第十四章 蛋白质的生物合成

78
第第第第 第第第第第第第第 中中中中 中中中中 第第 第 第第第第第第第第第第第第第第第第第第第第第第第第 第第第 mRNA 第第第第第第 第第 , 第第第第第第第第第第 第第第第 第第第第第第第 传传一 第第第第第第第 第第第第第第第第第第第第第第 一, mRNA 第第第第第第第第第第第第中中 (t ranslation) 第第第第第第第第 第第 mRNA tRNA rRNA 第第第第第第第 第第 第第第第第 mRNA 第第第第第第第 tRNA 第第第第第第第第rRNA 第第第第 第第第第 第第第第第第第第第第 第第第第第第第第第 体,, N—C 第

Upload: snana

Post on 15-Jan-2016

83 views

Category:

Documents


0 download

DESCRIPTION

第十四章 蛋白质的生物合成. 中心法则 指出,遗传信息的表达最终是合成出具有特定氨基酸顺序的蛋白质,这种以 mRNA 上所携带的遗传信息 , 到多肽链上所携带的遗传信息的传递,就好象以一种语言翻译成另一种语言时的情形相似,所以称以 mRNA 为模板的蛋白质合成过程为 翻译 (translation) 。 翻译过程十分复杂,需要 mRNA 、 tRNA 、 rRNA 和多种蛋白因子参与。在此过程中 mRNA 为合成的模板, tRNA 为运输氨基酸工具, rRNA 和蛋白质构成核糖体,是合成蛋白质的场所,蛋白质合成的方向为 N—C 端。. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 第十四章     蛋白质的生物合成

第十四章 蛋白质的生物合成

中心法则中心法则指出,遗传信息的表达最终是合成出具有特定氨基酸顺序的蛋白质,这种以 mRNA 上所携带的遗传信息 , 到多肽链上所携带的遗传信息的传递,就好象以一种语言翻译成另一种语言时的情形相似,所以称以 mRNA 为模板的蛋白质合成过程为翻译(translation) 。

翻译过程十分复杂,需要 mRNA 、 tRNA 、 rRNA 和多种蛋白因子参与。在此过程中 mRNA 为合成的模板, tR

NA 为运输氨基酸工具, rRNA 和蛋白质构成核糖体,是合成蛋白质的场所,蛋白质合成的方向为 N—C 端。

Page 2: 第十四章     蛋白质的生物合成

遗传信息流动示意图

核糖体

DNA

mRNA

tRNA

Page 3: 第十四章     蛋白质的生物合成

第一节 蛋白质合成体系

第二节 蛋白质合成的机理

第三节 肽链合成后的折叠与肽链合成后的折叠与加工

第四节 蛋白质定位蛋白质定位

Page 4: 第十四章     蛋白质的生物合成

二、 t RNA

三、核糖体

第一节 蛋白质合成体系第一节 蛋白质合成体系

一、 mRNA和遗传密码

四、辅助因子

Page 5: 第十四章     蛋白质的生物合成

mRNA (messenger RNA) 是蛋白质生物合成过程中直接指令氨基酸掺入的模板,是遗传信息的载体。

m R N Am R N Am R N Am R N A

原核生物和真核生物mRNA 的比较

Page 6: 第十四章     蛋白质的生物合成

遗 传 密 码遗 传 密 码

三联体密码的破译遗传密码的性质

遗传密码 : DNA (或 mRNA )中的核苷酸序列与蛋白质中氨基酸序列之间的对应关系称为遗传密码。 密码子 (codon) : mRNA 上每 3 个相邻的核苷酸编码蛋白质多肽链中的一个氨基酸,这三个核苷酸就称为一个密码子或三联体密码。遗传密码字典遗传密码字典

