4xunhuan2

Upload: raanja2

Post on 04-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 4xunhuan2

    1/155

    SECTION 3 VASCULAR

    PHYSIOLOGY

  • 8/13/2019 4xunhuan2

    2/155

  • 8/13/2019 4xunhuan2

    3/155

    . Functional properties ofdifferent blood vessels

    1. Artery:

    Aorta and large artery

    Pressure reservoir vessels

  • 8/13/2019 4xunhuan2

    4/155

    1.Elastic reservoir vessels:

    Systole: store of energy

    Elastic fiber elasticity

    Stretched

    Distensibility Distole: release of energy

    recoil maintain distolickinetic energy

    elastic reservoir pressure

    intermittent flowcontinuous flow

  • 8/13/2019 4xunhuan2

    5/155

  • 8/13/2019 4xunhuan2

    6/155

    Middle artery:

    carry blood to arteriolesdistribution vessels

    Small artery and arteriole:resistance vessels areregulated

    by neurohumoral factors

    Control of capillary blood flow

  • 8/13/2019 4xunhuan2

    7/155

    2. Capillary vessels: exchange vessels

    Exchange of substances between

    blood and interstitial fluid.

    Precapillary sphincter.

    Control of inflow of capillaries

  • 8/13/2019 4xunhuan2

    8/155

    A-V shunt (anastomosis)

    Blood flow from arteriole to

    venules by passing capillary.

  • 8/13/2019 4xunhuan2

    9/155

    3. Venous Vessels, capacitance

    vessels: large vein, vena cava.

    Blood reservoir

    big compliance, low mean

    venous pressure, low

    resistance vessels

    Venous valve; venule.

  • 8/13/2019 4xunhuan2

    10/155

  • 8/13/2019 4xunhuan2

    11/155

    .Blood flow, resistance to bloodflow and pressure

    Hemodynamics

    1.Blood flow: Blood volume passing

    a given section in the cardio-vascular system per unit time (ml/s).

  • 8/13/2019 4xunhuan2

    12/155

    P1-P2(1). F =

    R

    (2). Poiseulles law for laminar

    flow.pr4

    F =8L

  • 8/13/2019 4xunhuan2

    13/155

  • 8/13/2019 4xunhuan2

    14/155

    Laminar flow

    Velocity of different layers

    is different

    parabolic

    no vibration

    no sound

  • 8/13/2019 4xunhuan2

    15/155

  • 8/13/2019 4xunhuan2

    16/155

    Turbulent flow

    blood flow is in direct proportion to

    square root of pressure difference

    Vibration

    Sound (murmur)

    Wasteful energy

  • 8/13/2019 4xunhuan2

    17/155

  • 8/13/2019 4xunhuan2

    18/155

    Empirical equation: Reynoldsnumber: NR=DV/

    (rho): density of fluid.

    D: diameter of the tube.V: velocity of flow.

    NR< 2000 laminar flowNR< 3000 turbulent flow

  • 8/13/2019 4xunhuan2

    19/155

    2. Resistanceto blood flow:P1-P2 81

    F = R =R r4

    Resistance comes from external

    friction (L, r) ,internalfriction().

    Total peripheral resistanceis mainlydetermined by arterioles(6070%).

  • 8/13/2019 4xunhuan2

    20/155

  • 8/13/2019 4xunhuan2

    21/155

    Resistance and arterial blood

    pressureaffect blood flow of

    organ and redistribution of

    blood flow of organs

  • 8/13/2019 4xunhuan2

    22/155

  • 8/13/2019 4xunhuan2

    23/155

    3.Blood pressure. 1mmHg = 0.133 Kpa.

    Two requirements for blood pressureformation:

    (1) Blood filling in cardiovascularsystem.

    Mean circulatory filing pressureblood volume

    = 7mmHgvascular volume

    affect venous return to heart.

