20 sind

4d

rlI

B

Page 50: 第一章  电磁现象的普遍规律

三、磁场

l r

I3

0 d

4

rlB

lSV

VJlSJlI

ddd

d)(ddd

x

Page 51: 第一章  电磁现象的普遍规律

三、磁场

VI d)(d xJl

VrV

d

)(

4)(

30 rxJ

xB (2.8a)

Page 52: 第一章  电磁现象的普遍规律

2 、磁场的环量与旋度

三、磁场

IL 0d lB

0L lB d

S

I SJ d

Page 53: 第一章  电磁现象的普遍规律

这是电流与磁场关系的积分形式。

三、磁场

L S

SJlB dd 0

SS

SJSB dd 0

Page 54: 第一章  电磁现象的普遍规律

SB d

SJ d0

JB 0

三、磁场

(2.11)

这说明静磁场是有旋场。

Page 55: 第一章  电磁现象的普遍规律

3 、磁场的散度

0

0

0

B

B

SB

V

S

Vd

d

三、磁场

此式说明,磁感线是无头无尾的闭合曲线。它连续

通过一点,不会中断,磁场是无源场。

Page 56: 第一章  电磁现象的普遍规律

4 、说明

三、磁场

JB 0

0 B

(1) 静磁场是有旋无源场 磁场的散度方程和旋度方程各自从一个侧面反映了静磁场的性质

(2.11)

(2.12)

Page 57: 第一章  电磁现象的普遍规律

     ,说明 B 的散度处处为零,磁场为无源场。这说明不存在自由磁荷(磁单极),磁感线总是闭合的。

0 B

JB 0

三、磁场

,说明磁场是涡旋场,稳恒电流激发了静磁场。 ( 2 )安培环路定理相当于静磁场的旋度方程

Page 58: 第一章  电磁现象的普遍规律

四、磁场旋度与散度公式的证明

1 、磁场的散度的证明

Vr

Vr

V

V

d1

)(4

d)(

4)(

0

30

xJ

rxJxB

Page 59: 第一章  电磁现象的普遍规律

0)( xJ

rrrr1

)()(1

)(1

]1

)([ xJxJxJxJ

AxJ

xJB

]d)(

4[d)](

1[

400

VVV

rV

r

四、磁场旋度与散度公式的证明

Page 60: 第一章  电磁现象的普遍规律

所以

V

Vr

d)(

40 xJ

A

0)( AB

0)( AB

四、磁场旋度与散度公式的证明

(2.13)

Page 61: 第一章  电磁现象的普遍规律

2 、磁场的旋度的证明

四、磁场旋度与散度公式的证明

AAAB 2)()(

V

V

V

Vr

Vr

Vr

d1

)(4

d]1

)([4

]d)(

4[

0

0

0

xJ

xJ

xJA

Page 62: 第一章  电磁现象的普遍规律

222 )()()(|| zzyyxxr xx

3

11

rrrr

四、磁场旋度与散度公式的证明

Page 63: 第一章  电磁现象的普遍规律

其中▽′是对 x′的微分,▽是对 x 的微分。

kji

kji

zyx

zyx

V

Vr

d1

)(4

0 xJA

四、磁场旋度与散度公式的证明

Page 64: 第一章  电磁现象的普遍规律

由             得

四、磁场旋度与散度公式的证明

fff )(

)(11

)(]1

)([ xJxJxJ rrr

)(1

]1

)([1

)( xJxJxJ rrr

Page 65: 第一章  电磁现象的普遍规律

VV

Vr

Vr

d)(1

4d]