Page 7: 第十四章     蛋白质的生物合成

三联体密码的破译三联体密码的破译

1954 年 Gamov 确认核酸分子中三个碱基决定一个氨基酸

1961 年 Crick 等用遗传学方法也证实三联体密码子学说是正确的

Nirenberg 以均聚物共聚物为模板指导多肽的合成 , 寻找到了破译遗传密码的途径

Khorana 以共聚物指导多肽的合成,加快了破译遗传密码的步伐

Page 8: 第十四章     蛋白质的生物合成

缺失或插入核苷酸引起三联体密码的改变

CAT CAT CAT CAT CAT CAT

CAT CAC ATC ATC ATC ATC

CAT CAC AXT CAT CAT CAT

CAX TXC ATX CAT CAT CAT

-1

-1, +1

+3

Page 9: 第十四章     蛋白质的生物合成

以均聚物为模板指导多肽的合成

Poly U 为模板,产生的多肽链为 Poly Phe

Poly A 为模板,产生的多肽链为 Poly Lys

Poly C 为模板,产生的多肽链为 Poly Pro

Page 10: 第十四章     蛋白质的生物合成

以特定的共聚物为模板指导多肽的合成以特定的共聚物为模板指导多肽的合成

( 1 )以多聚二核苷酸作模板可合成由 2 个氨

基酸组成的多肽 , 如以 Poly UG 为模板,合

成产物为 Poly Lys-Val 。

( 2 )以多聚三核苷酸作为模板,可得三种氨

基酸组成的多肽。

Page 11: 第十四章     蛋白质的生物合成

核糖体结合技术核糖体结合技术技术要点:

保温

硝酸纤维滤膜过硝酸纤维滤膜过滤滤

分析留在滤膜上的核糖体核糖体 -AAtRNA

确定与核糖体结合的 AA

以人工合成的三核苷酸为模板三核苷酸为模板 + 核糖体核糖体 +AA-tRNA

Page 12: 第十四章     蛋白质的生物合成

遗传密码字典

U

A

C

G

UCAG

U C A G第二位

第一位( 5ˊ )

第三位( 3ˊ )

UCAG

UCAG

UCAG

Page 13: 第十四章     蛋白质的生物合成
Page 14: 第十四章     蛋白质的生物合成

64 种密码中, 61 种是 Aa 的密码子, AUG和 GUG 的特殊性

• 肽链内部 Met 的密码子• AUG 原核生物编码甲酰甲硫氨酸• 起始密码• 真核生物编码甲硫氨酸

Page 15: 第十四章     蛋白质的生物合成

另有三种是终止密码(标点密码子、无意义密码子),UAA (琥珀密码子)UAG (乳石密码子)UGA (赭石密码子)

Page 16: 第十四章     蛋白质的生物合成

遗传密码的性质遗传密码的性质 1 、密码是无标点符号的且相邻密码子互不重叠。

2 、密码的简并性:由一种以上密码子编码同一个 氨基酸的现象称为简并性( dogeneracy ),对应于同一氨基酸的密码子称为同义密码子 (Synonymous codon) 。密码的简并性可以减少有害突变 。

3 、密码的摆动性(变偶性):密码的专一性主要是由第一第二个碱基所决定, tRNA 上的反密码子与 mRNA 密码子配对时,密码子的第一、二位碱基是严格的,第三位碱基可以有一定的变动。 Crick 称这一为变偶性( wobble ) .

4 、密码的通用性和变异性

5 、 64 组密码子中, AUG 既是 Met 的密码,又是起始密 码;有三组密码不编码任何氨基酸,而是多肽链合成的终止密码子: UAG 、 UAA 、 UGA 。

Page 17: 第十四章     蛋白质的生物合成

密码子是不重叠的并且无标点:

• A B C D E F G H I J K H

• Aa1 Aa2 Aa3 Aa4

Page 18: 第十四章     蛋白质的生物合成
Page 19: 第十四章     蛋白质的生物合成

反密码子与密码子之间的碱基配对

A U

C G

反密码子第一位碱基 密码子第三位碱基

GU

C

UA

G

I

U

C

A

Page 20: 第十四章     蛋白质的生物合成

1966 年 Crick 根据立体化学原理提出:

( 2 )有些反密码子的第一个碱基(按 5-3 )决定了该 tRNA 识别密码子的数目。

( 3 )当一种氨基酸有几个密码子时,只要他们的第一 和第二个碱基中有一个不同,则需要不同的 tRNA

来识别。

( 1 ) mRNA 上的密码子的第一、第二个碱基 与 tRNA上 的反密码子相应的碱基形成强的配对;密码的专一 性主要是由这两个碱基对的 作用。

Page 21: 第十四章     蛋白质的生物合成

人线粒体中变异的密码子

UGA 终止信号 Trp

AUA Ile Met

AGA Arg 终止信号

AGG Arg 终止信号

密码子 正常情况下编码 线粒体 DNA 编码

Page 22: 第十四章     蛋白质的生物合成

原核细胞 mRNA 的结构特点

5´ 3´

顺反子 顺反子 顺反子

插入顺序 插入顺序

先导区末端顺序

AGGAGGUAGGAGGU

SD 区

特点① 半衰期短② 许多原核生物 mRNA 以多顺反子形式存在③ AUG 作为起始密码; AUG 上游 7 ~ 12 个核苷酸处有一被称为 S

D 序列的保守区, 16S rRNA3’- 端反向互补而使 mRNA 与核糖体结合。

Page 23: 第十四章     蛋白质的生物合成

真核细胞 mRNA 的结构特点

5´ “ 帽子” PolyA 3´

顺反子

m7G-5´ppp-N-3 ´ pm7G-5´ppp-N-3 ´ p

帽子结构功能① 使 mRNA 免遭核酸酶的破坏② 使 mRNA 能与核糖体小亚基结合并开

始合成蛋白质③ 被蛋白质合成的起始因子所识别,从

而促进蛋白质的合成。

Poly(A)Poly(A)尾巴的功能尾巴的功能① 是 mRNA 由细胞核进入细

胞质所必需的形式② 它大大提高了 mRNA 在细

胞质中的稳定性

AAAAAAA-OH

Page 24: 第十四章     蛋白质的生物合成

tRNA ( transfer ribonucleic asid )在蛋白质合成中处于关键地位,它不但为每个三联体密码子译成氨基酸提供接合体,还为准确无误地将活化的氨基酸运送到核糖体中 mRNA 模板上。

1 、 tRNA 的结构特征2 、 tRNA 的功能 ( 1 ) tRNA 的接头 (adaptor) 作用 3´- 端上的氨基酸接受位点 识别氨酰 - tRNA 合成酶的位点 核糖体识别位点 反密码子位点 ( 2 ) tRNA 的突变与校正基因 (回复突变, reverse mutation)

t RNAt RNA

Page 25: 第十四章     蛋白质的生物合成
Page 26: 第十四章     蛋白质的生物合成

密码子与反密码子的配对关系

反密码子

tRNA

5

3

A U C5 mRNA 3

密码子1 2 3

Page 27: 第十四章     蛋白质的生物合成

基因间的校正突变

GluH2N COOH

第一个突变:由于 DNA 突变使 mRNA 分子中 GAG 变为 UAG

GAG(Glu)

UAG (终止密码)

H2N COOH

TyrH2N COOH

第二个突变: tRNA Ty

r 的反密码子 GUA 突变成 CUA

突变 tRNATyr 可以将终止密码 UAG读作 Tyr

3-A-U-C- 5

5-U-A-G- 3

突变 tRNA Tyr 的反密码子(正常时应为 3-A-U-G- 5)

此终止密码被读作 Tyr

Page 28: 第十四章     蛋白质的生物合成

核糖体

核 糖 体

是由 rRNA ( ribosomal ribonucleic asid )和多种蛋白质结合而成的一种大的核糖核蛋白颗粒,蛋白质肽键的合成就是在这种核糖体上进行的。

2 、核糖体的功能

1 、核糖体的结构和组成

Page 29: 第十四章     蛋白质的生物合成

核糖体的组成

原核生物核糖体的组成原核生物核糖体的组成

34 protein

21 protein

23S RNA 5S RNA

16S RNA

50S subunit

70S ribosome

30S subunit

原核生物核糖体结构示意图

30S subunit

50S subunit

Page 30: 第十四章     蛋白质的生物合成

核糖体的功能

• 小亚基:结合 mRNA及 tRNA 反密码区段 功能 大亚基:结合 tRNA其它区段

A 位—氨酰 tRNA 进入部位 核糖体的活性中心 P 位—与正在延伸的肽酰 tRNA 结合部位

Page 31: 第十四章     蛋白质的生物合成

原核细胞 70S 核糖体的 A 位、 P 位及mRNA 结合部位示意图

30S30S与 mRNA 结合部位

PP 位位((结合或接受肽基的部位)