  • 8/13/2019 4xunhuan2

    24/155

    (2) Heart workPressure energy + Kinetic energy

    Pressure (systole)

    diastolic forward flow

    pressure

  • 8/13/2019 4xunhuan2

    25/155

  • 8/13/2019 4xunhuan2

    26/155

  • 8/13/2019 4xunhuan2

    27/155

    Fall of blood pressure is in direct

    proportion to resistanceto blood

    flow

  • 8/13/2019 4xunhuan2

    28/155

  • 8/13/2019 4xunhuan2

    29/155

  • 8/13/2019 4xunhuan2

    30/155

    2. Determinants of arterial blood

    pressure

    (1) arterial blood volume(2) arterial compliance

    Volume/pressure

  • 8/13/2019 4xunhuan2

    31/155

  • 8/13/2019 4xunhuan2

    32/155

    If we assume that arterial compliance

    remains constant, arterial blood

    pressure will depend on arterial blood

    volumeand vascular volume

    Blood volumeBP vascular volume

  • 8/13/2019 4xunhuan2

    33/155

    If a vascular volume does not change

    arterial blood volumearterial BP

  • 8/13/2019 4xunhuan2

    34/155

    Arterial blood volume is determined by the

    rate of inflowand outflow of arterial system.

    Rate of inflowcardiac output

    Rate of outflow:resistance andBP.

    AP = F R = HRSVRInflow outflow arterial blood AP

    volume> <

    = - -

  • 8/13/2019 4xunhuan2

    35/155

    3. Factors affecting arterial

    pressure

    (1) stoke volume

    (2) heart rate

    (3) peripheral resistance

    (4) aorta large artery

    (5)circulatory blood flow

  • 8/13/2019 4xunhuan2

    36/155

  • 8/13/2019 4xunhuan2

    37/155

    Factors results

    SV HR PR E BV SP DP PP

  • 8/13/2019 4xunhuan2

    38/155

  • 8/13/2019 4xunhuan2

    39/155

    2. Effect ofgravityon

    venous pressure

    Orthostatic hypotension

  • 8/13/2019 4xunhuan2

    40/155

    3. Venous return and affecting factors(1) Mean circulatory filling pressure

    (2) Cardiac contractility(3) Sympathetic nerve

    (4) Muscle pump

    (5) Thoracic pump

  • 8/13/2019 4xunhuan2

    41/155

  • 8/13/2019 4xunhuan2

    42/155

    .Microcirculation1. Architecture of microcirculation.

    (1) Thoroughfare or preferential

    channel.(2) A-V anastomosis or A-v shunt.

    (3) Arteriole metareriole precapillary sphincter true

    capillary venule.

  • 8/13/2019 4xunhuan2

    43/155

  • 8/13/2019 4xunhuan2

    44/155

  • 8/13/2019 4xunhuan2

    45/155

    4. Hemodynamic of microcirculation

    (1) big cross section area

    slow velocity of blood flow

    (2) capillary pressure depends on

    precapillary resistance / postcapillary

    resistance: 5:1

    (3) alternate opening and closing of

    capillaries

  • 8/13/2019 4xunhuan2

    46/155

  • 8/13/2019 4xunhuan2

    47/155

    2. Exchange of substances between

    blood and interstitial fluid(1) Diffusion:the most important way.

    Lipid soluble substances: O2, CO2

    non-lipid soluble substances:

    Rate of diffusion =(DA/a)(Co-Ci)

    D: diffusion coefficient

    (2) Pinocytosis.

  • 8/13/2019 4xunhuan2

    48/155

    (3) Filtration and absorptionOutward force > inward force filtration

    < reabsorption

    Capillary hydrostatic interstitial

    pressure hydrostatic pressure

    Interstitial colloid plasma colloidosmotic pressure osmotic pressure

  • 8/13/2019 4xunhuan2

    49/155

    VI Formation of interstitial fluid

    V = Kf[ ( Pc+if)(p+ Pif) ]

  • 8/13/2019 4xunhuan2

    50/155

  • 8/13/2019 4xunhuan2

    51/155

    3. Factors affecting the formation of

    interstitial fluid.

    (1) Capillary hydrostatic pressure.

    (2) Colloid osmotic pressure.

    (3) Lymph return.

    (4) Capillary permeability.

  • 8/13/2019 4xunhuan2

    52/155

  • 8/13/2019 4xunhuan2

    53/155

    SECTION 4

    REGULATION OF

    CARDIOVASCULAR ACTIVITY

  • 8/13/2019 4xunhuan2

    54/155

    Significance:

    To maintain normal blood pressure,

    blood flow to be relativity constant.