1)([

400 xJxJA

0d)(1

40 S r SxJ

四、磁场旋度与散度公式的证明

由电流的连续性方程,在稳恒情况下

0)( xJ

Page 66: 第一章  电磁现象的普遍规律

0 A

V

Vr

Vr

Vr

V

V

V

V

d0)(4

d)(4

d)1

()(4

d1

)(4

0

30

0

202

xJ

rxJ

xJ

xJA

四、磁场旋度与散度公式的证明

Page 67: 第一章  电磁现象的普遍规律

注意          的条件是 r ≠0 。即

当 r ≠0 时,     ,因此

033

rrrr

03

rr

四、磁场旋度与散度公式的证明

Page 68: 第一章  电磁现象的普遍规律

四、磁场旋度与散度公式的证明

VrV

d)(4 3

02 rxJA

上式中的被积函数只有在 x=x′( 即 r =0 ) 点上不

为零。

Page 69: 第一章  电磁现象的普遍规律

上式中的被积函数只有在 x=x′ 即 r =0 点上不为零。

利用公式

四、磁场旋度与散度公式的证明

VrV

d)(4 3

02 rxJA

)(43

xxr r

Page 70: 第一章  电磁现象的普遍规律

四、磁场旋度与散度公式的证明

)(

d)()(

d)(4)(4

0

0

02

xJ

xxxJ

xxxJA

V

V

V

V

)()( 0 xJxB

Page 71: 第一章  电磁现象的普遍规律

四、磁场旋度与散度公式的证明

V S r

Vr

Vr

Srrr

ddd333

VrV

d)(4 3

02 rxJA

上式中的被积函数只有在 x=x′ 即 r =0 点上不为零。

Page 72: 第一章  电磁现象的普遍规律

四、磁场旋度与散度公式的证明

由图上可以看出, r =x-x′,它的方向由源点 x′

指向场点 x ,当小球很小时,它的方向沿半径指向

球心,这与 dS的方向正好相反,因此

4dd

d23S S rS

rS

r

Page 73: 第一章  电磁现象的普遍规律

)()(4)(4 00

02 xJxJxJA

JB 0

)()( 0 xJxB

四、磁场旋度与散度公式的证明

Page 74: 第一章  电磁现象的普遍规律

四、磁场旋度与散度公式的证明

3 、说明

( 1 )磁场的微分方程是从毕奥—萨伐尔定律推

出来的

▽•B =0 在一般情况变化的磁场中也是成立的。

而 只有在静磁场中成立。)()( 0 xJxB

Page 75: 第一章  电磁现象的普遍规律

( 2 )从▽• B=0 ,可以看出磁场是无源场

从 可以看出,磁场为涡旋性质的场。JB 0

四、磁场旋度与散度公式的证明

( 3 )要注意到磁场的旋度的局域性

例 . 书上 P.18

Page 76: 第一章  电磁现象的普遍规律

五、安培力公式(安培定律)

  实验指出,一个电流元 I dl

在磁场中所受的力可以表之为

V

I

dd

dd

BJF

BlF

B是电流元所在处的外磁场,它不包含该电流元激

发的磁场。

Page 77: 第一章  电磁现象的普遍规律

五、安培力公式(安培定律)

I1dl1= J1dV1 I2dl2= J2dV2

则电流元 J1dV1 受到 J2dV2 的作用力为

321

212211021

)d(d

4d

rVV rJJ

F

如果真空中有两个电流元

Page 78: 第一章  电磁现象的普遍规律

J2dV2 受到的力为

312

121122012

)d(d

4d

rVV rJJ

F

五、安培力公式(安培定律)

321

212211021

)d(d

4d

rVV rJJ

F

Page 79: 第一章  电磁现象的普遍规律

五、安培力公式(安培定律)

由此可见

( 1 )电流元之间的相互作用力也服从平方反比

定律

( 2 )电流元之间的作用力的方向不再具有有心

性质

Page 80: 第一章  电磁现象的普遍规律

五、安培力公式(安培定律)

( 3 )电流元之间的相互作用力一般不满足牛顿

第三定律

Page 81: 第一章  电磁现象的普遍规律

  可以证明,两个闭合稳恒电流回路之间的相互作用力满足牛顿第三定律。

F12=-F21

1 2

2 1

321

212211021

312

121122012

)d(d

4

)d(d

4

L L

L L

rII

rII

rllF

rllF

五、安培力公式(安培定律)

详见第一章习题 10 ( P.47 )

Page 82: 第一章  电磁现象的普遍规律

§3 麦克斯韦方程

法拉第电磁感应定律位移电流麦克斯韦方程组电磁场洛仑兹力的公式

Page 83: 第一章  电磁现象的普遍规律

§3 麦克斯韦方程

0

E

0 E

0 B

JB 0

( 1.8 )

( 1.10 )

( 2.11 )

( 2.13 )

Page 84: 第一章  电磁现象的普遍规律

§3 麦克斯韦方程

( 1 )变化的磁场在它周围的空间激发

电场(涡旋电场或感生电场)。

( 2 )变化的电场在它周围的空间激发

磁场(麦克斯韦位移电流假设)。

Page 85: 第一章  电磁现象的普遍规律

一、法拉第电磁感应定律

1 、法拉第电磁感应定律的内容

   闭合线圈中产生的感应电动势与通过线圈内部的磁通量对时间的变化率成正比。

Stt

E SB dd

d

d

d

Page 86: 第一章  电磁现象的普遍规律

一、法拉第电磁感应定律

E 为电动势( electromotive forc

e ,简称为 EMF )