AA 位位((结合或接受 AA- tRNA的部位)50S50S

55 33

mRNAmRNA

Page 32: 第十四章     蛋白质的生物合成

多聚核糖体• 在一个 mRNA 分子中结合一定数目的单

位核糖体称为多聚核糖体。

Page 33: 第十四章     蛋白质的生物合成

真核和原核细胞参与翻译的蛋白质因子阶段 原核  真核 功 能

    IF1

    IF2    eIF2 参与起始复合物的形成 

    IF3    eIF3 、 eIF4C

起始      CBP I 与 mRNA 帽子结合

        eIF4A B F 参与寻找第一个 AUG

        eIF5 协助 eIF2 、 eIF3 、 eIF4C 的释放

        eIF6 协助 60S 亚基从无活性的核糖体上解离

    EF-Tu   eEF1 协助氨酰 -tRNA 进入核糖体

延长  EF-Ts   eEF1 帮助 EF-Tu 、 eEF1 周转

    EF-G   eEF2 移位因子

    RF-1

终止  eRF 释放完整的肽链

    RF-2

阶段 原核  真核 功 能

    IF1

    IF2    eIF2 参与起始复合物的形成 

    IF3    eIF3 、 eIF4C

起始      CBP I 与 mRNA 帽子结合

        eIF4A B F 参与寻找第一个 AUG

        eIF5 协助 eIF2 、 eIF3 、 eIF4C 的释放

        eIF6 协助 60S 亚基从无活性的核糖体上解离

    EF-Tu   eEF1 协助氨酰 -tRNA 进入核糖体

延长  EF-Ts   eEF1 帮助 EF-Tu 、 eEF1 周转

    EF-G   eEF2 移位因子

    RF-1

终止  eRF 释放完整的肽链

    RF-2

Page 34: 第十四章     蛋白质的生物合成

第二节 蛋白质合成的机理第二节 蛋白质合成的机理

一、一、氨基酸的活化氨基酸的活化

二、二、原核生物多肽链的合成过程原核生物多肽链的合成过程

四、四、真核生物多肽链的合成真核生物多肽链的合成

三、三、多核糖体与核糖体循环多核糖体与核糖体循环

Page 35: 第十四章     蛋白质的生物合成

氨基酸的活化

氨基酸

ATP +ATP +

氨酰腺苷酸E-E-AMPAMP

PPiPPi第一步

AMPAMP

第二步

EE

氨基酸的活化

3- 氨酰 -tRNA

第一步:氨酰- tRNA 合成酶识别它所催

化的氨基酸以及另一分子 ATP ,在该酶的

催化下,氨基酸的羧基与 AMP 上的磷酸基

团之间形成一个酯键,同时释放一个 PPi

分子.这时氨酰- AMP仍然紧密地与酶结

合.

第二步:氨酰- tRNA 合成酶将氨基酸连

接到 tRNA3, 端的核糖上.

   氨酰- tRNA 合成酶之间在识别

tRNA 的部位上有所不同.一些特异形成

3,形式的酯 ,有的形成 2

,形式的酯 ,有

的还可能形成混合物.一旦结合到最末

端的核糖上后,氨酰基团还能在 2,或 3

的羟基之间进行交换,但只有形 tRNA3,

形式的酯,才能参于在核糖体催化下的

转肽反应.

Page 36: 第十四章     蛋白质的生物合成

N- 甲酰甲硫氨酰 -tRNAiMet 的形成

CHO-HN-CH-COO-tRNA

CH2

CH2

S

COO-

+H2N-CH-COO-tRNA

CH2

CH2

S

COO-

Met-tRNAiMet fMet-tRNAt

Met

NN1010-CHO-FH-CHO-FH44 FHFH44

转甲酰酶

Page 37: 第十四章     蛋白质的生物合成

氨酰氨酰 - tRNA- tRNA 合成酶特点合成酶特点 aa 、专一性、专一性:

对氨基酸有极高的专一性,每种氨基酸都有专

一的酶,只作用于 L- 氨基酸,不作用于 D- 氨基酸

对 tRNA 具有极高专一性。 bb 、校对作用、校对作用:许多氨酰 - tRNA 合成酶似乎含有第

二个活性部位,用于的水解错误活化的氨基酸。例如

,对于偶尔生成的 Val-tRNAIle :

Val-tRNAIle

+H2O Val+tRNAIle

Page 38: 第十四章     蛋白质的生物合成

氨酰 -tRNA 合成酶识别氨基酸与 tRNA

  尽管不同氨酰 -tRNA合成酶之间在分子大小、亚基组成上有所差异,但它们都有一些共同特征.酪氨酰- tRNA 合成酶与反应中间物酪氨酰-腺苷酸复合物晶体结构的解析表明:反应中间物结合在酶分子的一个深沟里,二者之间形成 11 个氢键. 6个氢键涉及 AMP 部分,5 个涉及酪氨酰部分.    每一种氨酰- tRNA合成酶既能够识别相应的氨基酸,又能够识别与此氨基酸相对应的一个或多个 tRNA 分子.