    To redistribute blood supply to

    different tissue and organs.

    To redistribute blood supply to

    different tissue and organs.

  • 8/13/2019 4xunhuan2

    55/155

    Ways of regulation:

    BP = cardiac out Resistance8L

    R = r4

    Neural control: reflex

    Humoral control; humoral factors

    Autoregulation: intrinsic regulation

  • 8/13/2019 4xunhuan2

    56/155

    Cardiovascular reflex(1) Arterial baroreflexes:

    Carotid sinus baroreflexAortic baroreflex

    (2) Cardiopulmonary reflex

    (3) Chemoreceptor reflex

  • 8/13/2019 4xunhuan2

    57/155

    A. Neural regulation

    1. Innervation of the heart

    dual innervation(1) cardiac sympathetic nerve

    (2) cardiac parasympathetic nerve

    Cardiac Symp n Cardiac Vagal n

  • 8/13/2019 4xunhuan2

    58/155

    y p g

    IML1-5 Amgiguus N, Dorsal

    motor N of vagus

    Preganglionic f Preganglionic f

    ACh ACh

    Postganglionic N

    N receptor

    Postganglionic f Postganglionic f

    NE Effects Achinotropic

    receptor chronotropic M receptor

    dromotropic

    propranolol Blocker atropine

  • 8/13/2019 4xunhuan2

    59/155

    (1) Effects of vagal nerve

    Vagal nerve ending ACh.

    binds to M cholinergic receptor

    permeability to K+results

    in:

    automaticity of S-A node:

  • 8/13/2019 4xunhuan2

    60/155

    contractilitydue to :

    K+efflux at phase 3 repolarization

    AP duration Ca2+influx

    [Ca2+]i;

    ACh inhibits Ca2+influx [Ca2+]i

    contractility.

    conductivity

  • 8/13/2019 4xunhuan2

    61/155

  • 8/13/2019 4xunhuan2

    62/155

    TheleftVagus n:conductivity in

    A-V node

    The rightVagus n: automaticity

    in S-A node.

  • 8/13/2019 4xunhuan2

    63/155

    (2) Effects of cardiac sympatheticnerve:

    Cardiac sympathetic nerve ending noradrenaline binds to -

    adrenergic receptorpermeability

    to Ca2+leads to:

  • 8/13/2019 4xunhuan2

    64/155

    Automaticity

    ConductivityContractility

  • 8/13/2019 4xunhuan2

    65/155

    The leftSymp ncontractility.The rightSymp nHR.

  • 8/13/2019 4xunhuan2

    66/155

  • 8/13/2019 4xunhuan2

    67/155

    2. Innervation of blood vessels

    (1) Vasoconstriction fiber

  • 8/13/2019 4xunhuan2

    68/155

    Pre ganglionic ganglionic

    neurons neurons

    IML T1-L2 adrenergic f

    cholinergic f. ACh NE

    N receptor

    receptor vasoconstrictionreceptor vasodilation

  • 8/13/2019 4xunhuan2

    69/155

    Sympathetic

    vasoconstrictor vascular tone

    tone

    vasoconstriction

    vasodilation

    tonic activity bidirectional regulation

  • 8/13/2019 4xunhuan2

    70/155

  • 8/13/2019 4xunhuan2

    71/155

    Density of symp vasoconstriction

    fiber in organs;

    Skin > Skeletal > Visceral organs,

    Cerebral vessels,

    Coronary vessels.

  • 8/13/2019 4xunhuan2

    72/155

    (2) Vasodilation nerve fibebs

    1) Sympathetic vasodilation never fibers

    Cerebral cortex relay in hypothalamus and

    Midbrain medulla oblongata spinal

    cord Sym fiber ACh Vasodilation

    in skeletal M.

    No tonic activity; defense reaction.

  • 8/13/2019 4xunhuan2

    73/155

  • 8/13/2019 4xunhuan2

    74/155

  • 8/13/2019 4xunhuan2

    75/155

    3)Non-cholinergic, non-adrenergicfibersNO, peptides

  • 8/13/2019 4xunhuan2

    76/155

    B. Cardiovascular center1.Cardiovascular center in medulla

    oblongata

    After transection between pon and

    medulla oblongata, BP remains normal.