2 、麦克斯韦的第一个假说

变化的磁场总是要在它周围的空间激发感生电场。

Page 87: 第一章  电磁现象的普遍规律

E 感是单位正电荷受的感生电场力,即单位正电荷

受的非静电力。

E 感• dl 是单位正电荷移动 dl 位移过程中,感生

电场力所做的功,即单位正电荷移动 dl 位移过程中,

非静电力所做的功。

L

lE d感

一、法拉第电磁感应定律

Page 88: 第一章  电磁现象的普遍规律

一、法拉第电磁感应定律

是单位正电荷沿闭合曲线 L 移动一周,感生电场力

所做的功,即把单位正电荷沿 L 移动一周,非静电

力所做的功。

L

lE d感

Page 89: 第一章  电磁现象的普遍规律

根据电动势的定义

L

E lE d感

SL t

SBlE ddd

d感

一、法拉第电磁感应定律

Page 90: 第一章  电磁现象的普遍规律

3 、积分方向的约定

一、法拉第电磁感应定律

(1)dS的方向的确定

首先确定 dS的方向,在选取

dS的方向时,一定要使得计算

出的磁通量为正,即 n 的方向

与 B 的方向之间的夹角为锐角。

Page 91: 第一章  电磁现象的普遍规律

(2) L 的绕行方向的规定

L 的绕行方向与 n 的方向构成右手系。

一、法拉第电磁感应定律

Page 92: 第一章  电磁现象的普遍规律

4 、法拉第电磁感应定律的微分形式

B=B( x , t ) =B( x , y , z , t )

SL t

SB

lE dd感

S t

SB

SES

dd)( 感

一、法拉第电磁感应定律

Page 93: 第一章  电磁现象的普遍规律

E=E 库 +E 感

t

BE感

0 库E

t

BEE )( 感库

t B

E

一、法拉第电磁感应定律

( 3.3a)

( 1.10 )

( 3.3 )

Page 94: 第一章  电磁现象的普遍规律

5 、说明

( 1 )由 (3.3a) 式可见,感生电场是有旋场

( 2 )电场 E 感不是由电荷激发的,而是变化的磁

场激发的

( 3 )导线的存在显示了电场 E 感的存在。导线不

存在时,只要有变化的磁场, E 感照样存在。

一、法拉第电磁感应定律

Page 95: 第一章  电磁现象的普遍规律

二、位移电流

说明恒定电流的电流线为闭合线。

t

J

0t

0 J

( 2.5 )

( 2.6)

Page 96: 第一章  电磁现象的普遍规律

0t

J

JB 0

JB 0)(

0)( B

( 2.11 )

二、位移电流

Page 97: 第一章  电磁现象的普遍规律

( 1 )修改电荷守恒定律的表达式,使得( 2.

5 )式与( 2.11 )式相适应。

( 2 )修改( 2.11 )式,使得它与电荷守恒定

律相适应。

二、位移电流

Page 98: 第一章  电磁现象的普遍规律

二、位移电流

方法是假定在电容器的内部存在一个位移电流的物

理量 JD ,叫做位移电流密度,它和传导电流 J合起来

构成闭合量,即

     ▽•( J +JD ) =0 ( 3.4)

Page 99: 第一章  电磁现象的普遍规律

)(0 DJJB

t

J

( 3.5 )

二、位移电流

Page 100: 第一章  电磁现象的普遍规律

二、位移电流

由高斯定理得

0

E

)( 0E

)( 0 t

E

J

Page 101: 第一章  电磁现象的普遍规律

0)( 0

tE

J

tD

E

J 0

( 3.8 )

( 3.9)

二、位移电流

Page 102: 第一章  电磁现象的普遍规律

说明:

( 1 )由     可以看出,位移电流本质上

为变化的电场

( 2 )仅从( 3.4 )式,不足以把 JD唯一的确

定下来

tD

E

J 0

二、位移电流

Page 103: 第一章  电磁现象的普遍规律

1 、麦克斯韦方程组

三、麦克斯韦方程组

0

E

t

BE

0 B

)( 00 t

E

JB

Page 104: 第一章  电磁现象的普遍规律

三、麦克斯韦方程组

2 、对方程的说明

( 1 )    是普遍成立的

其中

E =E 库+E 感

0 E

Page 105: 第一章  电磁现象的普遍规律

  用电场线的语言来说,由    可以看出,

每单位电荷激发或会聚  根电场线,似乎在任何

情况下都如此。在迅变情况下,单位电荷发出的电

场线的分布可能与静电场不一样,但是电场线的通

量应该是一样的。电荷可以随时间变化,但它发出

的电场线数也将随之改变。

0

E

0

1

三、麦克斯韦方程组

Page 106: 第一章  电磁现象的普遍规律

  ( 2 )     是普遍成立的

  变化的磁场产生电场。

( 3 )▽• B=0 ,是普遍成立的

t

BE

三、麦克斯韦方程组

t

BE

Page 107: 第一章  电磁现象的普遍规律

两边求散度

0)()(

BEt

三、麦克斯韦方程组

由此可见▽• B与时间无关,也就是说在稳恒的情况

下有▽• B=0 ,磁场发生变化以后仍有▽• B=0 。

因此▽• B≡0 是普遍成立的。

Page 108: 第一章  电磁现象的普遍规律

( 4 )引入了位移电流的假说,即变化的电场在空

间激发磁场,在迅变的情况下也是成立的。

三、麦克斯韦方程组

Page 109: 第一章  电磁现象的普遍规律

四、电磁场

1 、电磁场是统一的场

  并不是电场与磁场的简单叠加,尽管电磁场的

能量等于电场能量与磁场能量之和。

Page 110: 第一章  电磁现象的普遍规律

2 、变化的电场激发的磁场和电流的磁场都是

右旋的

即 B 的方向与   的方向构成右手系,而变化的

磁场激发的电场是左旋的。tE

0

四、电磁场

Page 111: 第一章  电磁现象的普遍规律

3 、电磁场可以独立于电荷、电流之外而存在

四、电磁场

Page 112: 第一章  电磁现象的普遍规律

在库仑定律中,静止电荷 Q 受到的静电场力为

F=QE

dF=ρEdV

五、洛仑兹力的公式

Vdd BJF

Page 113: 第一章  电磁现象的普遍规律

五、洛仑兹力的公式

此式称为洛仑兹力密度公式。

对于带电粒子系统来说,如果一个粒子的电量为 q ,

速度为 v,则 J 等于单位体积内的 qv之和。即

BJEf ( 3.11 )

Page 114: 第一章  电磁现象的普遍规律

五 .洛仑兹力的公式

J=nqv

BvEf nqnq

BvEF qq ( 3.12 )

此公式称为洛仑兹力公式。

Page 115: 第一章  电磁现象的普遍规律

五、洛仑兹力的公式

说明:

( 1 )公式中的 E 和 B 是同一点上的总电场与

总磁场,包括带电体自身在该点产生的场。

( 2 )洛仑兹力密度公式中的 v 相对于观察者

参考系的速度,而不是相对于场源的速度。

Page 116: 第一章  电磁现象的普遍规律

五、洛仑兹力的公式

麦克斯韦方程组和洛仑兹力公式,正确的

反映了电磁场的运动规律以及它和带电物质

相互作用的规律,成为电动力学的基础。

其它的规律原则上都可以在该基础上结合

其它理论推导出来。

Page 117: 第一章  电磁现象的普遍规律

三、麦克斯韦方程组

0

E

t

BE

0 B

)( 00 t

E

JB

Page 118: 第一章  电磁现象的普遍规律

§4 介质的电磁性质

介质的概念

介质的极化(电场对介质的作用)

介质的磁化(磁场对介质的作用)

介质对电磁场的作用

介质中的麦克斯韦方程组

Page 119: 第一章  电磁现象的普遍规律

一、介质的概念

实物物质— 分子— 原子—电子原子核

中子质子

Page 120: 第一章  电磁现象的普遍规律

两类电介质

( 1 )无极分子电介质(正、负电荷重心重合 )

( 2 )有极分子电介质(正、负电荷重心不重合)

二、介质的极化(电场对介质的作用)

Page 121: 第一章  电磁现象的普遍规律

二、介质的极化(电场对介质的作用)

1 、介质的极化

  对于无极分子电介质来说,在没有外电场时,

分子的正负电荷重心重合在一起,分子的电偶极矩

为 0 ,即

         p 分子= 0

Page 122: 第一章  电磁现象的普遍规律

二、介质的极化(电场对介质的作用)

ΔV 内分子电矩的矢量和为 0 ,即  

0i

ip

一旦加上外电场,

0分子p 0i

ip

电子位移极化。

Page 123: 第一章  电磁现象的普遍规律

二、介质的极化(电场对介质的作用)

对于有极分子电介质来说,在没有加外电场时,

分子正、负电荷重心并不重合,每个分子的电矩不

为 0 ,即

0分子p

0i

ip

Page 124: 第一章  电磁现象的普遍规律

在加上外电场之后,每个分子都受一力矩的作用。

EpT i

0i

ip

二、介质的极化(电场对介质的作用)