Page 39: 第十四章     蛋白质的生物合成

原核生物多肽链的合成过程原核生物多肽链的合成过程

原核生物多肽链的合成分为三个阶段:肽链合成的起始、肽链的延伸、肽链合成的终止和释放。

1 、肽链合成的起始2 、肽链的延长3 、肽链合成的终止及释放

Page 40: 第十四章     蛋白质的生物合成

肽链合成的起始肽链合成的起始

30S 亚基• mRNA IF3- IF1 复合物

30S• mRNA • GTP- fMet –tRNA- IF2- IF1 复合物

70S 起始复合物

mRNA +30S 亚基 -IF3

IF2-GTP-fMet-tRNA

IF3

50S亚基

IF2+ IF1+GDP+Pi

IF1

IF-3 的功能是使前面已结束蛋白质合成的核糖体

的 30S 和 50S亚基分开,而 IF-1 和 IF-2 的功能则是促

进 fMet-tRNAifMet 及 mRNA 与 30S 小亚基的结合

当 30S 小亚基结合上 fMet-tRNAifMet 及 mRNA 形

复合物后, IF-3 就解离下来,以便 50S大亚基与复

合物结合.这一结合使得 IF-1及 IF-2离开核糖体,

同时使结合在 IF-2 上的 GTP发生水解.

Page 41: 第十四章     蛋白质的生物合成

mRNR 上的 SD 序列可与小亚基上 16S rRNA 的 3,进

行碱基配对,起始密码子 AUG 可与起始 tRNA 上的反密码子进行配对.

Page 42: 第十四章     蛋白质的生物合成
Page 43: 第十四章     蛋白质的生物合成

肽链的延长

11 2211 22

22 3322 33

进位进位 肽键形成

移位移位

进位进位

((Tu\Ts))GTPGTP

GTPGTP

N-N-端端

22 33

55´́ 33´́

C-C-端端

肽键形成肽键形成

11

55´́ 33´́

(( EF-EF-GG ))

Page 44: 第十四章     蛋白质的生物合成

进位:由 mRNA 所决定的新的氨基酸 -tRNA 进入 A位;转肽:转肽酶作用下转肽( GTP 供能);1992 , Holler 认为由 23SrRNA 催化;脱落:新肽合成后, P位上 tRNA 脱落;移位:核糖体向 mRNA3

,端移位,带有肽链的 tRN

A 进入 P位,空出 A位再接受下一个氨基酸 -tRNA( GTP 供能);上述过程重复进行,直到终止密码为止。

Page 45: 第十四章     蛋白质的生物合成

氨基酸 -tRNA 的结合由氨酰 -tRNA 结合因子催化,在细菌中写为 EF-Tu,在真核系统中为 EF-1.这个因子可与结合有氨酰 -tRNA 和 GTP 的核糖体形成四元复合物,同时偶联上 GTP 的水解. 第二个延长因子 EF-Ts 则负责催化 EF-Tu-GTP 复合物的再生成,为结合下一个氨酰 -tRNA 作准备.   EF-1 是一个多亚基的蛋白,同时具备了 EF-Tu及 EF-Ts 的性质.

Page 46: 第十四章     蛋白质的生物合成

Tu\Ts循环Ts

Ts-GDP

Page 47: 第十四章     蛋白质的生物合成

肽键的形成

肽键的形成不需要任何蛋白因子的参与,而是依靠核糖自身催化完成的,它也是蛋白质合成过程中,核糖参与催化的唯一反应,实质上是使一个酯键变成了一个肽键. 嘌呤霉素对蛋白质合成的抑制作用就发生在这一步上.嘌呤霉素的结构与氨酰 -tRNA3

,端上的确 AMP残基的结构十分相似.肽酰转移酶也能促使氨基酸与嘌呤霉素结合,形成肽酰嘌呤霉素,但其连接不是酯键,而是酰氨键.肽酰 -嘌呤霉素复合物很容易从核糖体上脱落,从而使蛋白质合成过程中断.

Page 48: 第十四章     蛋白质的生物合成

  延长过程的最后一步叫做移位,由移位因子催化(原核生物和真核

生物中分别为 EF-G 和 EF-2 ),此过程有 GTP 的水解.移位大目的是

使核糖体沿mRNA移动,使下一个密码子暴露出来以供继续翻译.

Page 49: 第十四章     蛋白质的生物合成

肽链合成的终肽链合成的终止及释放止及释放

( 1 )释放因子 RF1 ( UAA,UA

G )或 RF2 ( UAA,UGA )进入

核糖体 A 位。

( 2 )多肽链的释放

( 3 ) 70S 核糖体解离

55 33UAGUAG

30S30S 亚基亚基

50S50S亚基亚基

55 33UAGUAG

tRNA

RF

Page 50: 第十四章     蛋白质的生物合成

当释放因子识别在 A 位点上的终止密码子后,将改变在大亚基上

的肽酰转移酶的专一性,使其能结合水用于亲核进攻,而不是识别通

常的底物氨酰 -tRNA.也就是说,终止反应就是将肽酰转移酶的活性

转变为酯酶活性.