    Stimulation of sciatic nerve induces theincrease in BP.

  • 8/13/2019 4xunhuan2

    77/155

    After transection at obex in medulla,

    BP drops to 40 mmHg, no response of

    BP to stimulation of sciatic nerve.

    Medulla can maintain normal BP, and

    is called basal centerof

    cardiovascular activity integration.

  • 8/13/2019 4xunhuan2

    78/155

    (1) Rostral ventrolateral medulla

    (RVLM)

    (2) Caudal ventrolateral medulla

    (CVLM)(3) Nucleus of solitary tract

    (NTS)

    (4) Cardiac vagal center

  • 8/13/2019 4xunhuan2

    79/155

    (1) Rostral ventrolateral medulla

    (RVLM)

    Cardiac sympathetic tone

    Sympathetic vasoconstriction tone

  • 8/13/2019 4xunhuan2

    80/155

    Stimulationof RVLMBP,HR.Destructionof RVLM, BP decreases

    to 40mmHg.

    RVLM is very important center in

    maintain normal BP, it has vasomotor

    tonity.

  • 8/13/2019 4xunhuan2

    81/155

  • 8/13/2019 4xunhuan2

    82/155

  • 8/13/2019 4xunhuan2

    83/155

  • 8/13/2019 4xunhuan2

    84/155

    (2) Caudal ventrolateral edulla

    (CVLM)

    Receives signals from NTS

    sends axons to RVLM

    Inhibition of RVLM

  • 8/13/2019 4xunhuan2

    85/155

    (3) Nucleus of solitary tract (NTS)

    receives signals from arterial

    baroreceptors and cardiopulmanary

    receptors

    sends axons to vagal center and

    CVLM

  • 8/13/2019 4xunhuan2

    86/155

    (4) Cardiac vagal center

    nucleus ambiguus, dorsal

    motor nucleus of vagus

    receives axons fom NTS

  • 8/13/2019 4xunhuan2

    87/155

  • 8/13/2019 4xunhuan2

    88/155

    NTS CVLM RVLM

    N.ambiguous Symp. Preganlionic

    dorsal motor neurons in IML.

    N of vagus

    3 H th l

  • 8/13/2019 4xunhuan2

    89/155

    3. Hypothalamus

    (1) Hypothalamus is higher

    integrated centerof autonomic

    system, including feeding,

    regulation of body temperature,

    fluid balance and endocrinesecretion.

    (2) Anterior hypothalamus

  • 8/13/2019 4xunhuan2

    90/155

    (2). Anterior hypothalamusStimulation causes the decrease in BP

    and HR

    Sends axons directly to SPN of IML in

    spinal cord.

    Receives axons of NTS in medulla.

    Plays role in arterial baroreflex.NTS AH IML Symp.f.

  • 8/13/2019 4xunhuan2

    91/155

    (3) Posterior and lateral hypothalamusStimulation of defence area

    cause defensive reaction:

    Behavior: Rage, attack reaction or fighting

    associated with hissing, growling, spitting,

    piloerection, pupil dilation, biting

  • 8/13/2019 4xunhuan2

    92/155

    Cardiovascular reactions:

    BP,HR, Vasodilation in skeletal

    muscle.

    vasoconstriction in skin and splanchnic

    organs.

    4 Cerebral cortex

  • 8/13/2019 4xunhuan2

    93/155

    4. Cerebral cortex.

    (1) Limbic area regulates the activity of

    lower centers.

    (2) Motor and premotor area causes

    vasoconstriction of skin, splanchnic and

    renal vessels, but vasodilation in skeletal

    muscles.(3) Responses of BP to pain, anxiety and

    during exercise.

  • 8/13/2019 4xunhuan2

    94/155

    (1). Barorecrptor is located in adventitia of

  • 8/13/2019 4xunhuan2

    95/155

    (1). Barorecrptoris located in adventitia of

    carotid sinus and aortic arch

    Characteristics:

    a. Response to stretch, not to pressure

    itself

    b. Activity is directly related to BP level

    c. More sensitive to pulsatile pressure

    than nonpulsatile pressure.