Page 125: 第一章  电磁现象的普遍规律

二、介质的极化(电场对介质的作用)

Page 126: 第一章  电磁现象的普遍规律

2 、极化强度矢量 P

   单位体积内分子电矩的矢量和叫做极化强度,

用符号 P 表示。

Vi

i

p

P Vi

i

V

pP

0lim

二、介质的极化(电场对介质的作用)

Page 127: 第一章  电磁现象的普遍规律

二、介质的极化(电场对介质的作用)

3 、 ρP与 P 关系

每一个分子的电偶极矩均为

   p=ql

计算极化电荷总电量

从 S 上穿出的电荷总电

量 -从 dS 上穿出的电荷总电量

P

dS

l

Page 128: 第一章  电磁现象的普遍规律

以 dS 为底面,以 p为轴, |l| 为母

线做一斜柱体, P 与 p的方向一致。

斜柱体的体积为

     dτ=dS·l cosθ

   ndτ=nlcosθdS

  nqlcosθdS=nql· dS=P ·dS

二、介质的极化(电场对介质的作用)

(4.2)

Page 129: 第一章  电磁现象的普遍规律

( 4.3 )

S

SP d

S

SP d

SV P V SP dd

VV P VV dd P

PP

二、介质的极化(电场对介质的作用)

Page 130: 第一章  电磁现象的普遍规律

二、介质的极化

4 、 σP与 P 的关系

从 ΔS1 上穿出的正

电荷的电量为

P1•dS1=-P1•ndS

从 ΔS2 上穿出的正电荷的电量为

P2•dS2=+P2•ndS

Page 131: 第一章  电磁现象的普遍规律

  从侧面上穿出的电荷可忽略不计,则从柱面上

穿出的正电荷电量为

P2•ndS - P1•ndS =( P2-P1)•ndS =(P2-P1)•dS

二、介质的极化(电场对介质的作用)

Page 132: 第一章  电磁现象的普遍规律

留在柱体内的极化电荷为

-( P2-P1)·dS =-( P2-P1)·nΔS

σP=-(P2-P1)·n (4.4)

其中 n为交界面的单位法矢,由介质 1 指向质 2

二、介质的极化(电场对介质的作用)

Page 133: 第一章  电磁现象的普遍规律

二、介质的极化(电场对介质的作用)

在电磁学书上

σP=(P2-P1)·n ( 4.4′ )

式中 n为交界面的单位法矢,且由介质 2 指向介质 1 。

Page 134: 第一章  电磁现象的普遍规律

分子电流都具有一定的磁矩。

m=ia=ian

这个磁矩是分子本身固有的,因此叫做固有磁矩。

三、介质的磁化(磁场对介质的作用)

Page 135: 第一章  电磁现象的普遍规律

三、介质的磁化(磁场对介质的作用)

1、介质的磁化

在没有加外磁场时,每一个分子的分子磁矩都不为零(mi≠0, ),然而在小

体积元内分子磁矩的矢量和为零,即

0i

im

Page 136: 第一章  电磁现象的普遍规律

三、介质的磁化(磁场对介质的作用)

1 、介质的磁化

加上外磁场,分子磁

矩受一磁力矩作用。

T=m×B

0i

im

Page 137: 第一章  电磁现象的普遍规律

2 、磁化强度矢量M

单位体积内分子磁矩的矢量和,叫做磁化强度。

Vi

m

M

三、介质的磁化(磁场对介质的作用)

Vi

V

mM

0lim

Page 138: 第一章  电磁现象的普遍规律

3 、 JM 与M 之间的关系

三、介质的磁化(磁场对介质的作用)

计算 S 上的磁化电流

计算环绕 L 上的分子电流计算环绕 dl 上的分子电流

dl

n

Page 139: 第一章  电磁现象的普遍规律

3 、 JM 与M 之间的关系

设单位体积内有 n 个分

子,则斜柱体内的分子数为

nacosθdl=na·dl

三、介质的磁化(磁场对介质的作用)

Page 140: 第一章  电磁现象的普遍规律

环绕 dl的分子电流强度为

nia·dl=nm·dl=M·dl

S 上的磁化电流为

LMI lM d

三、介质的磁化(磁场对介质的作用)

Page 141: 第一章  电磁现象的普遍规律

设 S 上的磁化电流密度为 JM

lMSJ dd LS M

SS M SMSJ dd

MJ M

三、介质的磁化(磁场对介质的作用)

(4.14)

Page 142: 第一章  电磁现象的普遍规律

1 、介质对电场的作用 

EE 00

四、介质对电磁场的作用

Page 143: 第一章  电磁现象的普遍规律

ε0 ∇ ·E =ρf+ρP (4.5)