Page 51: 第十四章     蛋白质的生物合成
Page 52: 第十四章     蛋白质的生物合成
Page 53: 第十四章     蛋白质的生物合成

多多核糖体与核糖体循环

合成完毕的肽链

多核糖体3ˊmRNA

延伸中的肽链

核糖体循环

Page 54: 第十四章     蛋白质的生物合成

多核糖体

第一个编码区第一个编码区

第一个编码区第一个编码区

第二个编码区第二个编码区

第二个编码区第二个编码区

终止终止 \\ 起始起始

终止终止

起始起始

mRNAmRNA

mRNAmRNA

55´́

55´́

33´́

33´́

Page 55: 第十四章     蛋白质的生物合成

肽链合成的忠实性

A 、氨基酸与 tRNA 的特异结合•氨酰 -tRNA 合成酶对 AA 和 tRNA 有底物专一性

•氨酰 -tRNA 合成酶能识别和水解不恰当的产物

B、延伸因子和 GTP 酶的活性对忠实性的影响•提供了密码子与反密码子相互作用的时机C、错误的 AA可由终止肽链合成来消除D、能量上的昂贵

Page 56: 第十四章     蛋白质的生物合成

真核生物多肽链的合成(自学)真核生物多肽链的合成(自学)

1 、真核细胞核糖体比原核细胞核糖体更大更复杂;2 、起始氨基酸为 Met ,不是 fMet ;3 、肽链合成的起始:由 40S 核糖体亚基首先识别mRNA 的 5’ 端 - 帽子,然后沿 mRNA 移动寻找 AU

G ;4 、起始因子有 12 种,但只有 2 种延长因子和 1 种终止因子;5 、真核细胞种线粒体、叶绿体的核糖体大小、组成及蛋白质合成过程都类似于原核细胞。

Page 57: 第十四章     蛋白质的生物合成

肽链折叠是指从多肽链的氨基酸序列形成具有正确三维空间结构的蛋白质的过程。 体内多肽链的折叠目前认为至少有两类蛋白质参与,称为助折叠蛋白 : ( 1 )酶:蛋白质二硫键异构酶( PDI ); ( 2 )分子伴侣

第三节 肽链合成后的折叠与加工第三节 肽链合成后的折叠与加工

Lasky于 1978 年首先提出分子伴侣( molecular chaperone )的概念,这是一类在细胞内能帮助新生肽链正确折叠与装配组装成为成熟蛋白质,但其本身并不构成被介导的蛋白质组成部分的一类蛋白因子,在原核生物和真核生物中广泛存在。

一一 . . 肽链的折叠和多肽链折叠为天然构象的蛋白质肽链的折叠和多肽链折叠为天然构象的蛋白质

Page 58: 第十四章     蛋白质的生物合成

(1). 分子伴侣是细胞中一类保守蛋白质,可识别肽链的非天然构象,促进各功能域和整体蛋白质的折叠.

(2).分子中至少有两种分子伴侣家族: 1) 热休克蛋白; 2) 伴侣素

(3). 热休克蛋白

1) 属于应激反应性蛋白,高温应激可诱导该蛋白合成的增加.2) 包括 HSP70, HSP40 和 GreE 三族,各种生物都有相应同源蛋白,有

多种细胞功能.3) HSP40 结合待折叠多肽片段,并将多肽导向 HSP70-ATP 复合物, H

SP40激活 HSP70 的 ATP酶活性,水解 ATP 成 ADP ,产生稳定的HSP40-HSP70-ADP- 多肽复合物.

4) GreE 是核苷酸交换因子,与 HSP40 作用,促进 ATP交换 ADP ,使复合物变为不稳定而迅速解离,释出该多肽链片段进行正确折叠.

5) 人细胞中 HSP 蛋白家族可存在于胞质、内质网腔、线粒体、胞核等部位,涉及多种细胞保护功能.如使线粒体和内质网蛋白保持未折叠状态转运、跨膜,再折叠成功能构象.

1. 1. 分子伴侣分子伴侣

Page 59: 第十四章     蛋白质的生物合成

(4). 伴侣素

1) 包括 E.coli的 GroEL 和 GroES (真核细胞中同源物为HSP60 和 HSP10 )等.

2) 主要作用:是为非自发性折叠蛋白质提供能折叠成天然空间构象的微环境.

3) 机制: GroEL 由两组同亚基 7聚体形成桶状空腔,组成未封闭的复合物.待折叠肽链进入该空腔后, GroES 为同亚基 7聚体,可作为盖子瞬时封闭 GroEL 复合物.封闭复合物内腔提供了能完成该肽链折叠的微环境.