  • 8/13/2019 4xunhuan2

    96/155

  • 8/13/2019 4xunhuan2

    97/155

  • 8/13/2019 4xunhuan2

    98/155

    (2) Afferent ner e: B ffer ner es

  • 8/13/2019 4xunhuan2

    99/155

    (2) Afferent nerve: Buffer nerves

    Carotid sinus nerve - a branch of

    glossopharyngeal nerve connected

    with carotid sinus baroreceptor

    Aortic nerve-running in vagus n

    connected with aortic baroreceptor

    Reflex arc

    BP

  • 8/13/2019 4xunhuan2

    100/155

    Carotid &aortic

    receptors

    NTS

    vagal center cardiac vagus HR

    cardiac symp SV

    CVLM RVLM MIL CO

    symp vasoconstrictor PR

    BP

  • 8/13/2019 4xunhuan2

    101/155

    (3) Function of baroreflex.

    a.Experimental evidence:

    (a) Effect of carotid clamping;

    (b) Buffer nerve cut or stimulated

    (c) Perfusion of isolated carotidsinus.

  • 8/13/2019 4xunhuan2

    102/155

    MethodResults:

    baroreflex function curve.Features of the curve:

  • 8/13/2019 4xunhuan2

    103/155

  • 8/13/2019 4xunhuan2

    104/155

    A i S h

  • 8/13/2019 4xunhuan2

    105/155

    Anti S shape

    Sinus threshold pressure

    Sinus saturation pressure working range

    Equilibrium point or operating point ( Setpoint):ISP = arterial pressure.

    Negative slope (gain) - Negative feedback

    Slope is no uniform.

  • 8/13/2019 4xunhuan2

    106/155

    (4) Functional significances of arterialbaroreflex:

    To keep arterial pressure at normal levelTo stabilize arterial pressure and prevent

    arterial pressure from largefluctuation

  • 8/13/2019 4xunhuan2

    107/155

  • 8/13/2019 4xunhuan2

    108/155

    Baroreflex resetting.

    Operating point and baroreflex

    function curve shift upward or

    downward.

  • 8/13/2019 4xunhuan2

    109/155

    2. Cardiopulmonary reflex(1). Atrial volume receptor

    Location: in the junction of pulmonaryvein and left atrium, vena cava and

    right atrium

  • 8/13/2019 4xunhuan2

    110/155

    Reflex action:

    Tachycardia (bainbridge reflex) 1895.

    Increase in urine due torenal

    Sympathetic efferent activityand

    antidiuretic hormone.

    (2) Left ventricular receptor

  • 8/13/2019 4xunhuan2

    111/155

    (2).Left ventricular receptor.

    a. Mechanoreceptors:Location: Left ventricle.

    Stimulation of ventricle.

    Afferent n: vagus n.

    Reflex action: similar to arterial

    baroreflex, i.e. decrease in BP

    and HR.

    b. Chemoreceptor in ventricle:

  • 8/13/2019 4xunhuan2

    112/155

    p

    Coronary chemoreflex(Bezold- Jarisch

    reflex)

    Reflex effects: decrease in BP and HR

    Stimulation: Veratridine, nicotine,

    bradykinin, prostagladins, myocardial

    infarction.

    Vagal afferent n.

    2 Ch t fl

  • 8/13/2019 4xunhuan2

    113/155

    2. Chemoreceptor reflex

    (1) Respiratory depth and frequency

    increases;

    (2) Vasoconstriction in skeletal M,

    splanchnic viscera, kidney.

    (3) Blood flow in brain and liverincreases. BP inceases

  • 8/13/2019 4xunhuan2

    114/155

    (4)HR, cardiac outputdue to

    a.respiration rate and depth

    b.catecholamine from adrenal

    medulla.

    If i ti t d d th k

  • 8/13/2019 4xunhuan2

    115/155

    If respiration rate and depth keep

    constant BP

    a.HR, cardiac output

    b. vasoconstriction in skeletal M

    Splanchnic organs and kidneys

    c. Coronary vosodilation

    Diving rflex

    Si ifi f h t fl

  • 8/13/2019 4xunhuan2

    116/155

    Significances of chemoreceptor reflex

    Uunder normal condition chemoreflex playsa litte role in control of cardiovascular

    activity, but in an emergency(asphyxia,

    hypoxia, acidosis, severe hypotension) blood

    pressure is maintained by this reflex,

    because bilateral buffer nerves are cut,

    blood pressure will drop to very low level.