ρP=-∇·P

      ∇ · ( ε0E+P ) =ρf      (4.6)

四、介质对电磁场的作用

Page 144: 第一章  电磁现象的普遍规律

定义电位移矢量 D,令

      D=ε0E+P (4.7)

       ∇ •D=ρf (4.8)

四、介质对电磁场的作用

Page 145: 第一章  电磁现象的普遍规律

四、介质对电磁场的作用

   在一般的各向同性的线性介质中, P 与 E 之间

有简单的线性关系。

P=  eε0E 即 P ( x ) =   eε0E ( x )

  称为介质的极化率。

e

Page 146: 第一章  电磁现象的普遍规律

四、介质对电磁场的作用

D =ε0E+ eε0E

=(1+ e) ε0E

=εrε0 E=εE (4.10)

式中

εr=1+ e 叫做相对介电常数(相对电容率)ε=εrε0 叫做介电常数(电容率)

Page 147: 第一章  电磁现象的普遍规律

四、介质对电磁场的作用

2、介质对磁场的影响

V

q

Viii

xp

P

设正负电荷中心的带电量

为±q ,相距为 x ,则

pi=qi xi

Page 148: 第一章  电磁现象的普遍规律

四、介质对电磁场的作用

V

q

tq

Vti

iii

ii

v

xPd

d1

223 /

/ 米安米

秒库米

秒米库仑

/

Page 149: 第一章  电磁现象的普遍规律

四、介质对电磁场的作用

它为电流密度的单位。记为 J P

Pii

V

q

tJ

vP

▽×B = µ0J +μ0ε0

磁化电流 JM 与极化电流 JP 之和叫做介质内的总

诱导电流

tE

( 4.15 )

Page 150: 第一章  电磁现象的普遍规律

四、介质对电磁场的作用

tPMf

E

JJJB 00

1

ttf

EP

MJB 00

1

( 4.16 )

DMf JJJB 0

1

)()( 00

EPJMB

tf

Page 151: 第一章  电磁现象的普遍规律

四、介质对电磁场的作用

H 叫做磁场强度。

MB

H 0

tf

D

JH ( 4.19 )

(4.18)

tf

D

JMB

)(0

( 4.17 )

Page 152: 第一章  电磁现象的普遍规律

四、介质对电磁场的作用

实验表明:对于各向同性的非铁磁质,磁化强

度M 和磁场强度 H 之间有简单的线性关系。

M = H (4.20)

称为磁化率。

M

M

Page 153: 第一章  电磁现象的普遍规律

四、介质对电磁场的作用

( 1+ ) µ0H = B

B = (1+ )µ0H= µrµ0H= µH (4.21)

µr = 1+ , µ = µrµ0 (4.22)

µr 称为相对磁导率, µ 称为磁导率。

HB

H M

0

M

M

M

B = µH

Page 154: 第一章  电磁现象的普遍规律

五、介质中的麦克斯韦方程组

t

BE

(4.23) t

D

JH

D

0 B

Page 155: 第一章  电磁现象的普遍规律

五、介质中的麦克斯韦方程组

D= εE (4.24)

B= µH (4.25)

J= σE (4.26)

叫做介质的电磁性质方程。

Page 156: 第一章  电磁现象的普遍规律

§5 电磁场的边值关系

法向分量的跃变

切向分量的跃变

Page 157: 第一章  电磁现象的普遍规律

§5 电磁场的边值关系

E= E0+E´

E1 = E0-E´<E0

E2 = E0+E´>E0

Page 158: 第一章  电磁现象的普遍规律

§5 电磁场的边值关系

上式中的 Qf 、 If 的分布不一定是连续的。

SL t

SBlE dd

dd

( 5.1 )

t

BE

t

D

JH

D

0 B

SfL t

I SDlH dd

dd

S fQSD d

S

0dSB

Page 159: 第一章  电磁现象的普遍规律

一、法向分量的跃变

D1·n1ΔS1+D2·n2ΔS2 = Qf

ΔS1 = ΔS2 = ΔS

fsQ SD d

S

Q f

nDnD 21

Page 160: 第一章  电磁现象的普遍规律

一、法向分量的跃变

f

f

)(

)(

12

12

DDn

nDD

D2n - D1n = σf (5.5)可见电位移矢量的法向分量在交界面上不连续。

Page 161: 第一章  电磁现象的普遍规律

一、法向分量的跃变

D= ε0E+P

D2n = ε0E2n+P2n

D1n = ε0E1n+P1n

Page 162: 第一章  电磁现象的普遍规律

代入( 5.5 )式得

(ε0E2n - ε0E1n)+(P2n - P1n) = σf

由( 4.4 )式得

σP =- n·(P2 - P1) =- (P2n - P1n)