4) 分子伴侣并未加快折叠反应速度,而是通过消除不正确折叠,增加功能性蛋白折叠产率促进天然蛋白质折叠.

Page 60: 第十四章     蛋白质的生物合成

2. 2. 蛋白二硫键异构酶 蛋白二硫键异构酶 (PD(PDI)I)1) 多肽链的几个半胱氨酸间可能出现错配二硫键,影响蛋白质的正

确折叠.

2) 二硫键异构酶在内质网腔活性很高,可在较大区段肽链中催化错配二硫键断裂并形成正确的二硫键连接.

3) 最终使蛋白质形成热力学最稳定的天然构象.

3. 3. 肽肽 -- 脯氨酰顺反异构酶 脯氨酰顺反异构酶 (P(PPI)PI)1) 脯氨酸为亚氨基酸,多肽链中肽酰 -脯氨酸间形成的肽键有顺反两

种异构体.

2) 肽酰 -脯氨酰顺反异构酶可促进上述顺反两种异构体之间的转换.

3) 肽酰 -脯氨酰顺反异构酶是蛋白质三维构象形成的限速酶,在肽链合成需形成顺式构型时,可使多肽链在各脯氨酸弯折处形成准确折叠.

Page 61: 第十四章     蛋白质的生物合成

1 、肽链末端的修饰: N- 端 fMet 或 Met 的切除2 、信号序列的切除3 、二硫键的形成4 、部分肽段的切除5 、个别氨基酸的修饰6 、糖基侧链的添加7 、辅基的加入

二二 . . 蛋白质的加工修饰蛋白质的加工修饰

实例:胰岛素原的加工

Page 62: 第十四章     蛋白质的生物合成

胰岛素原的加工

A 链区

B 链区

间插序列( C 肽区)

HS

SH

SH

SH

HS

HS

信号肽NC

核糖体上合成出无规则卷曲的前胰岛素原

切除 C 肽后,形成成熟的胰岛素分子

切除信号肽后折叠成稳定构象的胰岛素原

SS

SS

N

NC

CA 链

B 链

胰岛素

C

N

S- S

SS

胰岛素原

SS

Page 63: 第十四章     蛋白质的生物合成

翻译后的加工主要有:

1 、  水解剪切( N- 端序列与信号肽)  脱甲酰酶

fMet- 肽 甲酸 +Met- 肽(原核大多)

氨肽酶

Met- 肽 Met+ 肽(真核、部分原核) ( 1- 多个氨基酸)

Page 64: 第十四章     蛋白质的生物合成

2 、氧化作用形成 -S-S-

3 、化学修饰、某些氨基酸的侧链需进行特殊修饰 如:   胶原蛋白中 Pro→Ho-Pro

  Lys→Ho-Lys

还有氨基酸残基的甲基化、乙酰化等其它修饰.

4 、糖基化 糖蛋白中 Asn 、 Ser 、 Thr侧链糖苷化(以共价键接上糖,这一过程在细胞内质网( N- 糖苷键)及高尔基体中( O- 糖苷键)完成.

Page 65: 第十四章     蛋白质的生物合成

5、激活• 有些多肽合成后,要经过专一性蛋白酶水解,断裂出一部分肽链,才能成为有功能的蛋白质(例如:酶原激活)。

• 酶原激活 酶原在一定条件下经适当物质作用可转变成有活性的酶的过程,即活性中心形成或暴露的过程。

实例:胰岛素原的加工

Page 66: 第十四章     蛋白质的生物合成

酶原激活• 概念 :

酶原在一定条件下经适当物质作用可转变成有活性的酶的过程。

• 活性中心形成或暴露的过程。

Page 67: 第十四章     蛋白质的生物合成

  H+或胃蛋白酶• 胃蛋白酶原 胃蛋白酶   胰蛋白酶• 胰凝乳蛋白酶原 胰凝乳蛋白酶   胰凝乳蛋白酶

   肠激酶• 胰蛋白酶原 胰蛋白酶

Page 68: 第十四章     蛋白质的生物合成
Page 69: 第十四章     蛋白质的生物合成

6 、加辅基(与脂、核酸、血红素等的缔合)

•多条肽链及其它辅助成分构成的蛋白质(脂蛋白、核蛋白、细胞色素 C 蛋白),蛋白质与辅基的结合也是在翻译之后进行的。

Page 70: 第十四章     蛋白质的生物合成

第四节 蛋白质定位

(一 )、分泌蛋白的靶向定位

● 信号肽假说简图

● 分泌蛋白质的合成和胞吐作用

(二 )、线粒体与叶绿体蛋白

● 蛋白质向线粒体定位的机制

Page 71: 第十四章     蛋白质的生物合成

游离型核糖体:

胞内蛋白、装配叶绿体和叶绿体膜的蛋白

粗糙内质网核糖体:

溶酶体蛋白、分泌到胞外蛋白、构成质膜骨架的蛋白。

Page 72: 第十四章     蛋白质的生物合成

1 、信号肽( signal peptide )及信号肽的识别

• 信号肽:由编码分泌蛋白的 mRNA 在翻译时首先合成的N 端一段带有疏水氨基酸的多肽,它的主要作用是引导新生的多肽进入内质网腔,随后被信号肽酶水解。

1) N 端侧碱性区含一个或几个带正电荷的碱性氨基酸,如 Lys 和 Arg.

2) 中间较长为疏水核心区,约 10-15残基,主要含疏水中性氨基酸,如 Leu 、 Ile等.

3) C 端加工区多含极性、小侧链的 Gly 、 Ala 、 Ser ,紧接着是被信号肽酶裂解的位点.

Page 73: 第十四章     蛋白质的生物合成

一些真核细胞多肽链上 N- 端的信号肽的结构

Page 74: 第十四章     蛋白质的生物合成

2 、分泌蛋白进入内质网(1) 真核细胞胞液内存在信号识别颗粒( SRP ),是由 6 个多肽亚基

和 1 个 7S-RNA 组成的复合体, SRP 可结合 GTP ,有 GTP酶活性.

(2) 内质网膜上一种膜蛋白称 SRP受体,因可结合 SRP 又称为 SRP 对接蛋白( DP ).

(3) 核糖体受体也为 ER膜蛋白,可结合核糖体大亚基使其与 ER膜稳定结合.

(4) 还有肽转位复合物为多亚基跨 ER膜蛋白,可形成新生肽链跨 ER膜的蛋白通道.

(5) 分泌蛋白进入内质网的过程1) 在胞质游离核糖体上以 mRNA 为模板,合成出 N 端包括信号肽的最初约 70 个氨基酸残基.

2) SRP 与新生肽链 N 端的信号肽和 GTP 结合,还结合核糖体使多肽合成暂停, SRP引导核糖体 - 多肽 -SRP 复合体,识别结合 ER膜上的与 GTP 结合的 SRP受体.通过水解 GTP 使 SRP解离并再利用,多肽链开始继续延长.

Page 75: 第十四章     蛋白质的生物合成

信号肽假说简图

SRP循环

mRNA

内质网膜

内质网腔信号肽酶信号肽

3) 核糖体大亚基与核糖体受体结合,锚定 ER膜上,水解 GTP供能,诱导肽转位复合物开放跨 ER膜通道,新生蛋白信号肽插入内质网.

4) 信号肽启动肽链转位,延长的多肽直接经核糖体及跨 ER膜通道进入内质网腔.

5) 内质网腔 HSP70消耗 ATP ,促进延伸多肽进入 ER腔并折叠成功能构象.

Page 76: 第十四章     蛋白质的生物合成

分泌蛋白质的合成和胞吐作用

内质网 高尔基体

泡 泡

泡融入质膜

核糖体

芽泡

Page 77: 第十四章     蛋白质的生物合成

3. 线粒体蛋白的靶向输送(1) 90% 以上线粒体蛋白前体在胞液合成后输入线粒体,其中大部分定

位于基质;

(2) 线粒体基质蛋白前体的 N 端有保守的 20-35残基信号序列,称为导肽,富含 Ser 、 Thr及碱性氨基酸.

(3) 线粒体基质蛋白靶向输送过程

1) 胞质新合成的线粒体蛋白与分子伴侣 HSP70或线粒体输入刺激因子( MSF )结合,以稳定的未折叠形式转运到线粒体;

2) 蛋白质先通过信号序列识别,结合线粒体外膜的受体复合物;3) 再转运、穿过由线粒体外膜转运体( Tom )和外膜转运体( Tim

)共同组成的跨内、外膜蛋白通道.以未折叠形式进入线粒体.4) 蛋白质前体信号序列被蛋白酶切除,在分子伴侣作用下折叠成有功能的蛋白质.

Page 78: 第十四章     蛋白质的生物合成

线粒体外膜线粒体外膜

线粒体内膜线粒体内膜

带有导肽的线粒体蛋白质前体跨膜运送过程示意图

内外膜接触位点的内外膜接触位点的蛋白质通道蛋白质通道

线粒体线粒体hsp70hsp70

受体蛋白受体蛋白

hsp70hsp70

导肽导肽

蛋白酶切蛋白酶切除导肽除导肽