  • 8/13/2019 4xunhuan2

    117/155

  • 8/13/2019 4xunhuan2

    118/155

    B. Humoral regulation of

    cardiovascular system

    1. Renin - angiotension system.

    i i ( 2 l b li )

  • 8/13/2019 4xunhuan2

    119/155

    angiotensinogen ( 2-globulin)kidney renin

    angiotensin(decapeptide)converting enzyme

    angiotensin(octapeptide)angiotensinase A AT1receptor

    angiotensin(heptapeptide)

  • 8/13/2019 4xunhuan2

    120/155

    (1).Action

  • 8/13/2019 4xunhuan2

    121/155

    a. The increase in BP

    Arterial constrictiontotal peripheral

    resistance

    Venous constrictionvenous returnSV.

    Stimulation of secretion of aldosterone

    renal tubule reabsorption of Na+,H2O

    blood volume.

    Facilitation of NE releasefrom adrenergic

  • 8/13/2019 4xunhuan2

    122/155

    fiber endings, modulation of sympathetic

    function.

    Central effectsof angiotensin .

    Action site: Circumventricular organs;

    Organum vasoculosum of the lamina

    terminalis (OVLT), Subfornical organ

    (SFO), Area postrema (AP).

  • 8/13/2019 4xunhuan2

    123/155

  • 8/13/2019 4xunhuan2

    124/155

    Regulation of renin release

    a. Renal mechanisms:

    renal vascular baroreceptor.

    b. Renal sympathetic n

    c. Plasm Na+,plasm K+

    Hemorrhage

  • 8/13/2019 4xunhuan2

    125/155

    2.Epinephrine(adrenaline EP)

    norepinephrine (noradrenaline NE)

    Origin: adrenal medulla.

    Secretion: EP 80%, NE 20%.

  • 8/13/2019 4xunhuan2

    126/155

    Effect: similar to that of sympathetic

    nerve.

    (1)Heart: positive chronotropic and

    inotropic effect.(2)Blood vessels:

    -adrenergic receptor: vasoconstriction.

    -adrenergic receptor: vasodilation.

  • 8/13/2019 4xunhuan2

    127/155

    The action of EP and NE on

    cardiovascular system has some

    differences which depend on the

    distribution and affinityof - and

    - receptors.

  • 8/13/2019 4xunhuan2

    128/155

  • 8/13/2019 4xunhuan2

    129/155

  • 8/13/2019 4xunhuan2

    130/155

    3. Antidiuretic hormone (vasopressin)

    Synthesisin supraoptic nucleus

    and paraventricular nucleus.

    Storein posterior pituitary gland

    (neurohypophysis).

    ReleaseADH to blood stream.

    Action :

  • 8/13/2019 4xunhuan2

    131/155

    V1 receptor: constriction of bloodvessel increase in blood pressure.

    V2 receptor: reabsorption of H2O

    from collecting duct.

    Dehydration, hemorrhage:AVP

  • 8/13/2019 4xunhuan2

    132/155

    4. Endothelium-derived vasoactivesubstances. Prostacyclin (PGI2)

    (1) Endothelium-derived relaxing factor:Nitric oxide (NO)

    NO synthaseL-Argine NO + L-citrulline

    NO ti t l l l hi h

  • 8/13/2019 4xunhuan2

    133/155

    NO activates guanylyl cyclasewhich

    increases cGMP formation. cGMP

    decreases [Ca2+]iand relaxes vascular

    smooth muscle.

    Phosphodiesterase hydrolyses cGMP

    Factors of activation NOS: ACh,

    bradykinin, substance P, mechanical stress

    3 Endothelin

  • 8/13/2019 4xunhuan2

    134/155

    3.Endothelin

    21 amino acid residues, strong

    vasoconstrictor

    i vendothelin causes first decrease in

    BP and followed by long-term of the

    increase in BP

    5. Atrial natriuretic peptide (ANP)

  • 8/13/2019 4xunhuan2

    135/155

    5. Atrial natriuretic peptide (ANP)

    Action:vasodilation, cardiac output HR

    extracellular fluid volume:

    excretion of water and Na+

    release of renin and aldosterone

    Factors of releasing ANP:

    atrial blood volume.