所以

P2n - P1n =- σP (5.4)

可见极化强度的法向分量不连续。

一、法向分量的跃变

Page 163: 第一章  电磁现象的普遍规律

D2n - D1n = σf (5.5)

P2n - P1n = -σP (5.4)

ε0 ( E2n - E1n )= σf +σP (5.3)

一、法向分量的跃变

可见电场强度矢量、极化强度矢量和电位移矢量的法向分量在两种介质的交界面上不连续。

012

Pfnn EE

Page 164: 第一章  电磁现象的普遍规律

由上面的讨论可知:极化强度矢量的法向分量 Pn 的

跃变与极化电荷的面密度有关,电位移矢量的法向

分量 Dn 的跃变与自由电荷的面密度有关,电场强度

的法向分量 En 的跃变与总电荷密度( σf +σP )有关。

一、法向分量的跃变

Page 165: 第一章  电磁现象的普遍规律

对于磁场 B来说,由

0 SB dS

一、法向分量的跃变

n·(B2 - B1)=0

B2n = B1n (5.6)

可见在介质的交界面磁感应强度矢量 B 的法向分量没有跃变,是连续的。

Page 166: 第一章  电磁现象的普遍规律

二、切向分量的跃变

电流线密度 α

α的方向为正电荷的运动方向。 α的大小等于通过与电流方向垂直的单位直线上的电流强度。即

lI

Page 167: 第一章  电磁现象的普遍规律

由 得通过与电流方向垂直的直线 Δl上的电流强

度为

ΔI = αΔl (5.7)

二、切向分量的跃变

lI

SL t

I SDlH dd

dd f

Page 168: 第一章  电磁现象的普遍规律

St

0dd

dSD

L fIlH d

二、切向分量的跃变

Page 169: 第一章  电磁现象的普遍规律

H1·(-t)Δl+H2·tΔl = αfΔl

H2t - H1t = αf (5.8)

Δl = Δlt

If = (n×Δl)·αf = (αf×n)·Δl

二、切向分量的跃变

Page 170: 第一章  电磁现象的普遍规律

(H2-H1)//=αf×n

式中 // 表示投影到界面上的分量,即切向分量。上式两边同时左叉乘n 得

n×(H2-H1)//=n×(αf×n)

n×(H2-H1)//= n×(H2-H1)

n×(H2-H1)=n×(αf×n)

lnαlHHlH )()(d 12 ffLI

二、切向分量的跃变

Page 171: 第一章  电磁现象的普遍规律

A×(B×C) = (A·C)B- (A·B)C

n×(αf×n) =( n·n) αf - (n·αf) n = αf

n×(H2 - H1) = αf (5.9)

可见,在两种介质的交界面上, H 的切向分量有跃变。

二、切向分量的跃变

Page 172: 第一章  电磁现象的普遍规律

n× ( E2 - E1 )= 0

L S M SJlM dd

SL t

SBlE dd

dd

二、切向分量的跃变

n× ( M2 - M1 )= αM

Page 173: 第一章  电磁现象的普遍规律

n×(E2 - E1) = 0

n×(H2 - H1) = α

n·(D2 - D1) = σ

n·(B2 - B1) = 0

n·(P2 - P1) =- σP

n×(M2 - M1) = αM

二、切向分量的跃变

Page 174: 第一章  电磁现象的普遍规律

§6 电磁场的能量和能流

场和电荷系统的能量守恒定律的一般形式

w 和S 的表达式

电磁场能量的传输

Page 175: 第一章  电磁现象的普遍规律

一、场和电荷系统的能量守恒定律的一般形式

1 、能量密度 w

  电磁场单位体积内的能量叫做能量密度,用 w

表示,它是空间位置和时间的函数。即

w = w ( x.,t )

Page 176: 第一章  电磁现象的普遍规律

一、场和电荷系统的能量守恒定律的一般形式

2 、能流密度 (坡印廷矢量 )S

S在数值上等于单位时间内流过单位垂直截面上

的能量,其方向代表能量传输的方向。

单位时间内从 S 面流入的能量

  =单位时间内场对电荷做的功+单位时间内 V

内电磁能量的增量

Page 177: 第一章  电磁现象的普遍规律

一、场和电荷系统的能量守恒定律的一般形式

如果场对电荷不做功,则

单位时间内从 S 面流入的能

量全部变成场的能量,即

单位时间内从 S 面流入的能量= V 内电磁能的增加

Page 178: 第一章  电磁现象的普遍规律

一、场和电荷系统的能量守恒定律的一般形式

S•dσ是单位时间内从 dσ上穿出的能量。

S

σS d

S

σS d

是单位时间内从 S 上穿出的能量。

是单位时间内从 S 上穿入的能量。

Page 179: 第一章  电磁现象的普遍规律

因为力与速度 v的点乘积为功率。在体积为 dV

的小块中有电荷,这些电荷受到的力为

           f dV

其中 f 是力的密度,即单位体积中的电荷所受到

电磁场的作用力。

       f = ρE+ρv×B

一、场和电荷系统的能量守恒定律的一般形式

Page 180: 第一章  电磁现象的普遍规律

设 dV块的运动速度为 v,则电磁场对它做的功

的功率为

        f•v dV

电磁场对整个 V 内所有电荷做的功率为

一、场和电荷系统的能量守恒定律的一般形式

V

Vdvf

Page 181: 第一章  电磁现象的普遍规律

V 内电磁场的总能量为

V Vw d

V Vwt

dd

d

一、场和电荷系统的能量守恒定律的一般形式

单位时间内的增量叫做增加率。即

Page 182: 第一章  电磁现象的普遍规律

由奥-高公式得

VVs

Vwt

V dd

ddd vfσS

s v

dVd SσS

一、场和电荷系统的能量守恒定律的一般形式

因而有

(6.1)

Page 183: 第一章  电磁现象的普遍规律

由此可见,场对电荷所做的总功率等于场的总能量的减少率,因此总能量守恒。

tw

vfS

vfS

tw

Vw

tV d

d

ddvf

( 6.2 )

一、场和电荷系统的能量守恒定律的一般形式

由( 6.1 )式得

( 6.3 )

Page 184: 第一章  电磁现象的普遍规律

二、 w 和 S 的表达式

      f= ρE + ρv×B

     f·v= (ρE + ρv×B)·v

     = ρE•v+ 0

     = ρv•E

     = J•E     (6.4)

Page 185: 第一章  电磁现象的普遍规律

二、 w 和 S 的表达式

▽· ( E×H )= H·(▽×E) - E·(▽×H)

t

t

DHJ

DJH

t

DEHEEJ )( (6.5)

Page 186: 第一章  电磁现象的普遍规律

二、 w 和 S 的表达式

E·(▽×H) = H·(▽×E) -▽ · ( E×H )

     = )( HEB

H t

tt

DE

BHHEEJ )(

Page 187: 第一章  电磁现象的普遍规律

能流密度 S也称为坡印廷矢量( Poynting ) ,它

是电磁波传播问题中的一个重要物理量。

tt

DE

BHHEvf )(

tttw

D

EB

H (6.9)

二、 w 和 S 的表达式

S= E×H (6.8)

Page 188: 第一章  电磁现象的普遍规律

讨论:( 1 )在真空中

EDBH 00

,1

BES 0

1

( 6.10 )

二、 w 和 S 的表达式

Page 189: 第一章  电磁现象的普遍规律

 

)1

(2

1)(

2

1 2

0

20 B

tE

t

二、 w 和 S 的表达式

tttw

BB

EE0

0 )(

)](2

1[

0

22

0 BE

t

Page 190: 第一章  电磁现象的普遍规律

  即电磁场的能量密度等于电场能量密度加上磁

场能量密度。然而电磁场并不是电场与磁场的简单

相加。

me wwB

Ew )(2

1

0

22

0

二、 w 和 S 的表达式

(6.10)

Page 191: 第一章  电磁现象的普遍规律

( 2 )介质内的电磁能量和能流

)(2

1BHDE w

HES

二、 w 和 S 的表达式

Page 192: 第一章  电磁现象的普遍规律

三、电磁场能量的传输

vJ ne

电子的电量为

       e= 1.6×10-19 库仑

如果电子的平均漂移速度为 ,则导线中的电流密度为

v

Page 193: 第一章  电磁现象的普遍规律

三、电磁场能量的传输

其中 n为单位体积内的自由电子数,并把导线中的

载流子当成正电子。值得说的是,在经典电子论中得

vJ ne

Page 194: 第一章  电磁现象的普遍规律

三、电磁场能量的传输

一般情况下,金属导体中的 n≈1029/m3 。对于 1A/

mm2 的电流来说, J= 106A/m

sm/106106.110

10 51929

6

neJ

v

小时小时 4.13600

16000106.1

106

1 45

t

Page 195: 第一章  电磁现象的普遍规律

 例:书上 P.43

三、电磁场能量的传输