    6. Kallikrein-kinin system

  • 8/13/2019 4xunhuan2

    136/155

    Kallikreins: proteolytic enzymes

    kininogens

    Plasma Kallikrein

    tissue Kallikrein

    kinins: bradykinin, lysylbradykinin

    angiotensin converting enzyme (ACE)

    Vasodilator, capillary permibility

  • 8/13/2019 4xunhuan2

    137/155

  • 8/13/2019 4xunhuan2

    138/155

  • 8/13/2019 4xunhuan2

    139/155

    C. Local regulation of blood flow

    1. Active hyperemia

    2. Blood flow aytoregulation

  • 8/13/2019 4xunhuan2

    140/155

    D. Blood volume and long term

    regulation of blood pressureRenal-body fluid control system

  • 8/13/2019 4xunhuan2

    141/155

    SECTION 4 CORONARY

    CIRCULATION

  • 8/13/2019 4xunhuan2

    142/155

    CIRCULATIONI. Anatomic consideration.

    II. Feature of coronary flow.

    PF =

    R

    P: perfusion pressure (aortic P -

    atrial P), R: resistance

  • 8/13/2019 4xunhuan2

    143/155

    During systole myocardial contraction

  • 8/13/2019 4xunhuan2

    144/155

    compress coronary vessels which result

    in the increase in coronary resistance.

    During diastole release of compression

    leads to the decrease in coronary

    resistance. Therefore, coronary flow

    depends on: 1.diastolic pressure.

    2.duration of diastole.

  • 8/13/2019 4xunhuan2

    145/155

    Cyclic change of

    coronary flow

    Pressure gradient

    .Regulation of coronary blood flow.

  • 8/13/2019 4xunhuan2

    146/155

    Normal value: 60-80ml/100g.min.

    Exercise 300-400ml/100g.min

    O2consumption 7-9ml/100g.min.

    O2 extraction 65-70%

    O2content in coronary venous blood

    is 5ml/100ml. O2content in skeletal

    muscle venous blood is 17-18ml/100ml.

    1. Myocardial metabolic level

  • 8/13/2019 4xunhuan2

    147/155

    cardiac activity, cardiac

    consumption O2 ,PO2,

    adenosine

    CO2, H+, lactic acid, K+,

    prostaglandins.

    Effects of PO2on coronary flow

    ATP

  • 8/13/2019 4xunhuan2

    148/155

    PO2

    ADP

    AMP

    5nucleotidase

    adenosinevasodilationadenosine adenosine

    Kinase diaminase

    inosine

  • 8/13/2019 4xunhuan2

    149/155

    2. Neurol control

    (1).Sympathetic nerve: NE

    -receptor vasoconstriction

    -receptormyocardial

    contraction metabolism,

    coronary vasodilation

  • 8/13/2019 4xunhuan2

    150/155

    (2). vagal nerve:

    ACh coronary dilation.

    metabolism coronary

    constriction

  • 8/13/2019 4xunhuan2

    151/155

    3.Hormone regulation

    NE, EP, thyroxin coronary

    dilationAngiotensin, vasopressioncoronary constriction.

  • 8/13/2019 4xunhuan2

    152/155

    (2).Regulation of vasopressin release

    a.Osmotic control;

    O ti t i t i t l thi d

  • 8/13/2019 4xunhuan2

    153/155

    Osmotic receptor in anterioventral third

    Ventricle (AV3V)

    plasmaosmotic PVN,SON

    pressure ADH

    Reabsorption of water

    From collecting

    Blood volume

  • 8/13/2019 4xunhuan2

    154/155

    b. non-osmotic control.* volume receptor

    vagal afferent nerve(+)

    ADH

    * arterial baroreceptors (+)

  • 8/13/2019 4xunhuan2

    155/155

    sinus n and aortic n

    ADH

    * Pain, Surgical stress,

    emotion stress ADH